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Abstract

Considering linear time-invariant distributed feedback systems, we

derive a necessary and sufficient condition for robust stability with

respect to plant perturbations belonging to a specified ball. The

conclusion is shown to exhibit design limitations imposed by plant

uncertainties.
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1. Introduction

One of the main purposes of feedback is to reduce the sensitivity

of the closed-loop system to changes in the plant (Horowitz 1963). A

considerable amount of the literature is devoted to the effect of perturba

tions on system stability and/or system performance (see e.g., Astrom 1980,

Cruz 1972, Cruz et al. 1981, Desoer et al. 1977, Desoer 1978, Desoer and

Wang 1980, Doyle 1979, Doyle and Stein 1981, Postlethwaite et al. 1981,

Safanov 1980, Safanov et al. 1981, Sandell 1979, Willems 1971, Zames

1981). Some of these references consider nonlinear systems as well as

linear systems. However, most of the results are restricted to "stable"

perturbations. It is only recently that Doyle and Stein (1981) stated

a necessary and sufficient condition for robust stability in the case of

linear lumped systems. We have difficulties with their proof. (See Appendix A)

In this paper, we study the robust stability of linear time-invariant

distributed multivariable systems with more general feedback

configurations (thanunity-feedback). Using efficient formulations of

classical results (Rudin 1974), we obtain a simple derivation of a

necessary and sufficient condition for robust stability over a class of

additive plant perturbations. The robust stability requirement clearly

exhibits the limitations imposed on feedback system design by plant

uncertainties.

Organization: Section 2 describes the system under consideration. In

Section 3, stability is defined and a set of equivalent stability tests

is obtained. In Section 4, the necessary and sufficient condition for

robust stability is derived and design considerations are included. In

Section 5, robust stability for a different feedback configuration is

discussed.

Special notations and definitions

For a e 1R, (typically o > 0), t + denotes the closed right half
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plane Re(s) > a. f6 A(a) iff f(t) = fa(t) + I f-S(t-t,) where
a 0

fa :IR-* IR, with fa(t) = 0 for t < 0, t^ f (t) exp(-at) € L,;
a a a I

*o = °' ^ >°' Vi > 0; Vi' fi e K and 1l"* fi exP("ati) G V f€ A-(a)
iff, for some a-j < a, fe A(a-|). f denotes the Laplace transform of f.

A (a) := {f :f € A (a)}. A (a), (A .(a), resp.), denotes the subset of
- - - - ,o

A.(a) consisting of those f that are bounded away from zero at infinity

in t0 , (f that go to zero at infinity in £ ,resp.). 8(a) := [A_(a)]

[A*(a)]~ »the commutative algebra of fractions g= n/d where n£ A_(a)

and d€ A*(a) (Callier and Desoer 1978, 1979, 1980a)(for the general

technique, see e.g., Jacobson (1980, Sec. 7.2), and Bourbaki (1970,
^00,

Chap. II, Sec. 2)). BAo) := [A n(a)] [A (a)]"'. Let H € B(a)
o —, o —

NfD~ , (D^N^, resp.) is called a right-coprime factorization (r.c.f.)

(left coprime factorization (l.c.f.), resp.) of H if and only if

(i) Nr and Dp (N. and D-, resp.) have all their elements in A_(a)

and det Dr (det D-, resp.) eA*(a);

(ii) H=NrD^(H =D~\, resp.);
nxm(iii) (Nr,Dr) are right coprime (r.c), i.e., 3ur G/Ma) and

Vr eAja)nxn s.t.

UrNr + VrDr = ln

nxm((iii)' (D^.N^)- are left coprime (I.e.), i.e., 3 U^ e Aja)n*m and

V£eA.(a)mxms.t.

Given a r.c.f. H=N^"1 (a l.c.f. H=D^N^, resp.), XH := det Dr,
(det D-, resp.), n., := the number of C -zeros of det Dr (det D^, resp.),

counting multiplicities. A_ := A_(0), 6 := 8(0), etc. Let Ae (tmxn,

^ax^' ^min^' resP*) :~ tne 1ar9est (smallest, resp.) singular

VH s 8(a) , algorithms are available to obtain both r.c.f. and l.c.f.
(Callier and Desoer 1980b,Vidyasagar et al. 1980).
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value of A (Stewart 1973). *

2. System Description

Consider the linear time-invariant multivariable feedback system

S(P,C,F), consisting of a plant, a precompensator and a feedback compensator

with transfer function matrices P, C and F. Let the plant P be subjected

to additive perturbation AP thus becoming the additively perturbed plant

P := P + AP. Denote by S(P,C,F) the resulting additively perturbed

feedback system (see Fig. 1). We impose the following assumptions on

P, C, F and AP:

nrtxn. „ n«xn-? * nixnn(I) For some aQ <0, Pe8Q(a0) ° \ AP €80(aQ) ° \ CeB(aQ) ' °

and Fe B{oQ) o o (2.1)

(II) N^D-J. is ar.c.f. of P; D^Nc£ is al.c.f. of C; and NffD^ is
a r.c.f. of F.

