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ERRATA

page 69 In Figure 5.5.1, the original curve was wrongly drawn.
In fact, all curves are hardly distinguishable from
each other. This can easily be verified by examining
Table 5.5.1 on page 70.

pages 78,79,80 Figures 5.5.8, 5.5.9 and 5.5.10 show the smoothed
spectral power density function §S and not simply £

as stated.
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Abstract

In paged virtual memory systems the concept of the working-set size of
a program in execution, which is informally defined as the variable number
of pages required to be resident in the main memory at the various instants
of the program'’s execution time in order for the program to run efficiently,
is central Lo the gosl of improving system performance. Generative models of
program behavior capable of reproducing working-set size characteristics
can be invaluable in Lthe mnalysiz and Lhe tuning of page replacement algo-
rithms and of other aspects of memory policies, since Lhey allow a controlled

environment for performing experiments Lo be constructed.

In this research, a theorelical formulation for the working-aetl size dis-
tributlion generated by one of the most common models of program behavior
(the Least Recently Used Stack Model) Is derived. It is shown that it cannol

reproduce Lhe essential characleristics of the distributions generaled by

real programs in excculion as presented in several empirical studies.

A new model Is proposed, based on a Markov chain characlerizatlion
where stales represent working-sel sizes. The probleins which are encoun-
tered with this model when Lhe generuation of actusl page references is
sought are discussed. The recent identilication of neceasary and sufficicnt
conditions for the generation (;b' a feasible sequence of working-sel sizes, i.e.,
a sequence which can be derived from a string of aclual refcrences Lo page
names, suggests Lhe delinition of a measure called patential of decrease snd
its incorporation in an n-th order Markov model. It is proved thal such &

model is capable of generaling feasible saquences of working-sel sizes.

Comparisons belween traces genersled by this model and by some of its
simpler versions, and those genersled by phase-transition models are per-
formed in order Lo evaluate their ability to reproduce static working-set size
characleristics (i.e., distribution descriptors), and dynamic working-set size
characteristics. Indices are defined to allow a meaningful intuilive com-
parison to be performed. Parametric and nonparametric stalistics as well as
autocorrelation and spectral analysis lechniques are also used for Lhis pur-

pose.

The model iz shown to perform betler under crileria invalving static
characteristics than under Lhose involving dynamic ones. This is not surpris-
ing, since the model is designed lo reproduce stalic characleristics only.
The v)alues of the various indices obtained from Lhe simulation using
working-set size strings which produce different forms of working-sel size
densily functions should help one choose a model when Lrace-driven simula-

tion studies of mermory policies are Lo be performed.
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CHAPTER 1

Program Behavior Modeling

1.1. Inlroduction

The aludy of program behavior deals with the characlerization of the
amounts of computational resources a computing system sllocates to a pro-
gram during its execution in order to carry the task to its correct comple-
tion. Program behavior modela are built in order to actually reproduce the
consumplion, or, at least, provide good estimates of the amounts of comput-

ing resourcea.

Many aspects ol Lthe behavior of a program can be modeled. Examples of
'aspecla capable of being modeled include usage of certain registera and
usage of specific Instructions, al a more hardware oriented level, and
inpul/output from/to disk, buffer utilization and memory space required, at

a more aoftware or operating system oriented level.

These models can be used for many purposes. For example, before actu-
ally building a new aystem or introducing some modification to an existing
one, the impact on performance can be estimated through the usage of a

good model. Models constitute an excellent tool for performance prediction.

¥ith the advent of virtual memories, programs were divided into plecea
which, in general, are resident in the main memory during only a frection of

the total Lime required for the program’s execution [Denn70). If the program

ia divided physically inlo equel size pieces, each piece is called a puge and
the aystem ia said Lo use a paged virtual memory. On Lhe other hand, if the
program ls divided into logical pieces, In general of dillerent sizes, each
plece is called a segment and the syslemm ia said o use
segmentad virtual memory. There are also some syslems where scgments
are paged. These syslems can be considered as paged systems for most per-

formance purposes.

Among Lhe Lypes of systems mentioned above, paged systems will be Lhe
only ones considered Lthroughout Lhis work. Specifically, the main concern of
this work is the modeling of the sequence of references Lhal a program

issues to ita pagea when execuling in a paged virlual memory enviconment

Models of program behavior have been used mainly for the sludy of page
replacement algorithma. More recently, however, program behavior models,
with slight modificalions, have been succeasfully applied Lo Lhe estimalion of
performance al both exlremes of memory hierarchies, i.e., to the study of

cache allocation and file migralion.

Although the price of memory has dropped considerably in the last few
years, memory is not, and probably will naver ba, a frev resource. Therufore,
any research aimed at improving our understanding of how a program
behaves in order Lo save memory space while keeping Lhe same performance

level seems to be {ully justifiable.



1.2. Construction, Calibration and Validation of a Model

Models of program behavior can be classified into three categoriea: con-
ceplual models, analytic models u.nd generative models. A conceptual model
is defined as an informal description of what might be the memory referenc-
ing behavior of a program. An analytic model is a mathematical model. In
general, it bears little or no resemblance with any physicel aspect of the
behavior of a program in execution, but, from appi-oprlate assumptions and
accurate data obtained trom resl programs, it can estimate some perfor-
mance indices. Generative models are, in terms of the type of their output,
the closest ones to real programs. They are capable of generating string of
page names and, in some cases, actual references to pagea. The former can
be used in simulation, the latter in measurement. Generative models are
implemented by programs (as analytic models can be), but their structure is
usually quite different from that of the program being modeled. Although
conceptual models can give some insight into the aclual structure of the
behavior of a program, and analytic models can estimate some of its aspects,
generalive models are the only ones capable of substituting real programs

for the purpose of actual measurement of system performance.

The first step in the construction of a model is the definition of its inter-
nal structure. To each internal structure for a model there underlie, to a cer-
tain extent, the conceptions of the modeler about the actual stucture

governing the behavior of Lhe modeled phenomenon.

There is no theory behind the choice of an internal structure for a
model. IL is, in most cases, Lthe result of careful observation or, sometimes,

just pure insight. However, some general guidelines are usually followed by

successful modelers. First of all, the model should be as simple as possible.
There is no advantage in using a complicated structure when a simple one
ylelds comparable results. Secondly, the parameters required for the specifi-
cation of the actual structure should be reasonable in number and easily
obtainable, l.e., the calibration of a model should be a reasonably simple
task. While too meny parameters, in general, complicate the model unneces-
serily, parameters obtained through involved procedures are prone to be
loaded with errors making Lheir usage, at best, debatable. Finally, the model
itself or, at least, ita output should be amenable to mathematical or statisti-
cal analysis, l.e., it should allow a reasonably easy validation. A model whose
accuracy under a certain criterion cannot be verified, though perhaps not
useless, should not be viewed as successtully concluding the execution of a

modeling procedure.

Accurate knowledge of the p.henomenon to be modeled may help consid-
erably. This does not mean, however, that a full understanding of the internal
structure of the phenomenon is essentlal for the modeling task. As a matter
of fact, even nowadays, the structure, If there exists one, underlying the
behavior of a program, which, when reproduced by a model, would allow this
model Lo represent accurately the behavior of a real program in all situa-
tions, Is not known. The choice of the basic structure for a model is, there-
fore, arbitrary and its appropriateness in representing a real-world

phenomenon will be evaluated through the process of validation.

Many structures for models of program behavior have been proposed
and investigated. With respect to the page referencing patlerns, one can

mention: random refsrencing, i.e., no structure at all; references to pages



indopendenl of each other; reference Lo Lthe next page dependent on the
currenlly referencod page only; reference to a page dependent on the previ-
ous relerence to thet same page (locality); mulliple localities; etc. Many
olher slruclures can be devised though not without some sacrifice of the

guidelines introduced above.

The (inal stup for model building involves the assignment of values to the
model’s parameters, thua delining its actual structure for a apecific case.
Alter Lhe aassignment of a seot of valuea to parameters, some test cases should
be chosen and the values of performance indices should be checked. lf theae
indices are not within the error bounds apecified by the modeler, another set
of parameters should be tried. This procedure is called calibralion and its
objective is to eliminate or, at least, reduce structure formulation inaccura-
cies. The calibration of a model is intrinsically related to Its internal struc-
ture. If the structure is a simple one, it might be suspected that the number
of paramelers is small and the calibration is relalively easy. Allhough an
acceplable set of parameter values may not be easily oblainable, a simpler

maodel, in general, facilitatea this lask.

The ultimate acceplance of s model, however, is in the validation phase.
This phase involvea the delermination of how well a inodel can represent a
real-world phenomenon under specific criteria. The validation of a concep-
tual model is done indirectly. If a page replacement algorithm based on a
concépluul model of program behavior, for instance, outperforms salgorithing
bassd on other models, Lhis s a good indication of the validity of that con-
ceplual model. On the other hand, for analytic and generative models, since

their resulls can be directly compared with Lthose obtained from real pro-

grams, mathematical and statistical tools can be, and aclually are, used in

their validalion.

Many criteria can be defined for performing the validation of a model.
Among Lhe mosl commmon ones, one can mention: the aversge number of
poge faulls, the mean Lime belween poge faults (lifelime curve), the mean
meinory occupancy, the space-limme product, the distribulion of memory
occupancy, the dynamics of mnemory occupancy, and many olhers. What is a
good criterion for validation depends on the application purposes of the

model.

1.3. Models of Program Behavior

The simplest model of program behavior one can devise is the random
model. The underlying assumption (structure) ia that the pages of a program
are referenced randomly. This model is used for comparisons only, since it

hardly passes any validily Lests.

A little more sophisticated is the indepandont reference modat (IRM)
[Cotf?73). To the event of a page being referenced, a specific probabilily is
assigned, and Lhese evenls are assumed Lo be independent. The assigned pro-
babililies are, in general, estimated from real program traces. The IM does
not fare very well in validity Lesls, allhough some altempts have been made
to adjust ity coefficienls in order Lo yicld belter resulls In specific cases
[Bask78). The IRM, however, is recognized Lo be Loo simple Lo reproduce Lhe

behavior of a real program.



Some dogree of interdependence among page references was introduced
through Markov models [Bogo75). Some other models where interdepen-
dence was taken Into account were also devised [East?5]. The problem, how-
ever, seems Lo be the memoryless property of Markov processes. It does not
seem that programs issue memory references which are dependent only on
the page being referenced. Thus, in the process of validation, these models,

under most criteria, seem to perform poorly.

Better models can be built when the concept of locality [Bela68] ia used.
During any time interval much shorter than the total duration of a
program’s execution, memory references can usually be observed to be con-
centrated in amall s;sbsels of its pages. Although the degree of concentration
may vary from program to program or even during a given program’s execu-
tion, the presence of locality in most programs seems Lo be universally
recognized. Program locality has been measured, analyzed and modeled
(Coft72,Spir?2,Bats?8,Madi?8). It has also been shown that, in most pro-
grams, locality can be increased by the appropriate rearrangement of the
program's logic blocks [Hat(71,Ferr74,Ferr?5,Baer76,Ferr?8). Currently, it
seems that no good model of program behavior can overlook the concept of

locality.

The most popular generative model capitalizing on the locality concept
is the least recently used stack modal (LRUSM). Based on the page replace-
ment algorithm that bears the same name (LRU) [Matt70), it associates pro-
babilities not direclly to pages but Lo positions in a stack. These positions are
filled with page names and the stack is updated al each new reference in

order to keep the most recently referenced page on its top. This page Is,

therefore, inserted at the top of the stack at the same time as other pages
are shifted downwards (away from the top) until the empty slot left by the
currently referenced page Is filled. i’uges beyond this point are left
untouched. The LRUSM seems to be one of the best models currently avail-

able.

Anomer very popular model using the concept of locality is the
working -sat model (WSM) [Denn68). Even though a conceptual model, it has
influenced the design of many actual page replacement mechaniams
[(Morr72] thaL seem to perform even better than LRU in most cases, and
other components (a dispatcher [Rodr73ea), a system for the dynamic parti-
tioning of Lthe main memory [Ghan75]) of operating systems for virtual
memory machines. Unfortunately, however, there is at present no working-
set-based generative model which allowa direct comparisons with the LRUSM

to be performed.

Observing the exscution of a number of large programs, it was noticed
that the utilization of g single model, In general, is not sufficient to charac-
terize its behavior. These programs seem to concentrate their references
into a relatively small subset of pages during a relatively long period of time
(phase), followed by a short period where almost all references are issued to
pages not referenced in the recent past (transition) [Denn78a). This phase-
transition behavior is observed in programs like compllers, Lthough not res-

tricted to them.

Assuming the phase-transition behavior as the basic structure, phase-
transition models were devised. For the phase behavior (micromodel) any of

the above menlioned models may be used. In general, however, the LRUSM



seems to be preferred. For the lransition structure (macromodel), a Markov

chain, where states are assoclated with ph , has b proposed and found

Lo perform reasonably well [Denn75).

Although the phase-transition model seems to be Lhe most suitable one
for the representation of program behavior, at least for certain programs,
the effort Lo oblain its parameters (calibration) is by no means trivial. The
problem slems from Lthe facl that it s extremely difficult to characterize
phases by observing a string of page references generated by a real pro-
gram. If the apan of attention is Loo short, each page might be considered a
phase. If too long, the program as a whole will be a aingle phase. A variety of
phases of different sizes cen be obtained by varying the span of atlention.
The ditficulty involved in Lhe parlition of systems into modules was assessed
by Courlois [Cour75], who studied the applicabilily of techniques used in

econometrics Lo stochastic models of computer systema.

