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Abstract

In a sharp departure from the conventional approaches to the
problem of meaning representation in natural languages, test-
score semantics is based on the premise that almost everything
that relates to natural languages is a matter of degree. Thus,
in test-score semantics, predicates, propositions and other
types of linguistic entities are treated as collections of elas
tic constraints on a set of objects or relations in a universe
of discourse. Viewed in this perspective, the meaning of a lin
guistic entity may be defined by (a) identifying the constraints
which are implicit or explicit in the. entity in question; (b)
describing the tests that must be performed to ascertain the
degree to which each constraint is satisfied; and (c) specifying
the manner in which the degrees in question or, equivalently,
the partial test scores are to be aggregated to yield an overall
test score. In general, the overall test score is a vector whose
components are numbers in the unit interval or possibility/prob
ability distributions over this interval.

The first step in the representation of the meaning of a
given proposition involves the construction of a relational data
base in which the meaning of constituent relations and their at
tributes is assumed to be known. The choice of the database af
fects the explanatory effectiveness of the translation process
and is governed by the knowledge profile of the intended user of
the translation. The test procedure — which is regarded as the
representation of the meaning of the proposition — acts on the
database and returns an overall test score which is interpreted
as the compatibility of p with the database.

Test-score semantics is sufficiently general to allow the
translation of almost any proposition in a natural language. How
ever, the price of generality is the difficulty of writing a
program which could represent the meaning of a given proposition
without recourse to human assistance.

To Professor Max Black
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1.. INTRODUCTION

There are some philosophers of language who believe, as
MOHTAGOE did [75], that the construction of a rigorous mathe
matical theory of natural languages is an attainable objective.
An opposing point of view which is articulated in the present
paper is that no mathematical theory based on two-valued logic
is capable of mirroring the elasticity, ambiguity and context-
dependence which set natural languages so far apart from the
synthetic models associated with formal syntax and set-theo
retic semantics.

The basis for our contention is that almost everything that
is associated with natural languages is a matter of degree.
This applies, in particular, to the issue of grammatical!ty and,
even more so, to the notion of meaning. Thus, any logical sys
tem in which there are no gradations of truth and membership is
iEgo facto unsuitable as a framework for a comprehensive theory
of natural languages and, especially, for the representation of
meaning, knowledge and strength of belief.

As an alternative to the approaches based on two-valued
logic, we have proposed in [139] a meaning-representation lan
guage PROP in which an essential use is made of what may be
described as possibility theory [138], [140]. This theory —
which is distinct from the bivalent theories of possibility
related to modal logic and possible-world semantics [47], [92] —
is based on the concept of a possibility distribution, which in
turn is analogous to and yet distinct from that of a probability
distribution. In effect, the basic idea underlying PROF is that
the concept of a possibility distribution provides a natural
mechanism for the representation of much of the imprecision and
lack of specificity which is intrinsic in communication between
humans.

As will be seen in the sequel, the expressive power of PROF
is substantially greater than that of predicate calculus, Mon-

^o^iisJS^hT ?U5fc *lan9u«*e b«t ameaning-representation system which includes a language as one of its components.
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tague grammar, semantic networks, conceptual dependency, and

other types of meaning-representation systems that are cur

rently in use [27], [68], [70], [101]. In particular, PROF

makes it possible to represent the meaning of propositions

which contain (a) fuzzy quantifiers, e.g., many, most, few,

almost all, etc.; (b) modifiers such as very, more or less,

quite, rather, extremely, etc.; and (c) fuzzy qualifiers such

as quite true, not very likely, almost impossible, etc. How

ever, the price of being able to translate almost any proposi

tion in a natural language into PROF is the difficulty of es

tablishing a homomorphic connection between syntax and seman

tics — as is done in Montague grammar for -fragments of Eng

lish, and in Knuth semantics and attributed grammars for prog

ramming languages [57]. What this implies is that, although

it is relatively easy to teach a human subject to translate

from a natural language into PROF, it would be very hard to

write a program that could perform similarly without human as

sistance or intervention.

The semantics underlying PROF is what we shall refer to as

test-score semantics — a semantics in which the concept of ag

gregation of test scores plays a central role. Test-score seman

tics subsumes most of the semantical systems which have been

proposed for natural languages and, in particular, includes as

limiting cases both truth-conditional and possible-world seman

tics [70], [68], [18].

The basic idea behind test-score semantics may be summarized

as follows. An entity in linguistic discourse, e.g., a predicate,

a proposition, a question or a command, has, in general, the ef

fect of inducing elastic constraints on a set of objects or re

lations in a universe of discourse. The meaning os such an en

tity, then, may be defined by (a) identifying the constraints

which are induced by the entity; (b) describing the tests that

must be performed to ascertain the degree to which each con

straint is satisfied; and (c) specifying the manner in which the

degrees in question or, equivalently, the partial test scores

are to be aggregated to yield an overall test score. Viewed in
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this .perspective, then, the meaning of alinguistic entity in
a natural language may be identified with the testing of elas
tic constraints which are implicit or explicit in the entity
in question.

We shall begin our exposition of prof and test-score seman
tics with abrif review of some of the basic notions in pos
sibility theory which will be needed in later sections. A more
detailed exposition of possibility theory may be found in [138],
M40], [83], [45], [130] and [26].2

2. THE CONCEPT OF POSSIBILITY DISTRIBUTION

Informally, let X be a variable which takes values in a set
O. Then, the possibility distribution of X, denoted by n ,is
the fuzzy set of possible values of X, with the understanding
that possibility is amatter of degree. Thus, if u is apos
sible value of X, we shall write

Poas{X-u> -a j2#1)

to indicate that the possibility that X can take u as its value
ia a, where a is a number in the interval [0,1]

The function n, iU- [0,1] which associates with each
u €0 the possibility that X can take u as its value is called
the possibility distribution function. Thus

Poss{X-u} »n^u), u6 0, (2#2)

where 0 is the domain of X. In effect, the possibility distribu
tion function n^ is the membership function of the possibility
distribution nv.

2frS» f?3^«2S*|lioj?— "* eXaBPleS ln SeCti°n 2a" d"™
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In general, a possibility distribution may be induced by a

physical constraint or, alternatively, may be epistemic in ori

gin. To illustrate the difference, let X be the number of pas

sengers that can be carried in Suppes' car, which is a five

passenger Mercedes. In this case, by identifying ^(u) with
the degree of ease with which u passengers can be put in Sup

pes' car, the tabulation of u„ may assume the following form

10

"x
0.8 0.6 0.2 0

in which an entry such as (7,0.6) signifies that, by some ex

plicit or implicit criterion, the degree of ease with which
7 passengers can be carried in Suppes' car is 0.6.

Iii the above example, the possibility distribution of X is

induced by a physical constraint on the number of passengers

that can be carried in Suppes' car. To illustrate the case

where the possibility distribution of X is epistemic in origin,
i.e., reflects the state of knowledge about X, let X be Suppes'
height and let the information about Suppes' height be con

veyed by the proposition

p A Suppes is tall, (2.3)

where tall is the label of a specified fuzzy subset of the inter

val [0, 250 cm] which is characterized by its membership func

tion V-tfjj,* with Uj^^tu) representing the degree to which a
person whose height is u cm is tall in a specified context.

The connection between the variable X A Height (Suppes),

the proposition p A Suppes is tall, and the fuzzy set TALL is
provided by the so-called possibility postulate of possibility
theory [137], [139], which for the example under consideration
implies that, in the absence of any information about X other

^e use uppercase letters to represent fuzzy sets and fuzzy rela
tions .
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than that supplied by p, the possibility that X-u is numerical
ly equal to the grade of membership of u in TALL. Thus

Poss{X«u> - it^u) -^(u), u€ [0, 250] (2.4)

or, equivalently,

"Height(Suppes) " TALL' (2.5)

where (2.5) is referred to as the possibility assignment equa-
tion. In summary, we shall say that p translates into the pos
sibility assignment equation (2.5), i.e.,

Suppes is tall -nHelght(Suppe3) „TALL, (2.6)

where the arrow - should be read as "translates into."
More generally, a central idea in PROF is that any proposi

tion in a natural language which may be put into the canonical
form

P A N is F, (2>?)

where N is the name of an object, avariable or a proposition,
may be interpreted as a characterization of the joint possi
bility distribution of a collection of variables X.,...,x which
are implicit or explicit in p. Thus, in symbols, M is F trans
lates into

"iSF-n(X1 Xn) -F- (2.8)

The variables X, xn which are constrained by the possibility
assignment equation will be referred to as the base variables
of p. :
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Example. Consider the proposition

Nils has a large office

which may be expressed as

p A Nils' office is large.

In this case, the implicit base variables are:

X1 - Length(Office(Nils))

X2 - Width(Office(Nils))

and the possibility assignment equation assumes the form

n(Length(Office(Nils),Width(Office(Nils))) " LARGE' (2-9)

where LARGE is a fuzzy set or, equivalently, a fuzzy binary re

lation in the product space LENGTH x WIDTH. Thus, (2.9) implies

that

Poss(Length(Office(Nils)) - u, Width(Office(Nils)) - v) -

" "LARGE(u'v)'

where "iarge*"'^ is the degree to which an office which is u
long and v wide is defined to be large in a specified context.