In terms of £,, £2 and €3 defined in Fig. 1, the system

S(P,C,F) is described by

D(AP)£ = N^u, Nr(AP)C = y,

(2.2)

(2.5)

r T • T • T-J r T • T • T-J r T • T • Tlwhere 5 := [5J :%:^] »u := [uj : u^ :up , y := [y\ ^ ^3] »
and2

D(AP) :=

"S
1

1 D~
pr

1

1
"Npr Dfr

Dc*
1

1

1

NaNfr

(2.6)

Throughout this paper, all the unfilled blocks in a matrix have all
their elements equal to zero.



h:m

i Si
i i

» ! Zn
! ! no
, 1

Nc* ! !

n. ;

. Nr(AP)
pr

N
fr

(2.7)

From (2.5), H (AP) : uH-y, the I/O map of the system S(P,C,F), is

given by

Hyu(AP) =Nr(AP) D(AP)"1 N£ . (2.10)

Comments:

(a) With assumption (2.2), inspection of (2.6) and (2.7) shows that

(Nr(AP), D(AP)) are r.c; (D(AP), N^) are I.e. (2.13)

(b) Direct calculation using (2.6) gives

det D(AP) =n Xp •Xc •XF •det[In + PCF] (2.16)

where n = 1 or -1 depending on the size of the matrices involved. From

(2.16), it is easy to show that (2.1) and (2.2) imply3

det D(AP) e A"(a ) .

, „ (2n.+n )x(2n.+n )
and hence, D(AP) '€B(oQ) 1 ° 1 °

Hyu(AP) €8(ao)
(n.+2n0)x(ni+2n0)

i.e., the system S(P,C,F) is well-posed.

(2.17)

Consequently,

^Indeed: (i) (2.1) implies det[I + PCF(s)] + 1 as |s| -^ ~ in C ;
no o

(ii) (2.2) and the definition of coprime factorizations imply det D~

det Dcr det DfreA™{oQ); (iii) From(2.6), det D(aP) eA.(a0). The
claim (2.17) follows from (i), (ii), (iii) and (2.16).
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3. System Stability

In this section, stability is defined and a set of equivalent

necessary and sufficient conditions for the stability of the system

S(P,C,F) are derived.

Definition 3.1.

Given any a < 0, we say that the system S(P,C,F) of Fig. 1 is

A^(a)-stable if and only if

Hyu(AP) e A.(a)
(ni+2n0)x(ni+2n0)

Theorem 3.2. (Stability Tests)

Consider the system S(P,C,F) shown in Fig. 1 satisfying (2.1) and

(2.2). U.t.c, we have the following equivalences:

(n.+2nQ)x(ni+2n0)
(I) Hyu(AP) €A>0)

(II) det D(AP) has an inverse in A_(a ) ;

(III) det D(AP) has no C + -zeros ;
o

(IV) the Nyquist diagram4 of det[I + PCF]
o

(i) does not go through the origin, and

+ _l + ^ +L + n + n
PCF

(ii) encircles the origin n^ + n + n times

counter-clockwi se. J

(3.11)

(3.12)

(3.13)

(3.14)

fytore precisely, the image under the map s*-+ det[I + PCF(s)] of the
o

clockwise contour D(a ;R), with R arbitrarily large, consisting of (i) a
straight line segment starting from (a ,-jR) to (a ,jR), (except for the
usual infinitesimal left indentations at the zeros of X *X*X with real

PCF

part equal to a ), and (ii) the semi-circle in C + joining these points.
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Comment: The equivalence "(3.11) <> (3.13)" is a slight extension of

the result for unity-feedback systems (Theorem 3.1(i) in Callier and

Desoer 1980b). Note that the present method of proof is more efficient. *

Proof of Theorem 3.2.

(3.11) o (3.12). Consider (2.6)-(2.10).

