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ERRATA

page 69 In Figure 5.5.1, the original curve was wrongly drawn.

In fact, all curves are hardly distinguishable from

each other. This can easily be verified by examining

Table 5.5.1 on page 70.

pages 78,79,80 Figures 5.5.8, 5.5.9 and 5.5.10 show the smoothed

spectral power density function g and not simply g

as stated.
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In paged virtual memory systems the concept of the working-set size of

a program in execution, which is Informally defined as the variable number

of pages required to be resident in the main memory at the various instants

of the program's execution time in order for the program to run efficiently,

is central to the goal of improving system performance. Generative models of

program behavior capable of reproducing working-set size characteristics

can be invaluable in the analysis and the tuning of page replacement algo

rithms and of other aspects of memory policies, since they allow a controlled

environment for performing experiments to be constructed.

In this research, a theoretical formulation for the working-set size dis

tribution generated by one of the most common models of program behavior

(the Least Recently Used Stack Model) Is derived. It is shown that it cannot

reproduce the essential characteristics of the distributions generated by

real programs in execution as presented in several empirical studies.

A new model Is proposed, based on a Markov chain characterization

where stales represent working-set sizes. The problems which are encoun

tered with this model when the generation of actual page references is

aought are discussed. The recent identification of necessary and sufficient

conditions for the generation of a feasible sequence of working-set sizes, i.e..

a sequence which can be derived from a string of actual references to page

names, suggests the definition of a measure called potential o/ decrease and

its incorporation in an n-th order Markov model. It is proved that such a

model is capable of generating feasible sequences of working-set sizes.

Comparisons between traces generated by this model and by some of its

simpler versions, end those generated by phase-transition models are per

formed in order to evaluate their ability to reproduce static working-set size

characteristics (i.e.. distribution descriptors), and dynamic working-set size

characteristics. Indices are defined to allow a meaningful intuitive com

parison to be performed. Parametric and nonparametric statistics as well as

autocorrelation and spectral analysis techniques are also used for this pur

pose.

The model is shown to perform better under criteria involving sialic

characteristics than under those involving dynamic ones. This is not surpris

ing, since the model is designed to reproduce static characteristics only.

The values of the various indices obtained from the simulation using

working-set size strings which produce different forms of working-sel size

density functions should help one choose a model when trace-driven simula

tion studies of memory policies are to be performed.



Acknowledgements

This research was sponsored by the Conselho Nacional de Desenvol-

vimento CientiAco e Tecnol6gico (CNPq) (Brazilian National Council for

Scientific and Technological Development) and by the Universidade Federal

do Rio de Janeiro (Federal University of Rio de Janeiro). 1want to thank these

two institutions for their financial support, without which it would have been

impossible to engage in this doctoral program. I also acknowledge NSF Grant

To Maria Ester MCS8Q-12800 and Contract no. N00039-80-K-0849 which supported my use of

various computers during the development of this research.

I would like to thank my advisor. Professor Domenico Ferrari, for provid

ing me not only with the topic of this research but also with the encourage

ment and support until its conclusion. To Professor Chittoor Ramamoorthy

and Professor Sheldon Ross. I thank for kindly accepting to participate in my

thesis committee.

I thank the members of the PROGRES group for encouragement, sugges

tions and advice not only during the development of this research but also

during the painful phase of writing and typing this dissertation. In chronolog

ical order, 1 am indebted to Edwin Lau. Makoto Kobayashi. Jehan Francois

Paris, flzalp Babaoglu. Juan Poroar, Frank Olken and Luis Cabrera.

. A special word of thanks goes to Prof. Jean-Paul Jacob who helped me.

even before my arrival at Berkeley, with his understanding of the meanders

of the U.C. academic life, and shared with me some of his knowledge in order

to avoid the pitfalls of the path to the Ph.D. degree.



m

1 would like to tbank my friends Ivan da Costa Marques and Ysmar

Vienna e Suva Filho. who graduated from Berkeley some years ago. for their

encouragement and advice, respectively. In choosing Berkekey for my gradu

ate studies. I have to acknowledge that both were right.

To my parents. I am grateful for the background education they pro

vided me. sometimes with no small sacrifice, and without which it would have

been Impossible to pursue a Ph.D. degree. To my parents-in-law. for their

uncompromising optimism which encoureged me during these five years at

Berkeley. 1 em indebted.

I want to thank my daughter. Maria Clara, who. with her constant

request for attention, provided me with a good balance between the private

and the academic life.

Finally, the person 1 wish to thank most and to whom 1 am deeply

indebted is my wife Maria Ester, to whom this thesis is dedicated. I have no

doubt that her support, understanding, companionship and love were abso

lutely essential for me to achieve this degree.

Table of Contents

Chapter 1

Program Behavior Modeling

1.1 Introduction

1.2 Construction. Calibration and Validation of a Model

1.3 Models of Program Behavior

1.4 Purpose of this Work

Chapter 2

The Working-Set Size Distribution and the LRU Stack Model

2.1 Introduction

2.2 Working-Set Size Distribution Generated by the 1.RUSM

2.3 LRUSM Obtained from WS Size Distributions

2.4 Form of the WS Size Density Function

Chapter 3

Development of a New Model

3.1 Introduction

3.3 The Markov Model of Working-Set Sizes

3.3 The Concept of Potential of Decrease

3.4 The Potenlial-of-Decrease Model

iv

12

15

20

22

24

24

20

aa



Chapter 4

Methodology for Model Validation

4.1 Introduction

4.2 Defining the Programs to be Modeled

4.3 Defining the Scope of the Validation Procedure

4.4 Statistical Methods for Comparison

4.4.1 Background

4.4.2 Comparison of Static Characteristics

4.4.3 Comparison of Dynamic Characteristics

Chapter 5

Model Evaluation Through Simulation

5.1 introduction

5.2 The Generation of the Original Traces

5.3 Models for Comparison

5.4 Duration of the Simulation Runs

5.5 Results of the Simulation

Chapter 6

Conclusions

6.1 Summary

6.2 Directions for Further Research

Bibliography

49

SO

61

52

52

54

57

60

60

62

64

68

61

84

66

AppendixI

AppendixII

VI

83

88



CHAPTER 1

Program Behavior Modeling

1.1. Introduction

The study of program behavior deals with the characterization of the

amounts of computational resources a computing system allocates to a pro

gram during its execution in order to carry the task to its correct comple

tion. Program behavior models are built in order to actually reproduce the

consumption, or. at least, provide good estimates of the amounts of comput

ing reeouroes.

Many aspects of the behavior of a program can be modeled. Examples of

aspects capable of being modeled include usage of certain registers and

usage of specific Instructions, at a more hardware oriented level, and

input/output from/to disk, bufferutilization andmemory space required, at

a more software or operating system oriented level.

These models can be used for many purposes. For example, before actu

ally building a new system or introducing some modification to an existing

one. the impact on performance can be estimated through the usage of a

goodmodel. Models constitute an excellent tool for performance prediction.

With the advent of virtual memories, programs were divided into pieces

which, in general, are resident in the main memory during only a fraction of

the total time required for the program's execution (Denn70). If the program

. w-

ia divided physically into equal size pieces, each piece is called a page and

the system is said to use a paged virtual memory. On the other hand, if the

program is divided Into logical pieces. In general of different sizes, each

piece is called a segment and the system is said to use

segmented virtual memory. There are also some systems where augments

are paged. These systems can be considered as paged systems for most per

formance purposes.

Among the types of systems mentioned above, paged systems will be the

only ones considered throughout this work. Specifically, the main concern of

this work is the modeling of the sequence of references that a program

Issues to its pages when executing in a paged virtual memory environment

Models of program behavior have been used mainly for the study of page

replacement algorithms. More recently, however, program behavior models,

with slight modifications, have been successfully applied to the estimation of

performance at both extremes of memory hierarchies, i.e.. to the study of

cache allocation and file migration.

Although the price of memory has dropped considerably in the last few

years, memory is not. and probably will never be, a free resource. Therefore,

any research aimed at improving our understanding of how a program

behaves in order to save memory space while keeping the same performance

level seems to be fully justifiable.



1.8. Construction. Calibration and Validation of a Model

Models ofprogrambehavior can be classified into three categories: con

ceptual models, analytic models and generative models. Aconceptual model

is defined as an informal description ofwhatmightbe the memoryreferenc

ing behavior of a program. An analytic model is a mathematical model. In

general, it bears little or no resemblance with any physical aspect of the

behavior of a program in execution, but. from appropriate assumptions and

accurate data obtained from real programs. It can estimate some perfor

mance indices. Generative models are. in terms of the type of their output,

the closest ones to real programs. They are capable of generating string of

page names and. in some cases, actual references to pages. The former can

be used in simulation, the latter in measurement. Generative models are

implemented by programs (as analytic models can be), but their structure is

usually quite different from that of the program being modeled. Although

conceptual models can give some insight into the actual structure of the

behavior ofa program, andanalytic models oanestimate some ofits aspects,

generative models are the only ones capable of substituting real programs

for the purpose of actual measurement of system performance.

The first step in the construction of a model is the definition of its inter

nal structure. Toeach internal structure for a model there underlie, to a cer

tain extent, the conceptions of the modeler about the actual stucture

governing the behavior of the modeled phenomenon.

There is no theory behind the choice of an internal structure for a

model. It is. in most cases, the result of careful observation or, sometimes,

just pure insight. However, some general guidelines are usually followed by

successful modelers. First of all, the model should be aB simple as possible.

There is no advantage in using a complicated structure when a simple one

yields comparable results. Secondly, the parameters required for the specifi

cation of the actual structure should be reasonable in number and easily

obtainable, i.e.. the calibration of a model should be a reasonably simple

task. While too many parameters. In general, complicate the model unneces

sarily, parameters obtained through involved procedures are prone to be

loaded with errors making their usage, at best, debatable. Finally, the model

itself or, at least, its output should be amenable to mathematical or statisti

cal analysis, i.e.. it should allow a reasonably easy validation. A model whose

accuracy under a certain criterion cannot be verified, though perhaps not

useless, should not be viewed as successfully concluding the execution of a

modeling procedure.

Accurate knowledge of the phenomenon to be modeled may help consid

erably. This does not mean, however, that a full understanding of the internal

structure of the phenomenon is essential for the modeling task. As a matter

of fact, even nowadays, the structure. If there exists one. underlying the

behavior of a program, which, when reproduced by a model, would allow this

model to represent accurately the behavior of a real program in all situa

tions. Is not known. The choice of the basic structure for a model is. there

fore, arbitrary and its appropriateness in representing a real-world

phenomenon will be evaluated through the process of validation.

Many structures for models of program behavior have been proposed

and investigated. With respect to the page referencing patterns, one can

mention: random referencing, Le., no structure at all; references to pages



independent of each other; reference to the next page dependent on the

currently referenced page only; reference to a page dependent on the previ

ous reference to that same page (locality); multiple localities; etc. Many

other structures can be devised though not without some sacrifice of the

guidelines Introduced above.

The final step for model building involves the assignment of values to the

model's parameters, thus defining Its actual structure for a specific case.

After the assignment of a set of values to parameters, some test cases should

be chosen and the values of performance indices should be checked. If these

indices are not within the error bounds specified by the modeler, another set

of parameters should be tried. This procedure is called calibration and Its

objective is to eliminate or, at least, reduce structure formulation inaccura

cies. The calibration of a model is intrinsically related to Its internal struc

ture. If the structure is a simple one, it might be suspected that the number

of parameters is small and the calibration is relatively easy. Although an

acceptable set of parameter values may not be easily obtainable, a simpler

model, in general, facilitates this task.

The ultimate acceptance of a model, however, is in the validation phase.

This phase involves the determination of how well a model can represent a

real-world phenomenon under specific criteria. The validation of a concep

tual model Is done indirectly. If a page replacement algorithm based on a

conceptual model of program behavior, for instance, outperforms algorithms

based on other models, this Is a good indication of the validity of that con

ceptual model. On the other hand, for analytic and generative models, since

their results can be directly compared with those obtained from real pro

grams, mathematical and statistical tools can be. and actually are. used in

their validation.

Many criteria can be defined for performing the validation of a model.

Among the most common ones, one can mention: the average number of

page faults, the mean lime between page faults (lifetime curve), the mean

memory occupancy, the space-lime product, the distribution of memory

occupancy, the dynamics of memory occupancy, and many olhers. What is a

good criterion for validation depends on the application purposes of the

model.

1.3. Models of Program Behavior

The simplest model of program behavior one can devise is the random

model. The underlying assumption (structure) is that the pages of a program

are referenced randomly. This model is used for comparisons only, since it

hardly passes any validity tests.

A little more sophisticated is the independent reference model (IRM)

[Coff73). To the event of a page being referenced, a specifio probability is

assigned, and these events are assumed to be independent. The assigned pro

babilities are, in general, estimaled from real program traces. The IRM does

not fare very well in validity testa, although some attempts have been made

to adjust its coefficients in order to yield better results in specific cases

[Bask76]. The IRM. however, is recognized to be too simple to reproduce the

behavior of a real program.



Some degree of interdependence among page references was introduced

through Markov models [Bogo75]. Some other models where interdepen

dence was taken Into account were also devised [East75]. The problem, how

ever, seems to be the memoryless property of Markov processes. It does not

seem that programs issue memory references which are dependent only on

the page being referenced. Thus, in the process of validation, these models,

under most criteria, seem to perform poorly.

Better models can be built when the concept of locality [Bela66] is used.

During any time interval much shorter than the total duration of a

program's execution, memory references can usually be observed to be con

centrated in small subsets of its pages. Although the degree of concentration

may vary from program to program or even during a given program's execu

tion, the presence of locality in most programs seems to be universally

recognized. Program locality has been measured, analyzed and modeled

[Coff72.Spir72.Bats76,Madi76]. It has also been shown that, in most pro

grams, locality can be increased by the appropriate rearrangement of the

program's logic blocks [Hatf71,Ferr74,Ferr75.Baer76.Ferr7B]. Currently, it

seems that no good model of program behavior can overlook the concept of

locality.

