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Errata

1. Delete: from the last line on pg. 9 to end of section 4.2.

Replace by:

We know that

RY(0) =̂ f SY(ui,z)du> (4.7)
Define Y. as the process produced by filtering

{1 : a) e Do, •,(!>,+&>], a), e [a) ,o) -Auj]11 1 nO nc (4>8)
0 : elsewhere

Then,

Ry(0) =̂ SY(a)1,z)Aa) (4.9)

=-^r Q(J03-, 9z)Q(j^ ,z)*Aa> (4.10)

Y is a Gaussian random vector, thus

PY (y) = i72 "• 17? exP» I y\(0)~\l * (4.11)Yt (2Tr)m/Z.det(R?(0)),/2 2 Y
Now, by (4.10), Rs(0) is Hermitian and positive definite, hence so

is Ry(0)" . Thus,

y\(oy\ L\\y^xm.n(^(oy})
and,

min Y WV°" c[Q(ju>rz)r **
So,

yV°^,, - '"* tm&? •fi (4•,3,
Thus,

1 _ ™p 1 n..ii2 1

[Y(
PY W1 mTT"^ : 177 exPl> J Wl v m! y >3 (4.14)Yt (27r)m/2.det(Rv(0)),/2 2 2 VJV V
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where

VyU^.z) := 5[Q(jWl,z)]2 •f£ (4.15)
We know that

det(Ry(0)) =(g)m • n [a.CQU^.z)]]2 (4.16)

So,

vfja), ,z.)m/2 5[Q(jUl ,z)]m
"""l'Z) := l,l»)/2 "• 3 (4-17)det(R~Y(0))"' ^ a,[Q(ja)l,z)]

i=l n '

Now, by (4.14) and.(4.17),

Vy)"~ «*'z) (2«F<\u»v^ expC" *"y"2W^.18)
So, if Ps (i)(y.) is.the density in the ith output channel, then, Vi

•V*)(yi} £K(jv2) /2,.v\JVz) exp[- i• *? •y
(̂4.19)

Thus, Vi

E[Y[i)2] <K(jo)rz) • v (ju>rz) =K^.zJaKU^.z)]2 •~
(4.20)

So, if (4.2) is.satisfied, (4.20) gives an upper bound on the noise

power, due to u,, at o> =u>1 e [u)n0,u>ncL in any plant-output channel.

2. Delete: Equation (5.7) and the next three lines

Replace by:

E[Y[i)2] <K(jo3rz)5E(I-PQ)(jWl,z)]2 • §f (5.7)
5[(I-PQ)(jMrz)]m

where Kfju^z) := — , and to-, e [wdo.wdc]
n a,[(I-PQ)(ju>,,z)]

i=l 1 '
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So, if (5.2) is satisfied, (5.7) gives an upper bound on the

noise power, due to d ,at w=o>1 e [wdc.wd(J in any closed-loop

system-output channel.

3. Delete: Equation (6.5) and the next three lines

Replace by:

E[Y|i)2] <max K(j(o,z*)a[(I-PQ)(ju>,z*)]2 • ff (6.5)
z u£Qf

where

K(Jtti2).. H5r(i-pQ?(»>z)f
n a.[(I-PQ)(ja),z)]

So, by (6.5), solution of (6.1)-(6.3) gives a minimal upper bound

on the noise power, due to d , in any closed-loop system-output channel,

at any u> e [a>fo,a>fc].
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ABSTRACT

This paper proposes a design methodology for unity-feedback linear

multivariable systems with stable plants. A purely algebraic technique

shows that the set of all closed-loop I/O maps are parametrized by a

matrix Q, and the exponentially stable feedback systems with strictly

proper controllers are globally parametrized by all strictly proper

and stable Q. Having chosen a set of such Q's, themselves parametrized

by z=(zls...,zm) ,the design parameters zls...,zm are then chosen by

solution, on a computer, of an optimization problem with inequality

constraints. The problem is formulated so that the design satisfies

certain practical limitations, which in effect place bounds on the

design parameters.

Specifically, examples are worked out, showing how to avoid plant

saturation by noise or signal, and how to desensitize the closed-loop

response to additive output disturbances or plant perturbations.

Research sponsored by the National Science Foundation Grant ENG78-09032-A01



I. INTRODUCTION

The problem of designing MIMO linear time-invariant finite-dimensional

feedback systems has a substantial literature. The well known paper of

Youla, et al., was the first to give a parametrized family of designs

[You. 1]. Recently, for the case of stable plants, Desoer and Chen

proposed a very convenient and flexible design method for unity feedback

systems [Des. 1]: we shall exclusively use this method in this report.