What is the difference between probability and possibility?

As the above examples indicate, the concept of possibility is

an abstraction of our intuitive perception of ease of attain

ment or the degree of compatibility, whereas the concept of

probability is rooted in the perception of likelihood, frequency,

proportion or strength of belief. Furthermore, as we shall see

in Section 3, the rules governing the manipulation of possibil

ities are distinct from those which apply to probabilities.

An important aspect of the connection between probabilities

and possibilities relates to the fact that, in principle, they
are independent characterizations of uncertainty in the sense
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that from the knowledge of the possibility distribution of a

variable X we cannot deduce its probability distribution, and

vice-versa. For example, from the knowledge of the possibility

distribution of the number of passengers in Suppes' car we can

not deduce its probability distribution; nor can we deduce the

possibility distribution from the probability distribution of

the number of passengers. In general, however, we can make a

vague assertion to the effect that if the possibility that

X-u is small, then it is likely that the probability that X»u

is also small. However, from this it does not follow that high

possibility implies high probability, as is reflected in the

commonly used statements of the form "It is possible but not

probable that...."

If the translation of a proposition p in a natural language

is taken to be a possibility assignment equation as represented

(2.8), then a question that naturally arises is: How can the

base variables Xj,...,X and their joint possibility distribu
tion n/y . be determined from p?

i*1»• • •»*n'
At this juncture in the development of PROF, we do not have

an algorithm for identifying the base variables in a given pro

position. However, experience has shown that it is not difficult

for a human subject to acquire a facility for translating any

proposition within a broad class of propositions into a possi

bility assignment equation. What is difficult, as was alluded

to already, is to mechanize this process completely, so that

the translation represented by (2.8) could be accomplished

without any human assistance.

In PROF, the translation of a proposition may be either

focused or unfocused, with the focused translation leading, in

general, to a possibility assignment equation* The unfocused

translation — of which the focused translation is a special

case — is based on test-score semantics and has the form of

(i) a collection of tests which are performed on a database in

duced by the proposition; and (ii) a set of rules for aggre-

4
The concept of focusing in test-score semantics differs from
that introduced by B. GROSZ [37] in the context of partitioned
semantic networks.
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gating the partial test scores into an overall test score which
represents the compatibility of the given proposition with the
database. In what follows, we shall present a condensed exposi
tion of test-score semantics and illustrate its use in PROF by

a number of examples.

3. TEST-SCORE SEMANTICS: NATURE OF TESTS

To simplify our exposition of test-score semantics, it will
be convenient to focus our attention on the representation of
the meaning of propositions, with the understanding that the
basic ideas underlying test-score semantics are equally appli
cable to predicates, questions, commands and most other types

of linguistic entities.

As will be seen in the sequel, the conceptual framework of
test-score semantics is rooted — like that of truth-condition

al semantics ~ in our intuitive perception of meaning as a

collection of criteria for relating a linguistic entity to its

designation. More specifically, suppose that we wish to test
whether or not a human subject, H, understands the meaning of
a proposition p, e.g., p A Laura is dancing with Irwin. A nat
ural way of doing this would be to present H with a variety of
scenes (or worlds) depicting a joint activity of Laura and Ir
win, and ask H to indicate, for each scene or world W, the de
gree, c(W), to which W corresponds to or is compatible with H's
perception of the meaning of p. If H can do this correctly for
each W, then we may conclude that H understands the meaning of
p. And, more importantly, if H can articulate the tests which
H performs on W to arrive at c(W), then H not only understands
what p means ostensively, but can also precisiate the meaning
of p by a concretization of the test procedure.

In truth-conditional and possible-world semantics, the de

gree of compatibility, c(W), is allowed to have one of two pos-
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sible values: {true, false) or, equivalently, {pass, fail). By
contrast, in test-score semantics, c(W) can be any point in a

linear or partially ordered set ~ which for simplicity is usu

ally taken to be the unit interval [0,1]. Furthermore, c(W) is

also allowed to be a probability or possibility distribution

over the unit interval or, more generally, a composition of

probability and possibility distributions.

Instead of dealing with scenes or worlds directly, it is

simpler and more effective to deal with their characterizations

in the form of state descriptions (CARNAP [17]) or, equivalent
ly, as databases. In essense, then, we assume that H is pre
sented, on the one hand, with a proposition p and, on the other,

with a database D, and that H performs a test, T, on D which

yields a test score, x. In symbols,

T - T(D)

(3.1)
• Comp(p,D),

where the test T may be viewed as a representation of the

meaning of p, and its test score, x, as a measure of the com

patibility of p and D. Furthermore, viewed from the perspective
of truth-conditional semantics, x may be interpreted as the
truth-value of p given D, i.e.,

x - Tr{plD). (3.2)

Alternatively, p may be interpreted — in the spirit of possi
ble-world semantics — as the possibility of D given p, i.e.,

x » Pos8{Dlp). (3.3)

In general, a test, T, is composed of a number of constit

uent tests, Tj,...,^, and the overall test score, x, is the
result of aggregation of constituent test scores x-,...,x ,
where t^, i • 1,...,n, is the test score associated with T4. In
test-score semantics, the process of aggregation need not be
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carried to the extreme of yielding a single test score, i.e.,

a number in the interval [0,1]. Thus, more generally, the ag

gregated test score x may be a vector, x "•(x<x,... ,x^), in
which each of the components is a number in the interval [0,1]
or a probability/possibility distribution over the unit inter

val. In particular, the analysis of presuppositions requires

the use of vector test scores to differentiate the results of

tests performed on presuppositions from those performed on

other constituents of the proposition under analysis.

3.1. NOTATIONAL PRELIMINARIES

We shall assume that a database consists of a collection of

relations, each of which is represented by (a) its relational

frame, i.e., the name of the relation and the names of variables

(columns); and (b) the data, i.e., the entries in the table. For

example, the relational frame of the relation named POPOLATION:

POPOLATION Name Age Height (m)

Minker 38 170

Rieger 36 182

Sanchez 36 175

may be expressed as POPOLATION II Name I Age I Height I
or equivalently as POPOLATION [Name; Age; Height].

Generally, we shall be dealing with fuzzy relations of the

form:

The idea of a vector-truth value was suggested earlier by the
author (see [60]). The concept of a vector test score as de
fined in this paper provides a more general framwork for the
analysis of presuppositions than that of two-dimensional lan
guages (HERZBERGER [43], McCAWLEY [68],BERGMANN [11]).

6Here and elsewhere in the paper, the subscripts on variables
are raised for typographical convenience.
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R X1 X2 ... Xn u

•

rt1
•

•

rt2 • rtn
•

ut
•

in which r.. , k • 1,...,n, is the entry in t row and column

Xjg, and u. is the grade of membership of the n-tuple r. A, rt<J.
...r. (or (r.^,..
in the relation BIG

,x. )) in the fuzzy relation R. For example,

BIG Length (cm)

35

45

Width (cm

28

39

0.7

0.9

the entries in the second row signify that an object which is

45 cm long and 39 cm wide is defined to be big to the degree

0.9. In effect, R may be viewed as an elastic constraint on

the n-ary variable X A (X1,...,Xn), with ut A U^tr^,... ,rtn)
representing the degree to which an n-tuple (*tl,.••»rtn) of
values of X1#...,X satisfies the constraint in question. When
it is desirable to place in evidence that R is a constraint on

X, we shall express R as R., or, more explicitly, as R,v v .
* i*1,... ,*j)/«

Let s A (i^,...,i^) be a subsequence of the index sequence
(1,...,n), and let s' denote the complementary subsequence

s* & (j^.-jj (e.g., for n » 5, s = (1,3,4) and s' « (2,5)).
In terms of such sequences, a k-tuple of the form (ril#...,rA. ),
where r is an arbitrary symbol, may be expressed in an abbrevi

ated form as r^j (or r(s)). Expressed in this notation, the
variable X<s) A (x1(|t... ,Xijc) will be referred to as a k-ary
subvarlable of X A (Xr...,Xn), with X(g() A (Xj ,...,Xj ) being
complementary to X. ..



