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ABSTRACT

For unity-feedback.systems with a plant P and controller C, we show

that, given a linear or nonlinear stable P, the class of all controllers

stabilizing the feedback system is globally parametrized by a stable map

Q. We also show how Q is useful in studying the effects of modeling

errors on the stability.
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I. Linear Case

In the spirit of Desoer et al. [1], let G be a commutative ring of

(causal) transfer functions and let H be the subring of G consisting of

stable transfer functions, (e.g. G= JRD(s) whose elements are analytic

in U with U 3 C+ and (i is symmetric with respect to the real axis,

(E+ is the closed right half plane). The mxn matrix M is called H-stable

iff M € fT".

Consider on Fig. 1 the linear feedback system 2. with inputs
n xn

(u.j,u9), errors (e.j,e2) and outputs (y-j,y2). Let Peh 1and
n.xn

C€G 7 ,we say that Z, is wel1-posed iff the maps

Hyu :(uru2) h- (y},yz) and Heu :(uru2) h- (e.,,e2) €Gnxn where
n := n.+n . Z. is said to be H-stable iff H^ and H have all their

io L eu yu

elements in H.

n xn. n-xnn
Theorem L Let Pe H° \ let C€ G 1 ° be such that Z. is well posed;

n.xn L
then there is aCe G ° that H-stabilizes Z, if and only if

n.xn 1
for some Q6H1 ° ,C= Q(I-PQ) . (1)

Furthermore, for that C,

Vi= PQ (2)
n xn

Comments (a) Eqn. (2) specifies all I/O maps H „ e tf ° ° achievable
y2ul

from P using the configuration of Fig. 1. (b) Eqn. (1) shows that

n.xn

Q ^ H globally parametrizes all H-stabilizing controllers. These

controllers are not necessarity H-stable, but have elements in G.

(c) Theorem L is a slight extension to the non-square case of Desoer

et al. [2] which is based on a parametrization of Zames [7] and a

stability theorem of Desoer et al. [3].
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(d) Eqn. (2) is equivalent to

Q=Cd+PC)'1 (3)

where the inverse is well defined since Cfl+PC)"1 = H for the
ylul

system Z,.

II. Nonlinear Case

Let (L,INB) be a normed space of "time-functions" : T •»• V where

T is the time-set (typically IR+ or IN), V is a normed space (typically,

IR, IR ,Cn,...) and INII is the chosen norm on L. Let L be the
e

corresponding extended space [4,5,6].
n

Consider the system Z.. shown in Fig. 1where now u,,ej»y2 e 1°

and u2,e2,y, €/"•; cand Pare nonlinear causal maps
nrt n. n. n

C : L° - C ,P :U - L° (4)
e e e e

The system Z« is assumed to be well-posed, i.e., H and H are well

defined causal maps from l" •*> l". Z is said to be finite gain

(f.g.) stable iff Z is well-posed and H and H are f.g. stable; more

precisely, H is said to be f.g. stable iff 3y < °° and 3 < °°
j

s.t. VTe r V(uru2) e^,

HHyu(uru2)tlT <Y • (Bu1IIT +Ou2aT) +3. (5)
"i

P is said to have finite incremental gain y iff Vx, x' € L , VT € T

BPx-Px,lIT <Bx-x'i T (6)

We shall use repeatedly the fact that the sum and the composition of

f.g. stable maps is f.g. stable.

Theorem N. Let P and C be defined as above. Call Z» the nonlinear

system whose configuration^ shown on Fig. 1. Assume that Z» is

well-posed and that P has finite gain and finite incremental gain:
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y(P) < co and y(P) < * (7)

Under these conditions,

a) H : (u1,u2) h- (y.j ,y2) is finite gain stable (8)

<3>

n n. -,
for some f.g. stable Q:LQ° +L1, C=Q(I-PQ) . (9)

b) Furthermore, in terms of C and P, Q is given by

Q=C(I+PC)_1. (10)

c) With u2 = 0,

vrPQ- (11)
Comments, (a) Eqn. (2) and Eqn. (11) have the same form; however in

eqn. (2), we have a product of matrix transfer functions whereas in eqn.

(11) we have the composition of causal nonlinear maps.

is also f.g. stable:(b) With ZM finite gain stable, Q = HN 3 " y-I u-j u2=0
Eqn. (11) shows that all f.g. stable Q's globally parameterize all f.g.

stable I/O maps H of ZM. Equations (9) shows that all f.g. stable
y2ul N

Q's globally parametrize all compensators C that lead to a f.g. stable

Proof.