The moat popular generative model capitalizing on the locality concept

is the least recently used stack model (LRUSM). Based on the page replace

ment algorithm that bears the same name (LRU) [Matt70], it associates pro

babilities not directly to pages but to positions in a stack. These positions are

filled with page names and the stack is updated at each new reference in

order to keep the most recently referenced page on its top. This page is,

6

therefore, inserted at the top of the stack at the same time as other pages

are shifted downwards (away from the top) until the empty slot left by the

currently referenced page Is filled. Pages beyond thiB point are left

untouched. The LRUSM seems to be one of the best models currently avail

able.

Another very popular model using the concept of locality is the

working-set model (WSM) [DennSB]. Even though a conceptual model, it has

influenced the design of many actual page replacement mechanisms

[Morr72] that seem to perform even better than LRU in most cases, and

other components (a dispatcher [Rodr73a], a system for the dynamic parti

tioning of the main memory [Ghan?5]) of operating systems for virtual

memory machines. Unfortunately, however, there is at present no working-

set-based generative model which allows direct comparisons with the LRUSM

to be performed.

Observing the execution of a number of large programs, it was noticed

that the utilization of a single model. In general, is not sufficient to charac

terize its behavior. These programs seem to concentrate their references

into a relatively small subset of pages during a relatively long period of time

(phase), followed by a short period where almost all references are issued to

pages not referenced in the recent past (transition) [Denn7Ba]. This phase-

transition behavior is observed in programs like compilers, though not res

tricted to them.

Assuming the phase-transition behavior as the basic structure, phase-

transition models were devised. For the phase behavior (micromodel) any of

the above mentioned models may be used. In general, however, the LRUSM



seems to be preferred. For the transition structure (maoromodel). a Markov

chain, where states are associated with phases, has been proposed and found

to perform reasonably well [Denn75].

Although the phase-transition model seems to be the most suitable one

for the representation of program behavior, at least for certain programs,

the effort to obtain Its parameters (calibration) is by no means trivial. The

problem stems from the fact that it Is extremely difficult to characterize

phases by observing a string of page references generated by a real pro

gram. If the span of attention is loo short, each page might be considered a

phase. If too long, the program ea a whole will be a single phase. A variety of

phases of different sizes can be obtained by varying the span of attention.

The difficulty involved in the partition of systems into modules was assessed

by Courlois [Cour75], who studied the applicability of techniques used in

econometrics to stochastic models of computer systems.

1.4. Purpose of this Work

The working-set model, though a conceptual model, has been shown to

provide a good basis for devising not only practical [Morr72.Smit76] but also

theorelical [Prie76] page replacement algorithms. For most programs, they

outperform all other algorithms under a number of criteria. This fact sug

gests that the WSM seems to capture many of the intrinsic characteristics of

the behavior of a program in execution [Denn7Bb.Denn80]. Research on the

design and analysis of generative models capable of reproducing working-set

characteristics under a variety of different criteria is the main purpose of

this work.
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The working-set size distribution generated by a program behavior

model has been the center of attention of many studies

[Denn72a.Lenf76,Spir77.Koba78]. In the early 70's. from Ihe observation llml

working-set sizes generated by a program in exeoution were asymptotically

uncorrected, it was assumed that they would have a normal distribution

[Denn72b]. Subsequent empirical studies [Rodr73b], however, have shown

that the property of being asymptotic uncorrelated. though satisfied by

working-set size strings generated by real programs, was by no means a

guarantee for this assumption. In fact, more recent studies [Brya75.AlauU0)

have found, in most cases, multimodal working-set size density ruucliuus

when real programs' traces were measured. Therefore, any program

behavior model intended to reproduce working-set characteristics must

have the capability of generating multimodal working-set size density func
tions.

In the search for such models, the first, and trivial, attempt to be made

is the use of some previously defined models which have already shown good

modeling capabilities, e.g., the LRUSM and the phase-transition model. In

Chapter 2 an analytic formula for the working-set size distribution generated

bya LRUSM isderived and it is shown thatthe LRUSM is incapable ofgenerat

ing multimodal distributions. Since the generation ofmultimodal working-set

size density functions is an essential property for a model to have when Ihe

correct reproduction or working-set characteristics is sought, the usage of

the LRUSM in thiscontext does notseem to begenerally justified.

The phase-transition model, however, does not present this problem.

Multimodal distributions can be obtained through an appropriate definition
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of phases and a correct manipulation of transitions among them. The prob

lem with the phase-transition model, as already mentioned, is in the diffi

culty of its calibration.

A new approach is attempted based on a Markov model where the size of

the working-set is defined as the state. This model, however. Is generally

incapable of generating actual page references, one of the maingoals of this

work. Fortunately, the discovery of the properties of feasible working-set

strings [FerrOla] led us to the design of a feasible generative model. The ori

ginal model, the problem and the new model, besides some calibration con

siderations, are described in Chapter 3.

The validation of such model involves the definition of suitable criteria

for comparing the output of the model (working-set sizes) with those pro

duced by real programs under similar conditions. In Chapter4 some indices

are defined and several statistical criteria are analyzed in terms of their sui

tability for the above mentioned comparisons.

Besidesstatistical criteria, a methodologyhad to be devised for the vali

dation of this model. In Chapter 5 these methods are described and the

results obtained by simulation are presented.

Finally, in Chapter 6, a summary of the results obtained is presented

together with some considerations about directions for further research.

CHAPTER 2

The Working-Set Size Distribution and the LRU Stack Model

8.1. Introduction

Working set (WS) and least recently used (LRU) are the most important

concepts used for the implementation of page replacement algorithms in

most current systems. The working-set policy keeps In memory all pages to

which references have been issued during the most recent time interval (win

dow). Since the working-set size. i.e.. the number of pages to which those

references were issued, may vary, the working-set principle is used in the

implementation of variable memory page replacement policies. The least-

recently-used concept, on the other hand, is used in the implementation of

fixed memory page replacement policies. The page to be replaced, as the

name indicates, is chosen to be the one to which references have been issued

in the farthest past, Le., the least recently used page. The LRU concept

referred to in this section is local LRU. Le.. applied to a set of pages of one

specific program only. When global LRU is used, (i.e., pages of several pro

grams sharing the same stack) the number of pages kept in memory belong

ing to one specific program may vary. As a whole, however, the LRU policy

remains an essentially fixed memory page replacement policy.

More formally, one can say that, if Y/T(t) is the set of pages belonging to

the working set of a program at time f. i.e.. the set of pages to which refer

ences have been issued in the interval (t-T+l.t) for f*fc7\ or (1.1) for t<T.

then vjT(t), the working-set size at time t. is the cardinality of »T(t).

12
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Analogously for LRU, if t(i) is the lime of the last reference lo pege i and

d(i) is the position counted from the lop that page i occupies in the LRU

slack (i.e.. Ihe stack distance), then d(i)>d(j) implies f(i)«fj). where i

and j are page names.

Both of these policies can be adjusted or tuned lo certain applications

or systems through the appropriate choice of their control parameters. In

the working-set case, the control parameter is the length of the window. In

the LRU case, it Is the size of the program's memory. For WS, the longer the

window, the greater the chances of a bigger working-set size. For LRU. the

bigger the memory space allocated the greater the chances of a page staying

longer in memory.

There are many similarities between these two page replacement poli

cies. Among them, probably the most important one is their exhibiting of the

inclusion property with respect lo their control parameter. In the case of WS,

it can be easily seen lhat, if a new working set is obtained through a longer

window, it will include all pages belonging to the original one. In Ihe case of

LRU. If a larger number of pages can be allocated in memory, the current

pages in memory will belong to thai set as well.

Another striking similarity can be observed if in the LRU stack a lime

stamp is associated with each page, indicating the time of the last reference

to thai page. It is not difficult to see that, if a maximum number of pages to

be allocated in memory under the LRU policy is defined, there exists a vari

able window size WS policy which will keep in memory at any given time the

same page*. On the other hand, if the allocation of memory follows a WS pol

icy, correspondingly, there is a variable memory LRU policy which keeps In

14

memory at any given time the same pages as those kept in memory by the

WS policy.

The LRU Slack Model (LRUSM) is based on the slack used by the LRU

page replacement policy. A probability of a page being referenced is associ

ated not directly with Ihe page but with the position it occupies in the LRU

stack. Therefore, if a page is found at a cerlain instant of lime occupying a

specific position in the LRU slack, the probability associated with this posi

tion is the probability that Ihis page will be referenced next.

Similarly lo what the LRU page replacement policy does, the stack is

updated at each new reference. All pages occupying positions closer to Ihe

top of tlie slack than lhat currently being referenced are shifted downwards

(away from the lop) as Ihe referenced page is placed on the lop of the stack.

From the similarities observed between the WS and Ihe LRU page

replacement policies, and Ihe fact that the LRUSM is implemented using the

LRU concept, it can be conjectured thai close relationships exisl between the

WS characteristics generated by a LRUSM and the parameters of lids model.

This, in facl. proved to be Irue. Although iterative formulations were already

known for some lime (Denn72c) for the relationship between the working-set

size distribution generated by a LRUSM and the parameters defining this

model, elegant closed forms could be obtained. This will be shown in the fol

lowing sections.
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2.2. Working-Set Size Distribution Generated by the LRUSM

In this section, the following notation will be used:

a* probability associated with stack distance i; a, is the

probability associated with the top of the stack.

Oj summation of the j top probabilities.

Wf{t) working set at a specific time f when a window size 7* is

used.

viT(t) cardinality of WT(t).

p(wr=k) probability of Wr at a generic time t having size Jb;

since, due to the stationarity assumption, i.e., probabili

ties are independent of time I. the variable t is not

important in the calculation and. therefore, is omitted.

4(s) z-transform of n(tur); this function is defined as:

M*)a Ep(*u,rsi)«r for<>° ""d M*)B° lor •**<>•
r»i

The probability of a working set of size i with a window of size T being

generated by a LRUSM can be expressed by the following difference equation:

p(t«r=i) = 6<p(ii;r„l=i) +(l-6<_1)p(tt,r_l=i-i) . (2.2.1)

where it is assumed that p(u;r=0)=0 for all T>0. andp(w0)=l, which implies

p(ui0=i)sOfori«<0.

Like a differential equation, though applied to discrete time events, a

difference equation establishes relationships where rates of variation for the

variables are included In the formulation. In this case, the equation states

that the probability of finding a working set of size i at a generic time f using

16

a window of size T is related to the probabilities of finding at time t -1 work

ing Bets of sizes i and i-1 when a window of size T—l is used. The page refer

enced at time i, which will belong to Wr(t) but might not be included in

UV-i(f-l). has stack distance d. The probability that d£i is given by bt, Le.,

by the summation of the probabilities of referencing any of the t pages

closest to the top of the stack. In this case, u>r(t) will be equal to tiir_,(f —1).

The probability lhat d>i is then l-o(, and this event causes an increase in

the working-set size.

The difference equation can be solved through the method of z-

transforms. Both sides of equation (2.2.1) are multiplied by zT and summed:

£p(u.r=i)«r =64 £ |j)(u.r-i=i)Ur+(l-o<-i)i: |p(«T-i=4-1)1*r(2.2.2)
r«i r«il J r«il '

Since 4(z) = £p(iiJrsi)zr. equation (2.2.2) can be written as
r«i

But since

and

M*) = M Ff>o=-i)+ £ LPf>^-l=i)]*r-,

+(1-6,-,)* p(ui0=i-l)<-£[p(iur-l=i-l))«,,-»
r>s

tp(wT.t=i)*T-> =£p(wTBi)*' =M*)
fig fi|

2p(uir-1=i-l)«r-1 =§p(uir=i-l)«r =Jk-M
f"8 r»i

equation (2.2.3) can be written as

4(«) = o4«[pf>0=i)+4(«)l + (l-b|.|)c[p(iii08i-l)-r4i-l(s)]

Since i>0 and p(u»0=i)=0 for i*Q. hence

(2.2.3)
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M*) = fti«4i(*) ♦ (l-b^zpiw^i-l) +(l-b,.,)*^.,^) .

Ma) nti+-Mw*-Mi+-*Al-M (2g4)

Knowing thai p(u^0=0)=l, b0=0 and jt0(s)=0. equation (2.2.4) can be

expanded recursively as follows:

, , _ 0-_fci-l)(«-»i-t) p-b8)(l-b,)««
4,1"' " (l-btz)(\-bt.tz) (l-ba»)(l-bgs)(l-b,a)

«'H(»-*i)
M')=-f*

no-.,.)
(2.2.5)

In order lo calculate the probability of the working-set size as a funclion

of the length of the window 7", 4(*) can be expanded in partial fractions and

each fraction subsequently expanded in its corresponding aeries. Finally, the

coefficients of corresponding terms in z are added.

Another, and apparently simpler, method for this calculation is the

evaluation in the z complex plan of the integral

pf>r=<) =]zl/4l(,),-i-rdfc

where j=V-[ and C is a closed contour large enough to enclose all poles.