This investigation is motivated by the fact that all linear design

techniques fail to consider certain practical limitations: for example,

bounds on the size of the design parameters.

We propose to express some of these limitations as inequality

constraints in a nonlinear programming problem. Using a computer

implementation of an appropriate method [Bha. 1], and appropriate objective

functions and inequality constraints, the computer determines the best

feasible design in the parametrized family.

The effects we intend to consider by use of the inequality constraints

are:

(1) avoidance of plant saturation by noise

(2) Desensitization of closed-loop response to additive disturbances

at the plant output.

(3) Desensitization of closed-loop response to perturbations

(or modeling error) in the plant.

(4) Avoidance of plant saturation by input signal.

The nonlinear programming problem will be solved by the method of

Bhatti, Polak and Pister [Bha. 1]. In Appendix A, a summary of this

method is given.
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The organization of this paper is apparent from the listing of the

contents:

I. Introduction

II. Summary of Design Algorithm

III. General Formulation of the Optimization Problem

IV. Design for Avoiding Plant Saturation by Noise

V. Design for desensitization to Output Disturbances and Plant

Perturbations

VI. Design for Desensitization to Output Disturbances and

Avoiding Plant Saturation by Noise

VII. Design for Avoiding Plant Saturation by Input Signal

VIII. Conclusions

Figures

Appendix

References

Notation:

a := b means "a denotes b" 1R := field of real numbers; C := field

of complex numbers; IR+ := set of nonnegative real numbers; C ,

(<CJ := set of complex numbers such that Re z > 0 (Re z < 0, resp.).

For any set A, Anxn denotes the class of all nxn arrays with elements
o o

in A, and A denotes the interior of A. Thus C_ denotes the open left

half-plane. Cp(s), (Gp>0(s)) denotes the class of all proper, (strictly
proper, resp.), rational functions with coefficients in <E. R(0),

Rq(0)) denotes the class of all elements of C(s) (G Q(s) resp.) that
are analytic in <C+. If d(s) is polynomial, 3d := degree of d,

Z[d] := set of zeros of d. If Pe IR(s)nxn, Z[P] := set of zeros of

transmission of P, P[P] := set of poles of P. For any Ae lmxn,

-3-



5[A] := o* [A], the maximum singular value of A, [Stew. 1]. Also, for

any A€ IR(s)mXn, Yn-[A] denotes the jth column of A, and 3y.j[A] denotes

the largest degree difference between numerator and denominator among the

m rational functions in y-[A],
<j

II. Summary of Design Algorithm

We consider the unity feedback configuration of Fig. 2.1. We

define:

kmxm

and

mxm
A = IR(s) IB = R(O)'

A=Kp(s) mxm mxmBs = RQ(0)

mxm

As -*p.0<»>
-1From Fig. 2.1, assuming P, C (I+PC) € A, we obtain

Cd+PC)"1 -cp(i+cprln

PCtl+PCf1 PtI+CP)"1'yu

Vo =(I+PC)
Also, define

-1

Q := C(I+PC)
-1

Then,

and

yu

Q -QP

PQ P(I-QP)

Vo =X-PQ
Theorem [Des. 1; Thm. 1, p. 410]: For the configuration of

Fig. 2.1, if Pe IB , C€ A, H e ff Ly then

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.7)



9x9QG BS~H e Bp and CSA$

Now, using the design algorithm of Desoer and Chen [Des. 1], we

find a strictly proper controller such that:

(1) The closed-loop unity-feedback configuration (2.11)

of Fig. 2.1 is exponentially stable.

(2) The I/O map- H, „ is decoupled and strictly (2.13)
y2ul

proper;

(3) In each diagonal element of H, „ (s), the poles (2.15)
y2ul

and zeros [in addition to the I+-zeros of P(s)], can be

specified by the designer.

