
 

 

 

 

 

 

 

 

 

Copyright © 1981, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



FUZZY RATIONAL CHOICE FUNCTIONS

by

S. V. Ovchinnikov

Memorandum No. UCB/ERL M81/4

27 January 1981

ELECTRONICS RESEARCH UBORATORY

College of Engineering
University of California, Berkeley

94720



FUZZY RATIONAL CHOICE FUNCTIONS

S.V. Ovchinnikov

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT
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1. Introduction

This paper is concerned with an approach to choice theory based on

fuzzy set theory. Fuzzy rational choice theory turns out to be similar

to the crisp one but also has pure fuzzy features.

In general,' choice theory considers the following model (see, for

example, [1] - [3] and [8]): Let A be a fixed finite set of variants.

For each nonempty subset X C A a nonempty subset Y c X is chosen in

accordance with any rule. In such manner a choice function Y = C(X) is

given, which associates with each X c A its subset Y c X. There are two

different methods to describe "entire choice" defined by this way. The

first one points out a mechanism of choice whereby part Y is found from

X. This method can be called an internal method. The second method in

dicates the set of all pairs (X,Y) and is called an external method.

All classical choice mechanisms are based on a "pair-dominance" idea.

According to it the choice of element y € X is made as a result of com

parisons of this element with any other element x e X. Some given struc

ture on the set A is utilized to make these comparisons, for example, a

binary preference relation. The choice functions thus arised have very

attractive "rational" properties such as "heritage" and "concordance".

One of the main problems in choice theory is a description of characteris

tic properties of choice functions. These properties, known as "rational

choice axioms", emphasize the functions which have an equivalent descrip

tion in pair-dominance optimization terms.

A general framework of rational choice theory is given in section 2.

Our exposition is based on the paper [3].

Section 3 is concerned with fuzzy preferences considered as fuzzy

binary relations. The structure of these preferences is studied and

various types of fuzzy preferences are defined.
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Fuzzy rational choice functions based on fuzzy preference are defined

in section 4. Main properties of these functions are established in this

section.

It is shown in section 5 that various combinations of characteristic

properties emphasize fuzzy choice functions based on fuzzy preferences of

certain types.

2. Best variant choice

As it was mentioned above there are two alternative approaches to

the theory of best variant choice. The first one is concerned with a

mechanism of choice. In this paper only mechanisms based on binary re

lations are considered. Let R be a binary relation on the set A. We

read xRy as "x is preferred to y", i.e. R is assumed to be a preference

relation. A choice function based on a preference relation R is defined by

Y = C(X) = {x e X|xRy for all y e X}. (2.1)

This mechanism is founded on comparisons in pairs of variants. Such

"pair-dominance" mechanisms can be regarded as abstract forms of classical

optimizational mechanisms based on scalar and vector criteria. Various

types of preferences, such as partial orderings, weak orderings etc.,

define, by (2.1), classes of rational choice functions possessed specific

rational properties.

An alternative approach to choice theory considers "characteristic

properties" of general choice functions and the main problem here is to

describe such combinations of characteristic properties which emphasize

exactly the same classes as given by certain pair-dominant mechanisms.

Following [3] let us define main characteristic properties as:

1. Heritage (H): if X' C X, then C(X') D C(X) nr,.

2- Strict heritage, or keeping constancy of residual choice (K):

if X'c x and X1 n c(X) f 0, then C(X') = C(X) nx'.



3. Concordance (C): If X = X' U X", then C(X) => C(X') n C(X").

4- Independence of rejecting the outcast variants (0):

if C(X) cx» ex, then C(X') = C(X).

Most works concerned with rational choice theory unanimously declare

these properties as clearly representing the idea of what is "better"

(see [1] - [3] and [8]).

The following theorem represents main classical statements on cor

respondence between pair-dominance mechanisms and general choice functions.

Theorem 2.1. ([3]). For a choice function to be generable by a

choice mechanism (2.1) of 1) an arbitrary preference relation, 2) a weak

ordering, and 3) a quasi-transitive ordering it is necessary and sufficient

that it satisfies a condition 1) H&C, 2) K, and 3) H&C&O.

Below the statements of this theorem will be extended on fuzzy choice

function theory.

3. Fuzzy preferences

Recall that a fuzzy binary relation R on a set A is a fuzzy set with

universe AxA and defined by its membership function R(x,y) with a range

CO;!].