Fortunately, this integral can be solved by the summation of residues

using Cauchy's formula

where

1 rfm-l
r. =|T-i^4_-(«-a)»,(,)• |(m-l)l dzm'

• W

rm is the residue at point a

m is the multiplicity of poles at point a

g(z) is the z-lransform 4(s) multiplied by c~l-r

10

Assuming thai all probabilities associated with positions of the stack in

the LRUSM are not null, one has b(**bj for all i*j. Under this assumption, no

multiple poles exist. Tills makes the calculation more manageable since Ihe

Cauchy's formula can be reduced lo

•"«=[(* ~o)o(»)]..«

where g(z)=Ai(z)z~l~T. Thus, for tuy-l one has

(2.2.6)

Using equation (2.2.6), the general formula forp(iur=i) can, therefore,

be obtained. Hence,

*(-*-°-&IK
As an example, for tur= 1 one has

-1

A(»)» -i-r (2.2.7)

which can be solved using equation (2.2.7). Thus, leaving z out of Ihe calcula

tion and consequently adding one lo the value of 7*. one has:

p(u>rt|sl)=

_(,_J_)e-i-r
b|

1-b.a

(l-b,a)a-,-r

1-b.a
= bf

Therefore. p(vjr)=b{1. Repeating the same procedure for i=2. one obtains:



-».,s£-i- 4^
ba-b| bt-ba

By repeating the procedure Indefinitely, the following closed form can be

obtained:

p(«r»«)=|rt(l-fci-i)
[i-s

where, as usual. \\f s 1 if n<m.

i'*Utb.-\fl(°i-t>>)

18

(2.2.8)

Although this formula was obtained independently by the author, its

derivation has already appeared in a different form in [Lenf76]. The final for

mula has also been presented In [Splr77j.

The closed form solution can be easily calculated through a computer

program. An inherent limitation, however, should not be disregarded. In

order to facilitate the calculation of the formula, it was assumed in the

development of the solution that there are no positions in the stack whose

probability is zero. Null probabilities will imply divisions by zero in the calcu

lation causing, probably, program interruption. Even with this precaution,

the multiplication of a series of small numbers should be executed with care

since they may cause underflow problems.

20

8.3. LRUSM Obtained from WS Size Distributions

In section 2.2 a closed form for the distribution of working-set sizes

given the parameters of a LRUSM was obtained. It is reasonable to expect,

though this is by no means guaranteed in principle, that some closed form

for the inverse problem might exist. This is actually the case, as will be

shown in this section.

Equation (2.2.5) is. except for a multiplying constant (see bellow), a pro

duct of functions of the type

(l-b4)«
l-btz

(2.3.1)

This function is the z-transform of the geometric distribution whose density

function is given by

/«(r)=b4r-»(l-b4) . (2.3.2)

where 1—b« is defined as the ohance of success and 7* is the number of events

until the first success occurs. Its z-transform is given by

<*<*)= £tf-'o-Ms' =a-b,)* £bfrr =il=£i^-
r-i fio (*-bi«)

Examining equation (2.2.5) closely, it can be seen that the upper limit of the

product in the numerator is i-1. i.e.,one less than that in the denominator.

Therefore, except for a multiplying constant l~r~. equation (2.2.5) is a pro-

duct of i functions of the type shown in (2.3.1), and, thus, the z-transform of

the probability density function of the summation of i independent geometri

cally distributed random variables, as shown in equation (2.3.2). Thus.
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1 °u-»

Since C^(z) Is Ihe z-transform of a probability density function /«(7*)

end 7*2:0. then

fi/«(r)-i.
r-o

Knowing that the z-transform of k./t(t), where I: is a constant, is Jb.fi|(s).

1-b( con be found as follows:

and. therefore.

£„<„,=„ =_J_

b, = l~

£p(uir=0
fafl

But b|=2_Jai implies 04=04-04., with b0=0. Finally.

1
*%= —

£p(u.r=t-i) Ep(t«r=i)
r«o r»o

fori>0 with Jp(uir=0)al.

The actual calculation of this formula Is a cumbersome procedure and

its exact evaluation Is impossible in practice since the calculation Involves an

infinite number of window sizes. Experiments using a reasonable number of

window sizes and a linear interpolation between these values were per

formed. Approximate stack distance probabilities for simple cases (10-15

pages) were obtained.
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This result has more theoretical than practical importance. It does not

provide an effective method for calculating stack distance probabilities from

working-set size density functions due to the requirement of an infinite

number of working-set size density functions. In practice, working-set size

distributions are calculated for few values of window sizes. In addition, real

programs rarely can be well modeled by an LRUSM. Trying to calculate stacli

distance probabilities from working-set size distributions obtained from real

program traces may lead lo such inconsistencies as negative stack distance

probabilities being obtained when the method presented above is used.

2.4. Form of the WS Size Density Function

Measurements of working-set size distributions generated by the execu

tion of real programs have shown that, in general, the density function of

working-set sizes is multimodal. This characteristic is to be attributed to the

execution of a variety of phases which have different working-sel sizes. The

analysis of Ihe form of Ihe working-set size density function generated bythe

LRUSM is importanl if. in the attempt to model the working-set characteris

tics of real programs, the LRUSM is thought of as a serious candidate for

such role.

The direct analysis of equation (2.2.6) seems to be extremely compli

cated. The problem stems from the fact lhat an increase of index i by one

causes one more term to be appended lo Ihe summation, and allother terms

have their absolute value increased and their signs changed. In addition, the

equation Is multiplied by a decreasing factor. Attempts to find simple rela

tionships between p(u>T=i) and p(wr=i-l) have failed. Tlie analysis ofvaria
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lions across a family of solutions of difference equations seems absolutely

non-trivial.

The analysis of the z-transform function (equation (2.2.6)). however,

could give us some insight into the shape of the working-set density function.

Assuming p(u»r=i) (equation (2.2.8)) a bidimensional function with indepen

dent variables i and T, from section 2.3 it can be seen that, keeping i con

stant, the distribution of the variable T is that of a summation of i geometri

cally distributed independent variables with parameters b( and l-6j. These

functions are clearly unimodal since they start from a geometric distribution

and the summation of i independent variables approximates a bell-shaped

(ultimately a normal) density function by the central limit theorem.

This fact and the knowledge that the average of the summation

increases with i suggest that, keeping T constant, the density function of

working-set sizes might be a bell-shaped curve as well. The analysis, however,

is complicated further by the fact lhat the density function for each i is mul

tiplied by l-6(.

The evaluation of this function with a variety of different stack distance

probabilities has produced unimodal functions in all cases. Although a formal

proof is lacking, it seems that a multimodal density funcUon of working-set

sizes generated by a LRUSM. if at all possible, is very difficult to obtain. This

is one of the reasons why the new models shown in the next chapter have

been constructed.

CHAPTER 3

Development of a New llodel

3.1. Introduction

As shown in Chapter 2. the use of a LRUSM as the basic program

behavior model when the validation criteria include reproduction of a given

working-set size distribution is, at best, inappropriate. The modeling of real

'programs showing multimodal working-set size density functions requires the

development of a new model.

Abiding by the guidelines mentioned in Chapter i, before experimenting

with complicated structures in order to build a reasonable model, some sim

ple ones are to be examined. Of course, the essential characteristic thai Ihe

model we are seeking should present is the capability of generating multimo

dal working-set size density functions. Due to its relative simplicity and to

the vast theory available for Its analysis, a Markov model seems to be a

natural candidate.

3.2. The Markov Model of Working-Set Sizes

In this Markov model of program behavior there are ro states, where m

is defined as the maximum working-set size. Each state is identified by an

integer i (l^isCm) and the state at time f is defined by a variable ut(t). The

model is said to be in state i at time t itu>(t)=i. The variable u>(t) is associ

ated wilh the value of the program's working-set size w(t) at this same lime.

24
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Thus, each state is associated with a specific working-set size instead of with

Ihe page being referenced. This is the most obvious choice but by no means

the only possible one.

The output of this model is a string of the working-set sizes of a program

in execution. Tlie output as such, though appropriate for some studies of

memory space allocation, is not sufficient to characterize the output of a

generative model. A string of page names is. in fact, the actual output lhat is

sought. Tlie solutions lo Ihe problem of generating a siring of page names

corresponding lo a given string of working-set sizes will be analyzed in the

nexl section. Therefore, unless explicitly staled, a siring of working-set sizes

is to be considered the final output of this model.

The basic assumption underlying a model defined in this way is lhat. due

lo the memoryle88 property of Markov processes, a change in the size of the

working set of a program in execution depends (probabilistically) on the pre

vious working-set size only. Even though this is a simplistic assumption, it

should not be discarded just because of ils simplicity: the validation pro

cedure will determine whether or not a model based on it can be considered

an acceptable representation of the program in execution according to the

criterion we have adopted.

In order to satisfy the basic necessary condition thai characterizes a

string of working set sizes, i.e.. \w(t)-w»(f +l)|£l [Denn72a], this model, as

shown in figure 3.2.1, is represented by a Markov chain where Iranaitions to

non-neighboring stales are forbidden. This diagram is that of a birth-death

process. Parameters X4. /X4 and ft* indicate the probability that the next

reference to memory will make the working-set size greater lhan, less than

20

|m-8| fin-I

Figure 3.2.1

or equal to its current size. II is worth noticing that A« and m are not neces

sarily independent of the current state, as is generally assumed in regular

M/M/1 queueing systems (Klei75b). As a mailer of facl. it is precisely the

presence of different values of Xt and ut tor different i's lhat permit the gen

eration of multimodal probability density functions in the steady stale.

The steady-stale probability density function can be calculated from the

equilibrium equations. In the steady state, the probability of leaving any

state should be equal lo Ihe probability of entering the same stale. Denoting

by Pt the system steady-stale probability for stale i. one has Ihe following

equations:

/»|A, s PjjU8 (3.2.1)

Ptttit+P&z = /,s/*s+P|X| (3.2.2)

and. In the general case:

From equation (3.2.1) one has

/*2



Substituting equation (3.2.1) Into equation (3.2.2):

PtXa » Pans.

hence,

P^^-P*
Ha

Repeating this process until state m is reached, one observes lhat:

A,_,
Pi s 2U-Pt-i

which yields the general formula:

ft

But since 2 /*« = 1. one has:

assuming, as usual,l\f(i)-l Uk<j. Therefore,

P, *

«•' Tin
i-a

and /"*« can be calculated using equations (3.2.3) or (3.2.4).

From equation (3.2.3) It is easily seen that

27

(3.2.3)

(3.2.4)
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Pi

Therefore, with a correct choice of parameters X4 and /!<. any form for the

steady-state probability density function can be obtained.

Another problem worth investigating is the possibility of obtaining the

transition probabilities. A4. m and *« (i =l m). for this Markov model given

the vector of steady-state piobabilities P. As willnowbe shown,however,this

requires some additional information.

From equation (3.2.3) one can obtain m-1 independent equations of the

form:

Pi

Pi-i
= c«-i

where c4 = —=—. Therefore.

c«-i
Mis (3.2.6)

Knowing that for each state the summation of transition probabilities must

equal one. m additional independent equations or the type

tH+Kt+Xi » 1 (320)

can be obtained. Since there are 3m,-2 unknowns and 2m-1 independent

equations, the system is undetermined and additional Information is

required for a unique solution to exist.
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A natural candidate to provide this information is the page-fault rate,

Le. the rale at which new pages are brought into memory. Since the action of

bringing a new page into memory causes in most cases an increase in the

working-set size, the page fault rate can be utilized to estimate the parame

ters X4. Ideally, one has to measure the condilional page fault rates

/< = /«X0=<). and set Ais/,.

If the m-1 parameters A< (i=l.....m-l) are given, the system of equa

tions becomes determined and can be solved by calculating the s^'s as fol

lows:

X«-ic, = 1-A,-
c«-i

where ot =
Pit

and. for convenience, it is assumed Xq = 0 and c0 = 1.

Finally. Ihe /14's are obtained from equations (3.2.8).

3.3. The Concept of Potential of Decrease

The model presented in the previous section has a major drawback. It is

nol possible to use it as a generative model when actual references lo pages

have lo be generated. The problem is that, among the possible sequences of

states U2 generated by this model, there might be some which ere unrealiz

able for some value of 7*. An example should make this point clear.

In figure 3.3.1, taken partially from [FerrBla], a possible sequence of

stales (uj) is assumed to have been generated by the model defined In sec

tion 3.2. due to the fact that \u>(t + l)-yi(t)\*l. Tlie realization of an actual

string of references to page names (r) is tried. An attempt at reproducing a

"-w

ill

rr«a

P**r-a
*"r-o

J"*r.o

1123346654666546432323445
aabcbdeobcaf f f fddddc?
0000000011 12321 1 1100
aabcad ebad fceddbbbbab f cae
0000001222333223210100011

Figure 3.3.1
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reference string corresponding to the sequence u» when 7"=8 (rr.a) fails due

lo the impossibility of decreasing the working-set size from 3 to 2 at the fifth

reference before the end of Ihe string. Alternative solutions may be tried,

but they will always fail at the Berne plaoe. If not earlier. On the contrary, a

reference string can be generated when 7'=0 (rr.0). In fact, it is possible lo

show thai the sequence ut of working set sizes cannot be obtained when 7*2:7-

Therefore. Ihe basic condition thai characterizes a working-set size

sequence. |tu(f )-u>(f +1)1^1. though necessary, is by no means sufficient.

Recently. Ihe necessary and sufficient conditions lhat a working-set size

string must satisfy lo allow the construction of a corresponding page name

string have been identified [FerrBla]. When the window size 7* and the max

imum number ot pages of the program npg are given, the necessary and suf

ficient conditions for a string of integers to be a feasible working-set size

siring. Le, to allow the construction of a corresponding page name string, are

the following:

(i) Q*ut(t)*m

00 u»(l)=l

(iii) |ti>(0-u)(f-1)1*1 for 1=2 n

(iv) £d(t+i)<w(t) tor l=l.....n-r+l
«"D



where n is the length of the string, m.smin(7,.npp ) and

d(t)*h tfturtt+l
( 0 otherwise

1)<«T(0
otherwise
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(3.3.1)

While most of these conditions are self-explanatory, in condition (iv) it should

be noticed that the summation accounts for the decreases that occur in the

interval [f.l +r-l].