2.1. Design Algorithm: [Des. 1, p. 412]

Data: P(s) e RQ{Q)mm
Step 1: Obtain right coprime factorization of P(s):

P(s) =Npr(s)Dpr(sf] (2.17)
where Npr(s), Dpr(s) e K[s]mxm
Step 2: Calculate [^(s) 32(s) ... 6m(s)] := N (s)"1 where
3j(s) e]R(s)m denotes the jth column
Step 3: If N (s) has no C+-zeros, set n.+(s) = 1, Vs, for j= l,...,m,

else choose monic polynomials n.+(s), VI <j < m, where for each j,

nj+(s) 1S of least degree and such that

3j(s)nj+(s) e ]R(s)m is analytic in «+ (2.19)

Step 4: Choose the polynomials n.(s), VI f. j £ m, and d-(s),
j j

VI < j < m, in
— ~ —•> •

m

H (s) = diag
y2ul

V(s)nj(s)
XJJT-

(2.21)
j=l
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such that for 1 £ j < m,

a) ZCdj] c c_

b) n.(s) is chosen freely
j

c) 3d. >3n.+ +afij +3Yj[P_1]
Step 5: Calculate the required controller

TsTC(s) =D (s)N (s)_ld1ag "•1
m

j=l

where n.(s) = n.+(s)n.(s), VI <j <m

Remarks:

(1) By Step 3, P[Q] =K\\ ,. ]c«. and, by Step 4, Qis
pr y£ "]

strictly proper. So Q € B , and by the theorem, (2.11) follows

(2) In this paper, we will always choose:

(2.33)

(2.35)

with bandwidth z., VI <j<m. The vector z= (zi»z2""»zm) wil1 be
j

the design vector for the nonlinear programming problem.

2.2 Example 1 (no I+-zeros): Consider

a) n,(s) = 1, Vs, Vs, VI < j < m
j

b) d.(s) to be a Butterworth polynomial
j

(2.23)

(2.25)

(2.27)

(2.29)

(2.31)

P(s) =
1

(s+2r(s+3)

which has a right coprime factorization

s2 + 8s + 10 3s2 + 7s +4

2s + 2 3s + 9s + 8
V°)

2x2

and

P(s) -M (s)Dpr(s)-1 _
s+4 3

2 3

s +3s+4

2

Z[P] -Z[Npr] -Z[det Npr] ={-2} C C.
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Now

^3 -3

-2 s+4

We choose n,+(s) = n2+(s) =1. Then

Npr(s) -1 1

3(s+2)

3s +9s+8 -(3s2+7s+4)
1

d^s)

-2(s+l|
d^s)

d2(s)
3(s+2) ss+8s+10

d2(s) ^

To satisfy (2.27), we choose 3d1 =2, 3d« =2, i.e.

d^s) =(f-) +^(~-) +1, for i =1,2
i

Thus,

We have been careful to choose H u(s)|s=0 = I, so as to have good

output disturbance rejection at low frequencies.

2.3 Example 2 (P has a I+-zero): Consider [Des. 1, p. 412]

and

Now

P(s) =
(s+2r(s+3)

which has a right coprime factorization

P(s) =Npr(s)Dpr(s)

3s+8 2s +6s+2

2 2
S +6s+2 3s +7s+8

e R0(0) 2x2

-1
3 2

s+2 3

s +3S+4 2

2 s+4

-1

Z[P] = Z[N ] = Z[det N ]= {2.5} C c+
pr

-1.5 1

0.5(s+2) -1.5V(srl - ii?
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(2.47)

(2.49)
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We choose n1+(s) = n2+(s) =-0.4(s-2.5)

Q(s) = 0.2

r3s2+7s+8 -(2s2+6s+2)
d^s) d2(s)

-(s*+6s+2)
L d^s)

3s+8

d^TiT

To satisfy (2.27), we choose 3d, = 3d2 = 3, i.e.,
3 2

dn(s) =(^-) +2(f-) +2(^-) +1, for i=1,2i z1 zi zi

Thus

^(,,il-°'4,d1l(w,S]

(2.55)

(2.57)

(2.59)

Note that Hw „ (s)| = I, in this case also.
y2ul »s=0

Remark: In each nonlinear programming problem of this paper, we will

give two examples - based on the plants specified by (2.37) and (2.49),

using (z,,z2) as the design vector.

III. General Formulation of Optimization Problem

The nonlinear programming (optimization) problem, with functional

inequality constraints, is defined as:

min f (z)
z

subject to:

jmax <r(z,ai) < 0, j € j
b£Q.

m

9J(z)<0, jej^

where:

Jm = {1,2,...,M}

JA = {1,2,....L}

ft = [o>q,(i) JC ]R

z6 1p is the design vector

-8-
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Assumptions:

(Al) f° : IRp -»• 1R, gJ : IRP -»• TR ,j€ J., are continuously

differentiate in z. (3.6)

(A2) (|)J :]RP xK -».]R; (f)J :(z,oi) -»• <j>J(z,u>), j<= Jm, are
continuously differentiate. (3.7)

Remark:

The method of solution is a Phase I - Phase II feasible directions

algorithm [Bha. 1]. For an explanation of the algorithm, see Appendix A.