Definition 3.1. Fuzzy relation R is said to be

reflecive if R(x,x) = 1 for all x e X;

^X^}^m 1f R(x>x) =° f°r all xe X;

SYMj^tHc if R(x,y) = R(y,x) for all x, y € X;

ajjti§v^^ if R(x,y) > 0 implies R(y,z) = 0 for all x f y;

compyle£s if R(x,y) = 0 implies R(y,x) > 0 for all x, y e X;

aj^&Ufc if Rlx^x^) >0 for i = l,...,k-l implies R(x|(,x1) = 0 for
any sequence x,,...,x. .
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7) transitive if R(x,y) > 0 and R(y,z) > 0 implies R(x,z) > 0 for all

x, y, z e x.

Remark. It should be noted that our definition of transitivity is

different from classical ones (see [4]). Fuzzy set theory admits various

possible notions of transitivity (see [5]). Transitivity defined by 7)

can be considered as the weakest one in some precise sense (see [6]).

A notion of a strict preference introduced in the following defi

nition plays a significant role in choice theory.

Definition 3.2. Let R be a fuzzy preference. A fuzzy binary rela

tion PR defined by

'R(x,y), if R(y,x) = 0,

0 otherwise,
PD(x,y) = i
R

v.

is said to be a stri

Remark. In choice theory aPRb iff aRb and~l bRa, i.e. PR =RnR"1
where R" is a complement of R considered as a subset in AxA. Fuzzy

set theory admits various possible definitions of a complement (see [7]).

Definition 3.2_is based on an MRtimtiti& mti}m& W for wh1ch w*
have PR =Rnr"1.

Definition 3.3. A fuzzy preference R is said to be

1} W$MAlV$y$J& if 1t is a reflexive, antisymmetric and transitive
fuzzy relation;

2) JjJtjftyj if it is a complete partial ordering;

3) $$£XV?& 1f n 1s a reflexive, complete and transitive fuzzy relation;

4) SK^^X^^ 1f 1t is a reflexive, complete relation
and PR is a transitive relation.

The following structural properties of fuzzy preference will be used

in the next sections.
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Proposition 3.1. Let Rbe an ordering. Then: 1) PR- is atransi
tive relation, i.e. Ris aquasi-transitive preference, 2) PR(x,y) >0
and R(y,z) >0imply ?R(x9z) >0, and R(x,y) >0and PR(y,z) >0imply
PR(x,z) > 0.

We omit proofs of these statements which are quite similar to crisp
ones (see [8]).

4. Fuzzy pair-dominant choice functions

In this section fuzzy choice functions based on fuzzy preferences

are defined and their characteristic properties are established.

The following definition is an immediate extension of crisp defini

tion (2.1) and is in accordance with a general" approach to a fuzzy

decision-making developed in [9]. Let A be a universe of variants and R -

a fuzzy preference on A.

Definition 4.1. A pair-dominant choice function based on a fuzzy

preference R is a mapping which, to each fuzzy set X, assigns a fuzzy

subset Cx with a membership function

C*(x) = A{R(x,y) AX(x)} (4.1)
y^C

(We denote y € X iff X(y) > 0).

•One can compare (4.1) with the definition of upper bound in [4].
D

Note, that Cx really is a subset of X. If R and X are crisp sets

then definition 4.1 provides the same result as (2.1).

The following lemmas establish'general properties of fuzzy pair-

cominant mechanisms.

R RLemma 4.1. Cx C CcarX, where carX = {x £ A :X(x) >0} is a carrier

of X.
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Proof follows immediately from (4.1).

Lemma 4.2. Cx fulfills the heritage property (H): if X' c X, then

Proof. C„\(x) = A {R(x,y) Ax(x)}
* yQC

> A (R(x,y) A X'(x) A X(x)} = c5(x) A X'(x), Q.E.D.
"y€X A

Lemma 4.3. Cx fulfills the concordance property (C): cJL. 2 c$ ncv-

Proof.

Cx(x) Acj(x) =[A{R(x,u) AX(x)}] A[A{R(x,v) AY(x)}]
Y u€X v€Y

• A {R(x,y) A X(x) A Y(x)} < A {R(x,y) A (X(x) V Y(x))} =C*(x),
y^XUY " yGXUY ^Y

Q.E.D.

Two last lemmas show that a fuzzy pair-dominant choice function ful

fills the same properties of heritage and concordance as a crisp one

(see theorem 2.1,1)). But, in addition to these properties, it fulfills

also very important property (4.2) which has no crisp analogs. The role

of this property will be clear from section 5. Here we only note that

(4.2) has a quite clear interpretation: if an element x is chosen from

a fuzzy set X then it should be chosen from carX and a degree of its

belongness to Cx does not exceed of that to CR r
The following lemma gives some properties of fuzzy pair-dominant

choice mechanisms which follow from main properties of fuzzy preferences.