1.4. Purpose of this Work

The working-sel mode), though a conceptual model, has been shown to
provide o good basis for devising not only practical [Morr72,Smil78] but also
theoretical {Prie78] page replacement algorithms. For most programs, they
outperform all other algorithms under a number of criteria. This fact sug-
gesla that the WSM seema to caplure many of the intrinsic characteristics of
the behavior of a program in execution [Denn78b,DennB0). Research on the
design and analysis of generative modela capable of reproducing working-set
characteristics under a varisly of different criteria is the main purpose of

this work.
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The working-set size distribution gonerated by a progrem behavior
model has been the center of atlention of inany studies
[Denn720.l.enl76.8|;lr77.Koba‘w]. In Lhe early 70°s, fromn Lhe observalion Lhat
working-sel sizes generated by a program in execulion were asymplolically
uncorrelated, it was assumed lhal they would have a normal distribution
[Denn72b]. Subsequent empirical studies [Rodr73b), however, have shown
that the properly of being asymptotic uncorrelated, though salisfied by
working-sel size sirings generated by real programs, was by no mesns a
guarantee for this agsumplion. ln fact, more recent studies [Brya75,Alanso)
have found, in most cases, mullimodal working-sel size densily funclions
when real programs® (races were measured. Therefore, any program
behavior model intended to reproduce working-set characlerislics must
have the capability of generating multimodal working-set size densily func-

tions.

In the search for such models, the first, and trivial, atlempt to be inade
ia the use of some previously defined models which have already shown good
modeling capabilitios, e.g., the LRUSM and ihe phase-transition model. In
Chapter 2 an analylic formula for Lthe working-sel size distribution generated
by a LRUSM is derlved and it is shown that the LRUSM is incapable of gencrat-
ing mullimedal distribulions. Since the genecralion of multimodal working-set
size density functions is an essential properly for a model Lo have when Lhe
correcl reproduclion of working-sel characleristics is soughl, the usage of

the LRUSM in Lhis context does not seem to be generally justified.

The phase-lransition model, however, does not present Lhis problem.

Multimodal distributions can be obtained through an appropriate definition
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of phases and a correct manipulation of transitions among them. The prob-
lem with the phase-transition model, as already mentioned, is in the diffi-
culty of its calibration.

A new approach is attempted based on a Markov model where the size of
the working-set is defined as the state. This model, however, is generally
incapable of generating actual page references, one of the main goals of this
work. Fortunately, the discovery of the properties of feasible working-set
strings [Ferr81a] led us to the design of a feasible generative model. The ori-
ginal model, the problem and the new model, besides some calibration con-

siderations, are described in Chapter 3.

The validation of such model involves the definition of suitable criteria
for comparing the output of the model {working-set sizes) with those pro-
duced by real programs under similar conditions. In Chapter 4 some lndi;:es
are deflned and several statistical criteria are analyzed in terms of their sui-

tability for the above mentioned comparisons.

Besides statistical criteria, a methodology had to be devised for the vali-
dation of this model In Chapter 5 these methods are described and the

resulls oblained by simulation are presented.

Finally, in Chapter 6, a summary of the results obtained is presented

together with some considerations about directions for further research.

CHAPTER 2

The Working-Set Size Distribution and the LRU Stack Model

2.1. latroduction

Working set (WS) and least recently used (LRU) are the most important
concepts used for the implementation of page replacement algorithms in
most current systems. The working-setl policy keeps in memory all pages to
which references have been issued during the most recent time interval (win-
dow). Since the working-set size, i.e., the number of pages to which those
relerences were issued, may vary, the working-sel principle is used in the
implementation of variable memory page replacement policies. The least-
recently-used concept, on the other hand, is used in the implementation of
fixed memory page replacement policies. The page to be replaced, as the
name indicates, is chosen to be the one Lo which references have been issued
in the farthest past, i.e., the least recently used page. The LRU concept
referred to in this section is local LRU, i.e., applied to a set of pages of one
specific program only. When global LRV is used, (i.e., pages of several pro-
grams sharing the same stack) the number of pages kept in memory belong-
Ing to one specific program may vary. As a whole, however, the LRU policy

remains an essentially fixed memory page replacement policy.

More formally, one can say that, if Wr(t) is the set of pages belonging to
the working set of a program at time ¢, i.e., the set of pages Lo which refer-
ences have been iassued in the interval (¢ ~7+1.t) for ¢xT, or (1.t) for t<7,

then wy(t), the working-set size at time ¢, is the cardinality of Wg(t).

12
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Analogously for LRU, if ¢(1) is the lime of the last reference to page 1 and
d(i) ia the position counted from the top that page i occupies in the LRU
stack (i.e., the stack distance), then d(i)>d(j) implies £(i)<t(j). where i

and j are page names.

Bolh of these policies can be adjusted or tuned to certein applications
or systems through the eppropriate choice of their conlro! parameters. In
the working-aset case, Lhe conlrol parameler is the length of the window. In
the LRU caze, it i3 the size of the program’s memory. For ¥S, the longer the
window, Lthe greater the chances of a bigger working-set size. For LRU, the
bigger the memory space allocated the greater the chances of a page staying

longer in memory.

There are many similarities betweon thess two page replacement poli-
cies. Among them, probably the mosl important one ia thelr exhibiting of the
i;lcluaion properly wilh respect to their control parameter. In the case of WS,
iL cun be easily seen Lhat, if a new working set is obtained through a longer
window, it will include all pages belonging to the original one. In the case of
LRU, if a larger number of pages can be allocated in memory, the current

pages in memory will belong to that set as well.

Another striking similarity can be observed if in the LRU stack a time
stamp is associated wilh each page, indicating the time of Lhe last reference
to Lhat page. Il is not difficult Lo see that, if a maximum number of puges to
be allocated in memory under the LRU policy is defined, there exista a vari-
able window size WS policy which will keep in memory at any given time the
same pages. On the other hand, if the allocation of memory follows a WS pol-

fcy. correspondingly. there is a variable memory LRU policy which keeps in

14

memory al any given lime the same pages as those kepl in memory by the

WS policy.

The LRU Stack Model (LRUSM) is based on the slack used by Lthe LRU
page replacement policy. A probabilily of a page being referenced is associ-
atled not direclly with the page bul wilth the posilion it occupies in the LRU
stack. Therefore, if o page is found al a cerlain instant of time occupying a
specific position in Lthe LRU slack, the probability associated with Lhis posi-

tion is the probability that this page will be referenced next.

Similarly to what Lhe LRU page replacement policy does, Lhe stack is
updated al each new reference. All pages occupying positions closer Lo the
top of the slack Lthan Lhat currenlly being referenced are shifled downwards

(away from the Lop) as the referenced page is placed on Lhe Lop of the stack.

From the similarilies observed belween the WS and the LRU page

replacement policies, and the fact Lhal the LRUSM is implemented .uaing the

LRU concept, il can be conjectured Lhat close relationships exist belween the
WS characterialics generated by a LRUSM and the paramealers of Lhis model.
This, in fact, proved Lo be true. Although iterative formulations were already
known for some Lime [Denn72c) for the relationship between the working-sel
size dislribution generated by a LRUSM and the paramelera defining Lhis
model, elegant closed forms could be obtained. This will be shown in the fol-

lowing sections.
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2.2. Working-Set Size Distribution Generated by the LRUSM
In this section, the following notation will be used:

a, probability associated with stack distance 4; a, is the
probabilily associated with the top of the stack.

b summation of the § top probabilities.

Pe(t) working set at a specific time ¢ when a window size 7 is
uaed.

wy(t) cardinality of Wg(t).

p(wr=k) probability of Wy at a generic time ¢ having size k;
since, dus to the stationarity assumption, i.e., probabili-
ties are independent of time ¢, the variable ¢ is not

important in the calculation and, therefore, is omitted.
A=) z-transform of p(ws); this function is defined as:

A‘(c)iri plwe=i)2T for 4>0 and 4,(z)=0 for i<0.
=]

The probability of a working set of size 1 with a window of size 7 being
generated by a LRUSM can be expressed by the following difference equation:

plwr=i) = b p(wy_,=i) + (1-b(_)) p(wr_,=i-1) , (2.2.1)

where il is assumed that p(wy=0)=0 for all 750, and p(wg)=1, which implies
p{wg=1)=0 for 120.

Like a dilferential equation, though applied to discrete time events, a
difference equation establishes relationships where rates of variation for the
variables are included in the formulalion. In this case, the equation states

thal Lhe probability of finding a working sel of size 1 at a generic Lime ¢ using
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a window of size T is related to the probabilities of finding at time t —1 work-
ing sets of sizes 1 and 1 -1 when a window of size T'—1 is used. The page refer-
enced al time £, which will belong to Wp(t) but might not be included in
Fr_,(t-1). has stack distance d. The probability that d<i is given by b, i.e.,
by the summation of the probabilities of relerencing any of the 1 pages
closest to the top of the stack. In this case, wy(t) will be equal to wy_ (¢ ~1).
The probability that d>{ is then 1~b,, and Lhis evont causes an increase in

the working-set size.

The difference equation can be solved through the method of z-

transforms. Both sides of equation (2.2.1) are muitiplied by =7 and summed:
Epwr=i)e” = b & [pwra=fe"+0-00 & [ptra=i-n]e 222
=] =) =

Since A4(z) = ‘2 p(wy=i)z T, equation (2.2.2) can be written as
=)

Afls) = 5(‘[?(‘”0:‘)* ggﬁ’(ﬂ’r—l:‘)]‘ r"l*‘

+(l-b.-.)=[p(wo=i-l)+'f2 (plwr-y=i-1))s "‘I (2.2.3)
=8
But since
;:p(wr-.ﬂ)z ™= ;Ip(wrﬂ)s' = A4(s)
's2 ]}
and

,i:?(wr-ﬁi-l)ﬂ ™ j:p(wr=4-l)z’ = A(2)
1] =]

equation (2.2.3) can be wrilten as
A(s) = ds[p(wo=t)+A(2)] + (1-b¢-))a[p(we=t -1)+ 4_\(z)]

Since {>0 and p(wg=1)=0 for 1 #0, hence
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A(x) = bsA(s) + (1-b_)2p(wo=1-1) + (1-b,_ )24, _,(s) .

(1-0,_,)zp (wo=1-1)+(1-b, .y, 4 _,(2)
1-bz

Afz) = (2.2.4)

Knowing thal p(wg=0)=1, bg=0 and Ay(z)=0. equulion (2.2.4) can be

expanded recursively as follows:

A(s) = (1=b¢-)(1-by-g) - - - (1-bg)(1-by)s!
(1-b2 }(1-b,_y2) - - - (1-bsz)(1-byz)(1-b,3)

ﬁ (1-5,)
A‘(g ) = (2-2.5)

]‘I(l b,l)

or

In order Lo calculate the probabilily of the working-set size as a funclion
of the length of the window T, A4 () can be expanded in partial fractions and
each Iraction subsequentlly oexpanded in ila corresponding series. Finally, the

coefficienls of corresponding lerms in 2 are added.

Another, and apparently simpler, method for this calculalion is the

evaluation in the z complex plan of the integral
=t) = =1 -1-7 -
plwr=i) 2M{A.(z)z dz
where §=V=T and C Is a closed conlour large enough Lo enclose all poles.

Fortunately, this integral can be solved by the summation of residues

using Cauchy's formula

1

= {m - :,m —~ (z-a)™g(s)

where
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e is the residue al point @

m is the mulliplicily of poluea at point a

g(2) ishe z-trensform A(z) mulliplied by £ ~*-7

Asswning thal all probabililics associated wilh poailions of the aluck in
the LRUSM are not null, one has b #b, for all 1#J. Under Lhia assumplion, no
multiple poles exist. This makes the calculation more manageable since the

Cauchy’s formula can be reduced Lo
ra=[(z-a) g(z)),us (2.2.6)
whero g{s)=4,(z)z*"7. Thus, for wy=1 one has

' gV Tde

plwyp=1)= 2 ij (z)a ' Tds = —f—,— =

Using equation (2.2.8), the general formula for p{wy=1) can, therefore,

be obtained. Hence,
plwr=t) = i)“l--.;'—l&(z)'""l oL (22.7)
i= (] * %%,
As an example, for wy=1 one has
-1 -y -
plwp=1) = m{h(z)z T = 2“1_[‘_&" T

which can be solved using equation (2.2.7). Thus, leaving z out of Lhe calcula-

tion and consequently adding one to the value of T, one has:

P g (-bys)a™i T
L b, _ b, N
ARt e N e

Theretore, p(we)=bf~'. Repeating the same procedure for i=2, one obtains:
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o b[" bf-l
P(wr-z)- b."b. + b,-bg

By repeating the procedure indefinitely, the following closed form can be
obtained:

(2.2.8)

oJ-?
P(Wrsi)-['l:['(l“bc—n) Il,i-:l l-‘l (b,~by)
ax)

i

where, as usual, n =1  n<m.
»

Although this formula was obtained independently by the author, its
derivation has already appeared in a different form in [Lenf78). The final for-
mula has also been presented in [Spir77).

The closed form solution can be easily calculated through a computer
program. An inberent limitation, however, should not be disregarded. In
order Lo lacilitate the calculation of the formula, it was assumed in the
development of the solution that there are no positions in the stack whose
probability is zero. Null probabilities will imply divisions by zero in the calcu-
lation causing, probably, program interruption. Even with this precaution,
the multiplication of a series of small numbers should be executed with care

since they may cause underflow problems.
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2.3. LRUSM Obtained from WS Size Distributions

In section 2.2 a closed form for the distribution of working-sot sizes
given the parameters of a LRUSM was obtained. It is reasonable to expect,
though this is by no means guaranteed in principle, that some closed form
for the inverse problem might exist. This is actually the case, as will be

shown In this section.