IV. Design for Avoiding Plant Saturation by Noise

4.1 Problem Formulation

We propose the following problem:

m \ m
mn

z

lin - I w.z.Jwith I w. = 1 (4.1)
z \i=i 1V i=l 1

subject to:

5[Q(jo),z)] <Ln, Vca e ft, ft =[u>no,u>nc] (4.2)

zi 1 bi» wnere b^ >Q* VI £ 1 £ m (4.3)

Clearly, (4.2) is in the form of (3.2).

4.2 Justification

We justify the use of (4.2) as follows:

Let Nt =(N^.N^,...^^), where n[1}, t>0, 1<i<m
are independent white noise processes. Apply N. at u, in Fig. 2.1.

Let Y. be the vector-valued process seen at y,.

Then

SY(w,z) = Q(jco,z)SN(u>)Q*(ju),z) =Q(jw,z)Q*(ja),z) (4.6)

since Sn(oj) = I, for N. as above.

As is well known, [Stew. 1]
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5[Q(ju>,z)r = DQ(Jw.z)Q*(j(o,z)02

and since

i!Q(ja),z)Q*(jo),z)ll2 > HQ(Jcn.z)Q*(jai.z)lc

it follows that

5[Q(Joj,z)]2 >max S^(co,z)
i

(4.9)

So, if (4.2) is satisfied, (4.9) gives an upper bound on the noise

power spectral density in any channel at the plant input over the frequency

band of interest.

4.3 Example 1 (based on Example 1, section II)

The values used in (4.1)-(4.3) were:

w1 = 0.8 Ln = 2.5. o>n0 = 0.1 ^ = b2 = 1.8

w2 = 0.2 wnr s 50
nc

(4.10)

Also, the initial bandwidths, z?, z2 were chosen as z? sz2 =1,
i.e., z° =(1,1)T.

Figure 4.1 details the behavior of z as it converges to z* (the

approximate solution to (4.1)-(4.3)), which is:

2.5?
'* =

1.80
(4.12)

0Figure 4.2 contains plots of a[Q(joj,z)] for z = z , and z = z*,

over [.1,50]. Note that max 5[Q(ja),z)]| s l .
wSft 'z=z* n

The resulting compensator (substituting (4.12) in (2.29)) is:

C(s) =
s(s+2)

.i^ (3s2+9s+8) ^5|_ (3s2+7s+4)
-2.95

s+3.56
(2s+2) sO (s2+8s+1°)

(4.13)

-10-



4.4 Example 2 (based on Example 2, section II)

The values used in (4.1)-(4.3) were:

w1 - 0.8 Ln = 3.5 un0 = 0.1 b1 = b2 = 1.8

w2 = 0.2

z° =0,l)T.

wn„ = 50
nc

(4.15)

Figure 4.3 details the behavior of z as it converges to z*, which

is:

z* =

2.26

1.80
L. -J

(4.16)

Figure 4.4 contains plots of a[Q(jo>,z)] for z = z , and z = z*,

over [.1,50]. Note that max a[Q(jw,z)]| _ * s L .
z=z*

u£Q
The resulting compensator (substituting (4.16) in (2.29)) is:

C(s)-i

Remarks:

~-5.77(3s2+7s+8) 2.91(2s2+6s+2)"
s2+4.52s+9.72 s2+3.6s+5.57

5.77(s'!:+6s+2)
sZ+4.52s+9.72

-2.91(3s+8)

s2+3.6s+5.57 J

(4.17)

The compensators (4.13) and (4.17) are such that:

(1.) (2.11) and (2.13) are true

(2.) (4.2) is satisfied

V. Design for Desensitization to Output Disturbances and Plant Perturbations

5.1 Problem Formulation

We propose the following problem:

1 (5.1)
/m \ m

in( I w.z.jwith I w. =
z \i=l / 1=1

mi

z

subject to:
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5[(I-PQ)(ju).z)] <Ld, Vo) 6 ft =C«d0,aidc3 (5.2)

z. > b.9 where b. > 0, VI < i< m (5.3)

5.2 Justification

We justify the use of (5.2) as follows:

(1.) For Densitization to output disturbances

Define a vector-valued stochastic process Nt as we did in section IV

Apply Nt and dQ in Fig. 2.1. Let Y. be the vector-valued process seen

aty2.