- 293 -

3.2. PROJECTION

An operation which plays a basic role in the manipulation

of fuzzy relations and possibility distributions is that of

projection. Specifically, assume that Xj,, i • 1,...,n, takes
values in the universe of discourse O^fX^) A 0^. Then, the
projection of R on the domain 0(s) A 0A *...xuiv is expressed
__.7 1 K

Pr°3u(s)R^X4 x...xx. *
x1 xk

£ X(s)R*

(3.4)

The grade of membership of a k-tuple u(s) A (u. ,...,u, )
1 k

in x/s)R is defined by

.(.jR^i, V ^Supu(s') Vu1 V' (3.5)

where the notation sup.,, signifies that the supremum is

taken over the domain of the complementary subvariable

u(s') A (u^iV...,u4 ). Stated more simply, the operation of
•* J l Jm

projection on Uj>1*...*Ui has the effect of deleting the com
ponents u^ ,...,U4 in the n-tuple (u1#...,u ) and associating

J1 Jni
with the resultung k-tuple the highest grade of membership among

all n-tuples in R in which Xt = u.
1 *"

trate, if R is given as

R X1 X2 X3 u

a a a 0.7

a a b 0.8

a b a 0.2

a b b 1

b a a 0.4

b b a 0.6

Xik
. To illus-

This notation for projections is patterned after the notation
employed in the query language SQUARE [14].
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then the projections of R on 01 x o2 and U3 are:

X1XX2
X1 X2 u

a a 0.8

a b 1

b a 0.4

b b 0.6

R

X3
X3 U

a 0.7

b 1

Note

once that

that from the definition of projection (3.5) it follows at

X(a)R 5 X(a)(X(8)R)

provided every variable that is in the index sequence
in the index sequence B.

a is also

3.3. PARTICOLARIZATION

A basic operation on fuzzy relations which plays an impor- ^
tant role in test-score semantics is that of particularization.
Mor specifically, assume that R is an n-ary relation which rep
resents a constraint on an n-ary variable X A (X,,...^). Now
suppose that we impose an additional constraint, G, on a sub-
variable of X, say X(s) A(X^,...^). Then, the additional
constraint on X may be viewed as a particularization of R, ex
pressed in symbols as

R[X(8) is G]

or, equivalently, in virtue of (2.8), as

R[nx(8) - G],

(3.6)

(3.7)

8In the case of nonfuzzy relations, particularization reduces to
what is commonly referred to as restriction or selection.



- 295 -

where Hx(s) is the possibility distribution of the subvariable
X(s).

Remark. In sane cases it is necessary to differentiate between

two different interpretations of propositions of the form "X

is F." In what we shall refer to as the posslbilistic (or dis

junctive) interpretation, the translation of "X is F" is n -

« F. On the other hand, in the conjunctive interpretation,
"X is F" is interpreted as X = F, which in turn means that if

F is a fuzzy set expressed as9

F = u^u, + ... +11^ (3,8)

or, equivalently, as

F = Zi ui/ui <3-9>

then each u^ is a value of X to the degree u..
On occasion, to differentiate between the disjunctive and

conjunctive interpretations, we shall employ the more explicit
notation

X = dis(F) in place of n « F (3.10)
and

X = con(F) in place of X » F (3.11)

with the understanding that, unless stated to the contrary,
"X is F" should be interpreted as X • dis(F). An example illus
trating the difference between disjunctive and conjunctive in
terpretations is given in [139].

To give a concrete meaning to (3.7) it is convenient to

employ the concept of a row test. Specifically, let rfc •
= <u1t"«"Unt»ut) be the t**1 row of R, where u1t»•••#«nt»Ut
are the values of X1#...,x ,u respectively. Furthermore, let

9
In this notation, Uj/u^ signifies that Ui is the grade of mem
bership of Ui in F, and + denotes the union rather than the
arithmetic sum.
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UG be the membership function of the fuzzy set Gwhich appears
in (3.7), and let vt be the grade of membership of rt(s) in G,
i.e.,

*t" Vrt(s)>. (3*12>

In terms of the parameters just defined, the row test in
question may be described as follows. First, determine the
degree to which rt(s) satisfies the particularizing constraint
"X(s) is G" by setting the text score equal to vt; and second,
combine u«. and v.. by employing the rain operator a, yielding
the aggregated test score

xfc » ut a vfc. (3.13)

Remark. The aggregation operator a (min) should be viewed as a
default choice when no alternative is specified. When an aggrega

tion operator * other than min is specified (e.g., arithmetic
mean, product, geometric mean, etc. ) the expression for xfc
becomes

xt-Ut*vt. (3-14)

Once the aggregated test score is found for each row in R,
the particularized relation Rlnx(a) « G] is readily constructed
by replacing ut in rt by xfc, resulting in the modified (n+D-
tuple

r* - (u1t,...,uBt,tt),

which represents the t*" row of R A Rlnx(fl) » G] and in which
xfc is expressed by (3.13) or, more generally, by (3.14).

10The closely related issue of various ways in which operations
on fuzzy sets may be defined has received considerable atten
tion in the literature. See, in particular, [25], [56], [131]
and [142].
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A row test is compartmentalized when more than one partic

ularizing constraint is involved, as in:

R[X(a) is F; X(v) is G], (3.15)

where X(s) and X(v) are not necessarily disjoint subvariables

of X. In this case, let v£F) and v£G> be the test scores as
sociated with the row tests "X(s) is F" and "X(v) is G," re

spectively. Then, using the default definition of the aggrega

tion operator *, the aggregated test score for rfc may be ex
pressed as

*.-«** v«'> .v<°>

Example. Consider a relation R defined by the table

X1 X2 X3 U

a a a 1

a b a 0.8

b a a 0.6

b b b 0.3

which is particularized by the constraints

(X^Xj) is F

(X2,X3) is G,

where F and G are defined by

F = 1/(a,a) + 0.6/(b,a) + 0.2/(b,b)

G » 0.3/(a,a) + .9/(a,b) + 0.7/(b,a) + 0.4/(b,b)

(3.16)

with the understanding that a term such as 0.6/(b,a) in F sig

nifies that the grade of membership of the tuple (b,a) in F is

0.6.
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Applying the compartmentalized row test to the rows of R,
we obtain successively

v^F) 1; v,(G)

0; v2(G)

0.3;

v2(F) » 0; v2(G) - 0.7;

v3(F) -0.6; v3(G) » 0.3;

V4(F) -0.2; v4(G) » 0.4;

x1 » 1 a 1 a 0.3 » 0.3

x, • 0.8 a 0 a 0.7 « 0

x3 » 0.6 a 0.6 a 0.3 = 0.3

X4 • 0.3 a 0.2 a 0.4 0.2

and hence R A. R[n(x - P; n - G] is given by the
table ' * * 3

*

R X1 X2 X3 X

a a a 0.3

b a a 0.3

b b b 0.2

In the foregoing discussion, we have discussed the concepts
of projection and particularization in the context of operations
on relations. Inasmuch as a possibility distribution is a rela

tion which acts as a disjunctive constraint on the values of a
variable, the operations of projection and particularization ap
ply equally well to possibility distributions. For example, we
may write

nIn(Xl,x2) ** n(x2,x4) -G> (3.17)

to indicate that ^ is a possibility distribution which results
from particularizing the possibility distribution n with the
constraints "(Xrx2) is F" and (X2,X4) is G."



- 299 -

3.4. PARTICOLARIZATION/PROJECTION (TRANSDOCTION)

in test-score semantics, we usually deal with relations or
possibility distributions which are both particularized and
projected. For example:

v, ,R[X(s) is F; X(v) is Gl (3*18)
X(w)

which should be interpreted as a fuzzy relation Rwhich is first
particularized and then projected. It should be noted, however,
that if scw and vc w, then (3.18) could also be interpreted
as a relation Rwhich is first projected and then particularized.
It is easy to show that the latter interpretation leads to the.
same result by virtue of the distributivity of a(min) over
v(max).

In what follows, we shall employ the suggestive term trans^
auction to refer to the combination of particularization and
projection. In essence, transduction may be viewed as agener
alization of the familiar operation of finding the value of a
function for a given value of its argument. In this light,
(3.18) may be read as "substitute Ffor X(s), G for X(v) and
get X(w)," with the understanding that the subsituttion of F
for X(s) and G for X(v) involves in actuality the substitution
of F and G for the possibility distributions of X(s) and X(v),
and reading the possibility distribution of X(w). In particular,
in the special case of relations of the form

.....*, ^-•i'-'V'*1 13',9>X
'1 "m

in which a. a, are specified values of the variables Xj ,...
...fXjl what is read is afuzzy subset of 0il"...*U1||| which is
a "section" of Rwith the planes Xj., - av...,Xj£ » a£. More
particularly, an expression of the form

, (3.20)
R[X, - a,? ...J Xn » anJ
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should be interpreted as "Read (or get or obtain) the grade of

membership of the n-tuple (a1,...,an) in the fuzzy relation
R."

As an illustration, the following expressions should be

interpreted as indicated:

(a) AgeP0P0LATI0N[Name » Barbara].

Obtain Barbara's age from the relation POPOLATION which

includes Name and Age among its variables. In this case,

Barbara is transduced into her age.

<*>> Name2xuFRIENDlName1 e Maria],
Obtain the fuzzy set of Maria's friends from the fuzzy

relation FRIEND in which u is the degree to which Name2

is a friend of Name 1. In this example, Maria is trans

duced into the fuzzy set of her friends.

(c) uFRIEND[Name1 - Lucia; Name2 « Richard].

Obtain from the relation FRIEND the degree to which Richard

is a friend of Lucia. Here Lucia and Richard are trans

duced into their grade of friendship.