In [3], it is shown that given (7), H is f.g. stable if and only if

C(I+PC)_1 is f.g. stable. So if we set Q:= C(I+PC)_1 we have eqn. (10).

It remains to calculate C in terms of P and Q. From the above definition

of Q,

I-PQ = I-PC(I+PC)_1 =(I+PC)"1 (12)

(where the inverse exists since EN is well posed), note that in (12)

we used the fact that the composition of nonlinear maps distributes on
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the left. Composing both sides of (12) on the left with the nonlinear

map C and using (10) we obtain Q = C(I-PQ). Now compose both sides of

this last eqn. with (I-PQ)'1. Hence C=Q(I-PQ)"1. Thus claims
a), b) and c) are established.

III. Perturbation

We use the map Q to determine when a nonlinear, not necessarily

small, plant perturbation AP will maintain stability.
n n. n. n

Let Zbe such that C:LQ° +L\ P:L^ -*- LQ° are linear maps.
Let P undergo a nonlinear perturbation AP thus becoming P = P+AP. The

result is a nonlinear system ZN with inputs (u,,u2) and outputs

(e-|,e2,y.|,y2). Let both Z and ZN be well-posed.

Z and Z» have the configuration of Fig. 1 hence, in both

instances,

Heu f,g* stable<>Hyu f-9- stable.

For Z , we have

"I PH [~ei1 - Mu * e<lu1valent1y» e = Hu

where

H= M"1 =
"(I+PC)"1 -P(I+CP)"1"' Hll H12

^CI+PC)"1 (I+CP)"1 _H21 H22-

is a linear map. Note that by (3), H0] =Cfl+PC)"1 •
For ZN, we have

I P

-C I

=

r— -»

-U2.
, equivalently, e = Hu

where\ H is a no nl inear m ap.

= Q.
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Let Z be the system shown on Fig. 2; Zp is described by

I AP

-Q I

1

2J&

"1

L?22U2J
(17)

n. n

Theorem P. Assume Z f.g. stable and let AP : L -»- L . Then
e e

a) Zp is f.g. stable =*Z.. is f.g. stable.

b) If, in addition, either Por AP is f.g. stable, then ZN is

f.g. stable =>Zp is f.g. stable.

Comments, (a) Neither P nor AP are assumed f.g. stable.

(b) Suppose that 1) we are given a nonlinear plant P; 2) we

approximate it with a linear P (hence, error AP); 3) we obtain a family

of designs using a linear controllers C (see [1], or [2] if P is stable).

Then using the corresponding Q and Zp with Theorem P, we can verify the

stability of the actual nonlinear system.

Proof (I) Consider ZN: from P= P+AP, (16) and (15), and using the
-1 «v ~

linearity of H=M ', we see that [e]9ez) is a solution of (16) iff it

is a solution of the following

I (I+PCJ^AP
-10 I+C(I+PC) 'AP l_e2J

nll

LH21

'12

!22J
(18)

(II) Consider Zp: since Q is linear, we perform row (2) «- row (2)

+ Q • row (1) on eqn. (17) then (17) is equivalent to

I AP

0 I+QAP
2J _H22U2+Qul-

(19)

(III) Proof of (a): Zp f.g. stable =>ZN f.g. stable. By assumption

Zp is f.g. stable; hence, by (17), the map (uru2)^ (e^ ,^2) is

f.g. stable; by (19), this implies (uru2)t-»- (APe2,e2) is f.g. stable.
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Comparing with (18) and noting that Z is f.g. stable and that e2 = e2

we conclude that the map (u-j,u2) h- (e^ig) of ZN is f.g. stable.

(IV) Proof of (b): Zn is f.g. stable =>Zp is f.g. stable.

Case 1. AP f.g. stable. Since the second eqn. of (18) and (19) are

identical and since ZN is f.g. stable, (u, ,u2)h* e2, defined by (19),

is f.g. stable. By inspection of (19), since AP is f.g. stable,

(u-j,u2)hh- (e, ,e2) is f.g. stable.

Case 2. P is f.g. stable. As in case 1, we have (u,,u2)w- e2 is

f.g. stable. From (16) and (17) and using eL =e2, we have

e-, = u1 - APe2 a e1 + Pe2 (20)

Thus, since (u, ,u2) •+ (e^ig) and Pare f.g. stable, so is (u^u^n-*- e^

Hence we have proved: (u,,u2)*-> (e,,e2) is f.g. stable.
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