Now,

H A =(I+PC)"1 =I-PQ (5.6)
y2d0
Thus, reasoning as in section IV,

5[(I-PQ)(jo),z)]2 >max S^j)(aj,z) (5.7)
j

So, if (5.2) is satisfied, (5.7) gives an upper bound on the

noise power spectral density, in each channel at the closed-loop

system output, over the frequency band of interest.

(2.) For Desensitization to plant perturbations.

Consider the unity feedback system of Fig. 2.1. Assume it is

exponentially stable. Let P be perturbed into P (and W into
y2ul

H ), such that the closed loop system remains exponentially stable.
y2ul
Defi ne

*Vi:= Vi' Vi (5-8)
AP := P-P (5.9)

then [Saf. 1],
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AVi' Hvi= (I"PQ)iP
since [Stew. 1],

IU-PQli2 =a[I-PQ]

then

P"1 (5.10)

II AH ,-1 n-1/.
'y u *Hy uO^)^!0^1-^)^"2)] ' 9ap *p(**.z)B2» Va) eQ

(5.11)

So if (5.2) is satisfied for Ld « 1, it follows that

°AHy u #"y u(J»»z)°2 ^ "AP 'P"1^^)^' Vo) Sfi (5J2)
Thus, the closed loop I/O map from u, to y« is insensitive to

perturbations in the plant, over the band ft.

5.3 Example 1 (based on Example 1, section II)

The values used in (5.1)-(5.3) were:

w1 = 0.8 Ld = 0.3 u>d0 =0.01 ^ = b2 = 0.5

w1 = 0.2

z°=(l,DT

(odc = 0.5

Figure 5.1 details the behavior of z as it converges to z*,

which is:

2.38
r* =

2.38
(5.14)

Figure 5.2 contains plots of a[(I-PQ)(ja),z)] for z= z°, and

z = z* over [0.1,5]. Note that max a[(I-PQ)(jui,z)]L * s L..
a£ft [z-z d

The resulting compensator is:

C(s) =s(s+2)(s+3.36)
3s2+9s+8 -(3s2+7s+4)
-(2s+2) s2+8s+10

-13-
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5.4 Example 2 (based on Example 2, section II)

The values used in (5.1)-(5.2) were:

w1 =0.8 Ld =0.6 o)dQ =0.01 b, = b2 =0.5
(5.17)

Figure 5.3 details the behavior of z as it converges to z*, which

w2 = 0.2 a)dc = 0.5

is:

-* =

2.48

2.48

(5.18)

_ ,0Figure 5.4 contains plots of a[(I-PQ)(ju>,z)] for z = z , and

z = z*, over [.01,.5]. Note that max 5[(I-PQ)(jw,z)]L__* s LH.
u£ft |z-z a

The resulting compensator is:

C(s) = 7.62

s(s*+4.96s+12.3)

-(3s2+7s+8) 2s2+6s+2

s2+6s+2 -(3s+8)
(5.19)

Remarks:

The compensators (5.15) and (5.19) are such that:

(1.) (2.11) and (2.13) are true

(2.) (5.2) is satisfied

VI. Design for Densitization to output Disturbances and Avoiding Plant

Saturation by Noise

6.1 Problem Formulation

We propose the following problem:

min{max a[(I-PQ)(ju),z)]: <o s flf = [a>f(),ajfc]}
Z 0)

subject to:

a[Q(ja),z)] < Ln, Va) € ft = [wn0,a>n(J

zi 1 bif bi - °» VI £ i£ m

-14-
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6.2 Justification

By (4.9), (6.2) gives an upper bound on the noise power spectral

density in any channel at the plant input, over [un0»unc3-

Now, let z* be a solution to (6.1)-(6.3). Define the stochastic

processes N. and Y. as we did in section V. Then, by (5.7),

max a[(I-PQ)(j ,z*)]2 >max si^(w,z*), Vo> e ft (6.5)
u£ftf j T T

So, by (6.5), solution of (6.1)-(6.3) gives a minimal upper bound

on the noise power spectral density at y2 in Fig. 2.1, over

fofo^fc3-
By solution of (6.1)-(6.3), we also minimize the sensitivity of

the closed-loop sinusoidal steady-state response to plant perturbations.