(d) NamexuP0PULATI0NlnAge ° *°™GJ•
Obtain from POPOLATION the fuzzy set of names of those who

are young. In this case, the fuzzy set YOUNG is trans

duced into a fuzzy subset of the nonfuzzy set N^P0P0LATI0N.
A point that should be noted is that even though the rela

tion POPOLATION is nonfuzzy and has no u attribute, the

particularized relation POPOLATION[H. « YOONG] is fuzzy

and has a u attribute which is the attribute referred to

in Name * u.
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3.5. CARDINALITY OF FOZZY SETS

How many lakes are there in California? What is the propor

tion of tall men among fat men? What is the meaning of "Brian

is much taller than most of Mildred's friends?" What is the

denotation of several red apples? The answers to questions of

this type hinge on the concept of cardinality of fuzzy sets or,

more generally, on the concept of measure. In what follows, we

shall give a definition of cardinality which serves to provide

a basis for testing the elastic constraints induced by fuzzy

quantifiers such as many, most, several, few, almost, all, etc.

The tests in question will be described in Sections 4 and 5.

As should be expected, the concept of cardinality of a fuz

zy set is an extension of the count of elements of a crisp,

i.e., nonfuzzy, set. Specifically, assume, for simplicity, that

A is a fuzzy set expressed as

A • U1/u1 + ... + Uft/un, (3.21)

where the u., i • 1,...,n, are elements of a universe of dis

course 0. A simple way of extending the concept of cardinality

which was suggested by DeLuca and Termini [24] and which is

related to the notion of the probability measure of a fuzzy

event [132] is to form the arithmetic sura of the grades of mem

bership. We shall refer to this sum, with or without a round
off to the nearest integer, as the sigma-count or, equivalently,

as nonfuzzy cardinality of A. Thus, by definition,

n

ZCOONT(A) A ) u,. (3.22)
M.-1 X

For example

ZCOONT (0.6/a + 0.9/b + 1/c + 0.6/d + 0.2/e) » 3.

A less simple but perhaps more natural extension which was

suggested in [137] expresses the cardinality of a fuzzy set as
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a fuzzy number. Thus, let A be the a-level-set of A, i.e., the

nonfuzzy set defined by

Aa - ^i'^A^i* > <*}» 0 < a < 1, u, € 0, i = 1,...,n,

where u^ A U.(Uj), i • 1,...,n, is the grade of membership of
u^ in A. Then, as shown in [133], A may be expressed in terms
of the Aft by the identity

L 0A0 , (3.24)

where £ stands for the union and oA is a fuzzy set whose mem

bership function is defined by

uaA (u) * a for u e Aa (3.25)
a

» 0 elsewhere.

For example, if 0 =» (a,b,c,d,e,f} and

A = 0.6/a + 0.9/b + 1/c + 0.6/d + 0.2/e (3.26)

then

A1 » Cc)

A0.9 * tb,c)

A0.6 " (a,b,c,d]

A0.2 = ta,b,c,d,e}

and (3.24) becomes

A « 1/c + 0.9/(b+c) + 0,6/(a+b+c+d) + 0.2/(a+b+c+d+e).

Now, let COUNT(A ) denote the count of elements of the non-

fuzzy set A. Then, the FGCount of A, where F stands for fuzzy
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and G stands for greater than, is defined as the fuzzy number

FGCount (A) A, Ta/Count(Aa) (3.27)

with the understanding that any gap in the Count(Aa) may be
filled by a lower count with the same a. For example, for A

defined by (3.26), we have

FGCount(A) » 1/1 + 0.9/2 + 0.6/4 + 0.2/5 (3.28)

• 1/1 + 0.9/2 + 0.6/3 + 0.6/4 + 0.2/5.

It is of some help in understanding the significance of

(3.27) to interpret a term such as 0.6/4 in (3.28) as the as

sertion:

The truth-value of the assertion that A contains at

least 4 elements is 0.6.

More generally, let pm, qm and r be the propositions:

p. A A contains at least m elements

q_ A A contains at most m elements

and

r A A contains no more and no less than m elements,
m ••

Furthermore, assume that the elements of A are sorted in des

cending order, so that um < U^ if m > k. Then, the truth-values
of p_, q„ and r„ are given by [140]

* m m m

Tr{Pm} » u <3-29)
*ra m

T*<qm> - 1"»m+i (3*30}

T*<*m> ~»m« <1-wro+i)' (3'31)
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These expressions provide a rationale for defining FGCount,
FLCount (L standing for less than), and FECount (E standing
for equal to) as follows.

Let A+ denote A sorted in descending order and let NA+

denote the fuzzy number resulting from replacing the mth ele
ment in A+ by um/m and adding the element 1/0. For example, if

A - 0.6/a + 0.9/b + 1/c + 0.6/d + 0.2/e (3.32)
then

A+ « 1/c + 0.9/b + 0.6/a + 0.6/d + 0.2/e (3.33)

NA+ « 1/0 + 1/1 + 0.9/2 + 0.6/3 + 0.6/4 + 0.2/5. (3.34)

In terms of this notation, the definition of FGCount(A)
stated earlier (3.27) may be expressed more succinctly as

FGCount(A) » NA+. (3.35)

In a similar vein, the definitions of FLCount(A) and FECount(A)
may be expressed as

FLCount(A) » (NA+)'6 1 (3.36)
and

FECount(A) = FGCount(A) fl FLCount(A), (3.37)

where (NA+)' denotes the complement of NA+, 6 represents fuzzy
subtraction [136], [76], [26], and n is the operation of inter
section.

A basic identity which relates the fuzzy cardinalities of
A, B, A n B and A U B may be expressed as

FGCount(AUB) © FGCount(AnB) = FGCount(A) 9 FGCount(B),

(3.38)

where © denotes fuzzy addition. For example, if

A » 0.4/2 + 1/3 + 0.2/4

B = 0.5/3 + 1/4 + 0.3/5
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then

A U B - 0.4/2 + 1/3 + 1/4 + 0.3/5

A n B » 0.5/3 + 0.2/4

FGCount(A) - 1/0 + 1/1 + 0.4/2 ♦ 0.2/3

FGCount(B) - 1/0 + 1/1 + 0.5/2 + 0.3/3

FGCount(A) © FGCount(B) »

- 1/0 + 1/1 + 1/2 + 0.5/3 + 0.4/4 + 0.3/5 + 0.2/6 (3.39)

FGCount(AUB) « 1/0 + 1/1 + 1/2 + 0.4/3 + 0.3/4

FGCount (AflB) - 1/0 + 0.5/1 + 0.2/2

and

FGCount(AUB) © FGCount(AnB) = 1/0 + 1/1 + 1/2 + 0.5/3 +

+ 0.4/4 + 0.3/5 + 0.2/6

in agreement with (3.39).

In formulating tests for cardinality in Sections 4 and 5,
we shall be employing for the most part the definitions of
ZCount and FGCount. Although the definitions of fuzzy cardi

nality expressed by (3.27) and (3.35) are not simple enough to
be obvious on first exposure, the examples presented in Sec

tion 5 suggest that the concept of fuzzy cardinality is a nat
ural extension of the corresponding concept for crisp sets.

4. TEST-SCORE SEMANTICS: MEANING REPRESENTATION

In the preceding section, we have discussed some of the
basic concepts which underlie the testing of fuzzy relations
in a relational database. In this and the following section
our attention will be focused on the principal issues relating
to the representation of the meaning of a proposition by the
testing of constraints which are induced by it.
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Let p be a proposition whose meaning we wish to represent.
The first question that arises is: What is the collection of
relational databases which should be used as the object of
testing? Once the answer to this question is arrived at, the
next question is: What are the tests to be performed and how
should their test scores be aggregated?

With respect to the first question, the position we shall
take is that the choice of the test-bed should be goal-oriented,
that is, should depend on the state of knowledge of the actual
or composite addressee of the meaning-representation process.
In plain language, what this means is that in representing the
meaning of p we should be influenced by our perception of the
concepts and variables which are explicit or implicit in p and
whose meaning is known to the addressee. Generally, these are
tacitly assumed to be the concepts whose labels appear in p,
together with the attributes with which they are associated.In test-
score semantics, this is a flexible rather than a rigid desideratum.

As an illustration, consider the proposition pAOvereating
causes obesity, and assume that the intended interpretation of
p is

a A Most of those who overeat are obese. (4.1)

Furthermore, assume that the addressee knows, in principle, the
meaning of the terms most, overeat and obese, so that the ob
jective of the meaning-representation process is a preclsiation
of the meaning of p. m this event, an appropriate set of rela
tional frames for the database might be:

DF1 A POPOLATIONUame; Age; Weight; Consumption] (4.2)
+ OBESE[Age; Height; Weight; u]

+ OVEREAT[Consumption; u]

+ M0ST[r; u],

where DF stands for database frame and + denotes the union.
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The first relation, labeled POPOLATION, lists the names of

individuals, together with the values of the attributes Age,

Weight, Height and Consumption, with the latter expressed as

the ratio of the level of food consumption to what would be

considered to be the normal level of consumption for ah indi

vidual of that age, weight and height.

The relation OBESE defines the grade of membership of an

individual, u, in the fuzzy set of obese individuals as a func

tion of the attributes Age, Weight, and Height. The relation

OVEREAT defines the grade of membership of an individual, u,

in the fuzzy set of those who overeat, as a function of Consump

tion. The last relation, MOST, defines the fuzzy quantifier

most as a fuzzy subset of the unit interval, with r representing

a numerical proportion.