«=. Since A_(a ) is a commutative ring, (3.12) holds if and only if

l - (2n.+nJx(2n,+nJ
D(AP)"1 6AjaQ) 1 ° 1 ° (MacLane and Birkoff 1979); then, (3.12)^(3.11)
by the closure properties of A (a ).

=>. Condition (2.13) implies that 3 ur» vr» uo and vo» a11 W1'tn elements
r' 'r' I

in A_(a ), such that

Ur Nr(AP) +VrD(AP) = I2 , (3.21)
i o

h \ +D(AP) VA • ^n^n, • <3"22>
Post multiply (3.21) by D(AP)"1 N.U., premultiply (3.22) by D(iP)"1 and

add:

D(AP)-1 =Ur Hy(J(AP) U^ +V^U^ +V4 (3.23)

Equation (3.23), the closure properties of A_(a ) and (3.11) give

-1 - (2n.+n )x(2ni+n0)
D(AP) 'SA_(cr0) n ° °. Hence, (3.12) follows.

(3.12) o (3.13). From (2.17), det D (AP) is bounded away from zero at

infinity in I +; hence, (3.13) is equivalent to

inf |det D(AP)(s)| > 0 . (3.24)
set .

ao+

Since (3.24) is equivalent to (3.12) (Desoer and Vidyasagar 1975, Appendix

D) (Mile and Phillips 1957), the equivalence u(3.12)o(3.13)" follows.
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(3.13) o (3.14). Recall that

det D(AP) = n •X. •Xr •XP det[I + PCF]
P L r no

(2.16)

where n = 1 or -1. Since (i) det D(AP), X^, Xr and XF are analytic in

(E + and on the contour D(a ;R), (ii) det[In + PCF] is meromorphic in
o o

C + and analytic on D(a ;R), and (iii) all the factors in (2.16) are
o

bounded away from zero at infinity at C +, (hence all have only a finite
o

number of C +-zeros), it follows that (3.13) holds

(a) each of the CQ +-zeros of Xp •Xc •Xp is precisely cancelled

by a pole of det[I + PCF] with the same multiplicty,
o

J (b) det[In + PCF] has no C ^-poles except at those la +-zeros of

5L •Xr •Xp,
P ° r

(c) det[I + PCF] has no C +-zeros;
v„ o o

(a) the <L .-poles of dettl,,, + PCF] are exactly the C .-zeros ofaQ+—— nQ aQ+

^ *XC "XF with the same multiplicities,
(b) det[I + PCF] has no C +-zeros;

o o

(3.14) holds,

where the last equivalence follows by the "argument principle"

(Dieudonne*, 1969, (9.17.2)), (Rudin 1974, Theorem 10.42).

4. Robust Stability

We obtain here a necessary and sufficient condition for the robust

stability of the system S(P,C,F) under a class of perturbations.

-8-



For simplicity, we consider a =0. (If a < 0, the arguments

are the same, but the calculations are more cluttered). Let P, the class

of all allowable additive plant perturbations, be described by

P := {AP :(a) AP e8Q0 1 ; (4.5)

(b) smax[P(Jw)] <Aa(a»), V&) e R+ ; (4.6)

(c) n! « n+J (4.7)
P P

where ojh- £a(w) is a given "tolerance" function satisfying

(i) oji-*- JL(o)), mapping 1R+ into IR+\{0}, is continuous; (4.8)

(ii) jjk e IN* such that £(w) o)k >1for all w

sufficiently large. (4.9)

Note that the "size" condition (4.6) implies that

VAP e p, AP has no poles on the jui-axis. (4.10)

Theorem 4.1. (Necessary and Sufficient Condition for Robust Stability)

Consider the system S(P,C,F) shown in Fig. 1 satisfying (2.1) and

(2.2). Let oQ =0 and let V be described by (4.5)-(4.9). U.t.c, if

S(P,C,F) is A_-stable, (4.21)

then

VAP ep, S(P,C,F) is A_-stable; (4.22)

amax[CF(I +PCF)"1(ja))] <l/^(o)), Vu, e IR+ . (4.23)
o

Remarks 4.1.1:

(a) The importance of this theorem is that it gives a necessary and

sufficient condition for robust stability over a class of perturbations.
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This class of uncertainties should be viewed as a ball of uncertainty

around the nominal plant P.

(b) Neither P, nor C, nor F, nor the perturbation AP is assumed to be

+ +
stable. It is only required that n^ = n , i.e., "the unstable poles of

P P

P = P + AP are obtained by moving around the unstable poles of P."