This is clear from (5.11).

6.3 Example 1 (based on Example 1, section II)

The values used in (6.T)-(6.3) were:

w- = 0.01 Ln » 2.5 to = 0.1 b, = 2.1
fc n no 1

oifc = 0.5 u)nc = 50 b2 = 1.7

z°=0,DT.
Figure 6.1 details the behavior of z as it converges to z*, which

is:

^.1?
z* =

1.95
(6.7)

Figure 6.2 contains plots of a[(I-PQ)(jw,z)] for z= z°, and

z = z* over [.01,.5]. For this design,

max{a[(I-PQ)(ju),z)]l *: co G ftf} = .367.

Figure 6.3 contains plots of a[Q(jw,z)] for z = z , and z = z*,

over [.1,50]. Note that max a[Q(jw,z)]L „* s L .
cJ^ft |z-z n

-15-



The resulting compensator is:

2.07 -1.79if06 (3s"+9s+8) ^5 (3s'+7s+4)
C(s) = s(s+2)

iS <2s+2> s& (s2+8s+10)
6.4 Example 2 (based on Example 2, section II)

The values used in (6.1)-(6.3) were:

u)fo = 0.01 Ln = 6.0 a)„rt = 0.1 b., = 3.1

u)fc = 0.5

z°=(l,l)T

no '1

w„^ =5Q b9 = 2.5
nc 2

(6.8)

Figure 6.4 details the behavior of z as it converges to z*, which

is:

z* =

3.10

2.87

(6.10)

Figure 6.5 contains plots of o[(I-PQ)(jw,z)] for z = z , and

z = z*, over [.01,5]. For this design,

max{a[(I-PQ)(ju),z)]| *: uj € ftf} = .547.

Figure 6.6 contains plots of a[Q(jw,z)] for z = z , and z = z*,

over [.1,50]. Note that max 5[Q(jaj,z)]
wGft

The resulting compensator is:

z=z* = Ln'

C(s) = 1

~-14.9(3s2+7s+8) 11.8(2s2+6s+2)"
s2+6.2s+21.5 s2+5.74s+17.7

14.9(s*+6s+2) -11.8(3s+8)
s2+6.2s+21.5 s2+5.74+17.7 _

Remarks:

The compensators (6.7) and (6.11) are such that:

-16-
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(1.) (2.11) and (2.13) are true

(2.) (6.2) is satisfied, and an upper bound exists for

5[(I-PQ)(Jw,z)]|z=z* over ftf.

VII. Design for Avoiding Plant Saturation by Input Signal

7.1 Problem Formulation

Consider the signals: v,(t) and v2(t) as shown in Fig. 7.1.
2 2In Fig. 2.1, denote u-j(t) e ]R ,y,(t) £ 1R as:

^(t) =
fVtn

Lu12(t)j
y^t) =

'yn(t)

1*12**1
(7.1)

Let u^U) = Vj(t), u]2(t) = v2(t), Vt >0. Call the zero-state

response to this input y^t). Similarly, let u^(t) =v2(t) and

u12(t) = v-j(t), and call this zero-state response y,(t).

We propose the following problem:

('m \ m

I w.z.Jwith I w. = 1
j=i 1 V i=i 1

subject to:

1*11(t)I iLsl' l*12(t)l^Ls2' ^C0^

1*11(t)I ±Lsl' l*12(t)l ±Ls2' Vt € [0,tc]
zi 1 bi» bi 1 °» VI £ i _< m

7.2 Justification

(7.3)

(7.4)

(7.5)

(7.6)

By placing small enough upper bounds on |y^1(t)| and |y12(t)|,

the responses to some appropriate test signals, over an appropriate

time interval, we can insure that the plant will not be saturated for

these inputs. We have chosen v^t), and v2(t) as in Fig. 7.1, as the

test signals, for this application.
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7.3 Example 1 (based on Example 1, section II)

The values used in (7.3)-(7.6) were:

w, = 0.8 L . = 2.5 t = 6 sec. b, = b„ = 1.1
'si 1 UZ

w2 = 0.2 Ls2 - 2.5

z° = (2,2)T

(7.8)

Figure 7.2 details the behavior of z as it converges to z*, which

is:

z* =
2.35

1.52
(7.10)

Figure 7.3 contains plots of y,-j(t), y,2(t), y,,(t), and y12(t)

for z = z and z = z*, over [0,6].

