Copyright © 1981, by the author(s). All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

GLOBAL PARAMETRIZATION OF FEEDBACK SYSTEMS

by

C. A. Desoer and R-W. Liu

Memorandum No. UCB/ERL M81/57

24 July 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering University of California, Berkeley 94720

GLOBAL PARAMETRIZATION OF FEEDBACK SYSTEMS

C. A. Desoer and R-W Liutt

ABSTRACT

For unity-feedback systems with a plant P and controller C, we show that, given a linear or <u>nonlinear</u> stable P, the class of all controllers stabilizing the feedback system is globally parametrized by a stable map Q. We also show how Q is useful in studying the effects of modeling errors on the stability.

[†]Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory, University of California, Berkeley, CA 94720

The Department of Electrical Engineering, Notre Dame University, Notre Dame, IND. 46566.

Research sponsored by the Department of Energy Contract DE-ASO1-77ET29136, and the Office of Naval Research Contract NO0014-78-C-0444.

I. Linear Case

In the spirit of Desoer et al. [1], let G be a commutative ring of (causal) transfer functions and let H be the subring of G consisting of stable transfer functions. (e.g. $G = \mathbb{R}_p(s)$ whose elements are analytic in U with $U \supset \mathbb{C}_+$ and U is symmetric with respect to the real axis, \mathbb{C}_+ is the closed right half plane). The m×n matrix M is called H-stable iff $M \in H^{M \times n}$.

Consider on Fig. 1 the <u>linear</u> feedback system Σ_L with inputs (u_1,u_2) , errors (e_1,e_2) and outputs (y_1,y_2) . Let $P \in H$ and $C \in G$ are $C \in G$ and $C \in G$ and $C \in G$ and $C \in G$ are $C \in G$ and $C \in G$ and $C \in G$ are $C \in G$ and $C \in G$ and $C \in G$ are $C \in G$ and $C \in G$ and $C \in G$ are $C \in G$ and $C \in G$ are $C \in G$ and $C \in G$ and $C \in G$ are $C \in G$ and $C \in G$ are $C \in G$ and $C \in G$ are $C \in G$ and $C \in G$ and $C \in G$ are $C \in G$ and $C \in G$ and $C \in G$ are $C \in G$ are $C \in G$ and $C \in G$ are $C \in G$ ar

Theorem L Let $P \in H^{0 \times n_i}$; let $C \in G^{n_i \times n_0}$ be such that Σ_L is well posed; then there is a $C \in G^{n_i \times n_0}$ that H-stabilizes Σ_L if and only if

for some
$$Q \in H^{n_1 \times n_0}$$
, $C = Q(I-PQ)^{-1}$. (1)

Furthermore, for that C,

$$H_{y_2u_1} = PQ \tag{2}$$

Comments (a) Eqn. (2) specifies all I/O maps $H_{y_2u_1} \in H^{0 \times n_0}$ achievable from P using the configuration of Fig. 1. (b) Eqn. (1) shows that $Q \in H^{0 \times n_0}$ globally parametrizes all H-stabilizing controllers. These controllers are not necessarity H-stable, but have elements in G. (c) Theorem L is a slight extension to the non-square case of Desoer et al. [2] which is based on a parametrization of Zames [7] and a stability theorem of Desoer et al. [3].

(d) Eqn. (2) is equivalent to

$$Q = C(I+PC)^{-1}$$
 (3)

where the inverse is well defined since $C(I+PC)^{-1} = H_{y_1u_1}$ for the system Σ_1 .

II. Nonlinear Case

Let $(L, \| \cdot \|)$ be a normed space of "time-functions" : $T \to V$ where T is the time-set (typically \mathbb{R}_+ or \mathbb{N}), V is a normed space (typically, \mathbb{R} , \mathbb{R}^n , \mathbb{C}^n ,...) and $\| \cdot \|$ is the chosen norm on L. Let L_e be the corresponding extended space [4,5,6].

Consider the system Σ_N shown in Fig. 1 where now $u_1, e_1, y_2 \in L_e^{n_0}$ and $u_2, e_2, y_1 \in L_e^{n_1}$; C and P are <u>nonlinear causal</u> maps

$$C: L_e^{0} \to L_e^{0}, P: L_e^{0} \to L_e^{0}$$
 (4)

The system Σ_N is assumed to be <u>well-posed</u>, i.e., H_{eu} and H_{yu} are well defined causal maps from $L_e^n \to L_e^n$. Σ is said to be <u>finite gain</u> (f.g.) <u>stable</u> iff Σ is well-posed and H_{eu} and H_{yu} are f.g. stable; more precisely, H_{yu} is said to be <u>f.g. stable</u> iff $\exists \gamma < \infty$ and $\beta < \infty$ s.t. $\forall T \in T$ $\forall (u_1, u_2) \in L_e^n$,

$$\|H_{VU}(u_1, u_2)\|_{T} \leq \gamma \cdot (\|u_1\|_{T} + \|u_2\|_{T}) + \beta.$$
 (5)

P is said to have <u>finite incremental gain</u> $\tilde{\gamma}$ iff $\forall x, x' \in L_e^{n_1}$, $\forall T \in T$

$$\|Px-Px'\|_{T} \leq \|x-x'\|_{T} \tag{6}$$

We shall use repeatedly the fact that the sum and the composition of f.g. stable maps is f.g. stable.