(c) The theorem also exhibits the fact that plant uncertainties put

bounds on the achievable benefits of feedback (see also Postlethwaite

et al. 1981, Zames 1981). For example, to achieve large desensitization

over wide bandwidth (note that with Q:= CF(In +PCF)"1, (In +PCF)"1
o o

= I_ -PQ)» or to significantly modify the open-loop dynamics, a "large"
o

Q is required at and above the edge of the plant-passband. However,

stability under perturbations imposes the requirement amav[Q(ju>)] < l/JL(u)),
max — a

Vw e ]R+, thus limiting what can be achieved in this connection. This

requirement may be more restrictive than that resulting from noise

requirements (see, e.g., Desoer and Chen 1981, Sec. V, Equation (28)).
n

Proof of Theorem 4.1:

For simplicity, we assume that Xp'Xp-Xp has no zeros on the jw-axis.

(Hence, by (4.10), VAP e p, x~-Xc-Xp has no zeros on the jw-axis). Let

I!"V
(4.22) =» (4.23). By (3.14), condition (4.22) implies that

det[I + PCF(ju))] f 0, Vcd 6 ]R+> VAP e p . (4.31)

Now, (4.21) implies that, on IR, det[I + PCF(jco)] f 0 and is bounded;

thus (4.31) holds if and only if

det[I + AP Q(j(o)] /0, Vw e r+, VAP e p , (4.32)

where

-10-



Q := CF(I+PCF) -1 (4.33)

We prove "(4.32M4.23)" by contradiction. Suppose that (4.23)

fails, equivalently, ^i e ^+ s«t*

fl :"amaxW"ul»>ySjT * (4.34)

Let U V* be a singular-value decomposition of Q(ju)-j), where
n.xn,

U := (u..) e z and V := (v..) <
v lj'n^xn. 'J n0xno

matrices. Choose

o o
(C are unitary

a-i(s)

AP^s) :=

\M

where k' e IN*,

(-1/a^ hq(s)k' [31(s),..-,3n (s)] (4.35)

oj-
c "'I

hjs) := 1/[1 + (~ +-f)q] with q >0 ,
"03, S

(4.36)

a^s) := jp- Im(vil)+ Refv^) for i = !,•••,nQ,

^(s) := - — Imju^) + Refu^), for i =l,--*,^..

We claim that, for some k' e IN* and some q > 0, AP, e p. Indeed:

(i) By choosing k' >3, AP-j is a strictly proper exponentially

stable rational matrix; hence (4.5) and (4.7) hold,

(ii) Setting s = jw-j in (4.35) gives

v.
11

AP^jc^) =

V

(-l/o^) [u11,-««.un_1] =V

-11-
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and hence, using (4.34),

w^V]^ W • (4-39)
With (4.39), by assumptions (4.8) and (4.9) on w h- £ (<d) and using the

a

characteristics of h , we can choose k' e IN* and q > 0, both sufficiently

large, such that (4.6) holds. Thus, by (i) and (ii), AP, e p.

By (4.38),

det[I + AP1Q(ja)1)] = detU +V diag[-l ,0,---,0] V*}

= det V-det{diag[0,l,«",l]}det V* = 0;

hence, (4.32) is violated for AP, e p at oj = oj,, and by contradiction,

(4.32) implies (4.23).

Since we have established "(4.22) «* (4.31) <> (4.32) => (4.23),"

we have proved "(4.22) => (4.23)."

«=. Since the assumption (4.21) and (4.23) do not involve AP, we will

consider a fixed but arbitrary AP e p and show that (4.21) and (4.23)

imply

S(P,C,F) is A_-stable (4.45)

Hence the conclusion (4.22) follows by the arbitrariness of AP e p.

Since VA e lmxn, amP¥[A] = sup lAziL, am,n[A] = inf llAzIL,max IJz[|2=1 2 mm M } 2
we have Vw e ]R+, Ve e [0,1],

a_in[I + eAP Q(ja>)] = inf ll[I + eAP Q(ja))]zlL
mln lzil2=l Z

> inf {llzIL-ellAP Q(jw)zlL} = 1 -e am,.[AP Q(ju))]- Bz[l2=1 2 d. mm
>1 - amin[AP Q(ja))] >1 - amax[AP Q(ju>)]

>1 - *>) amax[Q(ja))] . (4.46)
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where we used (4.6) to obtain (4.46). From (4.46), assumption (4.23)

implies

amin[I + eAP Q(ja>)] > 0, Vw e IR+, Ve e [0,1] . (4.47)