The necessary conditions (i). (ii) and (iii) have been known for a long

time [Denn72a]. Condition (Iv), however, which seta an upper bound for the

number of decreases in the working set size during a period of one window

size, makes the set of the four conditions sufficient [FerrBla]. This allows us

not only to identify a feasible working set size string for a specific window

size but also to generate a corresponding string of page names. In the

sequel, these conditions will be referred to as fwsa -conditions. If m is

given, a string of integers satisfying fwss-conditions (i), (ii) and (iii) will be

called a working set string (wss-string). If. in addition, the value of T is

known and this string also satisfies fwss-condition (iv). it will be called a

feasible working set size string (fwss string) tor this specific window size.

Thus, even if not explicitly stated, when referring to a wss-string or to a

f wss -string it is assumed that the values of m for the former and m and 7*

for the latter are known.

Lemma 3.3.1

r-i
In a fwss-string there can be no decreases while t <T. i.e., £ d(t )=0.

Proof:

From fwss-condition (iv), if t =1 we have
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*£d(i+l)<tu(l) .
<bD

Making T=i+1 and knowing that ti/(l)=l we.get £d(r)<l. Since d(t)fcO. it
T»l

must be £*d(T)=0.
T»l

q.e.d

According to fwss-condition (iv), if a feasible working set size string is to

be generated, the number of decreases in the Interval [t,t + T-l] must be

smaller than the working set size at time t. The feasibility of a decrease in

the working set size at each instant of time is conditioned by the decreases

which have taken place in the past and can be interpreted as a potential of

decrease. More formally, the potential of decrease can be defined as

jx*(0 =
[u>(f-7*+2)-l]-^8d(f-i) if t*T (33-2>
0 otherwise.

The idea of defining a potential of decrease Is to provide at each instant

of time t a variable such that, if pd(f )=0. then u»(f +1) must be greater than

or equal to u»(i ) for all fwss-strlngs. It can be observed that the potential of

decrease transfers to the past the Information that fwss-condition (iv)

requires from the future. In its definition, the term [u>(f-7*+2)-l] accounts

for the fact that, even when no decreases occurred during the interval

[t-T+Z.t-1], pd(t) must be zero when tu(f-7*+2)=l. In other words,

according to fwss-condition (iv), no decrease should be allowed to take place

at time t. If decreases have occurred in this same time interval, they are

accounted for by the summation. Tlie summation limit 7*—2 is explained by

the fact that the potential of decrease, though calculated at time t, refers
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to the working set size at lime f +1. In Figure 3.3.1. besides the page strings,

the potentials of decrease for the working-set string m calculated at each

instant of lime for 7*=8 (pdTmt) and 7*=6 (pd>.0) are also shown. Tlie time at

which the generation of rrmabecomes infeasible can be easily identified.

Some properties of Ihe potential of decrease will now be presented.

Lemma 3.9.2

The potential of decrease calculated for a was-string with no decreases in the

first T references varies In steps of at most one unit. Le.,

|pd(f )-p<f(t-l)|*;i for all f>l.

Proof:

Case 1: For KT. since by definition pd(f)=0 (equation (3.3.2)). Ihe property

holds.

r-s

Case 2: For t =T. pd(T) »[w(2)-l)- %d(T-i). From fwss-condition (iii).
<*i

|tu(2)-ui(l)|s>l. and from fwss-condition (II). ui(l)=l. This makes either

ui(2)-l=0 or u»(2)-l =l since, from fwss-condition (i). ui(2)>0. Consequently,

when f =7*. it is either pd(<)=0 orpd(t )=1 because d(f )=0 for t<T. But since

pd(l )=0 for f<7\ |pd(f)-pd(f-l)|s;l holds for I =7".

Case 3: ForOT*.

pd(l)-pd(l-l) =

[u,(l-r+2)-l]- jfd(i-4)-[wU-T+l)-l}+ £d(t-i-l) =

u»(f -7*+2)-tij(t -f+ l)-d(l -l)+d(f -T+1)

From fwss-condition (iii). \w(t-T+2)-w(t-T+l)\*i\ for t>T. Thus, we must

consider two subcases.

Subcase 3a: If w(t-T+2)-w(t-T+l)-—l, I.e.. a decrease occurred from
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time l-T+1 lo l-r+2. then d(<-F+l)=l and. thus.

pd(t)-pd(t -l)=-d(t-l). Since 0£rf(f )*1 by definition (equation (3.3.1)). we

have \pd(t)-pd(t-l)\*l.

Subcase 3b: If ui(<-7'+2)-tu(t -7*+l)"fc0. i.e.. if no decrease occurred from

lime f -T+1 to f -7**2. then d(t -T+1)=0.

Ift«(l-r+2)-u»(f-7,+ l)=0. thenpd(f)-pd(l-l)-=-d(«-l)aainCaaeaa.

lfui(f-7-+Si)-u)(l-rf 1)=1. thenpd(0-pd(l-l)=l-d(l-l). and lima

either d(l-l)=0, hence prf(t)-pd(f-l)=l. or d(l-l)=l. hence

pd(t)-pd(t-l)=Q.

This completes the proof of the Lemma.

q e.d.

Theorem 3.3.1

Given a was-string S ot length If 1 such that its first t elements constitute a

fwss-string for window size 7*. and such thai pd(f )=0. S is a fwss-slring for

window size 7* if and only if tu(f +l)feio(l).

Proof:

If i <T the proof is trivial since, by definition, for ell f from 1 to 7-1. pd(l )=0

and. by Lemma 3.3.1. a fwss-string has no decreases in the interval (l.7'-l).

UtlUT

(1) The condition is necessary

Assume a decrease occurs at time t. Le.. d(t)=1 and w(t + l)<u»(t). From

equation (3.3.2). since pd(i )=0. one obtains.

T-t

%d(t-i) = w(t~T+Z)-l
<=i

(3.3.3)

Making T=f -7*+2 and ] =T-2-i. and substituting in equation (3.3.3). one has



^(T+i) =«>(T)-1
i-o
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(3.3.4)

Since d(f) = d(T+T-2) = 1. then 2}d(T+j)=w(r). which violates fwss-
i-o

condition (iv).

(2) The condition is sufficient

A similar derivation from equation (3.3.3) yields equation (3.3.4). Since no

decrease occurs at time t, then

and hence

T£d(TTJ)<w(r).
i-o

satisfying fwss-condition (iv).

q.e.d

Theorem 3.3.2

Given a wss-string S of length t + 1 such that its first t elements constitute a

fwss-string for window size 7". and thatpd(f )>0. 5 is a fwss-string for window

size T.

Proof:

In this case, tfc7" slnoe pd(t )=0 for t <T. Aderivation similar to that through

which equation (3.3.4) was obtained yields

^fd(T+i)<iu(T)-l .
i-o

Whether or not a decrease occurs at time t, the inequality

T£d(T+j)*w(T)-l
i-o
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is true. Hence,

^fll<T+i)<lll<T)
i-o

which satisfies fwss-condition (iv).

q.e.d.

Theorem 3.3.3

In a fwss-string pd(f )*fc0 for all t.

Proof:

Let us assume that there is an instant of tune t' such that pd(f' )<0. It should

be kept in mind that, from the definition of the potential of decrease.

pd(t)=0 for all i<7\ Thus, by Theorem 3.3.1. no decrease occurs for t<T

and. therefore, Lemma 3.3.2 applies to fwaa-stringa a fortiori. Furthermore,

still by Theorem 3.3.1. in a fwss-string if pd(t)=0 then d(t)=0 for all I. I.e..

no decreases can occur when the potential of decrease is equal to zero.

Case 1: If t'<T, the definition of potential of decrease oontradiots the

hypothesis.

Case 2: If t' = T. from Case 2 of Lemma 3.3.2. when <= 7* we have either

pd(f)=0 orpd(f )=1, which contradicts the hypothesis.

Case 3: Let f>T. Knowing that pd(t)=Q tor t<T. If pd(i')<0. from Lemma

3.3.2 there must have been at least one instant of time, t -1 for instance,

such that pd(f-l)=0 and pd(f)=-l. Thus, since pd(t)-pd(t-l)=-l. from

Case 3 of Lemma 3.3.2. either

(i) w(t-T+2)-w(t-T+l)*0; in Ibis case. pd(t)-pd(t-l)=-d(t-l) yields

d(f-l)=l. which contradicts the hypothesis that, since pd(i-1)=0, no

decreases occurred at time i—1; or

(ii) w(t-T+2)-w(t-T+\)=l; in this case pd(f )-pd(f-l)-i-d(f-l) yields

d(f-l)=2. which contradicts the definition of d(t). Therefore, in a fwss-string
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pd(0*0 for oil I.

q-e.d

From the conclusion of Teorem 3.3.3 one might be inclined to use the

condition of negative potential of decrease lo identify was-slringa which are

not fwss-strings. It should be noticed, however, that, while the condition

pd(t )"fc0 for all t is a necessary condition for a fwss-string. it is not sufficient.

There are cases where wss-slrings which are non-feasible for some value of

window T have pd(f)*fe0 for all t. This happens when

u»(/-7,+2)-uj(f-7'+l)=l. pd(t-l)-0 and d(l-l)=l. In this case, fwss-

condition (iv) is violated, though, at lime t, pd(t) remains equal to zero. The

necessary end sufficient condition for the identification and generation of

fwss-strings in terms of the potential of decrease is given in Theorem 3.3.1

since, in a fwss-string. pd(t)<0 never occurs (Theorem 3.3.3). and pd(f )>0

causes no problem (Theorem 3.3.2).

Lemma 3.3.3

The maximum value of the potential of decrease at any instant of time t is

the value of the working set size at time f minus one. i.e., pd(t)£w(t)—l for

all/.

Proof:

The value of w(t) has a lower bound given by the number of decreases occur

ring in Ihe interval [t-T+2,t-l] subtracted from w(t-T+2). This lower

bound is attained when there are no increases in the working sel size during

the same time interval. Therefore.

r-e

Since

w(t) fc w(t -f+2)- £ d(< -o
«-i

3U

Pd(t) =Mi-r*2)-i]-rj?d(i-i)
hence pd(t )<w (f )-1.

q.e.d

Lemma 3.3.4

Tlie maximum value assumed by the potential of decrease is the maximum

value of Uie working set size minus one.

Proof:

Trivial from Lemma 3.3.3. \tw(t)=m. lhenpd(f )s:m-l.

q.e.d

3.4. The Potentlal-of-Decreaae Model

A new model lhat takes into account the feasibility of generating a

decrease in the working-set size must have some memory of past decreases

so lhat the potential of decrease before a new working-set size is generated

can be computed. In this modal, the next stale does noL depend on the

current stale only. Hence, Ihe model is not a simple first-order Markov

model anymore. As will be shown, it is in fact a Markov model of order 7'-1,

where 7* is Ihe window size.

In a generative version of this model, the potential of decrease can be

easily calculated if the times of the latest decreases In the working-set size

are kept in a vector. The length of this vector is equal to the maximum

working-set size, which is, in most cases, much smaller than the total

number of pages of the program.

The new model contains a Markov chain for each value of the potential of

decrease. The transition probabilities between any two slates are estimated.
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keeping track of the potential of decrease at each point in time, from an

actual string of working-set sizes generated by the program to be modeled.

The generation procedure follows the same steps, using at each reference

the set of transition probabilities corresponding to the current value of the

potenlial of decrease.

This model has T ( the window size) and npg (the total number of pages

of the program) as Its basic parameters. The bounding parameter m is cal

culated as the minimum between T and npg. The model's states are Identi

fied by the pair (ju.juf) corresponding respectively to the working set size

and to the potential of decrease. The fact that the model at time t is in state

S(t)=(i.j) implies ju(I)si and pd(t)=j and vice-versa. Variable w, may take

values from 1 to m while pd is bound by 0 and m—1. Transitions between

states are governed by probabilities A/. «/ and u} corresponding to the

chances of the three alternatives m(t +l)=]t! (()+!• m(t +l)=j«(f) and

w(t +l)=w.(t)-l, respectively, for u>(t)=i and pj£(t)=j. Transitions yielding

|2t;({+l)-3fc-(Oi>l or 3ti(t +l)=tt(0-l when w =l or £rf(t)=0. or

jg(f + l)=ju(t )+l when uj(t)=m, are forbidden. Transitions between values of

pd are governed by equation (3.3.2) using jj»(f-7,+2) and the number of

decreases in the last time Interval of length T—l.

We now summarize the properties of the potential-of-decrease model,

called pdm —properties in the sequel:

(i) S(t)=(i.j) implies u>(t)=i and pd(t)=j. and vice-versa.

(ii) \£w.£m and 0££d>m-l.

(iii) X/ = p[i«(l +l)=ia(f)+l|3ii=i.Bd=>]

«/apbK(i +i)s:w(Olus<«rfsJ]
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W =pbtlUTl)=yi(t)-l\u2=iM=1]

(iv) p[w.(t +l)=Vl(t )+* ]=0 for all integers k such that |A; |>1.

(v) p[u>(t+l)=u>(t)+l] =0 for allt such lhatj&(t)=0.

(vi) pMHlMMl-'O forollMi(f)=l.

(vii) pfui(<+l)=si!(f)+l] =0 forallu>(t)=m.

(vUi) arf(f ) =

where

*K I 0 otherwis

It should be noticed that underscored variables sit(0> fi4(0> end ^(O refer

M< -T+2)-l]-rEd« -i) «t*T
«"i

0 otherwise

0<m(O
otherwise.

to the states of the model, while ui(f). pd(<) and d(t) refer to the charac

teristics of a working-set string. Though for the purposes of this work the

corresponding pairs of variables always have the same values at each instant

of time f. it is important bear in mind that they constitute two sets of dis

tinct entities.

Theorem 3.4.1

The sequence of states «j(f) for f >0 generated by the polenlial-of-decrease

model when T and npg are given. m=min(7\npo) and when 5(1)=(1.0). is a

fwss-string.

Proof:

The string generated by this model satisfies all four fwss-conditions. namely:

(i) ltSti>(l)*m

By pdm-properly (ii). fwss-condition (i) is satisfied.
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(ii)u.(l)=l

Since 5(l)=(1.0). by pdm-properly (i) fwss-condition (ii) is aatified.