Lemma 4.4. 1) Let R be a reflexive relation. Then

C{X} - {x} (4.3)

where {x} is a crisp singleton;
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2) Let R be a reflexive and complete relation. Then

fR(x,y) if u=x,

cx,y(u) = R(y»x) 1f u=y*
0 otherwise.

v.

3) Let R be a reflexive, complete relation and PR is an acyclic relation.

Then

C^ 0for any Xf 0. (4.4)

Proof. 1) and 2) follow immediately from (4.1). Note only that

they mean nonvoideness of a choice from "small" sets (with cardinality < 2)

3) The proof is quite similar to the crisp one (see [8]).

Corollary. CR f 0for X f 0if Ris an ordering or aquasi-transitive
preference.

Proof. Any ordering or quasi-transitive preference is a reflexive

complete and acyclic relation.

The main properties of fuzzy pair-dominant choice functions based on

particular types of fuzzy preferences are given below.

Lemma 4.5. Let R be a fuzzy ordering. Then

if X' cXand CR nX' f 0, then carcjj, =carC* ncarX'. (4.5)

Proof. By lemma 4.2 it is sufficient to prove that

carCx, c carCx n carX'.

Let x€ carCx, and x£ carCx n carX', i.e. x£ carCx, because xe carX'.

Since x£carCR there is ysuch that R(x,y) =0, i.e. PR(y,x) >0. On
the other hand xe carCx, which implies y€ carX \ carX1. Since
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R RCx n X' ? 0 there is z such that z e carX* and z e carCx. Hence,
O

R(x,z) >0 because x GcarCx, and z GcarX1. By proposition 3.1,2) we

have PR(y,z) >0which implies R(z,y) =0. But zecarC? which implies
R(z,y) > 0. This contradiction completes the proof.

Lemma 4.6. Let R be a fuzzy quasi-transitive preference. Then

if Cx CX' CX, then carcjj, =card* . (4.6)

Proof. By lemma 4.2 it is sufficient to prove that carC?, c care?.

Let xe carCx, and x£ carCx< Since x£ carCx there is y, e Xsuch that

PR(y-|»x) >0. We have y] £carCx because xe carCx, which follows

R(x,y) >0for all yeX'. Since y} ecarC^ there is y2 such that
PR(y2»y1) >0which implies PR(y2,x) >0, by transitivity of PR. If

D

y2 £ Cx then there is y3 different from y} and y2 such that P(y3,x) >0

and so on. By finiteness of Awe find y such that PR(y,x) >0 and
R Rye carCx. But xe carCx, and ye carX', i.e. R(x,y) >0 which contradicts

PR<y>x) > 0- Q.E.D.

Note in conclusion that any fuzzy pair-dominant choice function ful

fills properties (H) and (C). On the other hand, properties (4.5).and

(4.6) are weaker then (K) and (0), respectively, although for crisp sets

and preferences they coincide with them. Simple examples show that there

are fuzzy orderings and quasi-transitive preferences which do not fulfill

(K) and (0). As it is mentioned in [10] it is stipulated by the pair-

dominance choice function structure (4.1), "since this functions consider

not only the ties between alternatives but also their "power". Having ex

cluded certain alternatives from consideration, we have naturally in-

D

creased the degree of membership to the fuzzy set Cx for other alternatives."
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5, Fuzzy Rational Choice

In this section characteristic properties of fuzzy choice functions

are defined. Various conjunctions of these properties define certain

classes of choice functions based on pair-dominant mechanisms of choice.

Definition 5.1. The following properties of fuzzy choice functions

are said to be characteristic properties:
l\AAA/\AAAAAAAA/\* 'X/VVA/VIAi'VVXj

1. Boundedness (B):
'WWWWWV

CX - CcarX;

if X' CX, then Cx, DCx nx"

if X= X' UX", then Cx DCx. n Cx„;

*\/\AAAAAAA/\AAAAA/\AAAAA*

if X« cxand Cx n X' f 0, then carCx, =carCx ncarX1;

if Cx c x* c X, then carCx, =carCx;

C{x} = {x};

Cx t 0 if X f 0 .

Note that properties (B), (K), (0), (S) and (N) are the same as (4.2),

(4.5), (4.6), (4.3) and (4.4), respectively. We consider properties (B),

(H) and (C) as defined a "rational" fuzzy choice.