Alternatively, and more simply, we could assume that DF

consists of the following relations:

DF2 A POPOLATION[Name] (4.3)

+ OBESE(Name; u] + OVEREAT[Name; ul + MOST[r; u].

In this case, the fuzzy subsets OBESE and OVEREAT of POPOLA

TION are defined directly rather than through the intermediary

of the numerically-valued attributes Age, Weight and Height. As

should be expected, the representation of the meaning of p as a

test on the database represented by (4.3) would-be less infor

mative than a test on (4.2).

As was alluded to already, the test on a database, D, depends

on the choice of relational frames, DF. As an illustration, for

the database frame DF2 defined by (4.3), the compatibility test

for p and D may be described as follows.

1. Count the number of individuals in POPOLATION who

overeat. To this end, let Name, denote the name of

ith individual in POPOLATION. Osing the expression

for the ICount as defined by (3.22), we have
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ECount(OVEREAT)«\(OVEREAT[Name=Name^).(4.4)

2.CountthenumberofindividualsinPOPOLATIONwhoare

obeseandovereat.

Inthiscase,wehavetocomputetheZCountofthe

intersectionofthefuzzysetsOVEREATandOBESE.

ThegradeofmembershipofNamej^intheintersection
isgivenby(see[139])

UOVEREATnOBESE(Namei)"U0VEREAT(Namei)A

U0BESE(Namei)

where

(4.5)

u0VEREAT(Namei)"u0VEREATtName*Naroei](4.6)

and

USE(Namei)=OBESE[Name»NameJ.(4.7)

Consequently,theICountofindividualswhoareobeseandover

eatisgivenby

ICount(OVEREATnOBESE)=/(OVEREAT[Name»Name1l)
1(4.8)

a(OBESE[Name«Name^).

3.Computetheproportionofthosewhoareobeseamong

thefuzzysubsetofthosewhoovereat.Osing(4.6)

and(4.8),wefind

vAICount(OVEREAT0OBESE)(49)
Y-ICount(OVEREAT)

T(,OVEREAT[Name=Name,])a(OBESE[Name=Namei])

I.(OVEREAT[Name=Namei])
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4. Compute the test score corresponding to the degree to
which the proportion Y expressed by (4.9) satisfies
the constraint induced by the fuzzy quantifier most.
Using (4.9), the test score for this constraint is
found to be given by

T - uM0ST[r - Yl. (4.10)

This test score, then, may be interpreted as the truth
of p given D or, equivalently, as the possibility of
D given p.

There are several important observations relating to this
example that are of general validity.

(a) The meaning of p is represented by the test which
yields the test score t.

(b) The description of the test involves only the rela
tional frames in the assumed database and not the

data. In other words, the test represents the in
tension of p [139].

(c) The structure of the test depends on the choice of
relational frames. Thus, the description of the

test would be different for DF1 (defined by (4.2)).
Furthermore, for the same choice of relational

frames, different tests would be required to ac

commodate different definitions of cardinality.
This point is discussed in greater detail in

Example 4, Section 5.

The choice of DF affects the explanatory effective

ness of meaning representation in test-score seman

tics. More specifically, lessening the degree of

detail in DF has the effect of lowering the degree

of explanatory effectiveness. For example, in the

case of DF1 and DF2, DF2 is less detailed than DF1.

Correspondingly, the test procedure associated with

DF2 conveys les3 information about the meaning of p

than that associated with DF1.

(d)
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The simplest possible DF for the proposition

p A Overeating causes obesity is

DF A CAUSE[Cause; Effect]. (4.11)

For this DF, the test reduces to the containment con

dition

(Overeat,Obese) c CAUSE

which signifies that the tuple (Overeat,Obese) belongs

to the relation CAUSE. Equivalently, the test may be

represented as

CAUSE(Cause • Overeat; Effect <* Obese] (4.12)

which is similar in form to the conventional semantic-

network representation of the meaning of p.

It is of interest to observe that the DF represented by

(4.11) is insufficiently detailed to allow a differentiation be

tween the meanings of the propositions

p A Overeating causes obesity

and •

p A Obesity is caused by overeating

with the latter interpreted as

q A Most of those who are obese overeat. (4.13)

It can readily be verified that the test score corresponding
to q is given by

T - M0ST[r - ICount(OBESE n OVEREAT),
U l ICount(OBESE) J (4.14)

which differs from (4.9) in the denominator of r.
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As a further example consider the proposition

pADana is very young and Tandy is not much older than Dana
in this case, we shall assume that the database frame is:11

. i (4.15)
DF A POPULATION[Name; Age]

+ YOUNG[Age; u]

+ MUCH.OLDER[Age1; Age2; ul*

I. the last relation, »is the degree to which Age1 is nmch
older than Age2. •

The proposition under consideration induces two eleastic
constraints: (a) Aconstraint on the age of Dana, and (b) a
constraint on the age of Tandy relative to that of Dana. To
test these constraints, we proceed as follows.

1. Find the ages of Dana and Tandy. Osing (4.15), we have

Age (Dana) -^POPULATION[Name »Dana] (4-16)
Age (Tandy) -^POPULATION[Name -Tandy] (4.17)

2 Test the constraint on the age of Dana. Denoting the .
test score for this constraint by V we have

T = ( YOUNG[Age * Age (Dana)]) ,
M U

where Age (Dana) is given by (4.16) ana the squaring
accounts for the effect of the nodifier very, (see (4.31)

3 Test the constraint on the age of Tandy relative to
that of Dana. The test score for this constraint is
given by

tween the words.
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T, - 1 - MUCH.OLDER[Age1 • Age (Tandy); ' (4.19)

Age2 - Age (Dana)],

where the subtraction of the second term from unity ac

counts for the effect of the negation not in the rela

tion "not much older." (See (4.30).)

4. Aggregate the test scores t1 and x2. Using the product
for aggregate (instead of the usual min), we arrive at

the overall test score

x - Tlx2 (4.20)

as a measure of the compatibility of p with the data

base.

4.1. FOCUSED TRANSLATION

In general, the test score x for a given test T depends not
on the entire database D but on a subset of it. Typically, if

X.,...,X are the variables involved in D (i.e., the designa-
l m

tions of entries in relations in D), then x may depend on a

proper subset of the Xi# say Xl1t...»Xlk. To take a simple ex
ample,' if the database, D, consists of two relations, say POPULA
TION[Name; Age; Weight; Height] and YOUNG[Age; ul, then the com
patibility of the proposition

p A Lillian is young

with D depends only on Lillian's age — which is an entry under
Age in POPOLATION — and the degree to which Lillian's age sat
isfies the constraint induced by young — which is an entry un

der u in the relation YOUNG.

More generally, a subset F(D,p) of D will be said to be a

focus of D relative to p if
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(a) The compatibility of p with D is identical with
the compatibility of p with F(D,p)

and

(b) F(D,p) ia minimal, i.e., there is no proper subset
of F(D,p) with property (a).

The notion of a focus provides a natural point of depar
ture for introducing the concept of a focused translation.
Specifically, given pand D, let F(D,p) be the focus of D rela
tive to pand let Xllf...,Xik or, more simply, Xn,...,Xn, be
the variables which enter into F(D,p). Then, uaing unfocused
translation, we can compute for each D — and hence for each
n-tuple (u. V of values of X,,...,Xn - the compatibility,
t, of pwith <X1 - u, Xn - un>. Now, if we interpret xas
the possibility of the n-tuple (u.,,...,un), i.e.,

x-Poss{X1 -u.,,....rXn -un), (4.2D

then the focused translation of p may be expressed symbolical
ly as

n . p (4.22)p-n(x1 xn> -F'

where xdefines the membership function of F; n(x^###fXn) rep
resents the possibility distribution of the n-ary variable
(Xl,...,Xn); the variables X, XR are the base variables in
p, and the right-hand member of (4.22) is what we have refer
red to in Section 2 as the oossibility assignment equation.

As a simple illustration of the concept of a focused trans
lation, consider the proposition

pABrian is much taller than Mildred. (4.23)

Assuming that DF consists of the relational frames

DF A POPOLATION[Name; Height]
" M0CH.TALLER[Height1; Height2l; ul,
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the unfocused translation of p is characterized by the fol

lowing test:

1. Determine, the height of Brian and Mildred:

Height (Brian) = H6i htPOPOLATION[Name * Brian]

Height (Mildred) - He± ^POPULATION[Name = Mildred].

2. Test the constraint induced by the fuzzy relation

MUCH.TALLER.

The test score for this constraint is given by

x - MUCH.TALLER[Height1 - Height (Brian); (4.24)

Height2 = Height (Mildred)].

Since p induces just one constraint, no aggregation is neces

sary and x as expressed by (4.24) defines the compatibility of

p with D.