(iii)|u»(l)-u»(f-l)|*t

Directly from pdm-properly (iv).

(iv) £d(<+i)<w(0 tor f =l s-T+1
4-0

The working-sel size string u»(l) of length 1 is certainly a fwss-string for all

7**1. By induclion. If the model generated a fwss-string of lenglh t. due to

pdm-properly (viii) and Theorem 3.3.1, the generation of «v(t + l) will cause

the string of size t +1 to satisfy fwss-condition (iv).

q.e.d

Corollary 3.4.1.

The variables jjf(l). psl(t) and d.(t) of the potential-of-decrease model have

the same properties of variables w(t). pd(t) and d(f ) of fwss-strings.

Proof:

Trivial from Theorem 3.4.1 . Tlie potential of decrease model generates fwss-

strings; w(t), pd(f) and d(t) are associated with the variables jyu(f). pd(t)

and if (I) and take, respectively, the same values for all t.

q.e.d-

The structure of this generative model is depicted in Figure 3.4.1. end

will be called a pd-diagram. It should be noticed that it is not a first-order

Markov chain diagram. Though arrows represent probabilities lhat can be

non-zero, the summalion of probabilities assigned to arrows leaving a

specific state may be greater than 1. This is due to Ihe fact that in the pd-

diagram presented, while values are assigned to the probabilities of an

increase, of a decrease or of no change in the working-set size, the variation

of the potential of decrease is dependent on events occurred in the latest
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time interval of lenglh T-l. Thus, there are. in general, six arrows leaving a

typical stale (i.e. a slate not on the boundary of the diagram). Each pair of

arrows indicates the probability of an increase, of a decrease or of no change

in the working-set size. In each pair, each arrow indicates a feasible change

of the potential of decrease. Figure 3.4.2 shows a typical stale willi pairs

(x,y) labeling arrows where x=w.(t+ \)-uj(t) end !/=£<{(< +1)-jmJ(0- It

should be remembered that, from Corollary 3.4.1, the variables y> and jitf

vary at most by one unit from time i to t +1.

Since this model is a (T-l)-at-order Markov model, it can be

represented as such, even though its representation requires a large number

of stales. Tlie information contained in all permutations of working-set size

decreases during a period of one window size, which are concisely

IH«| m "8 |||*3 m>4 m "ft w»0 m»7

*d-o

Figure 3.4.1
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M.D
«no)

M.0) (♦1.0)

(♦Ml)

(0.*l)

Figure 3.4.8

represented in the pd-diagram. must be explicitly stored In the structure of

the chain. The pd-diagram is. therefore, a kind of shorthand notation, since

its memory of size 7-1 is implicit and does not appear in the representation.

The pd-diagram allows the same sequence of working-set sizes to be gen

erated while taking into consideration a considerably smaller number of

states. Of course, some flexibility is lost, as will be shown below. This means

that a state in the pd-diagram accounts for all states in the equivalent

(r-l)-st-order Markov model whichhave the same values ofuj and jitf at any

lime t. An example should clarify this argument.

Figure 3.4.3 shows the pd-diagram for a potential-of-decrease model

where 7*=3 and npafe3. The corresponding first-order Markov chain

equivalent to this diagram is shown in Table 3.4.1 in matrix form and In Fig

ure 3.4.4 in graph form. The following additional notation has been used in

Table 3.4.1:

dvec(t) is the vector of decreases occurred during [t-T+l,t); it

keeps the information contained in

(j|(f-r+l)jf(«-r+2)....ji(f-2)ji(«-l)]. This is the Informa

tion wbioh is embedded in the structure of the first-order
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Markov chain and Implicit in the pd-diagram;

Indicates an unreachable state;

* indicates an unreachable state in this particular example

only.

Since unreachable slates are shown in the matrix representation, these

stales are also shown in the graph representation in Figure 3.4.4 for com

parison purposes.

An equivalence between the pd-diagram states and the first-order Mar

kov states can be established. In the Markov state diagram (Figure 3.4.4 and

Table 3.4.1). states are defined by a triple (]£.jiff.dvec) while in the pd-

diagram (Figure 3.4.3) states are defined just by the pair fjy.jia'). This is

w>i 111*8 HI-3

ai-o

Figure 3.4.3

/-.
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w-i ur*c *o

fUt*0. dv*£>ll

(4«l. *«•<

•Ja|.*«a<

ftd*8. *>•••»

Figure 3.4.4

because the Information contained in rfuse la used by the pd-model as long

as it Influences the value of pd. In Figure 3.4.3, for instance, pd-state (2,1)

corresponds to slates (2.1.10) and (2.1.01) of Figure 3.4.4 or Table 3.4.1 . This

explains the loss of flexibility caused by the mandatory replications of the

seme transition probability value for ell states which ere not differentiated

by the pd-model, Le., those with different values of dvec but the same value

of pd.

Comparing Figures 3.4.3 and 3.4.4. It can be seen lhat the first-order

Markov chain representation requires a greater number of states than the

•r*
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ui(t +1)

J*f dvec u«) 1 1 1 1 2 2 2 2 3 3 a a

0

1

11

10
1

1
«t 0 0 0 0 x? 0 0 0 0 0 0

1 01 1

2 00 1

0

1

1

2

11

10

01

00

2

2

2

2

0 0

0

0

0

0

0

0

0

0

0

0

0

jcJ
0

0

0

0

0

0

0

0

0

0

0 0

0 xj
0 0

0 11 3

1

1

10

01

3

3

0 0 0 0 Pi 0 0 0 0 0 0 £±

2 1 00 3 0 0 0 0 0 0 Pi 0 0 0 o <|

Table 3.4.1

potential-of-decrease representation. This difference, however, does not

appear so striking since the example was carefully chosen in order to avoid

an explosive number of stales. In fact, the total number of reachable slates

in the first-order Markov chain diagram oan be shown to be given by

(~~Z—) L, I 4 j. where m=min(7'.np0).This is because, for each value of

the working set size, stales must be replicated in order lo store the informa

tion contained in allcombinations of decreases, from zero up lotn-1, which

might have occurred during the lasl time interval or length T-l. The lerm

m + 1
accounts for the foot that almost half of the stales (those below the

main diagonal) are unreachable. Since T&m. *£ \T7l\ * 2«a"'. Thus, the

equivalent first-order Markov chain requires a 0(2m~t) slates.

The potential-of-decrease model, though requiring a memory of size

0(m) to record the times of Ihe uptom-1 decreases lhat might have lakcn

place during the last time interval of length 7*-l. requires the representation
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°' — 2— • **e" 0(m*) states. This can be easily seen because, by Lemma

3.3.3 and Corollary 3.4.1. almost half of the stales are unreachable. Since the

summation of the parameters A. c. and /* for each state must be equal to

one. for each reachable state at most two independent parameters should be

given. Knowing, however, from pdm-properties (iii) and (iv). that

pM< +D=lii(f)+l|i«(f)=m]=0 and pbii(t+l)=U2U)-l\jul(t)}=0. the total

number of independent parameters required can be reduced by 2m since

there are 2m -1 states where at least one of the transitions is forbidden.

Thus, the total number of Independent parameters required for the defini

tion of the potential of decrease model is given by

2—**|—*— 2m amt-ro s m(m-l). Table 3.4.2 shows a set of indepen

dent parameters chosen to define the model presented in Figure 3.4.2.

Since the number of parameters required by this model Is very large for

practical values of m, an attempt to obtain a simplified model was made

before trying to analyze the full model. The essential part required for signal

ing the infeasibility of a decrease In the working-set size, Le.. the condition or

potential of decrease equal to zero, was kept intact. Thus, making A/=A<.

*/=*< and i4=Pi 'or all j>0. the number or distinguishable states in the

diagram can be much reduced. All states corresponding to the same working

J2rf=0 pi-i Ed =2

indep. param. Xf.A* k&.pi.pi Pi

dep. param. *M *M *sE

Table 3.4.2
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set size having a potential of decrease greater than zero can therefore be

lumped together.

The structure for the simplified model is given in Figure 3.4.6. The same

interpretation of arrows adopted for Figure 3.4.1 applies also to Figure 3.4.5.

The number of stales required is 2m-1 and. using the same argumentation

used for the full model, the number of parameters required is found to be

2(2m-l)-(m+2)=3m-4. i.e.. 0(m).

Though the representation of the simplified model can be reduced as

shown in Figure 3.4.5, its structure remains the same as that or the full

model. Consequently, the pdm-properties are satisfied by this model as well.

Actually, the simplification consists of assigning the same value to many

parameters and is not the result of a modification in the model's structure.

Therefore. Theorem 3.4.1 guarantees that this simplified model, like the full

model, generates feasible working set size strings.

The validation of this reduced model, as well as that of the.hill model, is

discussed in Chapter 5.

«,.?

ss-o

Figure 3.4.6

r-



CHAPTER 4

Methodology for llodel Validation

4.1. Introduction

The validation of a model is the verification of the appropriateness of

using such a model for tlie purpose of reproducing a certain real world

phenomenon under a speclfio set or predefined criteria. As already men

tioned in previous chapters, the real world phenomenon to be modeled here

is the sequence of references a real program In execution issues to virtual

memory looations and the main criterion is the reproduction or working-set

size characteristics.

In lids chapter, the methods to be utilized for the verification of how

well the model presented in Chapter 3 reproduces working-set size charac

teristics are described. First, the target programs, whose behavior is lo be

reproduced, have to be defined. Secondly, having already chosen the charac

teristics lo be compared, measures for these characteristics have to be

specified in order for a quantitative comparison lo be feasible. Finally, as a

direct result from the oomparison or Ihese measures, the criteria to be

applied in accepting or rejecting the model in each particular circumstance

are selected.
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4.2. Defining Uie Programs lo be Modeled

The working-set size distribution functions generated by real programs

in execution have been presented in some empirical studies [Urya?5,

AlanBO). Thus, targel programs capable of correctly reproducing such distri

butions have to be obtained. In order lo have a better control over the

behavior of the target programs, we decided to use synthetic strings. This

approach was particularly interesting in our case, since, as it will be shown in

the next chapter, in the simulation process the accuracy of the various

indices could be assessed by comparing synthetic strings obtained from the

seme model using a different siring of pseudo-random numbers. For target

programs, the phase-transition model was then chosen due to its capability

of producing mullimqdal working-set density funclions similar lo those

presented in the empirical studies mentioned above.

In order to obtain a reasonably representative outpul without consum

ing the large amount or computing resources which simulation would require,

a series of decisions were made. The target phase-transition model was

assumed lo have a maximum of thirty pages. The window size utilized was

much shorter than a real-world window size in order to match the shorter

mean time the model spends In each locality. With this choice, the steady

state could be reached without requiring an extremely long simulation run.

The values of the parameters defining the actual structure of the phase-

Iransillon model were set by a trial and error process so as lo obtain three

different working-set size density functions: a unimodal. a bimodal and a tri-

modal function. Ihe working-set size density funclions generated by such

models and used in the validation procedure are shown in the next chapter.
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4.3. Defining Ihe Scope of the Validation Procedure

When a single, very specific model validation criterion. Uke the correct

reproduction of a program's working-set size distribution is being con

sidered, one should bear in mind that many other additional characteristics

of the target program may be completely overlooked. Thus, special care

must be taken when the model, validated with a certain set of criteria, is to

be used as a substitute for the target program. Essential characteristics of

the target program may be absent and, In this case, it is said that the model

is being used out of its domain of validity. In this work, some problems aris

ing from the influence or these additional characteristics, in particular those

having to do with a program's dynamic behavior, were taken into considera

tion during the validation procedure.

The correct reproduction or the working-set size distribution may be

called static validation. This simply means that, during the execution or a

program, the rraction or instants or time (considered discrete) at which the

working set presents a specific size is approximately the same as that found

In the model's output. However, nothing is said about the ways the working

set reached this specific size. A static procedure is perfect If one is

interested only in static criteria, but, in most cases, it is a mistake to be

interested in statics only since static criteria are usually incomplete. For

instance, if the total number or references to be generated Is known, the

working-set size may be increased in unit steps and its value kept constant

for a number or time instants proportional to the probability specified far

this working-set size. The string generated by this procedure would exhibit

the given working-set size distribution but can hardly be used as an actual

62

generative model to reproduce the behavior or a real program. In the valida

tion procedure, therefore, besides the static aspects, we introduced some

considerations about the dynamics or the program's behavior; in other

words, we performed also a dynamic validation.

Sialic validation involves the comparison or distributions. Techniques to

perform this task, known as goodness-of-fit methods, can be borrowed from

statistical theory. Some methods, parametric and nonparametric, are

described in section 4.4. which includes a discussion or their inherent limita

tions in the validation or our model. In addition to the well known statistic

techniques to be described, an index, which proved useful as an indicator for

model validation, is also introduced. As far as dynamic validation is con

cerned, spectral analysis methods have been utilized. Even though the auto

correlation and power spectrum functions can shed some light on the diffi

cult problem of characterizing dynamic behavior, the cost of their computa

tion led lo the definition of a simpler dynamic index.

4.4. Statistical Methods for Comparison

4.4.1. Background

In statistical theory, the comparison of two distributions, the observed

distribution and the expected distribution, involves the verification of a set of

assumptions, the definition or a measure of discrepancy (md), and the test

or a hypothesis H0. the null hypothesis. which states that the observed dis

tribution was obtained rrom a population obeying the expected distribution.

In the testing procedure, after the measure of discrepancy has been defined.
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a value a is chosen as an upper bound for the probability of rejecting //„

when It is true. The probability a la called the significance of the lest, and

the range of smaller values (lower discrepancy) that md can assume

corresponding to Ihe probability 1-a define a confidence interval tor the

non-rejection of H* Thus. If the discrepancy is so high as to make md fall in

the a-crilical region. Le.. outside the a-confidence interval. //0 is rejected

wilh a a significance.