Lemma 5.1. Conjunction (B) & (H) implies

cx=ccarXnx. (5.i)
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Proof. We have Cx DCcarX n x» by (H)» and cx £ cCarX n X' by ^9
which implies (5.1).

Theorem 5.1. A fuzzy choice function C is a fuzzy pair-dominant
D

choice function Cx for some fuzzy preference R iff Cx fulfills properties

(B), (H) and (C).

Proof. Necessity follows from lemmas 4.1-4.3. To prove sufficiency

let us define R by

R(x'y) =C{x,y}<x> •

By (H) and (5.1), X n{x,y} cx implies

Cx n Xn {x,y} c cxn(Xfy} =C{x>y} n x n {x,y}

or

Cx n {x,y} c C{x>y} n x.

Hence,

Cx(x) <C{Xjy}(x) AX(x)

which implies

Cx(x) < A CTy ,AX(x) = A R(x,y) AX(x) =C$(x).
A ~y€X iX'y> y€X X

On the other hand,

X = u (XO{x,y})

which implies, by (5.1) and (C),

Cx2yQxCXntx,y>=^(W^y}nX)
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or

Cx(x) > A (C{x>y}(x)AX(x)) =C*(x), Q.E.D.
y^c

One can compare the statement of theorem 5.1 with statement 1) of

theorem 2.1.

By theorem 5.1 the mapping F:R-+ C*j is asurjection of the set of
all fuzzy preferences onto the set of all fuzzy choice functions satisfied

properties (B), (H) and (C). This mapping is not a bijection because
R R

there are R] f R£ such that C^ =Cx2. Let us define R, ~R2 iff
R-j ^2

CX = CX " Then ^ ls an equivalence relation on the set of all fuzzy

preferences. Each fuzzy rational choice function (i.e. that satisfied

(B), (H) and (C)) is an image of some class of the relation ^ under the

mapping F. The following theorem describes all fuzzy preferences

Re F" (Cx) for agiven Cx.

Theorem 5.2. Let us define a fuzzy preference R for any given R by

Rc(x,y) = R(x,y) AR(x,x).

Then R^R and R' * R" iff R» = R".
c c c

Proof. We have

Cxc(x) = A {R (x,y) A X(x)} = A{R(x,x) A R(x,y) A X(x)} =
A y€X c y€X

A(R(x,y) A X(x)} =C$(x) ,i.e. R-R.
yex x c

Let R^ = R£. Then R1 ~ R^ = R« ~ R» wnicn implies R' ~ R", by

transitivity of ^.

Let R' ~R\ i.e. C*" =cjj". Then

R'(x,y) =R'(x,y) AR'(x,x) =C^y}(x) =cf^x) =R"(x,y) AR»(x,x)
= Rc'(x,y) Q.E.D.
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One can consider RQ as a "cannonical representative" in the class of

^ which contains R. These cannonical representatives are completely

characterized by the property Rc(x,y) < Rc(x,x). Note that the latter

condition always fulfills for reflexive preferences. Hence, classes of

the equivalence relation ^ are singletones for reflexive preferences. We

obtain the following

Corollary. The mapping F:R•+ Cx is a bijection of the set of all

fuzzy reflexive relations of preference onto the set of all fuzzy rational

choice functions satisfied the property (.S).
D

In general, it is possible for Cx to be an empty set for some non

empty X. It was mentioned in section 4 that acyclicity of R implies non

voideness of a choice from non-empty sets. The converse is also true.

Theorem 5.3. Let R be a reflexive complete fuzzy preference. Then

Cx is a non-empty fuzzy set for all non-empty X iff PR is an acyclic fuzzy

relation.

Proof. The necessity follows from lemma 4.4. Let C? f 0 for all

X f 0. Suppoe that PR is not an acyclic relation. Then there is a

sequence x-j,...,xn such that

PR^xi,xi+l^ >° for n= 1»2,...,n-l, and

PR(xn,x1) > 0.

By definition (4.1), we have

R n
cfx x \M = A R(x,x.) for x e {x,,...,x}.i*1,... »* j .j_i i i n

We have R(xi+1,xi) =0for i=l,2,...,n-l and R(xrxn) =0, by (5.2).

Hence, C^x >x y =0. This contradiction completes the proof.
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Now we will consider conditions defining the class of fuzzy choice

functions which have an equivalent description in terms of a pair-dominant

mechanism based on a quisi-transitive fuzzy preference.

Theorem 5.4. A fuzzy choice function Cx is a pair-dominant choice
Rfunction Cx based on a fuzzy quisi-transitive preference R iff it satisfies *

conditions (B), (H), (C), (FO), (N) and (S).