Equation (2.2.6) is, except for a multiplying constant (see bellow), a pro-

duct of functions of the type

(-b)z

= (2.3.1)

This function is the z-transform of the geometric distribution whose density

function is glver.x by
J(T)=b(1-dy) . (2.3.2)

where 1-bd is defined as the chance of success and T is the number of events

until the first success occurs. Its z-transform is given by

= ' = (1-b,)z
= it T T = - I, T D eme————
G(I) E..b{ (l b‘)‘ (l b‘ )8 Z.:nb‘ 2 (l—b,ﬂ )
Examining equation (2.2.5) closely, it can be seen that the upper limit of the

product in the numerator is 1-1, i.e.,one less Lthan that in the denominator.

Therefore, except for a multiplying constant 1--:—. equation (2.2.5) is a pro-
J

ductl of { functions of the type shown in (2.3.1), and, Lhus, the z-transform of
the probability density tunction of the summation of i independent geometri-

cally distributed random variables, as shown in equation (2.3.2). Thus,
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Als) = T:_l‘r‘]:l‘ai(')

Since G(s) is the z-trensform of a probabllity density function £,(T)

and 7'z0, then
I ACIERN
a0

Knowing that the z-transform of k.f((t). where k is a conslent, is k.G(x).

1-b¢ can be found as follows:

o 1
J-Op (Wr =‘) = .l_':b—l—
and, therefore,

1
,Z::op(wrﬂ)

b‘=l-

But b= i:u, implies a;=b(-bd,_, with bg=0. Finally,
™

- 1 o1
P oplwr=t-1) ¥ plwr=i)
= =0

for 1>0 with 'f) plwr=0)=1.
u0

The actual calculation of this formula iz a cumbersome procedure and
ils exacl evatuation Is impossible in practice since the calculation involves en
inﬁ.nita number of window sizes. Experisnents using a reasonable number of
window sizes and a linear interpolalion between these values were per-
formed. Approximate slack distance probabilities for simple cases (10-15

poges) were obtained.
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Thia resull has more theoretical than praclical importance. It does not
provide an effective method for caleulaling stack dislance probabilities frosm
working-sel size density funclions due to the requirememt of an infinite
number of working-sel size densily functions. In praclice, working-sel size
distributions are calculated for few valuus of window sizes. In addition, real
programs rarely can be well modeled by an LRUSM. Trying to calculale stack
dislance probabilities from working-sel size distribulions oblained {rom real
program Lraces may lead to such inconslstencies as negative stack dislance

probabilities being oblained when the method presenled above s used.

2.4. Form of the WY Size Donaity Punction

Measuremenls of working-sel size distribulions generaled by the execu-
lion of real programs have shown thal, in general, Lhe density funclion of
working-sel sizes Is mullimodal. This characleristic is to be attributed Lo Lthe
excculion of a variely of phases which have different working-set sizes. The
analysis of the forin of the working-sel size densily funclion generated by Lhe
LRUSM is important i, in the altempt Lo model the working-set characloris-
tica of real programs, Lhe LRUSM is thought of as a serious candidute for

such role.

The direcl analysis of equation (2.2.8) seems to be extremely compli-
cated. The problem stems from the fact that an increase of index { by one
causes one more Lerm Lo be appended Lo Lhe summation, and all olher terms
have their absolute value increased and their aigns changed. In addition, the
equation is multiplied by a decreasing factor. Alttempla Lo find simple rela-

tlonships between p (wy=1) and p (wr=1i-1) have failed. The analysis of varia-
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tions across a family of solutiona of difference equalions seems abaolutely

non-trivial.

The analysis of the z-transform function (equation (2.2.6)), however,
could give us some insight into the shape of the working-set density function.
Assuming p(wyr=1) (equation (2.2.8)) a bidimensional function with indepen-
dent variables ¢ and T, from section 2.3 it can be seen Lhat, keeping 1 con-
stant, the distribution of the variable 7 is that of a summation of { geometri-
cally distributed independent variables with parameters by and 1-b;. These
funcliona are clearly unimodal since they start from a geometrio distribution
and the summation of i independent variables approximates a bell-shaped

{ultimately a normal) density function by the central limit theorem.

This fact and the knowledge that the average of the summation
increases with 1 suggest that, keeping T constant, the density function of
working-set sizes might be a bell-shaped curve as well. The analysia, however,
is complicated further by the fact Lthat the densily function for each i is mul-

tiplied by 1-b,.

The evaluation of this function with a variety of different stack distance
probabilities has produced unimodal functions in all cases. Although a formal
proof is lacking. it seams that a multimoda! densily function of working-set
sizes generated by a LRUSM, if al all possible, is very difficult to obtain. This
is one of the reasons why Lhe new models shown in the next chapter have

been constructed.

CHAPTER 3

Development of a New Model

3.1. latroduction

As shown in Chapter 2, the use of a LRUSM as the basic progm;n
behavior model when the validation criteria include reproduction of a given

working-set size distribution is, at best, inuppropriate. The modeling of real

‘programs showing multimodal working-set size density functions requires the -

development of a new model.

Abiding by the guidelines mentioned in Chapter 1, before experimenting
with complicated structures in order to build a reasonable model, some sim-
ple ones are to be examined. Of course, the essential characteristic that the
maodel we are seeking should present is the capability of generating multimo-
dal working-set size density functions. Due to its relative simplicity and to
the vast theory available for its analysis, a Markov model seems to be a

natural candidate.

3.2. The Markov Model of Working-Set Sizea

In this Markov model of program behavior there are ym slates, where m
is defined as the maximum working-set size. Each state is identified by an
integer i (1£{<m) and the state at time ¢ is defined by a variable su(t). The
model is said to be in state £ at time ¢ if w(t)=i. The variable w(t) ia associ-

ated with the value of the program'’s working-set size w(t) at this same time.

24
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Thus, each state is associated with a specific working-set size inastcad of with
the page being referenced. This is Lthe most obvious choice but by no means

the only possible one.

The oulput of this model is a string of the working-set sizes of a program
in exsculion. The output as such, though appropriale for some stludies of
menory space altocalion, Is not sufficienl Lo characterize the output of a
generative model. A siring of page names is, in fact, the actual output that is
sought. The solutions Lo lhe problem of generaling a string of page names
corresponding Lo a given string of working-sel sizes will be analyzed in Lhe
nexl seclion. Therefore, unleas explicilly staled, a slring of working-set sizes

is to be considered the final outpul of this model.

The basic assumption underlying a mode! defined in this way is that, due

Lo the memo_rylcsa property of Markov processes, a change in the size of Lhe

'working set of a program in execulion depends (probabilistically) on the pre-
vious working-sel size only. Even though this is a simplistic assumption, it

should not be discarded just because of its simplicity: the validation pro-

cedure will delermine whether or not a model based on il can be considered

an acceplable represcentation of the program in execution according to the

criterion we have adopted.

In order to satisfy the basic necessary condition thal characterizes a
atring of working set aizes, i.e., |w(t)-w(f+1)|<1 [Denn72a), this mode), aa
shown in figure 3.2.1, is represented by a Markov chain where Lransitions to
non-neighboring slales are forbidden. This diagram is that of a birth-death
process. Paramelera Ay, y ond xy indicate the probability thal the next

reference to memory will make the working-sel size greater Lhan, less than
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Plgure 3.2.1

or equal to its current size. It is worth nolicing thal A; and g are nol necea-
sarily independent of Lhe current slate, as la generally assumed in regular
M/M/1 queusing systems [Klel75b). As a malter of fact, il is precisely the
presence of different values of A; and y for different i’s that permil the gen-

eration of multimodal probability deusity functions in the steady state.

The sleady-state probabilily densily funclion can be calculated from the
equilibrium equalions. In the steady stale, the probability of leaving any
state should be equal to Lhe probability of enlering Lthe same slale. Denoting
by P the system steady-stale probability tor slate {, one has Lhe following
equations:

P\ = Py (3.211)
Peppt Pohg = Pypgt P\, (3.2.2)

and, in the general case:

Popg t PN = Poogptyon Py

From equation (3.2.1) one has

Pg=-Lp
8 ™ ]



Subatituting equation (3.2.1) into equation (3.2.2):

Pelg = Paps .,
hence,

Ap
Paz= 2P
s= P2

Repsating this process until state m is reached, one observes that:

P = N—l‘:'-ﬂ-n (3.2.3)

which yields the general formula:

ﬁ’\:
p=LE—p, (3.2.4)

I
o !

But since EP' = 1, one has:
(=]

HM

'L-"—_P|=1

= [‘IM

s

assuming, as usual, r[] (1)=1 it k<j. Therefore,
uf

-

=)

and P, can be calculated using equations (3.2.3) or (3.2.4).

From equation (3.2.3) it iz easily seen that

28

——>1 + PPy
—_—<Kl - P‘<P'-'

Therefore, with a correct choice of parameters A; and . eny form for the

steady-state probability density function can be obtained.

Another problem worth investigating ia the possibility of obtaining the
transition probabilitiea, Ay, g and & (i=1,....m), for this Markov model given
the veclor of steady-atate probabilities P. As will now be shown, however, this

requires some additional information.

From equation (3.2.3) one can obtain m -1 independent equations of the

form:

A

= o~

P‘—| -1

where g; = . Therefore,
*"
W= F:L (3.2.5)
-1

Knowing that for each state the summation of transition probabilities must
equal one, m ﬁdditlonal independent equations of the type
TR RIS (3.2.8)

cen be obtained. Since there are 3m -2 unknowns and 2m -1 independent
equations, the system is undetermined and additional information is

required for a unique solution to exist.
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A netural candidale to provide this information is the page-fault rate,
i.e, the rate at which new pages are brought into memory. Since the action of
bringing a new page into memory causes in mostl cases an increase in the
working-set size, Lthe page fault rate can be utilized to estimale the parame-
ters A(. ldeally, one has lo measure Lhe conditional pege faull rales

Je = f(w(t)=1), end set A(=,.

If the m -1 parameters A ({=1.....m —1) are given, the oystem of eque-
tions becomesn determined and con be aolved by calculating Lhe x;'s as fol-

lows;

where ¢ = and, for convenience, it is assumed A; =0 and cg= 1.

-1

Finally, the u;'s ere oblained from equationa (3.2.8).

3.3. The Concepl of Polential of Decrease

The model prosented in the previous section has a major drawbeck. It is
not possible to use il as a generalive model when aclual references Lo pages
have Lo be generaled. The problem is thal, emong the possible sequences of
states 1 generated by this model, there might be some which are unrealiz-

able for some value of T. An example should make this point clear.

In figure 3.3.1, taken partially from [FerrBle), a possible sequence of
alates (z¢) is assumed to have been generated by the mode! defined in sec-
tion 3.2, due to the fact that |1 (¢t +1)—w(t)|=<1. The realization of an actual

string of references to page names (r) is tried. An attempt at reproducing a
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w 1123345565456665464323234456
Trse 0oabcbdecbealtfliddddc?
pdr.e 0000000011 1232111100
ry.e aobocadebadlfceddbbbbablcae
pdr.e 000000132220333223210100011

RNgure 3.3.1

reference slring corresponding Lo the sequence 3 when T=8 (ry.,) fails due
Lo the impossibility of decreasing the working-set size from 3 to 2 al the fifth
reference before tho end of the string. Allernalive solutions may be tried,
but they will always fuil at the same place, if not earlier. On the contrary, a
reference siring can be gonerated when 7'=08 (rp.g). In foct, it is poasible Lo
show thal the sequence W of working sel sizes cannot be oblained when T'=7.
Therefore, lhe basic condilion Lhat characlerizes a working-set  size

sequence, |w(t)—w(l+1)}=<1, though necessary, ia by no means sufficient.

Recently, the necessary and sufficient conditions Lthat a working-sot size
string must solisfy Lo allow the construction of a corresponding page name
string have been identified [FerrBia). When the window size T snd Lhe max-
imum number of pages of the program npg are given, the necessary and suf-
ficient condilions for a siring of integers to be a faasible working-sel size
string, i.e, Lo allow Lthe conslruclion of a corresponding page name slring, are

the following:
@) 0=sw(t)sm
(ii) w(l)=1
(i) fw(t)-w(t-1)|<1 for t=2..m

7-8
(iv) Y. d(t+i)<w(t) for t=L..n-T+l
=D
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where n is the length of the string, m =min(7.npg) and
d(t) = 1 ifwp(t+1)<we(t) (3.3.1)
0 otherwise

While most of these conditions are self-explanatory, in condition (iv) it should
be noliced that the summation accounts for the decreases thal occur in the

interval [¢.t +T~1].

" The necessary conditions (i), (ii) and (ili) have been known for a long
time [Denn72a). Condition (iv), however, which sets an upper bound for the
number of decreases in the working set size during a period of one window
size, makes the set of the four conditions sufficient [Ferr81a). This allows us
V not only to identify a feasible working set size string for a apecific window
size but elso to generale a corresponding string of page names. In the
sequel, these conditions will be referred to as fwss—conditions. If m is
given, a string of integers satfalying twss-conditions (i), (it) and (iil) will be
called a working set string (wss-string). It, in addition, Lhe value of 7 is
known and thia string also satisties twss-condition (iv), it will be called a
feasible working set size string (fwss-string) for this apecific window size.
Thusa, even if not explicitly stated, when referring to a wss-string or to a
Jwss -string it is assumed that the values of m for the former and m and T

for the latter are known.

Lemma 3.9.1

=1
In & twss-string there can be no decreases while ¢<T, i.e., 2 d(t)=0.
t=1

Proof:

From twss-condition (iv), if £=1 we have

az2

rf;'a(iu)m(l) .
t=D

-1
Meaking T7={+1 and knowing that w{1)=1 we get % d(r)<1. Since d(t)=0, it
. =)

-3
must be % d(r)=0.
ra)
qed

According to fwas-condition (iv), if a feanible working set size string is to
be generated, the number of decreases in the Interval [£.£+7—-1] must be
sl;lal!er than the working set size at time ¢. The feasibility of a decrease in
the working set size at each instant of time Is condilioned by the decreases
which have taken place in the past and can be interpreted as a potential of

decrease. More formally, the potential of dacrease can be defined as

-8
~T+2)-1]- - (33.2)
pa(e) = | (PE-T-1-Tdl-i) it e=T

0 otherwise.