Measures of discrepancy are defined to evaluate the differences between

the observed distribution and the expected distribution. If these measures

depend on Ihe type of the distributions being oompared. the test is called

parametric, since the parameters of Ihe distribution should be known in

order lo allow for a correct inference to be performed. In the case of

independence or the measure from the type of the distributions, the test is

distribution-free or nonparametric. Fortunately, many parametric tests

are asymptotically distribution-free, and this permits their (careful) utiliza

tion in almost any comparison test. For the purposes of this work,

parametric and nonparametric tests were performed during the validation

procedure.

It is worth mentioning that, unfortunately, the basic assumption which

allows us lo perform correct hypothesis testing in distribution comparisons,

both in the parametric or in the nonparametric case, does not hold for

working-set size strings. The requirement that Ihe observed distribution be

obtained through measurements which are independent of each other. Le..

events u>(f)=i and w(r)=j independent for any i and $ when fi*r. la not

satisfied. Specifically, when the values of r and t are close, for instance, the •
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conslrainl stated in fwss-condition (iii). |tw(f+l)-u>(i)|sfil. suggests highly

dependent and correlated values. Autocorrelation measurements have shown

that this is actually the case. One should however notice thai data are

asymptotically uncorrelated. i.e.. lhat their correlation seems lo tend lo

zero as their distance in time tends lo infinity. These results will be shown in

the next chapter.

The high correlation presented by working-set size data restricts, if not

invalidates, the use of parametric and nonparametric tests for the purpose

of accepting or rejecting a specific model. Tlie measures defined for these

tests can be used as Indices for relative comparisons when many observed

distributions are tesled with respect lo an expected distribution. Their sta

tistical meaning, however, is debatable.

4.4.2. Comparison of Static Characteristics

Among the goodness-of-fit parametric statistics defined for distribution

comparison, the most common and best known is Pearson's statistic defined

as

Pa = fl (/«-"Pt)g
~ «-i npj

where n is the total number of outcomes (ihe lenglh of Ihe string, in our

case), m is Ihe number of possible types or outcomes (Ihe distinct working-

set sizes), and ft and npt are the number ofoutcomes oftype i for. respec

tively, the observed distribution and Ihe expected distribution. The parame

ter p4 is. therefore, the probability of an outcome of type i under Ihe null

hypothesis. Under the assumptions of random sampling and n large, the
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asymptotic

distribution or Pe is a chl-square with m-1 degrees or freedom; the critical

region. Le., the condition for rejecting H0. is or the form Pe >K, where A* is a

constant.

A question arises, at this point, about the size or the sample. How small

can a sample be chosen so that the asymptotic distribution is still meaning

ful for inference purposes? Though no simple answer to this question exists,

it is generally agreed that, when the sample size is. at least, four or five

times the value of m. the approximation is an acceptable one. Since in the

case of working-set sizes the sample is not randomly drawn, the number of

samples used In the validation procedure (the length of the working-set size

string generated by the model) should be much higher than five times m.

The problems related to the size of the sample, in our case the duration of

the simulation run, will be analyzed in the next chapter.

Another parametric test is the likelihood-ratio test. The ratio A is

defined as

A =
:.l[ /*

where /( and pt have the same meaning as in the case of Pearson's statistic.

The asymptotic distribution of -2 logA is a chl-square distribution with m-1

degrees or freedom under Hq. Its critical region is again of the form

-2 logA>A". Since the likelihood-ratio test is computationally more compli

cated than Pearson's test and since, when the null-hypothesis is true, the two

tests are equivalent [Lind78], the likelihood-ratio test was not used in this

work.
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If the statistical test is to be independent of the type of the distribu

tions, the goodness of fit should be checked through a nonparametric pro

cedure using, for Instance, the Kolmogorov test. The Kolmogorov statistic is

defined as

A-o » max |4(i)-4(i)|

where 4(0 And 4(0 ore, respectively, the observed and the expected dis

tributions. The critical region is, again, of the form Ko>K. Though being a

distribution-free test, it should be noticed that the Kolmogorov teal also

requires a random sampling procedure for inference purposes, and indepen

dence cannot be obtained in working-set size data.

There are many other nonparametric tests which may be more appeal

ing, due to their making more use of the available data than the Kolmogorov

test does. However, since this does not make their statistical power greater

than that of the Kolmogorov test [ConoTl], no other nonparametric statistic,

besides Kb. was used in this work.

Due to the fact that Pe and Kb can only be used as indices since no

inference guaranteed to be correct can be drawn, another, apparently more

intuitive, index was defined. This index has proved to be useful in providing

not only a better understanding about the shortcomings of the model but

also some subsidies for the calibration procedure, when that procedure was

attempted. The index of mismatches, as it was called, is defined as

cniml

It is not difficult to see that Im indicates exactly the fraction or events in the

observed string which do not have a counterpart (the same value) in a string
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obeying exactly the expected distribution (the expected string). The factor

1/2 accounts for the feci that a mismatch is counted twice, once in Ihe

observed siring and once in the expected string. Tlie main advantage of this

index seems lo be its intuitive appeal. In the case of working-set size strings,

for instance, without Ihe help of statistical theory, the modeler can judge

more easily whether or nol a model oan be accepted lo perform a specific

lask if it is known thai between the model's output and the expected output

a lOO./m percent or mismatches occur. This index can be used as any other

above mentioned statistics for the purposes of inference. A derivation of its

approximate distribution under the null hypothesis is presented in Appendix

I.

4.4.3. Comparison of Dynamic Characteristics

A popular way of characterizing the dynamics of a lime series is through

its autocorrelation function. This function calculates, for each value of the

lag Jfc. the correlation between the values of Ihe series at times t and f +Jt.

For a generic time series zt. which might be a sequence of working-set sizes,

the autocorrelation function [Box76] is defined as

£[(«!-/*)(«!♦* -p)}
Ps

y/Hh-iP)m.„>-lP\ '

where E(x) is the expectation or x and /t=E(s(). The best estimate tor pn is

given by

ni-i

where n is the length or the time series and £=—£«|. In this work.
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parisons are made belween the autooorrelation funclions calculated for Ihe

expected siring obtained from the target program and the observed siring

obtained from the model.

Tlie Bpeclral power density function carries essentially the same infor

mation as the autocorrelation function, bul in a different form [Jenkuti). Exa

mining the power at various rrequencies (number of oscillations per unit of

time) sometimes makes not only the comparison of dynamic behaviors bul

also model calibration easier. Tlie spectral power density function is calcu

lated from the autocorrelation function using the formula

fl(/) «2[U2 EpkCos2n/J;] .

where mk is the maximum lag for which pk is considered to be different from

zero, and / is the frequency of oscillations in cycles per unit of lime. Thus,

the variable / (frequency) assumes values in the interval [0,0.5]. To allow

meaningful comparisons, however, the spectrum should be smoothed. In this

research, this smoothing was performed by using a Dartlelt spectral window

cj>*. The smoothed function is then given by

where uk =
l-k

mk

gg(f) =2[H2,"£,oJkpicos2n/l:]

Since the calculation of spectral analysis funclions consumes a consid

erable amount or computing resources, another simpler dynamic indicator

was introduced. This index calculates the maximum variation thai a lime

aeries experiences during a certain time interval. Tlie

maximum variation indicator rm/*(t) is defined as
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*-i *-i

mvk(t) - max tu(f+i) -minwlt +i)

The difference between the distributions of the values of mvk(t) for

f =1 n —fc +1 calculated respectively for the observed and for the expected

strings can be evaluated by the techniques given for static validation. It is

obvious that this Indicator carries much less information than any of the

ones provided by spectral analysis like pk and £,(/). for instance. However,

since its compulation is very easy and its value easily understood, the max

imum variation Indicator proved helpful in the comparison of dynamic

characteristics.

CHAPTER 5

Model Evaluation Through Simulation

6.1. Introduction

The procedure for the analysis or the program behavior models

described in chapter 3 in terms of the appropriate reproduction of working-

set characteristics is discussed in this chapter. The original synthetic traces

or Ihe programs to be modeled, as discussed in section 4.2 . were obtained

from three phase-transition models and are described in section 5.2. The

working-set characteristics generated by each of these traces were com

pared with the ones generated by four other traces obtained from four dif

ferent models. This procedure is discussed In section 5.3 . The selection of

the length of the simulation runs is presented in section 5.4. while comparis

ons of static and dynamic characteristics are shown in tables and figures

throughout section 5.5.

6.2. The Generation of the Original Traces

The generation of the original traces used in this chapter was done by

utilizing a phase-transition model. Parameters for this modelwere carefully

chosen in order to produce traces which, for a specific window size, repro

duce working-set size distributions similar to those reported in several

empirical studies.

60
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The phase-transition model utilized la composed of one macromodel

governing the transitions between localities (phases) and several mioromo-

dels governing the page references within localities. The macromodel is a

semi-Markov model where transitions probabilities between localities may be

chosen freely and the number of references within each locality con be

independently specified es a fixed number (deterministic) or a random

number. In the latter oase. the random number oon be chosen from either a

uniform or a geometric distribution. In all simulations used in this research,

however, only geometric distributions were used. This means that Ihe macro-

model was actually a Markov model. As for as the micromodel Is concerned,

independent LRU steak models were defined for eech locality, and pages

common to multiples localities could be specified. It should be mentioned

lhat different strings of pseudo-random numbers were utilized for the gen

eration of each different sequence of events. Thus, the macromodel and

each micromodel ore governed by different strings of pseudo-rendom

numbers. Progrems were implemented in Pascal, and a linear congruential

pseudo-random number generation routine was used.

Parameters for the phase-transition model were chosen so as to repro

duce three different working-set size density functions. A one-phase model

was defined for the reproduction or a unimodal working-set size density rune-

lion. Two-phase and three-phase models reproduce bimodal and trimodal

working-set size density functions respectively. In Appendix II the parameter

values utilized for this generation are given. These three working-set size

density functions are called simply the unimodal. the bimodal and the trimo

dal w.s.s.d.f. In the sequel.

02

6.3. Models for Comparison

Traces obtained from four different models were compared with the

ones generated through the phase-transition model ( the original traces) as

described in section 6.2 . These four traces were respectively generated by

another phase-transition model, a simplification of the reduced model

described in chapter 3. the reduced model end the full model.

Due lo the highly correlated data characterislics of working-act size

strings, which invalidate attempts of using elementary statistical inference

for comparing distributions, another trace generated by the same phase-

transition model, but with a different string of pseudo-random numbera. was

utilized for control. Its parameters are the same as those described in

Appendix II for the original phase-transition modeL This model is referred to

as modal 0 in the sequel.

Having observed from measurements or the original traces (which obey

the phase-transition model) that the number or instants or time when Ilie

potential or decrease was equal to zero was extremely small, a model requir

ing the least number of parameters was experimented with. This has the

structure of the reduced model described in Chapter 3. where, for pd =0.

/ij=K|=0 and A« =l (i =l m-1). and /iTO=Am=0. Km-l. Forpd>0. the At's are

estimated from the original trace using the formula

X _ no- °f PQKe faults when tu=i
1 tolal no. of w=i cases

Working-set size probabilities are also estimated from the original trace

using the ratio of the number of working sets of a specific size to the total

length of the string. Parameters /^ and tc{ are then calculated from these
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probabilities, and the Va bv uoln« equations (3.2.6) and (3.2.6). This model,

referred to as model 1 in the sequel, requires only 2m-2 Independent

parameters, where m is the maximum working-set size.

The models referred to as model 2 and model 3 in the sequel are.

respectively, the reduced and the full model described In Chapter 3. For

model 3 the parameters tH, *< and u* are estimated from the original trace

measuring the numbers or decrements, or instances or no change and or

increments respectively, for each working-set size while taking into con

sideration the value of the current potenlial of decrease. More formally, if

down, keep and up are defined as

down(t.i.j) =
1 if«i(f +l)=tii(0-l. w(t)=i and pd(t)=j
0 otherwise

=w(l). w(t)-i and pd(t)=j

/, , ,% I1 Uw(t +l)=w(t)+l. «>(0=* end pd(f)=iup(t.i.j) =\Q otherwise

and npd(i.J) = £[down(t.i.j)+keep(t.i.j)+up(t.i,j)l then
i«i

**<*) = £tip(t.i.j)npd(i.j) ,£,

ror i=l m and j - 0.1,...,m-l, where m is the maximum working-set size

and n Is the total length or the trace.

(5.3.1)

(5.3.2)

(5.3.3)
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For model 2 (the reduced model), the p^'a. *4's and Vs.ore estimated

respectively by equations (6.3.1). (5.3.2) and (5.3.3) for pd=0. Forpd>0 the

estimates are obtained by

*' *£&%&**•»
where npdp(i) = £)nP^ (*4 )•

/-I

6.4. Duration of the Simulation Runs

In simulation procedures, when estimates for steady-state indices are

sought, two problems associated with the definition or the number and length

of simulation runs have to be taken into consideration. The first one is the

bias in the measured indices. This bias, which is introduced by initial (and/or

final) conditions can be reduced by the utilization of start-up procedures

[Wils78a.Wils78b] or. simply, by allowing the simulation to run for a long time

after reaching the steady state (assumed to exist). There are no fixed rules,

however, to determine when the steady state is attained [Emsh70.Bobi76].

Many heuristic conditions have been suggested throughout the simulation

literature [Emsh70.FiBh73.Bobl76.Fish78] to characterize, basically, when the

measured indices no longer change significantly over time.

The second problem deals with the determinalion of procedures to

reduce the variance of the measured indices' mean in order to have a rea

sonably narrow confidence interval for this value. In most cases, during a
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simulation run. the mean of indices measured over time ore so correlated

thai, unless very sophisticated methods are used [HeidSl]. statistical infer

ence can be drawn only when distincl runs (assumed independent) are util

ized. There are many methods designed lo produce variance reduclion for

the mean of measured indices [Fish73.Klei74.Klei75a.Fish78.Prit70] and

several or them have been presented in computer performance evaluation

books [Ferr78.Koba70.SaueBl).