Correspondingly, the focused translation of p may be ex

pressed compactly as

P^ "(Height(Brian), Height(Mildred)) » MOCH.TALLER. (4.25)

In this form, the translation of p signifies that the base va

riables in p are X., - Height (Brian) and X2 » Height (Mildred),
and that the focused translation of p defines the meaning of p

as an assignment statement which assigns the fuzzy relation

MUCH.TALLER to the joint possibility distribution of X1 and X2.
Additional examples of both unfocused and focused transla

tions will be presented in Section 5. What is important to note

at this juncture is that, as its name implies, a focused trans

lation serves the purpose of placing in evidence the base vari

ables in p and focuses the translation process on the determina*

tion of the joint possibility distribution of these variables.

In general, a focused translation has the advantage of greater
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transparency in the case of relatively simple propositions,
but becomes rather unwieldy in the case of propositions whose
DF's involve more than a few relational frames.

When focusing is employed in the translation of a complex
proposition, it is frequently advantageous to (a) decompose it
into simpler propositions; (b) translate separately the con
stituent propositions; and (c) compose the results. In this
connection, it is convenient to have a collection of transla
tion rules which may be employed — when this is possible —
to compose the meaning of a proposition from the meanings of
its constituents. Among the basic translation rules in PROF
which serve this purpose are the rules of Type I, Type II,
Type III and Type IV.12 For convenient reference, these rules
are summarized in the following.

4.2. TRANSLATION ROLES

Modifier rule (Type I). Let X be a variable which takes
values in a universe of discourse U and let F be a fuzzy sub
set of U. Consider the proposition

p A X is F

or, more generally,

p a N is F,

(4.26)

(4.27)

where N is a variable, an object or a proposition.
Now, if in a particular context the proposition X is F

translates into

X is F -> nx = F
(4.28)

12A more detailed discussion of these rules may be found in [139]
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then in the same context

X is mF -• Dx - F+, (4.29)

where m is a modifier such as not, very, more or less, etc.,
and F is a modification of F induced by m. More specifically:
If m • not then F+ A, F* A complement of F, i.e.,

U ,(u) - 1 - u_(u), u € 0. (4.30)
F r

If m - very, then F* « f2, i.e.,

U„+(U) " -^M' «60. (4.31)
F

If m • more or less, then F+ • yT, i.e.,

U +(u) - VWpluT, u € 0. (4.32)
«

As a simple illustration of (4.31), if SMALL is defined as

SMALL - 1/0 + 1/1 + 0.8/2 + 0.6/3 + 0.4/4 + 0.2/5

then

x is very small -» n • F2, (4.33)

where

F - 1/0 + 1/1 + 0.64/2 + 0.36/3 + 0.16/4 + 0.04/5.

It should be noted that (4.30), (4.31) and (4.32) should be

viewed as default rules which may be replaced by other transla
tion rules in cases in which some alternative interpretations
of the modifiers not, very and more or less are more appropriate.
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4.3. CONJUNCTIVE, DISJUNCTIVE AND IMPLICATIONAL ROLES

(TYPE II).

If

X is F -> Hx » F and Y is G -» n » G, (4.34)

where F and G are fuzzy subsets of U and V, respectively, then

(a) X is F and Y is G -» H(x y) = F x g, (4.35)

where

uFxg(u'v) - Up(u) a UG(v). (4.36.)

(b) X is F or Y is G -. n(xy) «FUG, (4.37)

where

FAFxv, GAO*G. (4.38)

and

Upyg(u,v) « Up(u) v UG(v). (4.39)

(c) If X is F then Y is G -» n.y|x) » F' © G, (4.40)

where n#yiX) denotes the conditional possibility distribution
of Y given X, and the bounded sum © is defined by

U. _(u,v) = 1 a (1-Up(u) + u_(v)). (4.41)
F'©G ^ G

Note. In stating the implicational rule in the form (4.40), we

have merely chosen one of the several alternative ways in which

the conditional possibility distribution n(y|X\ It|ay be defined,
each of which has some advantages and disadvantages depending

on the application. A detailed discussion of this issue can be

found in [5], [72], and [105].
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As simple illustrations of (4.35), (4.37) and (4.40), if

F A SMALL » 1/1 + 0.6/2 + 0.1/3

G A LARGE « 0.1/1 + o.6/2 + 1/3

then

and

X is small and Y is large - n

-0.1/(1,1) +0.6/(1,2) +1/(i,3) +0.1/(2,1)
+ 0.6/(2,2) + 0.6/(2,3) + 0.1/(3,1)

+ 0.1/(3,2) + 0.1/(3,3).

X is small or Y is large - n

=1/(1.1) ♦ 1/(1,2) +1/(1,3,' +0.6/(2,1) +0.6/(2,2)
+ V(2,3) + 0.1/(3,1) ♦ 0.6/(3,2).+ 1/(3,3)

If X is small then Y is larqe -» n
y (Ylx)

- 0.1/(1,1) + 0.6/(1,2) + 1/(1,3) + 0.5/(2,1)

+ V(2,2) ♦ 1/(2,3) + 1/(3,1) ♦ 1/(3,2) ♦ 1/(3,3).

4.4. QUANTIFICATION RULE (TYPE III).

, " U* U1 "n), Q is afuzzy quantifier such as many,
few, several, all, some, most, etc., and

X is F -. n = f
X (4.42)

then the proposition "QX are F" (e.g., "many X's are large")
translates into

QX are F -» n_ = r>
ICount(F) ° (4.43)
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if the concept of nonfuzzy cardinality is employed. (See (3.22).)

As a simple example, if the quantifier several is defined as

SEVERAL = 0.4/2 + 0.6/3 + 1/4 + 1/5 + 1/6 + 0.7/7 + 0.2/8

(4.44)

then

Several X's are large -» n _ „ ,„ » » SEVERAL. (4.45)
iiuLARGElui'

Examples in the which the concept of fuzzy cardinality is

employed will be considered in Section 5.

4.5. TRUTH QUALIFICATION RULE (TYPE IV).

Let x be a linguistic truth-value, e.g., very true, quite

true, more or less true, etc. Such a truth-value may be regarded

as a fuzzy subset of the unit interval which is characterized

by a membership function uT: [0,1] -» [0,1].
A truth-qualified proposition, e.g., "It is x that X is F,"

is expressed as "X is F is x." As shown in [10], the transla
tion rule for such propositions is given by

X is F is x -» n = F+, (4.46)

where

u .(u) = uT(u-,(u)). (4.47)
F

As an illustration, consider the truth-qualified proposition

Teresa is young is very true

which by' (4.46), (4.47) and (4.31) translates into

(4.48)
nAge(Teresa) =WTRUE2(uY0UNG}*
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Now, if we assume that

UY0UNG(U) * 1+ (23)2) 'u€ tO,100] (4.49)

and

wTR0E(v) " v*' v€[0'13

then (4.47) yields

u 2
wAge(Teresa) " (1 + (25} *

as the possibility distribution of the age of Teresa.

4.6. PROBABILITY QUALIFICATION RULE (TYPE IV).

This rule applies to propositions of the general form "X is

F is A.," where X is a real-valued variable, F is a linguistic

value of X, and X is.a linguistic value of likelihood (or prob

ability), e.g., "X is small is not very likely." Onless stated

to the contrary, X is assumed to be a fuzzy subset of the unit

Interval [0,1] which is characterized by its membership func

tion ux, and the probability distribution of X is characterized
by its probability density function p, i.e.,

Prob{X € [u,u+du]} • p(u)du. (4.50)

As shown in [139], the translation rule for probability-

qualified propositions is expressed by

Xis F is X-n(p) «uxM Up(u)p(u)duj, (4.51)

where n(p) denotes the possibility that the probability density

function of X is p, and the integral in the right-hand member
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of (4.51) represents the probability of the fuzzy event [132]

"X is F." Thus, in the case of probability-qualified proposi

tions, the proposition "X is F is X" induces a possibility

distribution of the probability density function of X.

As a simple illustration, consider the proposition

q A Vickie is young is very likely. (4.52)

In this case, X A Age(Vickie) and the right-hand member of

(4.51) becomes

n(p) "^ikelyG- "YOUNG(u)p(u)du)' (4'53)

The translation rules stated above may be used in combina

tion. For example, consider the proposition

p A If X is not very large and Y is more or less small

then Z is very very large.

In this case, by the application of (4.30), (4.31), (4.32),

(4.35) and (4.40), we find that p induces a conditional pos

sibility distribution of Z given X and Y, i.e., n/Z|X Y)* Tne
possibility distribution function of this distribution is given

by

n(ZlX,Y)(wlu'v) -1a(l -(1 -U^gtu)) al&^v)

.+ ^LARGE^)'
(4.54)

where Utadq- and USMAIt denote, respectively, the membership
functions of the denotations of large and small in p.
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4.7. VECTOR TEST SCORES AND PRESUPPOSITIONS

Since an aggregated test score is basically a summary, it
would be natural to expect that in some cases the degree of
summarization which is associated with a single overall test
score might be exessive. In such cases, then, a vector test

score might be required to convey the meaning of a proposition
correctly.