The idea of defining a potential of decrease Is to provide at each instant
of time ¢ a variable such that, if pd(¢)=0, then w(¢ +1) must be greater than
or equal to w(t) for all fwss-strings. It can be obsarved that the potential of
decrease transfera to the past the information that fwss-condition (iv) i
requires from the future. In its definition, the term [w(t —T+2)—1] accounts
for the fact that, even when no decreases occurred during the interval
(t-T+2,t-1), pd(¢t) must be zero when w(t~T+2)=1. In other words,
according to fwas-condition (iv), no decrease should be allowed to take place
at time £. If decreases have occurred in this same time interval, they are
accounted for by the summation. The summation limil T-2 ia explained by

the fact that the potential of decrease, though calculated at time ¢, refers
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to the working sel size at Lime ¢ +1. In Figure 3.3.1, besides the page strings,
the polentials of decrease for Lhe working-set string w calculated at each
Instant of lime for T=8 (pdy.o) and 7=6 (pdy.s) are also shown. The time at

which Lhe generation of ry,g becomes infeasible can be easily idontified.
Some properties of Lthe potential of decrease will now be presented.

lemma 3.3.2

The potential of decroase calculated for a wss-slring with no decreases in the
first T relerences varies Iin sleps of at most one unit, ie.,
Ipd(t)-pd(t-1)|=1 for all £>1.

Proof: .

Case 1: For 1 <T, since by definilion pd(t)=0 (equation (3.3.2)), the property

holds.
Case 2: For t=T, pd(T) = [w(2)-1]) - r)igd( T—1). From fwas-condition (iii),
i=)

lw(2)-w(1)|s1, and from Iwss-condition (ii). w(1)=1. This makes either
w(2)-1=0 or w(2)-1=1 since, from fwss-condition (i), w(2)>0. Consequently,
when ¢=T, iU la either pd(t)=0 or pd(t)=1 because d(¢)=0 for t<T. But since
pd(¢)=01for ¢ <T, |pd(t)-pd(¢-1)|=1 holds for ¢=T.
Cnse 3: For ¢>T,
pd(t)-pd(t-1) =
[w(t-T+2)-1] - :z:::a(u) ~[w(t-T+1)-1) + :f::d(t —“-1) =

w(t -T+2)—w(t-T+1)-d(t-1)+d(t-T+1)

From fwsas-condition (iii). |w(t-T+2)—w(t -T+1)|<1 for t=T. Thua, we must

ider two subcase

Subcase 3a: I w(t-T+2)~w(t-T+1)=-1, Le., a decrease ococurred from

3

time 1-T+1 to 1-T+2, then d(t—-T+1)=1 and, thus,
pd(t)—pd{t —-1)=-d(t—1). Since 0=d(t)=s1 by definilion (equation (3.3.1)). we
have |pd(t)-pd(t-1)}<1.

Subcase 3b: W w(?-T+2)-w(t-T+1)z0, lLe., if no decroase occurred from
time (—-T+1to ¢ ~T+2, thend({ -T+1)=0.

If w(t—T+2)-w(l -T+1)=0, then pd(t)-pd(t —1)=-d(t —1) aa in Case Ja.
Hw(t-T+2)~w(t-T+1)=1, then pd(t)—pd(t —1)=1-d(t —1), and thus

either d(t—1)=0, hence pd(t)-pd(t-1)=1, or d(t-1)=1, lnel;cc
pd(t)-pd(t-1)=0.

This completes the proof of the Lemina.

qed

Theorem 3.3.1

Given a was-string S of length £ +1 such thol its lirsl £ elemenls constitute a
fwss-string for window slze 7, and such that pd(¢)=0, S is a fwaas-siring for
window size T il end only if w(t +1)zw(t).

Proof:

It ¢ <T the proof is Lrivial since, by definition, for all ¢ from 1 to T'-1, pd(t)=0
and, by Lemma 3.3.1, o fwas-string has no decreases in the intervel [1,7'~1}.
Let t=T

(1) The condition ia necessary

Assume a decrease occurs at time £, Le., d(f)=1 and w(t +1)<w(t). From
equation (3.3.2), since pd(t)=0, one oblains,

a(H) = w(t-T+2)-1 (3.2.9)

Making 7=t —T+2 and j=T-2-1, and subsliluling in equation (3.3.3), one has
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r-3
,Z-:ed(ﬂ-j) = w(r)-1 (3.3.4)

Since d(t) =d(r+T-2)=1, then :f:ld (r+j)=w(r), which violates fwss-
=0

condition (iv).
(2) The condition is sufficlent
A similar derivation from equation (3.3.3) yields equation (3.3.4). Since no

decreass occurs at time ¢, then
-8
Y, d(r+§) = w(r)-1,
J=0
and hence
T-8
Y, d(r+j)<w(s),
4=
satislying fwas-condition (iv).

qed

Theorem 3.3.2

Given a wss-string S of length ¢ +1 such that its first t elements constitute a
fwss-string for window size 7', and thet pd(¢)>0, S is a twas-string for window
size T. ’

Proof: .

In t;his case, tT sinoe pd(t)=0 for ¢ <T. A derivation similar to that through

which equation (3.3.4) was obtained yields
-3
rE d{t+j)<w(r)-1.
J=0
Whether or not a decrease occurs at time ¢, the inequality

rﬁgd(ﬂ-j =w(r)-1
=0

a8
ia true. Hence,
-8
Fatrei)cwi)
=0
which satisfies fwas-condition (iv).
qed

Theorem 3.3.3

In a fwas-string pd(t )=0 for all {.

Proof:

Let us assume that there is an Instant of time ¢ such that pd(t')<0. It should
be kept in mind that, from the definition of the potential of decrease,
pd(t)=0 for all t<T. Thus, by Theorem 3.3.1, no decrease occurs for t<7T
and, therefore, Lemma 3.3.2 applies to fwss-stringa a fortiori. Furthermore,
still by Theorem 3.3.1, in & fwss-string if pd(¢)=0 then d(¢)=0 for all ¢, i.e.,
no decreases can occur when the potential of decrease is equal to zero.

Case 1: If I'<T, the definition of potential of deorease contradiots the
hypothesis.

Case 2: If =7, trom Case 2 of Lemma 3.3.2, when ¢=T we have either
pd(t)=0 or pd(t)=1, which contradiots the hypothesis.

Case 3: Let £'>T. Knowing that pd(t)=0 for t<T, Uf pd(t')<0, from Lemma
3.3.2 there must have been at least one instant of time, ¢ ~1 for instence,
such that pd(t—-1)=0 and pd(¢)=-1. Thus, since pd(t)-pd(t-1)=~1, from
Case 3 of Lemma 3.3.2, either

(i) w(t-T+2)~w(t-T+1)<0; in this case, pd(t)-pd(t—-1)=-d(t—1) yields
d{t-1)=1, which contradicts the hypothesis that, asince pd(t-1)=0, no
decreases occurred at time ¢ -1; or

(i) w(t-T+2)—w(t-T+1)=1; in this case pd(t)—pd(t~1)=1-d(t -1) yields
d(t ~1)=2, which contradicta the definition of d(t). Therefore, in a Iwss-string
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pd{(t)=0for all ¢.
qed
Fromn the conclusion of Teorem 3.3.3 one might be inclined to use the
condition of negalive polential of decrease Lo identily was-stringa which are
not fwas-strings. It should be noliced, however, that, while the condition
pd ()20 for all ¢ Is a necesaary condilion for a fwas-string, il is not sufficienl.
There are cases where was-sirings which are non-feasible for some vatue of
window T have pd(t)20 for ell ¢. This happens when
w({t-T+2)-w(t-T+1)=1, pd(t-1)=0 and d(t—1)=1. In this case, fwss-
condition (iv) is violated, though, at time ¢, pd(t) remains equal to zero. The
necessary and aumcl;ml. condition for the identification and generation of
fwas-strings In terms of the potential of decrease is given in Theorem 3.3.1
since, in a (was-string, pd{t)<0 never occurs (Theorem 3.3.3), and pd(t)>0

causes no problem (Theorem 3.3.2).

lemma 3.3.3

The maximum value of the potential of decrease atl any instant of time 2 is
Lhe value of the working set size ot time ¢ minus one, i.e., pd(t)<w(t)-1 for
all £,

Proof:

The value of w(t) has a lower bound given by the number of decreases occur-
ring in the interval [¢-T+2.t-1] subtracled from w(t-T7+2). This lower
bound is atlained when Lhere are no increases in the working set size during
Lhe same time interval. Therefore,

w(t) = w(t-T+2)- 3 d(t )
it=)

Since
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pa(t) = wl(t-T+2)-1]- Y d(t i)
=
hence pd(¢)<w(t)-1.
qed

lemma 3.9.4

The maximum value assumed by the polential of decrease is Lhe maximnum
value of Wthe working ael size minua one.

Proof:

Trivial from Lemma 3.3.3. H w(t)=m, then pd(t)sm —1.

3.4. The Potentical-ol-Decrease Model

A new model that lakes into account the feasibilily of generating a
decrease in Lhe working-sel size must have some memory of past decreases
so that the polential of decrease before a new working-sel size is gonsraled
can be compuied. In this model, the next stale does mol depend on the
current state only. Hence, the model is nol a simple first-order Markov
model anymore. As will be shown, it is in fact a Markov model of order 71,

where T is the window size.

In a generalive version of this model, Lthe potential of decrease can be
easlly calcu’lnled if the times of the latest decreases In the working-set size
are kept in a vector. The lenglh of Lhis veclor is equal to the maximum
working-set size, which is, in mosl cases, much smaller than the total

number of pages of the program.

The new model contains a Markov chain for each value of the polential of

decrease. The transilion probabililies between any two slales are eslimaled,
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keeping track of the potential of decrease at each point in tLime, from an
actual string of working-sat sizes generated by the program to be modeled.
The generetion procedure follows the same steps, using at each relerence
the sel of transition probabilities corresponding to the current value of the

potential of decrease.

This model has T ( the window size) and npg (the total number of pages
of the program) as its basic parameters. The bounding parameter m is cal-
culated as the minimum bstween T and npg. The model’'s states are identi-
ﬂe& by the pair (w.pd) corresponding respectively to the working set size
and to the potential of decrease. The fact that the model at time ¢ is in state
S(t)=(i.§) implies w(t)=i and pgd(t)=j and vice-versa. Variable w may take
values from 1 to m while pd is bound by 0 and m —1. Transitions between
states are governed by probabilities M), «f end uf corresponding to the
chances of the Lhree alternatives 3u(t+1)=w(t)+1, sw(t+1)=w(t) and
w(t+1)=w(t)-1, respectively, for w{t)=i and pd(t)=j. Transitions yielding
jaw(t+1)—-w(t)>1 or w(t+1)=w(t)-1 when 1=1 or pd(t)=0, or
w(t+1)=w(t)+1 when y(t)=m, ere forbidden. Transitions between values of
pd are governed by equation (3.3.2) using w(f-T+2) and the number of

decreases in the last time interval of length 7-1.

We now summarize the properties of the potential-of-decrease model,

called pdm —propertiss in the sequel:
(i) S(t)=(i.5) implies w(t)=1i and pd(t)=j, and vice-versa.
(i) 1swsm and Ospd<m-1.

(tii) M = plw(t +1)=1(t)+ 1| w=i.pd=j5)
«f = plhw(t +1)=w(t)|w=i.pd=j]
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ul = pl(t +1)=w(t)-1|w=1.pd=j]
(v  plw(t+1)=w(t)+k) =0 for all integers k such that |k [>1.
™) plw(t+1)=w(t)+1] =0 for all ¢ such that pd(¢)=0.
(vi) plaw(t +1)=1w(t)-1] = 0 for all w(¢)=1.

{vii) plw(t +1)=w(t)+1} =0 for allm(! Y=m.

[w(t-T+2)-1]- Y d(t-1) ite=T
{a)

0 otherwiss

(viil)  pd(¢) =

where

4 ={ 1 it w(e+1)<w(t)

0 otherwise.
It should be noticed that underscored veriables s (t), pd(t), and d(1) refer
to the states of the model, while w(t), pd(t) and d(t) refer to the charac-
teristics of a working-set string. Though for the purposes of this wark the
corresponding bairs of veriables always have the same values at each instanl

of time ¢, it is important bear in mind that they constitute two sets of dis-

tinct entities.

Theorem 3.4.1
The sequence of states 1y(t) for £>0 generated by the polenlial-of-decrease

model when T and npg are given, m =min(T.npg) and when S(1)=(1,0), is a
fwss-string.

Proof:

The string generated by this model satisfies all four twss-conditions, namely:
(i) 1=w(t)=m

By pdm-properly (ii), fwas-condition (i) is satiafied.
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(i) w(t)=1

Since S(1)=(1.0), by pdm-property (i) fwss-condition (ii) is satified.
(i) Jw(t)-w(e-1)| =1

Directly from pdm-property (iv).

(W) B a(e +i)<w(t) for t=1.a—T+1
=0

The working-set size string w(1) of length 1 is cerlainly a fwss-string for all
Tx). By induction, if Lhe model gensrated a fwas-string of length ¢, due to
pdm-property (viii) and Theorem 3.3.1, the generation of w(t +1) will couse
the string of size ¢ +1 to satisly fwss-condition (iv).

qed
Corollary 3.4.1.