Since, by (4.5), AP goes to zero as |w| -*• °° , and, by (4.21),

Qlu^N- (-y-i) is bounded on the jw-axis, a •[I + eAPQ(ja))] -»• 1 as

|w| -»-«. Hence (4.47) implies that 3 6, > 0 such that

|det[I + eAP Q(j(o)]| >6] >0, Vw e IR+, Ve e [0,1] . (4.48)

Similarly, 3 62 >° such tnat \det^1 + PCF(Jw)3l > <52 >0, Vw e ]R+;
hence, (4.48) is equivalent to

|det[I + (P+eAP)CF(joj)]| >6 > 0, Vw e IR+, Ve e [0,1], (4.49)

where 5 := <5,62.

Define UQ:ui» det[I + PCF(jco)] and W] :o)^ det[I + PCF(jco)], both

mapping lR into (C. (Note that, by continuity, W^(<») =W^-00) = 1, for

i = 1,2). Thus, M and W, are closed bounded curves. Now, let

fi := (t\B(0;6), (fi is a connected open set), we claim that

W and N, are fi-homotopic cycles. (4.54)

Indeed:

(i) The map h :(oj,e)'-^ det[I + (P+eAP)CF(ja))] is continuous on

W x[0,1] and, by (4.49), hmaps lR~x[0,1] into fi with h(«,0) =NQ(«)>

h(-,l) = W^-Jf a"d Ve e [0,1], h(oo,e) = h(-~,e) = 1; hence the

closed curves W and W, are fi-homotopic (Rudin 1974, p. 239).

(ii) By assumption, P, C, F and AP, all with elements in 8, have

no poles on the joj-axis, the maps WQ and A/, are analytic in IR ; thus

W and A/.j are C on W. Our claim (4.54) follows from (i) and (ii) above.
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Since 0 f- fi, W and W, have the same index with respect to the

origin (Rudin 1974, Theorem 10.40). Thus

the number of encirclements of W ,1 the number of encirclements of W,,

the Nyquist diagram of det[I+PCF], >=< the Nyquist diagram of det[I+PCF],

around the origin; J Iaround the origin. (4.56)

By (4.7), (4.21) and Theorem 3.2, we conclude "(4.56) <* (4.45)."

Then, by the sequence of implications above, we proved "(4.23) ** (4.45)"

for the AP e p chosen. *

The necessary and sufficient condition of Theorem 4.1 can also be

formulated in terms of multiplicative plant perturbations.

Corollary 4.2

Consider the multiplicatively perturbed system S(P',C,F) with

P' := (In +M)P. Let PegQ° \ C6B1 ,Fe8° ° and MeM
o

where, for a given tolerance function u*~+ &m(w) satisfying conditions

similar to (4.8) and (4.9), M is described by

M := {M: (a) elements of Me [A_] [Aj^O}]"1;5
An xn.

(b) MP e b0° \

(c) amax[M(ja))] < £m(u>), Vo) e IR+;

(d) npl =nj.}

U.t.c., if

S(P,C,F) is A_-stable.

then

VM e M, S(P',C,F) is A_-stable;

amax[PCF(In +PCF)"1(jo))] <l/lju), Vo) e1R+ . u
o

c

Condition (a) says that all elements of M must belong to the field of fractions
of the commutative domain A_.
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Remarks 4.2.1:

(a) M e M may not be proper; however, both P and P* must be strictly

proper.

(b) For lumped unity-feedback systems, Corollary 4.2 is the result stated

in Doyle and Stein (1981). *

Proof of Corollary 4.2:

The proof follows the same lines as that of Theorem 4.1 with the

following substitutions: AP «- M, P «- M, Q+H := PCF(H-PCF)"1,

AP, «- M, where

ai s+x._.
c^s) := |Vil| Jl —U

j=l S"X1J
b.
l s+y..

3i(s) := |u„| .n —^
j-i s-yij

J
o

and the a^'s, b.-'s e in* and the x..'s, y^'s e £_ are such that

(i) ^-(J^) = vir e^j^) =u^;

(ii) (I+M-j) does not cancel any £+-pole of P. •

5. Another Configuration

The method used in Section 4 applies to more general con

figurations, for example, the feedback configuration used in Astrom

(1980), Chen et al. (1981), and Pernebo (1981). More precisely, we now

consider the distributed system S"(P,pI:F]) as shown in Fig. 2, where

(i) the additively perturbed system P := P + AP, with both P and
An xn, ^ -i

AP e S ° \ has a r.c.f. P = NKj£', and (5.1)
P P ^ix2n0

(ii) the two-input one-output compensator [n:F] e 8 has a

l.c.f. DiiF] -d"c\ [N^-N^]. (5.2)

-15-
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We assume that the controller is realized so that Dfj! lies inside
the feedback-loop (see Fig. 2). Note that (5.2) implies that N . and

N^ have elements in A_, and that D . can be chosen rational.