Among the cases which fall into this category are proposi
tions with false presuppositions, as in the classical example
p A The King of France is bald. In this case, an attempt to
associate a single test score or truth-value with p leads to
difficulties which have been discussed at length in the liter
ature [68]. In our view, a natural way of dealing with these
difficulties is provided by the concept of a vector test score
— a concept which furnishes a general framework for the ana
lysis of presuppositions and related issues.

Let p be a given proposition and let p* be a presupposition
which is associated with p. Usually, but not necessarily, p*
asserts the existence of an object which is characterized by p.
In a departure from the conventional point of view, we shall
assume that existence is a matter of degree and hence that p*
is a fuzzy, presupposition, i.e., a proposition whose compatibil
ity with a database may be a number other than 0 or 1.

As a simple illustration, consider the proposition

p A By far the richest man in France is bald. (4.55)

In this case,

p* A There exists by far the richest man in France (4.56)

is a fuzzy presupposition by virtue of the fuzziness of the
predicate by. far the richest man.

To apply test-score semantics to this proposition assume
that the DF contains the following relational frames
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DF A POPOLATION[Name; Wealth; uBald] + (4.57)

BY.FAR.RICHEST[Wealth; Wealth2; u].

In the first relation in (4.57), Wealth is interpreted as

the net worth of Name and uBald is the degree to which Name is

bald. In the second relation, Wealth2 is the wealth of the sec

ond richest man, and u is the degree to which Wealth and Wealth2

qualify the richest man in France (who is assumed to be unique)

to be regarded as by far the richest man in France.

To compute the compatibility of p with the database, we

perform the following test.

1. Sort POPOLATION in descending order of Wealth. Denote

the result by POPOLATION! and let Name1 be the ith
name in POPOLATION!.

2. Determine the degree to which the richest man in France

is bald:

T1 - yBa^POPULATIONlName = Name.,]. (4.58)

3. Determine the wealth of the richest and second richest

men in France:

w1 - wealthP0PULATI0N"^Naroe = Name.,]

w2 - WealthP0PULATI0N4[Name = Name2l.

4. Determine the degree to which the richest man in France

is by far the richest man in France:

x2 A BY.FAR.RICHESTlWealth « w,; Wealth2»w2]. (4.59)

5. The overall test score is taken to be the ordered pair

x = (T^Tj). (4.60)
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Thus, 'instead of aggregating x1 and x2 into a single
test score, we maintain their separate identities in

the overall test score. We do this because the aggre

gated test score

x - x, a x2

would be creating a misleading impression when x., is
small, that is, when the test score for the constraint

on the existence of "by far the richest man in France"

is low.

In the simple case which we have used as an example, the

overall test score as expressed by (4.60) has only two compo

nents. In general, however, a proposition p may have a multi

plicity of fuzzy presuppositions each of which may have to be
represented by a component test score in the overall test score

for p. For example, the proposition

p A By far the richest man in France is much taller than

most of his close friends

has at least two fuzzy presuppositions

p* A. There exists by far the richest man in France

pi A By far the richest man in France has close friends

and hence the overall test score for p will have to have at

least three components.

It is important to observe that the fuzzy presuppositions

p*,p*,...,p* which are associated with a proposition p depend

in an essential way on the formulation of the test of compatibil

ity of p with the database. For example, consider the proposi

tion

p A By far the richest man in France is by far the tallest

man in Paris.
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In this case, depending on the way in which the test procedure
is formulated, either one of the following propositions could
be regarded as a fuzzy presupposition of p:

p} A There exists by far the richest man in France

P$ A There exists by far the tallest man in Paris.

The issue of vector test scores has many ramifications
which extend beyond the scope of the present paper. In what
follows, we shall confine ourselves to a discussion of examples
in which the fuzzy presuppositions are tacitly assumed to have
perfect test scores and hence need not be considered in the
computation of compatibility.

5. EXAMPLES OF TRANSLATION

The examples considered in this section are intended to
clarify some of the aspects of test-score semantics which were
discussed in general terms in Sections 3 and 4. The examples
are relatively simple and, for the most part, involve proposi- '
tions. When appropriate, both focused and unfocused translations
are presented.

1. Margaret is slim and very attractive

Assume that

DF A POPULATION[Name; Weight; Height] + (5.1)

SLIMlWeight; Height; u] +

ATTRACTIVE[Name; uJ.

The steps in the test procedure are:
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1. Find Margaret's height and weight:

aAWeight(Margaret) -WelghtPOPOLATION[Name -Margaret]

bAHeight(Margaret) -HelghtPOPOLATION[Name -Margaret].

2. Test the constraint induced by SLIM:

T1 A uSLIM[Weight - a; Height - b]. (5.2)

3. Teat the constraint induced by ATTRACTIVE:

x2 A. uATTRACTIVE[Narae - Margaret], (5.3)

4. Modify x2 to account for the modifier very:

T3 A *2« (5.4)

5. Aggregate Xj and x,:

T' T1 A V (5.5)

The aggregated test score given by (5.5) represents the
compatibility of the proposition in question with the database
whose DF is expressed by (5.1).

2# EHen resides in a amall Citv near n«i»

Onfocused translation. Assume that

DF A RESIDENCE[Name; City.Name] * (5.6)
POPOLATION[City.Name; Population] +

SMALL[Population; u] +

NEAR[City.Name1; City.Name2; ul.
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1. Find the name of the residence of Ellen:

a - City.NameRESIDENCElName " Ellenl«

2. Find the population of the residence of Ellen:

b A PopulationP0PULATI0NtClty-Na,ne " •'•

3. Test the constraint induced by SMALL:

x1 A. USMALL[Population • b]. (5.7)

4. Test the constraint induced by NEAR:

x2 » uNEAR[City.Name1 - Oslo, City.Name2 » a]. (5.8)

5. Aggregate x. and x«:

x = x, a x2. (5.9)

Focused translation. Suppose that we are interested in the

location of residence of Ellen and that the relation RESIDENCE

does not contain Ellen's name. Then, if the base variable im

plicit in the proposition under consideration is taken to be

X A Location (Residence(Ellen)), the proposition translates in

to the possibility assignment equation

^cation(Residence(Ellen) )"(City.Name.2xuNEARlcitv*Name 1

= Oslo]) n
(5.10)

(City.NamexWP0P0LATI0NI1IPopulation

- SMALL]).
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In effect, (5.10) conveys the information that the possi
bility distribution of X is the intersection of two possibility
distributions: the first'reflects the constraint that the resi
dence of Ellen is near Oslo while the second reflects the con
straint that it is a small city.

3. Gary earns much more than his youngest brother.

Assume that

DF A, POPOLATION[Name; Income; Age] + (5.11)
BR0THER[Name1; Name 2] +

MUCH.MORE[Income1; Income2; ul.

1. Find Gary's income

a A , POPULATION[Name - Gary].
•• Income

2. Determine the set of Gary's brothers;

b A „ ,BR0THER[Name2 - Gary].
•• Namei

3. Restrict POPULATION to brothers of Gary:

c A POPOLATION[Name - con(b)],

where the prefix con indicates that b should be interpreted as
a conjunctive fuzzy set (see (3.11)).

4. Find the income of Gary's youngest brother:

d A T _Min a„„(c), (5'12)
a Income Age

where the operation IncoroeMinAge finds the tuple in cwhich
minimizes the value of Age and reads the Income value in this

tuple.
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5. Test the constraint induced by MOCH.MORE:

x » uMOCH.MORE[Incomef - a; Income2 - d]. (5.13)

This value of x is the desired compatibility of the proposition
with the database.

4. Several large balls.

In this case, the problem is to determine the compati
bility of the description d A several large balls with an

object, D, which consists of a collection of n balls of various
sizes represented by the DF

DF A BALL[Identifier; Size] + (5.14)

LARGE(Size; u] +

SEVERAL[N; a].

In (5.14), the first relation has n rows and is a listing of
the identifiers of the balls and their respective sizes. In
SEVERAL, u is the degree to which an integer N fits the defini
tion of several.

The description d A, several large balls is susceptible of
different interpretations. In one, which we shall analyze first,
the interpretation is compartmentallzed in the sense that the

constraints induced by LARGE and SEVERAL are tested separately.
In another interpretation, which will be referred to as integ

rated, the tests are not separated. To differentiate between

these interpretations, we shall write [several] [large] balls
and [several large] balls to represent the first and second in
terpretations, respectively.

In an expanded form, the compartmentalized interpretation
of d may be expressed as:

[several][large] balls *• the object consists of several

balls and all of the balls are large.

(5.15)
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The test procedure corresponding to this interpretation is

the following.

1. Test the constraint induced by SEVERAL:

X1 A, SEVBRAL[N - n].

2. Find the size of the smallest ball:

« A si2eMinsl2e(Ball).

3. Test the constraint induced by LARGE by finding the

degree to which the smallest ball is large:

x2 A. LARGE[Size - a].

4. Aggregate the test scores:

x • x1 a x2. (5.16)

In the case of the integrated interpretation, the expanded

form of d is assumed to be expressed as:

d «• at least several large balls and at mo3t (5.17)

several large balls.

Furthermore, we shall employ the FGCount and the FLCount to

count the elements of D.