The variables w(t). pd(t) and d(t) of the potential-of-decrease model have
the same properties of variables w(t), pd(¢) and d(t) of fwss-strings.
Proof:
‘Trivial from Theorem 3.4.1 . The polential of decrease mnodel generates fwas-
strings; w(t), pd(t) and d(t) are associated with the variables w(t). pd(t)
and d(t) and lake, respectively, the same values for all {.
qeod

The slructure of this generative model is depicled in Figure 3.4.1, and
will be called a pd-diagram. It should be noticed that it is not a first-order
Markov chain disgram. Though arrows represent probabllities that can be
non-zero, the summalion of probabililiea assigned to arrows leaving a
gpecific slate may be greater Lthan 1. This is due to the fact that in the pd-
diagram presented, while values are assigned to the probabilities of an
increanse, of a decrease or of no change in the working-set size, the variation

of the potential of decrease is dependent on evenls occurred in the latest

12

lime interval of length T—1. Thus, there are, in general, six arcows leaving a
Lypical stale (i.e, a stale not on Lhe boundary of the diagram). Each pair of
arrows indicates Lhe probability of an increase, of a decrease or of no change
in the working-sel size. In each pair, each arrow indicates a feasible ul;ulnge
of the potential of decrease. Figure 3.4.2 shows a typical stale wilh pairs
«(z,y) labeling arrows where z=w{t+1)-w(t) end y=pd(t+1)-pd(t). I
should be remeinbered that, from Corollary 3.4.1, the variobles w and pd

vary at mosl by one unit from time ¢ to £ +1.

Since this model ia a (T-1)-st-order Markov model, L can be
represented as such, even Lthough ils representation requires a large number
of slates. The information conteined in all permutalions of working-sel size

decreases during a period of one window size, which are conciscly

Flgure 3.4.1

oo -
cemee
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¢100) \

(-1.0) (+1.0)

[QX1}]

(0.+1)

Figure 3.4.2

represented in the pd-diagram, must be explicitly stored in the structure of
the cheain. The pd-diagram ls, therefore, a kind of shorthand notation, since
its memory of size T~1 is implicit and does not appear in the representation.
"l'he pd-diagram allows the same sequence of working-set sizes to be gen-
erated while taking into consideration a conaiderably smaller number of
states. Of course, some flexibility is lost, as will be shown below. This means
that a state in the pd-diagram accounts for all states in the equivalent
(T~1)-st-order Markov model which have the same values of 1 and pd at any

time . An example should clarify Lhis argument.

Figure 3.4.3 shows the pd-diagram for a potcntlnl-c;t-decreunq model
where T=3 and npg=3. The corresponding first-order Markov chain
equivalent to this diagram is shown in Table 3.4.1 in matrix form and In Fig-
ure 3.4.4 in graph form. The following additional notation has been used in
Table 3.4.1:

dvec(t) is the vector of decreases occurred during [¢—=T+1.t); it
keeps the information contained in
(d(t-T+1)d(t -T+2)....d (¢ —2)d(¢ —1)). This iz the informa-

tion which is embedded In the structure of the first-order
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Markov chain and implicit in the pd-diagram;
- Indicates an unreachable stale;
. indicates an unreachable state in this particular example
only.

Since unreachable 'atatea are shown in the matrix representation, these
stales are also shown in the graph representation in Figure 3.4.4 for com-

parison purposes.

An equivalence between the pd-diagram states and the first-order Mar-
kov states can be established. In the Markov state diagram (Figure 3.4.4 and
Table 3.4.1), states are defined by a triple {sw.pd.dvec) while in the pd-
diagram (Figure 3.4.3) states are defined just by the pair (w.pd). This is

Figure 3.4.9
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pd =1 dues =10

S O .
0O O "

Figurc 3.4.4

because the Information contained in dusc is used by tho pd-model as long
an it influences the value of pd. In Figure 3.4.3, for instance, pd-state (2,1)
corresponds to states (2,1,10) and (2,1.01) of Figure 3.4.4 or Table 3.4.1 . This
explains the loss of flexibilily caused by the mandatory replications of the
same lransition probability value for all stales which are not differentiated

by the pd-model, l.e., thoae with different values of dvec but the same value

of pd.

Comparing Figures 3.4.3 and 3.4.4, It can be seen that the first-order

Markov chain representation requires a greater number of states than t.he

40
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Table 3.4.1

potential-of-decrease representation. This difference, however, docs not
appear 30 alriking since the example was carefully choaen in order (o avoid
an explosive number of atates. In fact, the total number of reachable states

in the first-order Markov chain diagram can be shown to he given by

-
(g_n_+l_) T=1) where m =min(T.npg ).This is becunuse, for each value of
2 Toud

the working sel size, stalea must be replicated in order Lo store Lhe informa-
tion contained in oll combinslions of decreases, from zero up Lo m—1, which
might have occurred during the last time inlerval of longth T—-1. The termn

m+

2 1 accounts for the fact Lthat almost helf of the slates (those below the

]
main disgonal) are unreachable. Since Tam, '2 [T‘-l]z 2270 Thus, the
. (L]

equivalent first-order Markov chain requires a 0(2™ ') alates.

The polential-of-decrease model, though requiring a memory of size
O(m ) to record the times of the up to m —1 decreases that might have taken

place during the last time interval of length T-1, requires Lthe representuation
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of m’;ﬂ-. Le., O(m?%) states. This can be easily seen because, by Lemma

3.3.3 and Corollary 3.4.1, almost half of the states are unrsachable. Since the
summation of the parameters A, x, and u for each state must be equal to
one, for each reachable state at most two independent paramelers should be
given. Knowing, however, from pdm-properties (iif) and (iv), that
plw(t+1)=w(t)+1|w(t)=m =0 and plw(t +1)=w(t)-1]pd(t)]=0, the total
number of independent parameters requirqd can be réduced by 2m since
there are 2m —1 states where at least one of the transitions is forbidden.
Thus, the total number of independent parameters required for the defini-

tion of the polential of decrease model is given by
2 -'!-‘-("2'—“)--— 2m = m®*~m = m(m—1). Table 3.4.2 shows a aet of indepen-

dent parameters chosen to define the mode! presented in Figure 3.4.2.

Since the number of parameters required by thia model s very large for
practical values of m, an attempt to obtain a simplified model was made
before Lrying to analyze the full model. The essential part required for signal-
ing the infeasibility of a decrease in the working-set size, i.e., the condition of
potenlial of decrease equal to zero, was kept intact. Thus, making A=),
x{=k; and uf=p, for all §50, the number of distinguishable states in the

diagram can be much reduced. All states corresponding to the same working

pd=0 | pd=1 | pd=
indep. param. | APAS | M.pudnd | u$

dep. param. cfxf | o «f

Table 3.4.2
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set size baving a polential of decrease grealer than zero can therefore be

lumped together.

The structure for the simplified model is given in Figure 3.4.6. The same
interpretation of arrows adopted for Figure 3.4.1 applies also to Figure 3.4.5.
The number of stales required is 2m —1 and, using the same argumentation
used for the full model, the number of paramelers required is found to be

2(2m -1)-(m +2)=3m -4, i.e., O(m).

Though the representation of the simplified model can be reduced as
shown in Figure 3.4.5, its structure remains the same as that of the full
model. Consequently, the pdm-properties are satisfied by this model as well.
Actually, the simplification consists of assigning the same value to many
parameters a;xd is not the ;'esult of a modification in the model's structure.
Therefore, Theorem 3.4.1 guarantees that this simplified model, like the full

model, generates feasible working sel size strings.

The validation of this reduced model, as well as that of the full model, is

discussed in Chapter 5.

wel wek w3 w=4 w=o wes we?

Figure 3.4.6



CIIAPTER 4

Methodology for Model Validation

4.1. Inlroduction

The validation of a model is the verilication of the appropriateness of
using such a model for Lthe purpose of reproducing a certain real world
phenomenon under a specllio set of prodefined criteria. As already men-
tioned in previous chapters, the real world phenomenon to be modeled here
is Lhe sequence of references a real program in execution issues Lo virtual
memory locations and the main oriterion is the reproduction of working-set

size characteristics.

In thia chapter, the methods to be utilized for the varification of how
well the model presented in Chapter 3 reproduces working-set size charac-
teristics are described. First, the targel programs, whose behavior is Lo be
reproduced, have to be defined. Secondly, having slready chosen the charac-
terislics to be compared, measures for Lhese characleristics have to be
specified in order for a quantitative comparlson Lo bs feasible. Finally, as a
direcl result from the comparison of these measures, the criteria to be
applied in accepling or rejecting the model in each particular circumstance

are selected.
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4.2. Defining tho Programs Lo be Modeled

The working-set size distribulion functions generated by real programs
in execution have been presenled in some empirical studies [Brya?5,
AlanB80). Thus, turgel prograins capable of correctly reproducing such distri-
butions have lo be oblained. In order Lo have a betler conlrol over the
behavior of the turgel programns, we decided Lo uss aynthelic slrings. This
approach was parlicularly intoresling in our case, since, as it will be shown in
the next chapter, in the simulalion process the accuracy of the various
indices could bs asscssed by comparing synthelic atrings obtained from the
seme model using u.dmercnt slring of pssudo-random numbers. For target
programs, the phase-transilion model was then chosen due Lo ils capability
of producing mullimqdal working-set densitly (unclions similar to those

presented in the empirical studies mentioned above.

In order to oblain a reasonably representutive output without consum-
ing Lhe large amount of computing resources which simulation would require, .
a series of decisions were made. The targel phase-Lransilion model was
assumed Lo have a maximum of thirly pages. The window size utilized was
much shorter than a real-world window size in order to match Lhe shorter
mean Lme the model spends In each localily. With Lhis choice, the slcady
state could be reached withoul requiring an extremely long simulation run.
The values of the paramelers defining the actual structure of Lthe phuse-
transition model were set by a Lrial and error process so aus Lo oblain three
different working-sel size denasily functions: a unimodal, a bimodal and a tri-
modal funclion. The working-sel size densily funclions generaled by such

models and used in the validation procedure are shown in the next chapler.
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4.9. Defining the Scope of the Validation Procedure

When a single, very specific model validation criterion, like the correct
reproduction of a program’s working-set size distribution is being con-
sidered, one should bear in mind that many other additional characteristica
of the target program may be completely overlooked. Thus, special care
must be taken when the model, validated with a certain set of criteria, is to
be used as a substitute for the target program. Essential characteristics of
the target program may be absent and, in this case, it is said that the model
is being used out of its domain of validity. In this work, some problems aris-
ing from the influence of these additional characteristics, in particular those
having to do with a program’s dynamic behavior, were taken into considera-

tion during the validation procedure.

The correct reproduction of the working-aset size distribution may be
called static validation. Thia simply means that, during the execution of a
program, the fraction of instants of time (considered discrete) at which the
working set presents a specific size is approximately the same as that found
in the model's output. However, nothing ia said about the ways the working
aqt reached this specific size. A static procedure is perfect if one is
inlerested only in static criteria, but, in most cases, it is a mistake to be
interested in statics only since static criteria are usually incomplete. For
instance, if the total number of references to be generated is known, the
working-set asize may be increased in unit steps and its value kepl constant
for a number of time instants proportional to the probability speciftied for
this working-set size. The string generated by this procedure would exhibit

the given working-set size distribution but can hardly be used as an actual
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generative model to reproduce the behavior of a real program. In the valida-
tion procedure, therefore, besides the static aspects, we introduced some
consideratlions about the dynamics of the program’s behavior; in other

words, we performed also a dynamic validation.

Static validation involves the comparison of distributions. Techniques to
perform thia task, known as goodness-of-fit methods, can be borrowed from
statistical theory. Some methods, paramelric and nonparametric, are

described in section 4.4, which includes a discussion of their inherent limita-

"tions in the validation of our model. In addition to the well known statistic

techniques to be described, an index, which proved useful as an indicator for
model validation, i3 also introduced. As far as dynamic validation ia con-
cerned, spectral analysis methods have been utilized. Even though the auto-
correlation and power spectrum lfunctiona can shed some light on the difti-
cult problem of gharacterlzing dynamic behavior, the cost of their computa-

tion led Lo the definition of a simpler dynamic index.
4.4. Stalistical Methods for Comparison

4.4.1. Background

In atatistical theory, the comparison of two distributions, the observed
distribution and the expected distribution, involves the verification of a sst of
assumplions, the definition of a measure of discrepancy (md), and the test
of a hypothesis Hg, the null Aypothasis, which states that the observed dis-
tribution was oblained from a population obsying the expected distribution.

In the testing procedure, after the measure of discrepancy has been defined,
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a value a is chosen an an upper bound for the probabilily of rejecling /1
when it Is true. The probability a la celled Lhe significance of the lest, and
the range of emaller valuea (lower discrepancy) thal md can assume
correaponding to Lhe probubilily 1—a define a confidenca inferval for Lhe
non-rejection of Ho. Thus, If the discrepancy is 30 high as to make md fall in
the a-crilical region, i.e., oulside Lhe a-confidence interval, #; ia rejected

with a a significance.

Measures of discrepancy ure defined to evaluate the differences between
the observed distribulion and the expected distribution. If these measures
depend on the type of the distributions being compared, Lthe Lest is called
puramaelric, since the parameters of the distribution should be known in
order Lo allow lor.a correct Inference to be performed. In the case of
independence of Lha measure from the type of Lhe distributions, the test is
‘distribution-free or nonparamatric. Forlunately, many paramelric tests
are asymplotically distribution-free, and this permits their (careful) utiliza-
tion in almost any comparison test. For the purposes of Lhis worlk,
paramelric and nonparamstric Lesla were performed during the validation

procedure.