The resulting compensator is:

C(s) = 1

s(s+2)

"i+l32 (3s2+9s+8) ^fj (3s2+7s+4]

-2.60
_s+3.32

7.4 Example 2 (based on Example 2, section II)

The values used in (7.3)-(7.6) were:

(2s+2) izrh (s2+8s+1°)

w, = 0.8 L, = 7.5 t =6 sec. b, = b2 = 1.1

w2 - 0.2 Ls2 = 7.5

z° = (2,2)T

Figure 7.4 details the behavior of z as it converges to z*,

which is

'* =

1.20

1.19

-18-
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Figure 7.5 contains plots of y-j^t), y-^U)' y-j-jCt), and y12(t)

for z = z , and z = z*, over [0,6].

The resulting compensator is:

C(s) = i

Remarks:

-0.86(35^+75+8) 0.84(2s*+6s+2)

s*+2.4s+2.13

0.86(s':+6s+2)

s2+2.4s+2.13

s +2.38+2.09

-0.84(3s+8)
Ts +2.38S+2.09J

(7.15)

The compensators (7.11) and (7.15) are such that:

(1.) (2.11) and (2.13) are true

(2.) (7.4) and (7.5) are satisfied

VIII. Conclusions

The thrusts of this paper are the following:

(1.) The algebraic design theory provides us with a conveniently

parametrized family of exponentially stable I/O maps; furthermore,

to each of these J/0 maps there corresponds a unique strictly proper

controller.

(2.) The design is viewed as an optimization problem: to

select the optimal parameters by maximizing or minimizing an objective

function subject to some inequality constraints. Objective functions

which minimize a weighted sum of normalized I/O bandwidths, maximize a

similar sum, or minimize a[(I-PQ)(ju),z)] over w in a given frequency

band, are used. Constraint functions are used which place an upper

bound on a[Q(joi,z)], or on a[(I-PQ)(jw,z)] over specified frequency

bands. Also, time domain constraint functions, which put an upper

bound on the response at the plant input to certain test signals,are

used.

-19-



(3.) We firmly believe that linear methods alone are inadequate

for design purposes, because, for example, they pay no attention to

the size of certain gains and certain signals. Hence, we believe that

computer aided design, using inequality constraints (as in (2.) above),

makes linear theory more realistic, and hence more useful.

The purpose of this experiment has been to demonstrate the

feasibility of the design methodology represented by the ideas above.

It is clear that in a more realistic environment, additional inequality

constraints and other objective functions would have to be considered.
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APPENDIX A

I. Problem formulation

The nonlinear programming problem, with functional inequality

constraints is defined as:

(1.1)min f°(z)
z

subject to:

max <J>J(z,io) < 0, j 6 J,

gj(z) <0, jeJA
where

H.2)

(1.3)

Jm = {1,2,...,M}

Jz = {1,2,...,L}

ft = [w >(»)], specified interval (1.5)

z6Rp is the design vector

Assumptions:

(Al) f° : IRP -»• 1R, gJ : IRP-*- IR, j e j are continuously

differentiate in z.

(A2) <J>J : IRP x ir -»-]R, j e j^ are continuously different!*able
in z and w.

Each inequality in (1.2) is transformed into q+1 inequalities

by fixing oj at q distinct points in Q. Denote this set as ft .

II. Optimality Function Definition - Active Constaints

Define:

ifq(z) =max{<|>j(z,u>), j ej^ue ftq; gj(z), j e<y (2.1)
* (z) =max{0,ij;q(z)} (2.2)
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The set of points for which a functional constraint is active

is denoted by:

Sq,e(z) ={a) 6^ql^2'") ~VZ) - "e}* JGJm (2'3)
We define the "e-active constaint index" set for functional

constaints by choosing the local maximum of each subinterval of ft ,

whose points are all active.

For example, in figure I, we define two active leftmost local

maxima (u^.^©).

Let ft|! ={all active local maxima for <J>J(z,o)), jej}.
Now, the "e-active constaint index" set for functional constaints

is defined as follows:

Je,q(z) =<(J.«)|J €Jm> wS^,e(z)} (2'5)
The e-active constaint index set for conventional constraints is

defined by:

Je,q =^l9j(z) -*q(Z) >-£> JeV (2-6)
The optimal ity function 9 {z): ]RP -*- R for the nonlinear

programming problem is:

6e>q(z) =min {lllhll2 +max{<Vf°(z),h> -yi|> (z);
heRp

<Vgj(z),h>, je J^q(z); <Vz<j>j(z,o>),h> , (2.7)

(j,o))ej* (Z)}}

Theorem 1:

If z is optimal for (1.1)-(1.3), then 6 (z) = 0.