Proof. The necessity follows from lemmas 4.1 -4.4 and 4.6. Let Cx

fulfills the conditions listed in the theorem. By theorem 5.1 we have
D

CX = CX for some R# By ^ and W> R is a reflexive complete relation.

Now it is sufficient to show that PR is a transitive relation, i.e. that

if PR(x,y) >0and PR(y,z) >0then PR(x,z) >0. Let X= {x,y,z}. Then

CR(t) =R(t,x) A R(t,y) A R(t,z) for t€ X.

Hence

Cx(x) = R(x,y) AR(x,z),

R

cx(y) = °» since PR(x,y) >0, and

Cx(z) = 0, since PR(y,z) >0.

By (N), Cx(x) >0which implies R(x,z) >0and carCR ={x}. Let now
X" = {x,z}. Then

C*,(t) = R(t,x) A R(t,z) for tG {x,z}.

Hence, Cx,(x) =R(x,z) and CR,(z) =R(z,x). Now, by (FO), CR cX' cX
R Rimplies carCx, = carCx = {x} which implies R(z,x) = 0. Hence PR(x,z) > 0,

Q.E.D.
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As it follows from theorem 2.1,2) in the crisp case the property (K)

is a very strong one. The power of this property also shows itself very

clearly in the fuzzy case. Let Cx fulfill conditions (K) and (S). Let

X be acrisp set and xe Cx# Then {x} c xand Cx nx f 0. By (K) we

have C{x} = Cx n {x}, or Cx(x) = C{x}(x) = 1, by (S), i.e. Cx is a crisp

set. From (K) it also immediately follows that

Cx = CcarX n X. (5.3)

Hence, Cx is»essentially,a crisp choice function and coincides with
D

Cx for some crisp ordering R, by theorem 2.1 and (5.3). This is a reason,

why even fuzzy chains (linear orderings) do not fulfill (K).

On the other hand it was shown in section 4 (lemma 4.5) that fuzzy

orderings fulfill the condition (FK) which coincides with (K) for crisp

sets and orderings.

We complete this section by the following

Theorem 5.5. A fuzzy choice function Cx is a pair-dominant choice
D

function Cx based on a fuzzy ordering R iff it satisfies conditions (B),

(H), (C), (FK),- (N) and (S).

Proof. The necessity follows from lemmas 4.1 - 4.5. By (B), (H),

(C), (N) and (X) we have Cx = Cx where R is a fuzzy reflexive complete

relation. Let us show that R is a transitive relation, i.e. that

R(x,y) > 0 and R(y,z) > 0 imply R(x,z) > 0. Let X = {x,y,z}. Then

C*(x) =R(x,y) A R(x,z)

C*(y) = R(y.x) AR(y,z), and

Cx(z) = R(z,x) A R(z,y), by reflexivity of R.
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Let now X* = {x,y}. Then

Cx,(x) =R(x,y) and C*,(y) =R(y,x).

If Cx n X1 = 0, i.e. carCx = {z}, then R(x,z) =0 and R(y,x) = 0. By (N),

CR(z) >0, which implies R(z,x) >0and R(z,y) >0. Let X" ={y,z}. We

have C*„(y) =R(y,z) >0and CR„(z) =R(z,y) >0. Since C* n X" f 0,

then, by (FK), carC*,, =carCx n{y,z}. But carCx„ ={y,z} which contra
dicts carCx ={z}. Hence, CR nx* i 0. Then, by (FK), carCx, =carCR nX'.
Since R(x,y) >0, then x€ carCx,. Hence, x€ carCx which implies

R(x,z) > 0. Q.E.D.

6. Conclusion

Fuzzy rational choice theory described above has some characteristic

features which distinguish it from the crisp one. The difference is

mainly stipulated by the purely fuzzy property (B). For example, there

are a lot of "pathological" fuzzy choice functions which fulfill (H) and

(C) and do not fulfill (B).

From fuzzy set theory point of view there is a significant difference

between classical characteristic properties (H), (C), (0) and (K). The

properties (H) and (C) play the same role in both fuzzy and crisp

cases. It seems that various transitivity properties which play a great

role in classical choice theory, are not so important in fuzzy choice

theory (cf. [11] and [12] where some particular choice mechanisms are

studied in details).

Only pair-dominant mechanisms based on fuzzy preferences were con

sidered in this paper. It is an interesting problem to study different

mechanisms of fuzzy choice based, for example, on fuzzy utility functions

[10] and fuzzy hyperrelations [3] in the context of general fuzzy choice

theory. We leave this investigation for further publications.
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