It ia worth mentioning that, unfortunately, the basic assumption which
allows us Lo perform correct hypothesis tesling in distribulion comparisons,
bolh in the parametric or in the nonparametric case, does not hold for
working-sel size strings. The requirement that the observed distribution be
obtained through measurements which are independent of each other, i.e.,

events w(t)=1 and w(r)=4 independent for any { and § when {7, ia not

aatisfied. Specifically, when the values of 7 and ¢ are close, for instance, the*

b4

constraint staled in fwas-condition (iii). {w(t+1)—w(t)|<1, suggests highly
dependent and correlaled values. Autocorrelation measurements have shown
that this is aclually Lthe case. One should however nolice that dats are
asymplolically uncorrelated, i.e., that Lheir correlution seems to tend Lo
zoro ag Whoir distance in time tends Lo infinily. These resulls will be shown in

the next chapter.

The high correlation presented by working-set size dala restricts, if not
Invalidates, the use of parametric and nonparamelric tests for Lhe purposce
of accepling or rejecting a specific model. The measures defined for these
tests can be used as indices for relalive comparisons when muny obuvrved
distributions are lested wilh respect o an expected distribution. Their sto-

tistical meaning, however, is debatabje.

4.4.2. Comparison of Stalic Characleristicn

Among the goodness-of-fit parametric statistics defined for distribution
comparizon, the most common and best known ia Pearson's atalistic defined
as

]
Pe = ‘g (/ ;;:‘Pl)
where n is Lthe lotal number of outcomes (the tengih of Lhe string, in our
case), m is the number of possible types of outcomes (Lhe distinct working-
sel sizes), and f, and np, are Lthe number of outcomes of Lype i for, respec-
Lively. the observed distribution and Lthe expeacled distribution. The parame-
ter p, is, therefore, Lhe probability of an outcome of types 1 under the null

hypothesis. Under the assumptions of random sampling und n large, the
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asymptotic

distribution of Pg is a chi-aquare with m —1 degrees of freedom; the critical
region, i.e., the condition for rejecting Ho, is of the form Pe >K, where K is a

constant.

A qusstion ariges, at this point, about the size of the sample. How small
can a sample be chosen so that the asymplotic distribution is still meaning-
ful for inference purposea? Though no simple anawer to this question exists,
it is generally agreed that, when the sample size is, at least, four or five
times the value of m, the approximation is an acceptable one. Since in the
case of working-set slzes the sample is not randomly drawn, the number of
- samples used in the validation procedure (the length of the working-set size
string generated by the model) should be much higher than five times m.
The problems related to the size of the sample, in our case the duration of

the simulation run, will be analyzed in the next chapter.

Anolher parametric test Is the likelihood-ratio test. The ratio A is
defined as

np )/t

A ﬁ[ Iz
where f; and p; have the same meaning as in the case of Pearson's statistic.
The asymptotic distribution of -2 logA is a chi-square distribution with m -1
degrees of freedom under K, Its critical region is again of the form
—2logA>K. Since the likelihood-ratio test is computationally more compli-
caled than Pearson's test and since, when the null-hypothesis is true, the two
tests are equivalent [Lind78), the likelihood-ratio test was not used in this

work.
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If the statistical test is to be independent of the type of the distribu-
tions, the goodness of fit should be checked through a nonparametric pro-
cedure using, for instance, the Kolmogorov test. The Kolmogorov statistic is

defined as

Ko = max | £ (3)-F, (1)]

where F,(¢) and F, (i) are, respactively, the observed and the expected dis-
tributions. The critical region is, agaln, of the form Ko>X. Though being a
distribution-fresc test, it should be noticed that the Kolmogorov test also
requires a random sampling procedure for inference purposes, and indepen-

dence cannot be obtained in working-set size data.

There are many other nonparametric testa which may be more appeal-
ing, dus to their making more use of Lhe available data than the Kolmogorov
test does. However, since Lhis does not make their statistical power greater
than that of the Kolmogorov test [Cono71), no other nonparametric statistic,

besides Ko, was used in this work.

Due to the fact that Pe and Ko can only be used as indices since no
inference guaranteed to be correct can be drawn, enother, apparently more
intuitive, index was defined. This index has proved to be useful in providing
not only a belter understanding about the shortcomings of the model but
also some subsidies for the calibration procedure, when thal procedure was

attempted. The index of mismatches. as it was called, is defined as
1
Im = — -npg|.
2“2‘” onp|

It ia not difficull to see that /m indicates exaclly the fraction of events in the

observed string which do not have a counterpart (the same value) in a string
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obeying exactly the expected distribulion (the expected string). The factor
1/2 accounts for the fact thal a mismatch is counted Lwice, once in Lhe
observed string and once in the expecled string. The main advantage of this
index seems Lo be its intuitive appeal. In the case of working-sel size strings,
for instance, without the help of statistical theory, the modeler can judge
mors easily whether or nol a model can be accepled Lo perform a specific
Lask if it is known Lhal between the model's outpul and the expecled output

a 100./m percent of mismatches occur. This index can be used as any other

above mentioned statistics for the purp of infer . A derivalion of ils
approximale distribution under the null hypothesis is presented in Appendix
L

4.4.3. Comparison of Dynamic Characleriatica

A popular way of characterizing the dynamics of a Lime series is through
its autocorrelation function. This function calculates, for each value of the
lag k. Lthe correlation belwoen the values of Lthe series al times ¢ and ¢ +k.
For a generic Lime series z;, which might be a sequence of working-set sizes,

the aulocorrelation function [Box76] is defined as

E{ (2, ~1)(34 4 ~1))

- .
VE[(z,-u¥] G (CA |

where E(x) is the expectlation of  and u=E(z,). The best estimate for p, is

glven by

B = LY (- -]

where n is the length of the time series and ji= l-ﬁ %;. In this work, com-
s=1

64

parisons are made belween Lthe aulocorrelation funclions calculatued for the
expecled string oblained from the target program and Lhe observed slring

oblained from Lthe model.

The spectral pawer densily funclion carries easenlially the same infor-
maltion as the autocorrelation function, bul in a differcnt forin [Jenkdti). Exe-
mining the power at various frequencies (number of oscillslions per unit of
time) sometimes mokes not only the compurison of dynamic behaviors bul
also model calibralion sasier. The spectral power density funclion is calcu-

lated from the autocorrelstion function using the formula
olr)=2[1+2 ﬁﬁ,coaznjkl .
'

where mk is the maximuin lag for which p; is considered Lo be diftersat from
zero, and f is the frequency of oscillations in cyclea per unit of Lime. Thus,
the variable f (frequency) assumen values in the inlerval [0,0.5). To sllow
moaningful comparisons, however, the spectrum should be smoolhed. In this
research, this smoothing was performed by using a Bartlelt spectral window

o3,. The smoothed function is then given by

Fu(r) =2[1+2 "f'u,ii,cosann]
=)

_1-k
where o, mE "

Since the calculation of spectral analysis funclions consumes a consid-
erable amount of computing resources, another simpler dynamic indicalor
was introduced. This index calculales the maximum variation that a time
serles  oxperiences  during d certain time inlerval The

mazimum variation indicator mu, (1) is defined as



muy,(t) = l';l.:l:! w(t+1) ~ l;l:i&‘) w(t+1)

The difference between the distributions of the values of mu,(t) for
t=1....n -k +1 calculated respeclively for the observed and for the expected
strings can be evaluated by the techniques given for static validation. It is
obvious that this Indicator carries much less information than any of the
ones provided by spectral analysis like 5, and §,(f ), for instance. However,
since its compulation is very easy and ils value easily understood, the max-

imum variation indicator proved helpful in the comparison of dynamic

characteristios.

CHAPTER 6

Model Evaluation Through Simulation

6.1. Introduction

The procedure for the analysis of the pregram behavior models
described in chapter 3 in terms of the appropriate reproduction of working-
set characteristics is discussed in this chapter. The original synthelic traces
of the programs to be modeled, as discussed in section 4.2 , were obtained
from three phase-transition models and are described in section 5.2. The
working-set characteristics generated by each of these traces were com-

pared with the ones gensrated by four other iraces bbtained from four dil-

ferent models. This procedure is discussed in section 5.3 . The selection of
the length of the simulation runs is presented in section 5.4, while comparis-
ons of static and dynamic characteristics are shown in tables and figures

throughout section 5.5.

6.2. The Generalion of the Original Traces

The generation of the original traces used in this chapter was done by
utilizing a phase-transition model. Parameters far this model were carefully
chosen in order to produce traces which, for a specific window size, repro-
duce working-set size distributions similar to those reported in several

empirical studies.

60
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The phase-transition model utltized ia composed of one macromodel
governing the transitions between localities (phases) and several micromo-
dela governing the page relerences within localities. The macromodel is a
semi-Markov model where Lransitiona probabilities belween localities may be
chosen freely and Lhe number of references within each localily can be
independently specified as e fized number (deterministic) or a random
number. In the latter case, the random number can be chosen from either a
uniform or a geometric distribution. In all simulations used in this research,
however, only geomelric distributions were used. This meana thet the macro-
model was actuslly s Markov model. As far as Lhe micromodel is concerned,
independent LRU stack models were defined for each locality, and pages
common Lo multiples localities could be apecified. It should be mentioned
that dilferent strings of pseudo-random numbers were ulilized for the gen-
eration of each different sequence of events. Thus, the macromodel and
each micromodel are governed by dilferent strings of pseudo-random
numbers. Progrems were implemented in Pascal, and a linear congruential

pseudo-random number generation routine was used.

Parameters for the phase-transition model were chosen so as to repro-
duce three different working-sel size densily funclions. A one-phase model
was defined for the reproduction of a unimodat working-set size densily fune-
tion. Two-phase and three-phase models reproduce bimodal end trimodal
wourking-sel size density functions respectively. In Appendix Il the parameter
values utilized l;w this generation are given. These lhree working-sut size
densily functions are called simply the unimodal. the bimodal and the trimo-

dal w.s.5.d.{. in the sequel.

_ described in chapler 3, the reduced model and the full model.

a2

6.9. Modols for Comparison

Traces obtained from four different inodels were compared with the
onea generated Lhrough the phase-transition model { the original traces) as
described in asclion 6.2 . These four traces were reapectlively generated by

onother phase-transition model, a simplification of Lhe reduced model

Due Lo the highly correlated data characteristica of working-set size
slrings, which Invalidate atlempls of using elementary stalistical inference
for compering distribulions, another trace generated by lhe same phase-
transition model, but wilh a different string of pseudo-random nuwmnbers, was
ulilized for conlrol. Its paramelers are the same os lhose described in
Appendix 11 for the original phase-transilion model. This model is referred Lo

as modal 0 in Lhe sequel.

Having observed from measurements of the original traces (which obey
the phase-trensition model) thut the number of instants of time when Lhe
potential of decrease was equal Lo zero was extremely small, a model requir-
ing the least number of paramelers was experimented with. This has the
structure of the reduced model described in Chepler 3, where, for pd=0,
m=x,=0 and \(=1 (i=1,...m 1), and p,, =\, =0, £, =1. For pd >0, the A’s are

eslimated from Lhe ariginal lrace using Lhe formula

A= no. of page faulls when w={
' total no. of w=i casen

Working-net size probabilitica are also eslimated from the original trace
using the ratio of the number of working setls of a specific size Lo Lhe Lotal

length of the string. Parameters u; and x; are then calculaled from these
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probabilitiea, and the A;'s by using equationa (3.2.5) and (3.2.6). This model,
referred to as model 1 in the nequel, requirea only 2m -2 independent

parameters, where m ia the maximum working-set size.

The modelas referred to as model 2 and madel 3 in the sequel are,
respectively, the reduced and the full model described in Chapter 3. For
model 3 the parameters py. ; and gy are estimated from the original trace
measuring the numbers of decrements, of instances of no change and of
increments respectively, for each working-set size while teking into con-
sideration the value of the current potential of decrease. More formally, if
doun, keep and up ore defined as

1 Hw(t+1)=w(t)-1, w(t)=t and pd(t)=j
0 otherwise

doun (¢.4.§) =[

ifw(t+1)=w(t), w(t)=t and pd(t)=4
0 otherwise

keep(t.i.j) = {

1 fw(t+1)=w(t)+1, w(t)=t and pd(t)=J
0 otherwise

up(t.ig) = [

and npd(i.) = 3 [down (£.4.5)+keep (¢ 4.§)+up(t.i.5)}, then
=1

m() = npd(tj) f}down(t 4.9) (5.3.1)
_ 1

G)= m‘g‘keﬂp(‘ 1.9) (6.3.2)

M) = npd(”) f}up(l A.4) (5.3.3)

for i=1,...m and § = 0,1,....m -1, where m is the maximum working-set size

and n is the total length of the trace.
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For model 2 (the reduced model), the pu,’s, x,°s and A\;'s are estimated
respectively by equations (6.3.1), (5.3.2) and (5.3.3) for pd=0. For pd>0 the
entimates are obtained by

- 1 3
= m.t ﬁdwmt.id)

i=1tm)

0= ;m'z 2"“1’(‘-4.1)

iu1 %)

M= ;p—dh;y"ﬁ'{:upu.t.n

f=i¢m

where npdp(i) = 3 npd(i.9).
=

6.4. Duration of the Simulation Runs

In simulation procedures, when estimates for steady-state indices are
sought, two problems associated with the definition of the number and length
of simulation runs have to be teken into consideration. The first one is the
bias in the measured indices. This bias, which is introduced by initial (and/or
final) conditions can be reduced by the ulilization of start-up procedures
[Wils78a,Wils78b] or, simply. by allowing the simulation to run for a long time
after reaching the steady stale (assumed to exist). There are no fixed rules,
however, to determine when the steady state is attained [Emsh70,Bobi78).
Many heuristic conditions have been suggested throughoul the simulation
literature [Emsh70,Fish73,Bobi76,Fish78] to characterize, basically, when the

measured indices no longer change significantly over time.