Theorem N. Let P and C be defined as above. Call Σ_N the nonlinear system whose configuration is shown on Fig. 1. Assume that Σ_N is well-posed and that P has finite gain and finite incremental gain:

$$\gamma(P) < \infty \text{ and } \widetilde{\gamma}(P) < \infty$$
 (7)

Under these conditions,

a)
$$H_{yu}: (u_1, u_2) \mapsto (y_1, y_2)$$
 is finite gain stable (8)

for some f.g. stable Q :
$$L_e^{0} \rightarrow L_e^{1}$$
, C = Q(I-PQ)⁻¹. (9)

b) Furthermore, in terms of C and P, Q is given by

$$Q = C(I+PC)^{-1}$$
. (10)

c) With $u_2 = 0$, and $u_2 = 0$

$$H_{y_2u_1} = PQ$$
 (11)

<u>Comments</u>. (a) Eqn. (2) and Eqn. (11) have the same form; however in eqn. (2), we have a product of matrix transfer functions whereas in eqn. (11) we have the composition of causal nonlinear maps.

(b) With Σ_N finite gain stable, $Q = H_{y_1u_1}|_{u_2=0}$ is also f.g. stable: Eqn. (11) shows that all f.g. stable Q's globally parameterize all f.g. stable I/O maps $H_{y_2u_1}$ of Σ_N . Equations (9) shows that all f.g. stable Q's globally parametrize all compensators C that lead to a f.g. stable Σ_N .

Proof.

In [3], it is shown that given (7), H_{yu} is f.g. stable if and only if $C(I+PC)^{-1}$ is f.g. stable. So if we set $Q := C(I+PC)^{-1}$ we have eqn. (10). It remains to calculate C in terms of P and Q. From the above definition of Q,

$$I-PQ = I-PC(I+PC)^{-1} = (I+PC)^{-1}$$
 (12)

(where the inverse exists since Σ_N is well posed), note that in (12) we used the fact that the composition of nonlinear maps distributes on

the left. Composing both sides of (12) on the left with the nonlinear map C and using (10) we obtain Q = C(I-PQ). Now compose both sides of this last eqn. with $(I-PQ)^{-1}$. Hence $C = Q(I-PQ)^{-1}$. Thus claims a), b) and c) are established.

III. Perturbation

We use the map Q to determine when a nonlinear, not necessarily small, plant perturbation ΔP will maintain stability.

Let Σ be such that $C: L_e^{n_0} \to L_e^{n_1}$, $P: L_e^{n_1} \to L_e^{n_0}$ are <u>linear</u> maps. Let P undergo a <u>nonlinear</u> perturbation ΔP thus becoming $\widetilde{P} = P + \Delta P$. The result is a <u>nonlinear</u> system Σ_N with inputs (u_1, u_2) and outputs $(\widetilde{e}_1, \widetilde{e}_2, \widetilde{y}_1, \widetilde{y}_2)$. Let both Σ and Σ_N be well-posed.

 Σ and $\Sigma_{\mbox{$N$}}$ have the configuration of Fig. 1 hence, in both instances,

$$H_{eu}$$
 f.g. stable $\Leftrightarrow H_{yu}$ f.g. stable. (13)

For Σ , we have

$$\begin{bmatrix} I & P \\ -C & I \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \text{ equivalently, } e = Hu$$
 (14)

where

$$H = M^{-1} = \begin{bmatrix} (I+PC)^{-1} & -P(I+CP)^{-1} \\ C(I+PC)^{-1} & (I+CP)^{-1} \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix}$$
(15)

is a <u>linear</u> map. Note that by (3), $H_{21} = C(I+PC)^{-1} = Q$.

For Σ_N , we have

$$\begin{bmatrix} I & \widetilde{P} \\ -C & I \end{bmatrix} \begin{bmatrix} \widetilde{e}_1 \\ \widetilde{e}_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \text{ equivalently, } \widetilde{e} = \widetilde{H}u$$
 (16)

where H is a nonlinear map.

Let $\Sigma_{\mathbf{p}}$ be the system shown on Fig. 2; $\Sigma_{\mathbf{p}}$ is described by

$$\begin{bmatrix} I & \Delta P \\ -Q & I \end{bmatrix} \begin{bmatrix} Y \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} u_1 \\ H_{22} u_2 \end{bmatrix}$$
(17)

Theorem P. Assume Σ f.g. stable and let ΔP : $L_e^{n_i} \rightarrow L_e^{n_o}$. Then

- a) Σ_p is f.g. stable $\Rightarrow \Sigma_N$ is f.g. stable.
- b) If, in addition, either P or ΔP is f.g. stable, then $\Sigma_{\hbox{N}}$ is f.g. stable $\Rightarrow \Sigma_{\hbox{p}}$ is f.g. stable.

Comments. (a) Neither P nor ΔP are assumed f.g. stable.