Then using analysis similar to that for the system S(P,C,F), we

easily obtain the following:

(I) H_(AP) :[uT-uI-vJ] H» [yljyl] ,the I/O map of the system
yu

S(P,[n:F]), is given by

H (AP) =Jf(AP) D(AP)'1 N,
yu r *

where

a Nf£Npr
D(AP) :=

-I

ni °~pr

Nr(AP)
ni

Npr
. N,

•«:

ni

it a

(II) (Nr(AP),D(AP)) are r.c; (D(AP),N^) are I.e.

(Ill) det D(AP) =n X-X[n:F]-det[In + PF]

where n = 1 or -1, depending on the size of the matrices involved.

(IV) The system S(P,[n:F]) is A_-stable;

o (by definition)

(n.+n )x(n.+2n )
H (AP) e A 1 ° 1 ° ;
yu

•o-

det D(AP) has no zeros in I+;
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the Nyquist diagram of det[I + PF]
o

(i) does not go through the origin, and

+ +(ii) encircles the origin n? + nr .p-i times counterclockwise.

By reasoning as in Section 4, we can prove

Theorem 5.1 .

Consider the system 5f(P,[njF]) shown in Fig. 2 satisfying (5.1) and

(5.2). Let P be described by (4.5)-(4.9). U.t.c, if

S(P,[n:F]) is A_-stable,

then

VAP e p, S(P,0i:F]) is A -stable;

amax[F(In +PF)"1(j'w)] £!/*>), Vu) e]R+
o

6. Conclusion

For efficient engineering design it is important to know when

sufficient conditions are, in fact, necessary. For this reason, it is

worthwhile to have a detailed and convincing proof of such conditions for

as large a class of systems as possible. A little thought shows that

the method and the results of this paper apply — with the usual changes

from s to z, etc. -- to discrete-time systems whether lumped or

distributed (For a description of discrete distributed systems see

Cheng and Desoer 1980). *
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Appendix A: Difficulties with [Doy. 2, pp. 6-7]

(1) For closed-loop stability, the number of encirclements of det[I+GK]

must be equal to - {the number of unstable modes of G + the number of

unstable modes of K}, (and not the number of unstable modes of GK, as

stated in [Doy. 2, p. 7]).

(2) {the number of unstable modes of G = the number of unstable modes of

G} does not imply

{the number of unstable modes of GK = the number of unstable modes

of G'K}, as stated in [Doy. 2, p. 7].

(3) How do we know that the set of all L's s.t.

a[L(ju))] < imM , Vu>e K+ (13)

and s.t.

the number of C+-poles of (I+L)G = the number of G+-poles of G (13a)

is a connected set so that the "warping" argument above condition (14)

of [Doy. 2, p. 7] holds?

(4) Consider condition (14) of [Doy. 2, p. 7]

0 < g_[I + [I + eL(s)]G(i)K(i)]

Ve e [0,1], Vi e D-contour, VL(s) s.t. a[L(ju))] < &n(co), Vu> e R+.

Suppose now that, with e = 1, G and G' have the same number of

(t+-poles and that there is a (t+-pole of G' which is not a pole of G.

Simple calculations show that, Ve e (0,1), the number of £+-poles of

G' = (I+eL)G and G' will not remain the same, thus violating condition

1 i ^ 1(13a) above. For example: let G=^j- »G' = j,= (1 + Jj-(S) ~y ,

with 6>-1; then L=j^ and (I+eDG =[1 ♦^ ^ =(^fc^)-
Thus
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for e = 0, G' = G has one I+-pole at 1;

for 0 < e < 1, G' has two C+-poles at 1 and 1+6;

for e = 1, G' has one C+-poles at 1+6.

(5) The equivalence of (16) and (17) in [Doy. 2, p. 7] is obvious if L

is only to satisfy (13). However, the L under consideration must not

only be rational, but also satisfy (13) and (13a). H
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Figure Caption

Fig. 1. The system S(P,C,F).

Fig. 2. The system S"(P,[n|F]).
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