One ol the simplest methods for variance reduclion. though expensive,

is that or multiple replications. It consists or obtaining the indices or interest

from distinct simulation runs starting from the same initial stale but using

different strings of pseudo-random numbers. When there is stochastic con

vergence [Hogg78] and the simulation runs are independent of each other

the sample variance of the mean value of these indices can be estimated

through a stalistical procedure. In Ihe irreducible finite-stale Markov chain

underlying Ihe models defined in Chapter 3 all states are positive recurrent

and aperiodic, therefore, ergodic [RossBO]. Due to these properties, when the

lenglh of the string tends to infinity. Ihe probability that Ihe system Is in a

specific state exists and is independent or Ihe initial stale i.e.. stochastic

convergence for these probabilities is guaranteed [Isaa78]. Since our

discrepancy indices are based on these probabilities, the greater the number

of index values obtained through successive replications, the more Iheir

eslirnated variance can be reduced. The replication process can then be

stopped, for instance, when the confidence interval for the mean of the

measured indices becomes smaller than a previously established value.

Uu

Let J: be the number of replications, p be the index to be estimated, p,

be the estimate or p for each replication i. p" be the mean of Ihe p4*s

(p = £)p4). and S be the square root of the sample variance flind?6.llogg?0).
«"l

given by

The stalistical procedure Is based on the fact that, if the replications are

independent of each other then the variable

x=>/FrT£zfi_ (6 4.1)

has a Student's l-distribulion with k-l degrees of freedom. II should be

noticed thai S* could have been defined as the unbiased estimalor of o*

(population variance), i.e.. 5s = -—— £](p<-p)a • In thiscase; the variable x

would have been defined as x = Vk~ • ° which yields the same values for x

as the ones obtained from equation (5.4.1).

An a two-sided confidence interval for the index p is Ihen defined as

where f .is obtained from the Student's t-dislribulion with k-l degrees
s-1.5-

of freedom. If a random variable y has a Student's t-dislribulion with it-I

degres of freedom, then prob(y« ^) = ~. If a maximum length I is

specified for this confidence interval, then Ihe sample variance should be

reduced until
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When comparing distributions, however, we want to be sure that the differ

ence between them la not too big. This explains why the critical values for all

measures of discrepancy used (Pe. Kb or Im) are given by values above an

upper limit which should not be exceeded if H0 is not to be rejected. But the

null hypothesis is never to be rejected if both distributions are too close.

Thus. In our case, an a one-sided confidence interval is preferred and it is

defined by

<g

P * P* yfjfZf '•-».»-«•

In this case, IT a maximum lenglh I Is specified for this confidence interval,

the sample variance should be reduced until

Independently or which type or confidence interval is used, in a simulation

procedure using the method or replications, the reduction or the variance or

the indices' mean la performed by increasing the number k of replications.

As shown in section 5.3, parameters for models 1, 2 and 3 were

estimated from an original trace generated by a phaBe-transition model.

Replications of this original trace (model 0) were performed in order to

evaluate the variance or the working-set sizes generated and, ultimately,

select the appropriate length for this trace. From a trace or length 60000

references, the sample variance calculated for measured working-set sizes

(at least for the peak values) were found to be within plus or minus 2% of

their mean. This was considered reasonable for our purposes and this length
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was addopted for the original traces.

The index selected to determine the length or the simulation and the

number or replications wbb Im. This index adds the absolute values or the

linear differences between distributions (see Chapter 4) and was calculated

cumulatively for each simulation run. Due to the foci that our study is a

relative comparison between models, the bias presented by Im is not a main

ooncern as long as it is Bmall and the length or the simulation runs is the

same for all models. Anyway, for each run, Im was calculated at intervals or

5000 references and. for the addopted run length or 50000 references, at

•least the last three measurements were found lo be within 0.02, Le.. differing

by less than 2% of mismatches. For confidence intervals, a 65% level was

chosen, and their total length was made equal to 0.2p~ where, in our case, p

is the average of index Im calculated for distinct replications or the simula

tion run. A one-sided confidence interval was used. Le.. there was an interval

such that a 05X chance that the correct value of the index Im would be

smaller than 1.2 times its sample mean. The replication process could be

stopped as soon as the number k of replications became sufficient to satisfy

the inequality

S *
0.2py/JT=l

f*-i.o oa

In fact, in all cases, very few replications were needed in order to satify ine

quality (5.4.2).

(5.4.2)
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6.6. Results of the Simulation

In this section, results obtained from Ihe comparison between models 0.

1. 2 and 3. and the original trace when unimodal. bimodal and trimodal

working-set densityfunctions (w.s.s.d.f.) were lo be generated are presented.

It should be pointed out that, in this section, all functions plotted in figures

6.6.1 through 5.6.7 ore discrete functions which only exist for non-negative

integer values of their independent variables. In the figures, the points indi

cating these values were joined by straight lines for readability purposes

only.

Figure 6.5.1
Unimodal w.s.s.d.f. generated by different models.
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unimodal Pe Aft (0.05) Kb A& (0.05) Im Ata (0.05)

model 0 270 42.6 0.018 0.0081 0.027 0.0000

model 1 406 42.8 0.010 0.0061 0.033 0.0000

model 2 522 42.6 0.018 0.0081 0.030 0.0090

model 3 503 42.8 0.017 0.0081 0.025 0.0090

Table 6.6.1

Indices obtained from the generation of un unimodal w.s.s.d.f

Figures 6.6.1. 6.6.2 and 6.5.3 show the working-set size density functions

obtained from the strings generated by the different models when unimodal.

bimodal and Irimodal working-set size density functions were to be modeled.

It Is clearly seen in these figures that, for a given, fixed string length (50000

references) the simpler the distribution (i.e.. the lower Ihe number of

modes), the belter the fit. Tables 5.5.1. 6.5.2 and 5.5.3 show a summary of

results obtained from the comparison of working-set sizes generated by the

(original) phase-transition model and those generated by models 0. 1. 2 and 3

when unimodal. bimodal and trimodal working-set size density functions were

to be generated. The upper bounds for A" in a 5% significance test under the

null hypothesis (//o). which stales lhat both distributions are equal, ore also

given in the Tables for comparison purposes only. The values AV» and KKu

were taken from standard statistics tables [Lind76]. The value Klm was calcu

lated by an approximate formula derived in Appendix 1. It can be observed

thai the high correlation between successive values of working-set sizes

causes, under //<>. the rejection even of the original model when ruu with a

different siring of pseudo-random numbers. It can also be seen thai, for the

unimodal case, there is no need to use the full model (model 3) since models

1 or 2 yield comparable results. Though model 2 has shown a good perfor

mance in reproducing the chosen bimodal w.s.s.d.f. (Table 5.5.2), in general.
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IIII|II

Figure6.6.2
Bimodalw.s.s.d.f.generatedbydifferentmodels.

bimodalPeArt(0.95)KoA»(0.95)ImA/m(0.95)

model037042.60.0070.00810.0210.0111

model1721242.80.1710.00610.1710.0111

model265042.60.0520.00810.0520.0111

model3334442.60.1010.00610.1040.0111

Table5.6.2
Indicesobtainedfromthegenerationofabimodalw.s.s.d.f.

asthecomplexityofthedistributionincreases,theaccuracyofthesesimpli

fiedmodelsbecomeslessandlessacceptable(Table6.5.3),andamodelwith

moreparametersmustberesortedto.

72

111i|1111|11111111111111j1ll1i»_
O.E0

-

-

-

0.1ft—mod*!1————
roodclS—•——

—

-nodal3———r-\

-

!;'-\\
—

~

Of-

0.10

r\7
-

//w¥
~

ifT
v

-

0.04—

/>\

it
if
if

V1
-

..

/a\
si

\
-

.111—£<f~JrJ-J-1ZJ.-t--f:•V"\IIl1.1Iii.i./W-i."
1620

«orkio|-sat*Ua

Figure5.5.3
Trimodalw.s.s.d.f.generatedbydifferentmodels.

trimodalPeAa(0.95)KbA*(0.95)Am4ta(095)

model037442.60.0110.00810.0240.0114

model11118842.60.1780.00810.1780.0114

model2876142.80.1580.00810.1560.0114

model3300942.80.0810.00810.0880.0114

Table6.6.3
Indicesobtainedfromthegenerationofatrimodalw.s.s.d.f.

Asexplainedinchapter4,dynamiccharacteristicswerealsotakeninto

consideration.Tables5.6.4.6.5.6and5.5.6showthevaluesolImforthecom

parisonorthedistributionorthemaximumvariationindicator(mvr(t))

obtainedfromtheoriginaltraceandthoseobtainedfromtheoutputtraces
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or the various models when unimodal, bimodal and trimodal working-set size

density Amotions, respectively, were generated. Different values for the vari

able T (window size) were used and it could be observed that the degree or

mismatches seems to be roughly proportional to the simplicity or the model,

to the complexity or the working-set density function to be generated, and lo

the length or the window (at least In the ranges or values explored in our

unimodal F=25 f=50 r=ioo F=200 7=400

model 0 0.020 0.021 0.043 0.074 0.086

model 1 0.029 0.060 0.123 0.145 0.139

mode) 2 0.099 0.17B 0.199 0.221 0.108

model 3 0.091 0.182 0.198 0.225 0.228

Table 6.6.4
Indices Im for the distributions of mvr(t) obtained

from the generation of an unimodal w.s.s.d.f.

bimodal F=25 F=50 T-slOO r=200 F=400

model 0 0.024 0.033 0.083 0.094 0.102

model 1 0.213 0.208 0.438 0.571 0.833

model 2 0.226 0.343 0.485 0.614 0.662

model 3 0.117 0.127 0.198 0.318 0.424

Table 6.6.6

Indices Im for the distributions of mvT(t) obtained
from the generation of a bimodal w.s.s.d.f.

trimodal T=25 7*=50 r=ioo 7--200 7-=400

model 0 0.025 0.038 0.035 0.073 0.123

model 1 0.286 0.334 0.387 0.497 0.647

model 2 0.277 0.345 0.424 0.545 0.723

model 3 0.187 0.199 0.258 0.348 0.454

Table 6.6.6
Indices Im for the distributions of mvT(t) obtained

from the generation of a trimodal w.s.s.d.f.
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experiments). Figure 6.6.4 shows the distribution ot mv. which explains why

a high degree or mismatches was obtained, for instance, for Ihe trimodal

function with window lenglh equal to 50 references. It can be observed that

the distributions of maximum variations measured from the strings gen

erated by the various models are narrower and Iheir averages are shifted

towards the origin (lower values of mv) when compared lo Ihe one obtained

from the original trace. The same characteristics were observed lo a greater

or lesser degree in the unimodal and bimodal cases. These remarks suggest a

maabnutB varUlloa

Figure 5.5.4
Distribution of mvr(t) for T=50 obtained

from the generation of a trimodal w.s.s.d.f.
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higher correlation between successive values of working-set sizes generated

by such models since there is a higher chance of correctly predicting the

maximum variation.

This conjecture is confirmed by the autocorrelation functions plotted In

figures 5.5.5. 5.5.6 and 5.5.7 . In fact, in most cases, models 1. 2 and 3

present much higher autocorrelations between working-set sizes generated

for higher values or the lag k than the ones presented by the original trace.

The same conclusion can be drawn from the examination of figures 5.5.8.
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Figure 5.5.6
Autocorrelation function obtained

from the generation of an unimodal w.s.s.d.f.

A as —

Figure 5.6.8
Autocorrelation function obtained

from the generation of a bimodal w.s.s.d.f.
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5.6.9 and 6.5.10, where the spectral power density functions for lower rre

quencies (period greater than 10 units or time) calculated by using the first

100 autocorrelation coefficients are plotted. The power density calculated

for frequencies above 0.1 were found to be the same (negligible) for all traces

including the original one. In these figures it can be seen that for models 1.

2 and 3 there is a slighly higher concentration of power in the lower frequen

cies of the spectrum. This, translated in intuitive terms, shows lhat the pro

posed models generate traces which produce slower variations of working-set

sizes than those present in the original traces.
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The models analyzed ebove. especially model 3, are able to reproduce

working-set size density functions reasonably accurately. However, the

reproduction of dynamic working-set characteristics does not seem to be as

good as the static ones. When such models should be used lo produce page

reference airings for memory allocation studies is a question lhat does not

hove a simple answer. If a reasonable reproduction of the working-set density

function must be achieved, we would be inclined to recommend the use of

one or these models. However, when the correct dynamic behavior or a

specific program or set or programs Is also lo be reproduced, the oase

f 0.0

10 SO 30 40

Figure 5.6.7
Autocorrelation function obtained

from the generation of a trimodal w.s.s.d.f.
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lower part of the spectral power density function

obtained from the generation of an unimodal w.s.s.d.f.

should be carefully studied before adopting one of these models. Some

suggestions on how these models con be modified in order lo improve their

dynamic behavior is given in the next chapter.
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CHAPTER 6

Conclusions

6.1. Summary

Despite the constantly dropping price of computer memory, the fact

lhat it will never become a free resource seems to folly justify any research

aimed et improving the understanding of how a program behaves in order to

save memory space while keeping a desired performance level. Thus, this

research was aimed at developing a new program behavior model capable of

reproducing some of the working-set characteristics generated by real pro

grams in an easier and/or better way than those provided by the currently

available models.

An introduction to the field of program behavior modeling was provided

in Chapter 1. Some commonly used models, as well as their advantages and

shortcomings, were described. Procedures for the construction, calibration

and validation of models were discussed and the main purpose of Ihis

research. Ihe construction of models or program behavior capable or repro

ducing real programs' working-set size distributions, was introduced.