- (b) Suppose that 1) we are given a <u>nonlinear</u> plant \tilde{P} ; 2) we approximate it with a <u>linear</u> P (hence, error ΔP); 3) we obtain a family of designs using a <u>linear</u> controllers C (see [1], or [2] if P is stable). Then using the corresponding Q and Σ_p with Theorem P, we can verify the stability of the <u>actual nonlinear</u> system.
- <u>Proof</u> (I) Consider Σ_N : from $\tilde{P} = P + \Delta P$, (16) and (15), and using the linearity of $H = M^{-1}$, we see that $(\tilde{e}_1, \tilde{e}_2)$ is a solution of (16) iff it is a solution of the following

$$\begin{bmatrix} I & (I+PC)^{-1}\Delta P \\ 0 & I+C(I+PC)^{-1}\Delta P \end{bmatrix} \begin{bmatrix} \tilde{e}_1 \\ \tilde{e}_2 \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} \end{bmatrix} \begin{bmatrix} u_1 \\ H_{21} & H_{22} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
(18)

(II) Consider Σ_p : since Q is linear, we perform row (2) \leftarrow row (2) + Q \cdot row (1) on eqn. (17) then (17) is equivalent to

$$\begin{bmatrix} I & \Delta P \\ 0 & I + Q \Delta P \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ H_{22} u_2 + Q u_1 \end{bmatrix}$$
 (19)

(III) Proof of (a): Σ_p f.g. stable $\Rightarrow \Sigma_N$ f.g. stable. By assumption Σ_p is f.g. stable; hence, by (17), the map $(u_1, u_2) \mapsto (\check{e}_1, \check{e}_2)$ is f.g. stable; by (19), this implies $(u_1, u_2) \mapsto (\Delta P \check{e}_2, \check{e}_2)$ is f.g. stable.

Comparing with (18) and noting that Σ is f.g. stable and that $\tilde{e}_2 = \tilde{e}_2$ we conclude that the map $(u_1, u_2) \mapsto (\tilde{e}_1, \tilde{e}_2)$ of Σ_N is f.g. stable.

(IV) <u>Proof of (b)</u>: Σ_{N} is f.g. stable $\Rightarrow \Sigma_{p}$ is f.g. stable.

<u>Case 1</u>. ΔP f.g. stable. Since the second eqn. of (18) and (19) are identical and since Σ_N is f.g. stable, $(u_1, u_2) \mapsto \overset{\checkmark}{e}_2$, defined by (19), is f.g. stable. By inspection of (19), since ΔP is f.g. stable, $(u_1, u_2) \mapsto (\overset{\checkmark}{e}_1, \overset{\checkmark}{e}_2)$ is f.g. stable.

<u>Case 2.</u> P is f.g. stable. As in case 1, we have $(u_1, u_2) \mapsto \check{e}_2$ is f.g. stable. From (16) and (17) and using $\tilde{e}_2 = \check{e}_2$, we have

$$\overset{\vee}{e}_{1} = u_{1} - \Delta P \tilde{e}_{2} = e_{1} + P \tilde{e}_{2}$$
(20)

Thus, since $(u_1, u_2) \rightarrow (\tilde{e}_1, \tilde{e}_2)$ and P are f.g. stable, so is $(u_1, u_2) \mapsto \tilde{e}_1$. Hence we have proved: $(u_1, u_2) \mapsto (\tilde{e}_1, \tilde{e}_2)$ is f.g. stable.

REFERENCES

- [1] C. A. Desoer, R-W Liu, J. Murray and R. Saeks, "Feedback System Design: the Fractional Representation Applied to Analysis and Design," IEEE Trans. AC, AC-25, 3, p. 399-413, June 1980.
- [2] C. A. Desoer and M. J. Chen, "Design of Multivariable Feedback System with Stable Plant," IEEE Trans. AC, AC-26, 2, p. 408-415, April 1981.
- [3] C. A. Desoer and W. S. Chan, "The Feedback Interconnection of Multivariable Systems: Simplifying Theorems for Stability,"

 Proc. IEEE, 64, p. 139-145, Jan. 1976.
- [4] C. A. Desoer and M. Vidyasagar, "Feedback Systems," Academic Press, New York, 1975.
- [5] M. Vidyasagar, "Nonlinear Systems Analysis," Prentice Hall, 1971.
- [6] J. C. Willems, "The Analysis of Feedback Systems," MIT Press, Cambridge, MA, 1971.
- [7] G. Zames, "Feedback and Optimal Sensitivity: Model Reference Transformation, Multiplicative Seminorms, and Approximate Inverses," IEEE Trans. AC, AC-26, 2, p. 301-320, April 1981.

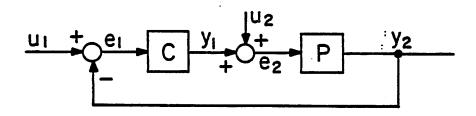


Fig 1

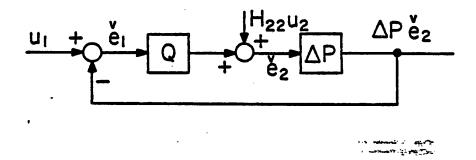


Fig 2