At a first step in the translation of d, we represent d as

a conjunction of d- and d2, where

d1 a at least several large balls (5.18)

and .

d. A at most several large balls. (5.19)
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Consider the particularized fuzzy set (see (3.11))

DL » BALL[Size » LARGE] (5.20)

which represents the restriction of the set BALL to large balls.

The FGCount of this set is obtained by sorting DL in order of
decreasing u and replacing the ith element by i (see (3.35)).

Thus,

FGCount(DL) • NDL+. (5.21)

Now the quantifier at least several may be expressed as the

composition of the binary relation > with SEVERAL. Thus, if

SEVERAL » 0.5/3 + 1/4 + 1/5 + 1/6 + 0.5/7

then

> o SEVERAL - 0.5/3 + 1/4 + 1/5 + ...

and similarly, for at most several, we have

< o SEVERAL - 1/0 + ... + 1/6 + 0.5/7,

where ° denotes the composition operator (see [133]).

In terms of FGCount(DL), FLCount(DL) and the quantifiers
> o SEVERAL and < o SEVERAL, the test scores for the constraints

" 13
induced by d., and d2 may be expressed as

X1 A sup(FGCount(DL) n (> © SEVERAL)) (5.22)

and

X2 A sup(FLCount(DL) fl (< o SEVERAL)). (5.23)

The aggregated test score, then, is given by

x » x1 a x2. (5.24)

13If F is a fuzzy set, sup(F) is its height, i.e., the supremum
of Up(u) over U. (See [141].)
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Note. It may be argued that (5.18) and (5.19) should not be

treated as Independent propositions, that is, as propositions

in which the base variables are not jointly constrained. If

we constrain the base variables to have the same value, the

expression for the aggregated test score becomes

X - sup(FECount(DL) n SEVERAL) (5.25)

in which the FECount(DL) (see (3.37)) may be normalized by
scaling its membership function by the reciprocal of
sup(FECount(DL)).

5. Let G be a given set of balls of various sizes. The

proposition, p, which we wish to translate is related to the

description considered in the preceding example. Specifically,

p A. G contains several large balls

In this case, DF is assumed to be:

DF A G[Identifier; Size] + (5.26)

LARGE[Size; u] +

SEVERAL[N; u].

1. Form the fuzzy subset of large balls in G:

a A GtSize • LARGE].

2. Determine the FGCount of a:

b A FGCount(a).

3. The test score for the constraint induced by SEVERAL and
the relation of containment is given by (as in (5.22)).

X - sup(b fl (> ©SEVERAL)). (5.27)
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6. Patricia has many acquaintances and a few close friends

most of whom are highly intelligent.

The database frame is assumed to be:

DF A ACQUAINTANCE[Name1; Name2; u] + (5.28)

FRIEND[Name1; Name2; u] +

INTELLIGENT[Name; u] +

MANYtN; ul +

FEW[N; ul +

MOSTtp; u].

In ACQUAINTANCE, u is the degree to which Name2 is an ac

quaintance of Namel, and likewise for FRIEND. In INTELLIGENT,
U is the degree to which Name is intelligent. Highly intelligent
will be interpreted as INTELLIGENT3 and close friend as FRIEND ,
where the exponent represents the power to which u is raised.
For simplicity, we shall employ the sigma-count for the represen

tation of the meaning of MANY, FEW and MOST.

1. Find the fuzzy set of Patricia's acquaintances:

a A „ ,„. ACQUAINTANCE[Namel » Patricia].
• Name<txu

2. Count the number of Patricia's acquaintances. Using

the sigma-count, we have:

b A ICount(a).

3. Find the test score for the constraint induced by MANY:

Tj = MANY[N = b].

4. Find the fuzzy set of friends of Patricia:

c^ Name2xUPRIENDtName1 " PatriCial*
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5. Find the set of close friends by intensifying FRIEND:

d-c2.

6. Determine the count of d:

e A, ICount(c2).

7. Find the test score for the constraint induced by FEW:

x2 A FEW[N « e].

8. Find the set of close friends of Patricia who are highly

intelligent:

f « d n INTELLIGENT3.

9. Determine the count of f:

g « ICount (f).

10. Form the proportion of those who are highly intelligent

among the close friends of Patricia:

m ICount(f) a 3
ICount(d) e*

11. Find the test score for the constraint induced by MOST:

x3 - uM0ST[p » r].

12. The aggregated test score for the proposition under con

sideration is given by

x * x, a t, a x,. (5.29)
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7* D^lng the past few months three large tankers carried
a total of 500,000 tons of oil to Naples.

The database frame is assumed to be:

DF A TANKER[Name;Displacement;Cargo;Weight;Destination;Time.
Arrival] +

LARGE[Displacement; u] +

FEW.MONTHS!t; u]

500,000[N; u). (5.30)

The inclusion of the relation 500,000[N; u] in the database
reflects the assumption that the number 500,000 should be in

terpreted in an approximate rather than exact sense. Thus, the

relation in question defines the degree to which a real number

N fits the description "500,000." In the relation FEW.MONTHS,

t stands for the time-difference between the present time and
the time of arrival.

1. Particularize TANKER by specifying the displacement,
cargo and destination. Thus (see (3.10)),

TANKER1 A TANKER[Displacement - dis(LARGE);

Cargo • Oil; Destination = Naples].

2. To take into consideration the constraint induced by the

number of tankers, we pick an arbitrary three-element subset of
tankers, say

T3 » (Namei, Name., Namek}

and restrict TANKER1 to T3. Thus

TANKER2 A TANKER1[Name = T3].
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3. For each tanker in TANKER2 find the time of arrival and

weight of cargo:

*i A Time.ArrivalTANKER2lNaune " Namei'

ci *• WeiahtTANKER2[Name " Name.]

and likewise for Name, and Name..
j *

4. Determine the test score for the constraint induced by

500,000:

x1 » U500,000[N - ci+Cj+cJc].

5. For each tanker in T3 determine the test score for the

temporal constraint induced by FEW (t A. present time):

X12 o uFEW[t » t0-t±]

and likewise for t. and t. .

6. Aggregate the test scores determined in 5:

T2 - Ti2 A Tj2 A Tk2*

7. Aggregate x., and x2:

x3 = x1 a x2. (5.31)

8. The test score expressed by (5.13) represents the com

patibility of the given proposition with the subset TANKER2.

To find the compatibility with the whole database, it is neces

sary to maximize x3 over all 3-element subsets of TANKER1,
finding that subset which yields the best fit of the proposi-
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tion to the database. Thus, the overall test score for the

proposition in question is given by

TnMaxi,j,k v <5-32)

8. Our last example involves a command rather than a pro

position. Specifically, what we wish to translate is:

c A Keep under refrigeration

in which the underlying assumption is that an item A (say a

carton of milk), must be stored in a refrigerator when not-in

use. We assume that A is taken out of the refrigerator at

times t.,,...,tn, with [ti,tjL+di] representing the ith time-in
terval during which A is not under refrigeration. The ambient

temperature during the time-interval [t^tj+d^], i » 1,...,n,
is assumed to be a..

In general, to translate a command, c, it is necessary to

identify the compliance criterion, cc, which is implicit in c,

and devise a procedure for testing the constraints induced by

cc. To this end, assume that ec^, 1 - 1,...,n, is the effective
duration of non-compliance which takes into consideration the

ambient temperature a.. Thus

ed^^ - g(d1,ai),

where g is a specified function.

The compliance criterion, cc, is assumed to be expressed

by the proposition:

cc A, Total effective duration of non-refrigeration

is not much longer than K,

where K is a specified length of time, and

Total effective duration A ted A ed1 +...+ edn« (5.33)
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To translate cc, we assume that

DF APROCESSlEffective.Duration] *MUCH.LONGER[T; U], (5.34)

In which the relation PROCESS lists the effective duration of
non-compliance at times t, tn, and MOCH.LONGER defines the
degree to which T is much longer than K.

To compute the test score associated with cc we proceed as
follows.

1. Obtain from the relation PROCESS the total effective
duration:

ted = Ii (Effective.Duration)

2. Compute the test score:

-T* 1- uMUCH.LONGER[T - ted]. (5#35)

This test score, then, represents the degree to which an execu
tion sequence defined by the relation PROCESS complies with the
instruction c A Keep, under refrigeration.

6. CONCLUDING REMARK

To give an adequate idea of the applicability of test-score
semantics to the problem of meaning representation in natural
languages would require afar greater number of diverse examples
than could be included in the present paper. In particular, with
a few exceptions, we have not considered linguistic entities
other than propositions and have not illustrated the use of
truth-qualification, probability-qualification and possibility-
qualification. Furthermore, we have not touched upon (a) the
important issue of nesting of linguistic entities, and (b) the
concepts of semantic equivalence and entailment. In sum, what
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we have attempted to convey is a general idea of the conceptual
framwork of test-score semantics and to articulate the convic
tion that a comprehensive theory of natural languages cannot be
constructed without coming to grips with the issues of impreci

sion, elasticity and lack of specificity — issues which are
intimately related to the necessity for gradation of truth, mem

bership and possibility.
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