Tlie investigation or working-set size distributions generated by one or

the most common models or program behavior, the least recently used slack

model (LRUSM). led to the derivation or a closed formula for this distribution

through the mathematical technique of z-tronsforms. Thus, in Chapter 2.

relationships between stack distance probabilities or a LRUSM and the
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corresponding probabilities or working-set sizes generated by Ibis model

were established.

The apparent impossibility of obleining multimodal density funclions for

the working set generated by the LRUSM and the difficulty of calibrating a

phase-transition model to reproduce a given multimodal working-set size

density function led to the development of a new model. The new model was

based on a Markov chain where stales were associated with working-set sizes

instead of with actual page names. The characteristics of this model were

presented in Chapter 3.

The possibility thai in some cases this model would generate infeasible

sequences of working-set sizes, i.e.. sequences that cannot be obtained from

any actual string of page references, led lo Ihe definition of a measure called

the potential of decrease, which can be calculated as working-set sizes are

generated by the model. Still in Chapter 3. it was proved that, by nut allow

ing a decrease in working-set size lo occur when the potential of decrease is

equal to zero, it is possible lo generate feasible working-set size strings.

Dased on the concept of potenliel of decrease, a n-th order Markov

model was developed. Due to Ihe high number of parameters required for the

definition of such model, a reduced version was devised. An example showing

Ihe actual first-order Markov model underlying the n-th order one was also

presented for a simple case.

The strings of working-set sizes generated by these models when their

parameters were estimated from the strings generated by three phase-

transition models producing a unimodal, a bimodal and a trimodal working-
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set size density function were compared with them. These shapes of density

function were chosen because they are similar to those generated by real

programs in execution, as shown by some published empirical studies.

The definition or Indices used for comparison purposes, and the analysis

or their statistical characteristics when some basic hypotheses are made

were discussed in Chapter 4. The actual results or comparisons obtained

through simulation were presented in Chapter 5.

As a general conclusion or this research one can state that the models

developed, under the testing conditions defined in Chapters 4 and 5, seem to

be capable or a reasonably accurate reproduction or working-set static

characteristics, Le., the reproduction of actual working-set size distribu

tions. The reproduction of dynamic caracteristlcs, i.e., the variation of

working-set size In time, however, does not seem to be as accurate as that of

static ones. This is not surprising, since the model was designed to repro

duce static characteristics only. Variations of working-set size produced by

the models have shown to be slower than the ones observed in the original

traces defined for comparison.

. As for as the indices defined for comparison are concerned, some or

them (the index of mismatches and the maximum variation, for Instance) are

intuitive enough to provide guidance on when and whether such models

should or not be used as the basis for the generation or actual page refer

ences in memory allocation studies.
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6.2. Directions for Further Research

The main problem presented by the models defined in this research

seems to reside in their Inability to reproduce dynamic behavior when some

what higher rrequencies or working-set size variation are present in the

string or working-set sizes generated by the program to be modeled. Since

our original traces were also generated by a model (phase-transition), it

would' be Interesting to investigate whether the dynamic characteristics of

working-set sizes generated by real programs are similar to those generated

by this model. If this is actually the case, an attempt to improve the dynamic

characteristic of the working-set sizes generated by the proposed models

can be made by adjusting the values or X's and u'a. From equation (3.2.3) it is

known that the final working-set size density function will not be affected if

the ratios between X's and u'e are kept constant. Clever schemes must be

devised, however, in order to preserve the feasibility of the values or jc'bwhen

such modifications are performed. Furthermore, despite the higher mobility

caused by an increase in the values of the X's and or the /i's, there is no

guarantee that with such modifications the model will reproduce better the

actual dynamic behavior of real programs. It seems, unfortunately, that a

better fit for the dynamic characteristics will hardly be achieved without an

increase in the number of parameters required for model definition.

The models developed in this research generate a string or working-set

sizes, which should then be processed by an algorithm like the one described

in [FerrOla] IT Ihe generation or actual page name strings is sought. The fact

that only working-set sizes are manipulated by Ihe model implies that any

event occurring in the page name reference string which is not reflected In a
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variation of the working-set size is totally overlooked by the model. This hep-

pens in the case or the flat faults (faults which, being accompanied by the

simultaneous departure of a page, do not cause any increase In the working-

set size) defined In [FerrBlbJ. Since flat faults seem to be important for the

correct characterization of dynamic behavior, especially of sequential

referencing patlerna. an extension of the models presented should be dev

ised in order lo take these faults into consideration.

Finally, a validation procedure involving the comparison or results

obtained indirectly. Le.. the comparison or performance indices obtained

from page replacement algorithms or multiprogramming scheduling policies,

for Instance, when processing real program's page reference traces and, sub

sequently, the corresponding model-generated page reference traces, should

provide a betler measure for the scope of utilization of these models.

. 9f
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Appendix 1

In this appendix we calculate the asymptotic distribution or the Index of

mismatches (Im) tor tlie null hypothesis (//0). i.e.. for independently distri

buted variables.

Let a generic random variable a have a standard normal distribution.

Thus.

Tlie random variable x< =|* | thus has a distribution such thai

P(*«<a)= V~|-"8dr« ' (!l)

Tlie moments or s< can be calculated using equation (LI):

«*.•> -Vf{«*"**» =VI Vf•' •
V.r(*,) =e(.,«)-[£(x,)]» «| - jL„ SjjL . (L3)

Sinoe Im = -—V |/<-npil. the set or probabilities pt constitutes a mul-
2ni*i

ft—npi
tinomial density function and s. = • ,.- •.,.••-•==- has an asymptotic normal

Vnpi(l-pi)

distribution as n increases. Thus, in this case, the definition of Im can be

04

rewritten as follows:

where X|s|*t | and zi has a standard normal distribution N(0,1).

Tlie random variable yt = xi\/pi(\-pl) has a distribution whose mean

end variance are given by

E(v.) = VSTFpTJ U*i) .

Ver(V,)=pi(l-p,)Var(*<) .

ir all yt's are independently defined and m is large, then /m has an asymp

totic normal distribution with mean and variance given by

«vn 1*1

Var(/m)= — fiver^^d-p.)
tn tBt

04)

(1.5)

But. since only m-1 or the yt'a ere independent because 2Jp4 = 1 and

2j/( = n» tne variance or /m is. in fact, a Utile bit bigger. Knowing that
4*1

2J/« - Jj*»P« = 0. one can obtain
1*1 4*1

/4-*»P* s 2nPj-/| (16)

However, by introducing absolute values, the number of values of |/,-npJ

which satisfy (J.8) when only the set of absolute values |/j-npj| with j+i in

known grows with m (the interested reader may verify this by him/herseif).

Due to this fact, one is inclined lo believe lhat \fi-npi\ and the sel of
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\fj-npj | with j+i become uncorrelated as m grows.Under this assumption,

equation (1.5) can be considered a good approximation for the variance or

Im.

Substituting (1.2) and (1.3) in (1.4) and (1.5) one has

(1.7)

(18)

In addition to m large, assuming also p<«i and knowing that £pt = 1. one
<-i

can obtain simpler formulas for (1.7) and (1.8) as follows:

(1.9)^"vfer,?,^

Var(/m) « ir-2

4nir
(110)

Therefore, for n-»<- and m large, Im has an asymptotic normal distribution

whose mean and variance are approximately given by (1.7) or (LB) or by (1.8)

and (1.10).

The simpler approximate formulas (1.9) and (MO) were used to calculate

the value or K/m presented in chapter 5.

Some preliminary Monte Carlo experiments were performed In order to

evaluate the accuracy and robustness or the estimates or E(/m) and Var(/m)

given by equations (1.7) through (1.10). Two multinomial distributions were

chosen. The probabilities p< i=l m were defined as follows:

and

p» = — »=1 m for distribution 1,
m

98

Pi =-g". P4 wJ^i- •*=2 m for distribution 2.

For each distribution, two cases were considered: few (m =10) and many

(m =100) possible different outcomes.

The mean and variance of Im for each case of the above mentioned dis

tributions were estimated by comparing the expected number of outcomes

with the number or outcomes obtained rrom a process or random sampling

using a linear congruential pseudo-random number generator. The null

hypothesis (H0) that equation (1.7) or (1.0), and (1.8) or (1.10) yield the

correct values or E(/m) and Var(/m), respectively, was tested. Confidence

intervals for E(/m) andVar(/m) wereobtained using standard stalistical pro

cedures [Hogg7B].

In order to reduce the chances or a type I error. Le.. reject H0 when it is

true, a IX significance test was chosen. The size of the corresponding 99%

confidence interval for the non-rejection of HQ was reduced through multiple

independent replications of the experiment. A number or replications equal

to 1000 yielded a confidence Interval which was considered reasonably nar

row for our purposes.

Tables 1.1 and 1.2 present the various estimates or the mean and vari

ance or Im, respectively, obtained rrom equations (1.7) through (1.10) and

those obtained from the sampling procedure described above. The following

notation applies to tables 1.1 and 1.2:



dist. type of distribution;

m number of possible different outcomes;

n sample size;

mf multiplying factor for all values in this row;

It lower limil of the 00% confidence interval;

mean sample mean of estimates;

var. unbiased estimalor or the population variance;

ul upper limit of the 00X confidence interval.

07

From Table 1.1 we can see thai, as long as n»m, the value yielded by

equation (1.7) seems to be a good eslimate of E(lm). Tlie formula given in

equation (1.0) overestimates Im. When n*m both formulas overeslimate Im.

dist.
m n mf 1.7 1.8

00XC.I. forE(/m)

II mean ul

1

10

100 10"1 1.1988 1.2818 1.18B0 1.1005 1.2150

1000 io~» 3.7847 3.9894 3.74.38 3.8175 3.8012

100

100 io-« 3.0804 3.9894 3.8454 3.6712 3.6080

1000 10"' 1.2552 , 1.2616 1.2412 1.2400 1.2586

2

10

100 10"* a.1188 9.3507 7.7055 7.0340 8.1825

1000 10"f 2.5807 2.9570 2.4014 2.5010 2.8324

100

100 10-* 8.3939 0.8313 7.7700 7.0003 B.2277

1000 io-« 2.6557 3.0457 2.5547 2.8259 2.8071

Table 1.1

litl

dist. m P mf 1.8 1.10

09% CI. for Var(/m)

11 var. uf

1

10

100 10* 8.1761 0.0845 8.1110 0.0600 10.2270

1000 10"° 8.1761 0.0845 7.7702 8.6021 0.0027

100

100 10« 6.0037 0.0645 16.9441 0.9000 ll.20Ut»

1000 10"6 8.0037 0.0045 8.2038 0.1031 10.3330

2

10

100 10"« 0.0540 0.0845 7.0472 7.0712 6.07U0

1000 io-fl 0.0548 0.0845 8.7081 7.4025 0.4U00

100

100 10* 6.0546 0.0045 8.0386 7.0383 iuiu:i

1000 10"° 6.0546 0.0045 J7.0302 7.8500 0.0U32

Table 1.2

though the estimate given by equation (1.7) is less than 10% above the sample

mean for Ihe cases considered in Table 1.1.

For all cases presented in Table 1.2. the sample variance, as expected,

was a little bit bigger than the eslimate given by equation (LB). Tlie formula

given in equation (1.10). however, overestimates the variance in most cases

presented in Table 1.2 . In fact, a good estimate of the variance of Im seems

to be the arithmetic mean of Ihe values given by equations (1.0) and (1.10). At

least, this value would nol cause II0 to be rejected in any of the cases

presented in Table 1.2 . Nevertheless, further investigation is required.
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Appendix II

Table II. 1 shows Ihe stack distance probabilities used in the three

phase-transition models lor the generation or the original traces. The genera
tion of unimodal, bimodal and trimodal working-set density functions was

accomplished by using one. two and three localities, respectively. For the

stack unimodal bimodal trimodal

dist.
loc. 1 loc. 1 loc. 2 loc. 1 loo. 2 loc. 3

1 0.02 0.1 0.02 0.3 0.02 0.02

2 0.02 0.1 0.02 0.3 0.02 0.02

3 0.02 0.1 0.02 0.2 0.02 0.02

4 0.02 0.1 0.02 0.1 0.02 0.02

5 0.02 0.2 0.02 0.05 0.02 0.02

«~i 0.05 0.2 0.02 0.01 0.02 0.02

7 0.05 0.05 0.02 0.01 0.02 0.02

8 0.05 0.05 0.02 0.01 0.02 0.02

9 0.1 0.02 0.02 0.01 0.02 0.02

10 0.1 0.02 0.02 0.01 0.02 0.02

11 0.1 0.02 0.02 0.1 0.05

12 0.1 0.01 0.02 0.1 0.05

13 0.05 0.01 0.02 0.1 0.05

14 0.05 0.01 0.02 0.1 0.05

16 0.05 0.01 0.02 0.1 0.05

16 0.02 0.01 0.1 0.05

17 0.02 0.01 0.05 0.05

IB 0.02 0.01 0.05 0.05

19 0.02 0.01 0.05 0.05

20 0.02 0.01 0.05 0.05

21 0.01 0.02 0.05

22 0.01 0.02 0.05

23 0.01 0.02 0.05

24 0.01 0.02 0.03

25 0.01 0.02 0.02

28 | ' 0.01 0.02 0.02

27 1 °01 0.02 0.02

28 n °-01 0.02 0.02

29 I °01 0.02 1 0.02

30 II 0.01 0.02 1 0.02

Table HI

•aaweS

100

unimodal. a locality composed of pages 1-30 was defined. For the bimodal.

locality 1 is composed of pages 1-15. and locality 2 of pages 1-30. For the tri

modal. locality 1 is composed or pages 1-10. locality 2 or pages 11-30. and

locality 3 or pages 1-30.

A transition between localities was taken after k references within one

specific locality. The variable k had an exponential distribution with mean

equal to 50 references. In the case of the trimodal. when leaving a specific

locality, the transitions to either of the remaining ones were made to be

equally likely.
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