The second problem deals with the determination of procedures to
reduce the variance of the measured indices' mean in order to have a rea-

sonably narrow confidence interval for this value. In most cases, during a



85

sisnulation run, the mean of indices measured over time are so correlated
thet, unless very sophisticated methods are used {HeidB1), statistical infer-
ence can be drawn only when distincl runs {assumed lndepcndent) are util-
ized. There are many methods designed Lo produce variance reduction for
the mean of measured indices [Fish73.Kiei74 Kici?5a Fish78,Prit78) and
several of Lhem have been presented in computer performance evaluation

books [Ferr78,Koba78.SaueBl}).

One of the simplest methoda for variance reduction, though expensive,
is Lhat of multiple replications. It conalsta of obtaining Lhe indicea of interest
from distinct simulation runs starling from the sume initial state but using
different etrings of paseudo-random numbers. When there is stochastic con-
vergence [Hogg78) and the aimulation runs are independent of each other
the sample variance of the mean value of these indices can be estimated

_through a stalistical procedure. In Lhe irreducible finite-state Markov chain
underlying the models defined in Chapler 3 all states are positive recurrent
and aperiodic, therelore, ergodic [RossB80). Due to these properties, when the
length of the string tends to infinity, the probability thal Lhe system is in a
specific state exists and is independent of the inilial state i.e., stochastic
convergence for lhese probabilities is guaranteed [lsaa78). Since our
discrepancy Indices are based on these probabilities, the greater the number
of index values oblained through successive replications, the more Lheir
estimated variance can be reduced. The replicalion process can then be
stopped, for inslance, when the confidence interval for the mean of Lhe

measured indices becomes smaller than a previously established value.

(i1}

Let k& bo the number of replicaliona, p be the index Lo be estimalted, p,

be the estimale of p for each replicalion £, § be Lhe mean of the pg's

p = ‘i: P). and S be the aquare root of the sample variance [lind76.Mogg 78],
sl

given by
st = ::“ f}(m-ﬁ)’ .
4=l

The stalistical procedure is bused on the fact Lhat, if the replications arc

independent of each other then the variable
x = vEST BB (6.4.1)
has a Student's t-distribution with k-1 degrees of freedom. it should be

noticed thal S® could have been defined as the unbiased estimator of o

{population variance), i.e., S¢ = -k—i—r i:(p‘—ﬁ }2. In this case; the variable x
=

would have been defined as 2 = VE "—;L which yields the same values for =

as the ones obtained from equation (6.4.1).

An a Lwo-sided confidence interval for the index p is Lhen defined a3

5 . .S
PoTEsT by =P P by

where l‘ At ia oblained from the Student’s t-distribution wilh k —1 degrees
‘8
of freedom. It a random variable y has a Student's t-distribulion with k-1

degres of [reedom, then prob(u«t_' a) = g—. i & maximum length 1 is
‘e

specified for this confidence interval, then the sample variance should be

reduced until
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vE=1 1

1 2
u—l.l-g-

S <

When comparing distributions, however, we want to be aure that the differ-
ence between them ia not too big. This explaina why the critical values for ail
measures of discrepancy used (Pe, Ko or /m) are given by valuss above an
upper limit which should not be exceeded if H, is not to be rejected. But the
null hypothesis is never to be rejected if both distributions are too close.
Thus, in our case, an a one-sided confidence interval is preferred and it is

defined by

S
p= ﬂ*m ‘b-l.l-c-
In this case, if a maximum length I is specified for this confidence interval,
the sample variance should be reduced until

vE-T 1

[

S =

Independently of which type of confidence interval is used, in a simulation
procedure using the method of replications, the reduction of the variance of

the indices’ mean is performed by Increasing the number k of replicationa.

. As shown in section 6.3, parameters for models 1, 2 and 3 were
estimated from an original trace generated by a phase-transition model.
Replications of this original trace {model 0) were performed in order lo
evaluate the variance of Lhe working-set sizes generated and, ultimately,
select the appropriate length for this trace. From a trace of length 60000
references, the sample variance calculated for measured working-set sizes
{(at least for the peak values) were found to be within plus or minus 2% of

their mean. This was considered reasonable for our purposes and this length

a8
was addopted for the original traces.

The index selected to determine the length of Lhe simulation and the
number of replications was /m. This index adds the absolute values of the
linear differences between distributions (see Chapter 4) and was calculated
cumulatively for each simulation run. Due lo the fact thal our study is a
relative comparison between models, the bias presented by Jm is not a main
concern as long as it is small and the length of the simulation runs is the
same for all models. Anyway, for each run, /m was calculated at intervals of

6000 references end, for the addopted run length of 50000 references, al

Jeast the last three measurements were found Lo be within 0.02, i.e., dilfering

by leas than 2% of mismatches. For confidence intervals, a 85% level was
chosen, and their total length was made equal to 0.2 where, in our case, f
is the average of index /m calculated for distinot replications of the simula-
tion run. A one-sided confidence interval was used, i.e., there was an interval
such that a 85% chance that the correct value of the index fm would be
smaller than 1.2 times its sample mean. The replication process could be ‘
stopped as soon as the number k of replications became sufficient to e;atisty

the inequality

s < 02pVE-T (5.4.2)

41008

In tact, in all cases, very few replications wero needed in order to satily ine-

quality (6.4.2).
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6.6. Rosulls of the Simulalion

In Lhia section, resulls oblained from the comparison between models 0,
1, 2 nmlv 3, and the original trace when unimodal, bimodal and trimodal
working-set density functions (w.s.3.d.1.) were Lo be generated are presented.
It should be pointed out that, in thia section, all functions plotted in figurea
5.6.1 through 5.6.7 are discrete funcliona which only exist for non-negative
integer values of their independent variables. In the figures, the points indi-

caling these values were joined by straight lines for readebility purposesa

only.
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Figure 6.6.1
Unimodal w.s.5.d.f. generated by differant modals.
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unimodal | Ps | K (0.95) | Ko Ky, (085) | Im | K. (0.95)

model 0 | 279 42.8 0.018 0.0061 0.027 0.0000
model 1 | 408 42.6 0.019 0.0061 0.033 0.0000
model 2 | 522 42.6 0.016 0.0081 0.030 0.0090
model 3 | 503 42.6 0.017 0.0081 0.025 0.0080

Table 6.6.1
Indices oblained from the generation of an unimodal w.s.s.d.f

Figures 6.6.1, 6.6.2 and 6.5.3 show the working-gel size densily funclions
oblained from the atrings generaled by the different models when unimodal,
bimodal and trimnodal working-sel size deansity functions were to be modeled.
It §s clearly acen in these figures thet, for a given, lixedr string length (50000
references) the simpler Lhe distribution (i.e., the lower Lhe number of
modes), the belter the fit. Tables 5.5.1, 6.5.2 and 5.6.3 show & sumrmary of
resuils oblained from the comparison of working-sel sizes generated by the
{original) phase-lransilion model and those generated by models 0, 1, 2 snd 3
when unimodal, bimodal and trimodal working-set size density funclions were
to be generated. The upper bounds for K In a 5% signilicance test under the
null hypothesis (Hg). which statles thet both distributions are equal, are vlso
given in the Tables for comparison purposes only. The values Kp, snd Ky,
were taken from standard statistics tables [Lind76]. The velue K, was caleu-
lated by an approximate formula derived in Appendix L. It can be observed
that the high correlalion between successive values of working-sel sizes
causes, under Hg. Lhe rejection even of the original model when run with a
ditferent string of pseudo-random numbers. It can also be seen that, for the
unimodal cose, there is no need to use the full model (model 3) since models
1 or 2 yield comparable resulta. Though model 2 haa shown a good perfor-

mance in reproducing the chosen bimodal w.s.8.d.1. (Table 6.5.2), in general,
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of the various models when unimodal, bimodal and tritnodal working-set size
denaity functions, reaspectively, were generated. Different velues for the vari-
able T (window size) were used and it could be observed that Lhe degree of
mismalches seema Lo be roughly proportional to the simplicity of the model,
Lo the complexity of the working-set densily funation to ba generated, and to

the length of the window (al least in Lthe ranges of values explored in our

unimodal | T=256 | T=60 | 7=100 | T=200 | T=400

model 0 | 0.020 ] 0.02) | 0.043 0.074 0.088

model § | 0.029 | 0.080 | 0.123 0.145 0.139

model 2 | 0.099 ] 0.178 | 0.199 0.221 0.188

model 3 | 0.001 § 0.162 | 0.198 0.226 0.228
Table 6.6.4

Indices Im for tha distributions of mug(t) obtained
Jrom the generalion of an unimodal w.s.5.d.f.

bimodal | T=25 | T=50 | T=100 | T=200 | T=400

model 0 { 0.024 } 0.033 | 0.083 0.094 0.102

model 1 | 0.213 | 0.208 | 0.438 0.571 0.633

model 2 | 0.228 | 0.343 | 0.485 0.614 0.682

model 3 | 0.117 | 0.127 | 0.198 0.318 0.424
Table 6.6.5

Indices Im for the distributions of mvy(t) oblained
Jrom the generation of a bimodal w.s.8.d.f.

trimodal | T7=25 | T=560 | T=100 | T=200 | T=400

model 0 | 0.025 | 0.038 | 0.035 0.073 0.123

model 1 | 0.266 | 0.3934 | 0.3687 0.497 0.847

model 2 | 0.277 | 0.345 | 0.424 0.545 0.723

model 3 | 0.1687 | 0.199 | 0.258 0.348 0.454
Table 6.6.8

Indices I for the distributions of mvy(t) oblained
Jrom tha generation of a trimodal w.s.s.d.f.

4

oxperiments). Figure 5.5.4 shows the distribution of mv, which explains why
a high degree of mismatlches was oblained, for instance, for Lhe Lrimodal
funclion with window lenglh equal to 50 releronces. )t can be obuerved Lhat
the distributions of maximum variations measured from the strings gen-
erated by the verious models are narrower and their aversges are shifled
towards the origin (lower values of mv) when compared Lo Lhe one oblained
from the originul trace. The same characteristics were observed Lo a groaler

or lesser degree in Lhe unimodal and bimodal cases. These remarks suggest a
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higher correlation belween successive values of working-set sizes generated
by such models since Lhere is a higher chance of correctly predicting the

maximum variation.

This conjecture is confirmed by the autocorrelation functions plotted in
figures 5.5.5, 6.5.86 and 5.6.7 . In fact, in most cases, models 1, 2 and 3
present much higher autocorrelations between working-aet sizes generated
for higher values of Lhe lag £ than Lhe ones presented by the original trace.

The same conclusion can be drawn from the examination of figures 5.5.8,
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Autocorrelation function obtained
Jrom the generation of en unimodal w.s.s.d.f.
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Figure 5.6.6
Autocorrelation function oblained
Jrom the genaration of a bimodal w.s.5.d./.
5.5.9 and 5.6.10, where the spectral power density functions for lower fre-
quencies (period greater than 10 units of time) calculated by using the first
100 autocorrelation coefficients are plotted. The power density calculated
for frequencies above 0.1 were found to be the same (negligible) for all traces
including the original one. In these figures it can be seen that for models 1,
2 and 3 there is a slighly higher concentration of power in the lower frequen-
cies of the spectrum. This, translated in intuitive terms, shows Lhat the pro-
posed models generate traces which produce slower variations of working-set

gizes than those present in the original traces.
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The models analyzed above, especially model 3, are able to reproduce
working-setl size densily functions reasonably accurately. However, the
reproduction of dynamic working-set characteristics does nol seem Lo be as
good as the stalic ones. When such models should be used Lo produce page
releronce alrings for memory allocation studies is a queslion Lhat does not
have a aimple answer. }f a reasonable reproduction of Lthe working-set densily
funclion must be achieved, we would be inclined to recommend the use of
one of these models. However, when the correct dynamic behavior of a

upecific program or sel of programs is also lo be reproduced, the case

lag

Figure 6.6.7
Aulocorrelation funclion oblained
Jrom tha generation of a trimodal w.s.5.d.f.

7

Figure 6.6.8

Lower part of the spaciral powsr density funclion

abtained from the generation of an unimodal w.5.5.d..

should be carefully studied before adopling one of Lhese models. Some
suggestions on how these models can be mmodified in order Lo improve Lheir

dynamic behuavior is given in Lhe next chapler.
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CHIAPTER 6

Conclusions

6.1. SBummary

Despite the constantly dropping price of computer memory, the fact
that it will never become a free resource seems Lo fully justify any research
almed ot improving the underslanding of how a program behaves in order to
seve memory space while keeping a desired performance level. Thus, this
research waa aimed at developing a new program behavior model capable of
reproducing some of the working-sel characteristics generated by real pro-
grams in an casier and/or better way than those provided by the currently

. avajlable models.

An introduction to the field of program behavior modeling was provided
in Chapter 1. Some commonly used models, as well as Lheir advantages and
shortcomings, were described. Procedures for the construction, calibration
and validation of models were discussed and Lthe main purpose of this
research, the construction of models of program behavior capable of repro-

ducing real programs’ working-set size distributions, was introduced.

- The investigation of working-set size distribulions generated by one of
the most common models of program behavior, the least recently used stack
model (LRUSM), led to the derivation of a closed formula for this distribution
through the mathemalicel technique of z-transforms. Thus, in Chapler 2,

relalionships between stack distance probabilities of a LRUSM and the

b2

corresponding probabilities of working-set sizes generated by Lhis modul

were established.

The apparent iinpossibilily of oblaining mullimodal densily funclions for
the working set generated by the LRUSM and the difficully of calibrating o
phase-transition model to reproduce a given mullimodal working-set size
density function led Lo Lthe development of 8 new model. The new modul was
based on a Markov chuin where states were associated wilh working -set sizes
instead of with actual pege names. The characleristics of this model were

presented in Chapler 3.