The optimality function 9^ n(z) in (2.7) generalizes the
e»q

Zoutendijk optimality function for finding Fritz-John points, by

adding:
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(a) Constaint boundary smearing - when a constaint becomes

e-active, it's gradient is included in (2.7), which rotates h away

from the constant boundary. This prevents jamming.

1 2(b) Quadratic term: ^IhD^ -This prevents deterioration

of h(<vf (z),h> s o) for feasible z. Also, minimization in (2.7)

need not be done on a compact set.

(c) The term: -y^ (z), y > 1. For infeasible z, this term

effectively removes <Vf (z),h> from (2.7). Thus h will depend only

on gradients of active constraints.

9 (z) is actually solved in it's dual form:

min{»uTQu +DTu|RTu =1}
u>0 L

where

with

and

q£mt, ae m(1+k+v>xP, uem1+k+v

a* vf^zil ?9 >)T

s0 I IIVf°(z)B„

sf ^ »v*J'(z,^)ll„, j e Jm, <o4 s nq
k = number of elements of J^ n(z)

e ,q

v = number of elements of J^ (z)
e,q

DT =[Yipq(z)/s0,0,0,...,0] e IR 1+k+v

A-3

Jl TV<J> (z,^)1
•Ji*i

(2.9)

** V(z«^v)
Vv

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)



T 1 k ^1 1 ^v vR ° 1-Po'Pg '•••'Pg 'P$ '•••'P^) J (2.16)

for "push factors":

P0 =5o(1/sO"1} (2J8)

Pg " 5°g +n[l ♦ ^—J !JS0( (2.19)
!. , r <f»ju.<0-<i'aur|2 , %

p* - e# +"L! + r-3—} ••j eV \ e nq <2-20>
with input parameters: (to the optimization algorithm)

50; cj, jsoA; cj, jeJm; " (2-21)
From ii s K , we calculate the direction vector h:

K Q(z)T ="VTA (2.22)

Solving (2.7) and (2.22) yields a vector h which is a convex

combination of the gradients of the active constraints and the cost

gradient. The h chosen is specifically, the convex combination with

minimum Euclidean norm. The set of convex combinations can be changed

by varying the parameters (2.21). Increasing pQ in (2.17), for

example, will "push" h closer to -Vf (z). For an example with

p = 2 (z e jr ) see figure 2 below.

In figure II, g-., g«> 9* are gradients at z*, of active constraints

f,, fp and cost f respectively. 6 is the convex hull of

91* 92* gf"

III. Algorithm

A Phase I - Phase II feasible directions algorithm is used to

solve (1.!)-(!.3).

DATA: a € (0,1), 3 e (0,1), y > 1» <5 G (0,1]. eQ >0, u-, >0,

y2>0, M>0, qQ, qmax, Z0€IRP.
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STEP 0

STEP 1

STEP 2

STEP 3

STEP 4

Set i = 0, q = q.

Set e = e,

Compute [9p fl(z1),h a(zi)] from (2.7), (2.22)
If 9£ (z1) <-2ed go to step 6.

e U-i ,• U2
First, set e= j. If e<eQ —L and ty [z )<-~ ,set

q = 2q and go to step 5. Else, go to step 2.

STEP 5: If q > qmax> STOP. Else, go to step 1.

STEP 6: Compute the largest step size X. = 3 e (0,M*], where

M
and k an integer such that:M* = max 1,

n,W2l>D.
{i) if z1 e Fc (not feasible)

Vzi+Xihe,q(z1)} "V^ £""V*
(ii) if z1 e F(feasible)

;0r.i ?0, ifU{z1+xihe>q(z1)} -fV) <-aX.6e
1+1 e F(feasible)z

STEP 7: Set zi+1 =z1 +X^ (z1). Set i=1+1, go to step 2.
If z1 is feasible, an Armijo step is taken on the cost, with

z1 constrained to be feasible.

For z1 not feasible, an Armijo step is taken on ib (z1). As

9 n(zl) Q^ows small, e is halved. As e is decreased, q will eventually

increase, depending on u,, u2* For q > qmax» execution ceases.
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