The possibility that in some cases Lhis model would generale infeasible
sequences of working-set sizes, l.e., sequences that cannol be oblained fromn
any aclual string of page refvrences, led Lo Lhe delinilion of 8 measure called
Lhe potential of decrease, which can be calculated as working-sel sizes arc
generaled by the model. Still in Chepler 3, it was proved that, by nol allow-
ing a decrease in working-setl size Lo occur when the potential of decrease is

equal Lo zero, it is possible Lo generale feasible working-sel size strings.

Based on Lhe concepl of potential of decrease. a n-th order Markov
model was developed. Due Lo Lthe high number of parameters required for the
definition of such model, a reduced version waa devised. An example showing
the actual first-order Markov model underlying the n-th order one was also

presented for a simple case.

The strings of working-sel sizea generaled by these models when their
parameters were estimaled from Lhe slrings generated by three phase-

transition modela producing a unimedal, a bimodal and a lrimodal working-
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sel size density function were compared with them. These shapes of density
function were chosen because they are similar to those generated by real

programs in execution, as shown by some published empirical atudies.

The definition of indices used for comparison purposes, and the analysis
of their statistical characteristics when some basic hypotheses are made
were discussed in Chapter 4. The actual resuits of comparisons obtained

through simulation were presented in Chapter 6.

As a general conclusion of this research one can state that the models
developed, under the testing conditions defined in Chapters 4 and 5, seem to
‘ be capable of a reasonably accurate reproduction of working-set static
characteristics, i.e., the reproduction of actual working-set size distribu-
tions. The reproduction of dynamic caracteristics, i.e., the variation of
working-set size in time, however, does not seem to be as accurate as that of
static ones. This is not surprising, since the model was designed to repro-
duce static characteristics only. Variations of working-sel size produced by
the models have shown to be slower than the ones observed in the original

traces defined for comparison.

. As far as the indices defined for comparison are concerned, some of
them (the index of mismatches and the maximum variation, for instance) are
intuitive enough to provide guidance on when and whether such models
should or not be used as the basis for the generalion of actual page refer-

ences in memory allocation studies.

84

8.2. Directions for Further Research

The main problem presented by the models defined in this research
gseems to reside in their inability to reproduce d)jnamic behavior when some-
what higher [requencies of working-set size variation are present in the
string of working-set sizes generated by the program to be modeled. Since
our original traces were also generated by a model (phase-transition), it
would be inleresting lo investigate whether the dynamic characteristics of
working-set sizes generated by real programas are gimilar to those generated
by this model. If this is actually the case, an attempl to improve the dynamic
characteristic of the working-set sizes generated by the proposed models
can be made by adjusting the values of A's and u's. From equation (3.2.3)itis
known that the final working-sel size density function will not be affected if
the ratios between A's and u's are kept constant. Clever schemes must be
devised, however, in order to preserve the feasibility of the values of x's when
such modifications are performed. Furthermore, despite the higher mobility
caused by an increase in the values of the A's and of the u's, there is no
guarantee that with such modifications the model will reproduce better the
actual dynamic behavior of real programs. It seems, unfortunately, thal a
better fit for the dynamic charaoteristics will hardly be achieved without an

increase in the number of parametera required for model definition.

The models developed in this research generate a string of working-set
sizes, which should Lhen be processed by an algorithm like Lhe one described
in [FerrB1a] if the generation of actual page name strings is sought. The fact
that only working-set sizes are manipulated by the model implies that any

event occurring in the page name reference string which is not reflected in a
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varialion of the working-sel size is Lotally overlooked by the model. This hap-
pens in the case of the flat faults (faults which, being accompanied by the
simultaneous departure of a page, do not cause any increase in the working-
set size) defined in [FerrB1b). Since fat faulla seem to be important for the
correcl characterization of dynamic behavior, especlally of aequential
referencing pallerns, an exiension of the models preaented should be dev-

ised in order to take these faults Inlo consideration.

Finally, a validation procedure involving lhe comparison of resulls
obtained indirectly, i.e., the comparison of performance indices obtained
from page replacement algorithma or multiprogramming acheduling policies,
for instance, when processing real program’s page reference traces and, sub-
aequently, the correaponding model-generated page reference traces, should

provide a better measuroe for Lhe acope of utilization of Lhese models.

[AlanBo]

[Baer?6}

[Baak76)

{Bata76)

[Bola6B)

[Bobi7a)

{Bogo75}

1§}

Bibliography

Alanko, T. 0., Haikala, 1. J. and Kutvonen, P. . “Methodology and
Empirical Resulls of Program Dehavior Measurements,” Proc. of
Performance 80, The 7Ah IFIP 1¥.G. 7.3 Int't Symposium on Comn-
puter Parformance, Modslling, Measurement and Evaluation,

(May 1980), 55-88.

Baer, 1. L. and Sager, G. “Dynamic linprovement of Localily in
Virtual Memory Systems,** IEEE Trans. on Soft. Eng., Sk-2,1 ,

(March 1978), 54-62.

Baskett, F. and Rafii, A. *‘The A0 Inversion Model of Prograin Pag-

ing Behavior,” SLAC PUB-1828, STAN-CS-76-579, (Oct 1978).

Batson, A. P. and Madison, A. W. **Measureinents of Major Localily
Phases in Symbolic Reference Sirings,” Proc. of mt1l Sympo-
stum on Computer Performance Modelling., Measurement and

Evaluation, (1878), 75-04.

Belady, L. A. “A Study of Replacement Algorithmus for a Virtual-

Storage Computer," IBYM Systems J., 5,2, (1086).

Bobillier, P. A., Kahan, B. C. and Probst, A. R. Simulation with
GPSS and GPSS V, Prentice-Hall, 1976.

Bogott, R. P. and Franklin, M. A. "Eva!uﬂion of Markov Programn
Models in Virtual Memory Systems,” Soffware - Practice and

Ezperiencs, 5, (1975), 337-346.



[Box786)
[Brya75]

[Cotr72)

[Cotr?3)
[Cono71]
[Cour?5]
[DennsB)
[i)enn'l()]
[Denn72a] -

[Denn72b}

a7

Box, G. E. and Jenkins, G. M. 7ima Series Analysis: Forecasting
and Control, Revised Ed., Holden-Day. 18786.

Bryant, P. *“Predicting Working Set Sizes,”” IBM J. of Res. and
Dev., 19,3, (May 1975). 221-229.

Coffman, E. G. Jr. and Ryan, T. A. *A Study of Storage Parlition-
ing Using a Mathematical Model of Locality,” Comm. of the ACH,
15,3, (March 1972), 185-190,

Coffman, E. G. Jr. and Denning, P. J. Operating Systems Theory,
Prentice-Hall, 1873,

Conover,W.J. Practical Nonparametric Statistics, Wiley, 1071.

Courtois, P. J. “Decomposability, Instability, and Saturation in
Multiprogramming Systems,” Comm. of the ACM, 18,7 , (July
1975), 371-377.

Denning, P. J. “‘The Working Set Model of Program Bshavior,'
Comm. of tha ACM, 11,5, (May 1968), 323-333.

Denning, P. J. “Virtual Memory,” Comp. Surveys, 23 . (Sep
1970), 153-189.

Denning, P. J. and Schwartz, S. C. “‘Properties of the Working Set
Model" Comm. of tha ACM, 15,3 , (March 1972), 181-188.

Denning, P. J. *“On Modelling Program Behavior,” SJCC 1972
Conf. Procaedings, (1972), 937-944.

[Denn72¢c)

[Denn7?5]

{Denn78a)

[Denn76b)

{Denn80}

(East75]

[Emsh70}

[Ferr74)

[Ferr75)

Denning, P. 1., Savage, J. E. and Spirn, J. R. **Models for Locality
in Program Behavior,” Technical Report 107, Princeton Univ.,
Dep. of Eng. Elect., (April 1872).

Denning. P. I. and Kehan, K. “A Study of Program Locality and
Litetime Functions,* Proc. Hﬂh SIGOPS. (Nov 1975), 207-2186.

Denning, P. J. “Optimal Multiprogramed Memory Management,’
in Current Trands in Programming Methodology, Vol JIf, Chandy,
K. H. and Yeh, R. T., editors; Prentice-Hall, 1978.

Denning, P. J. “VWorking Sets Then and Now,' Prac. Znd. Intl
Symposium on Operating System Theory and Practice, (1978),

1156-1486.

Denning, P. J. “Working Sets Past and Present,” IEEE Trans. on
Soft. Eng., SE-6,1, (Jan 1960), 64-84.

Easton, M. C. *“Model for Interactive Data Base Reference

String,” IBM J. Ras. and Dsv., 18,11, (Nov 1975), 550-556.

Emshoff, J. R. and Sisson, R. L. Dssign and Use of Computer
Simulation Models, Macmillan, 1870.

Ferrari, D. “Improving Locality by Critical Working Sets,’”
Comm. of the ACH, 17,11, (Nov 74).

Ferrari, D. *“Tailoring Programs to Models of Program Behavior,"

1BM J. of Res. and Dav., 19,3 , (May 1975), 244-251.



[Ferr78)

[Ferr8ia)

[FerrB1b)

[Fish73)

[Fish78]

[Ghan?5)

[Matr71}

[HeidB1)

Forrari, D. (ompuler Syslems Parformance Evaluation,

Prentice-Hall, 1978.

Ferrari, D. A Generative Model of Working Set Dynamics,'* Proc.
of the Sigmelrios Conference on Msasurement and Modaling of
Computsr Systems, (1981).

Ferrarl, D. *‘Characterization and Reproduction of the Referenc-
ing Dynamics of Programs,” UCB/ERL Memo mno. M81/28,
PROGRES Repori no. 81-1, (April 1881).

Fishman, G. 8. Conoepts and Methods in Discretea Event Digital
Simulation, Wiley, 1073.

Fishman, G. S. Principles of Discrete Event Simulation, Wiley,
1978.

Ghanem, M. Z. “Dynamic Partitioning of the Main Memory Using
the Working Set Concept,” IBM J. of Res. and Dasv., 19,6 , (Sep
1975), 445-450.

Hatfield, D. J. and Gerald, J. **Program Restructuring for Virtual
Memory,” IBM Systems J., 10,3, (1871), 614-620.

Heidelberger, P. and Welch, P. D. *A Spectral Method for Confi-
dence Interval Generation and Run Length Control in Simula-

tions,'* Comm. of the ACH, 24,4 , (April 1981).

[Hogg7n)

[1saa78}

[Jenk88]

(Kiei74]

[Kiei75a}

[Kiei75b)

[Koba78}

[Koba79)

[Lenf78)

[Lind76]

20

Hogg. R. V. and Cralg. A. T. Intraduction to Mathewnatical Stutis-

tics, 4th Ed., Macmillan, 1978.

Isaacson, D. L. and Madsen, R. D. Markov Chains, Theory and

Applications, Wiley, 1976.

Jenkins, G. M. and Watts, D. G. Spectral Analysis and its Applica-

tions, Holden-Day, 1868.

Kieijnen, 1. P. C. Statistical Technigues in Simulation: Part [,

Marcel Dekker, 1974.

Kleijnen, J. P. C. Statistical Techniques in Simulation: Part [I,
Marcel Dekker, 1075.

Kleinrock, L. Queusing Systems, Volume 1: Theory, Wiley, 1975.

Kobayashi, H. Modaling and Analysis: An Intraduction ta System

Performance Evaluation Mathodalogy, Addison-Wesley, 1978.

Kobayashi, M. *The Working Set Distibulion of the Markov Pro-

gram Behavior Model,** UCB/ERL Memo no. M79/486, (July 1979).

Lenfant, J. **Comparison of the Working Sets and Bounded Locul-
ity Intervals of a Program.'* Rapport de rechorche no. 41, Univer-

site de Rennes, (1978).

Lindgren, B. W. Statistical Theory, Macmillan, 1978,



(Madi78]

(Matt70}

{Morr72)

{Opde75]

{Parz60)

(Prie76]

(Prit78]

[Rati78]

(Rodr73a]

o1

Madison, A. W. and Batson, A. P. **Cheracteristics of Program

Localities,” Comm. of the ACM, 19,5, (May 1978), 265-284.

Mattson, R. L., Gecsel, J., Siutz, D. R. and Traiger, I. L. “Evalua-
tion Techniques for Storage Hierarchies," IBM Systems J., 8.2,
(1870).

Morris, J. B. “Demand Paging through Utilization of Working Sets
on the MANIAC II,"* Comm. of the ACM, 15,10, (Oct 1972), 887-872.

Opderbeck, H. and Chu, W. W. *“The Renewal Model for Program

Behavior.” SIAH J. of Comp., 4.3, (Sep 1975), 358-374.

Parzen, E. Modern Probability Theory and Iis Applications,
Wiley, 1860.

Prieve, B. G. and Fabry, R. S. “VMIN - An Optimal Variable-Space
Page Replacement Algorithm,” Comm. of the ACM, 19.5 . (May

1976), 295-207.

Pritsker, A. A. B. and Pedgen, C. D. Introduction to Simulation
and SLAM, Viley, 1878.

Rafii, A. “Empirical and Analytical Studies of Program Reference
Behavior,”" SLAC Raport no. 197, (July 1876).

Rodriguez-Rosell, J. and Dupay, J.-P. “The Design, Implementa-
tion and Evaluation of a Working Set Dispatcher,” Comm. of the

ACM, 18,4 , (April 1973).

82

(Rodr?3b] Rodriguez-Rosell, J. *Empirical Working Set Behavior,” Comm.

[Ross70]

[RossBo)

[SaueBi1]

[Smit76]

[Spir72]

[Spir77]
tv:;mn]
[Wils78a]}

[Wils78b)

of the ACH, 16,9 , (Sep 1973).

Ross, S. Appliad Probability Models with Optimization Applica-
tions, Holden-Day, 1970.

Ross, S. Introduction to Probability Models, 2nd Ed., Academic
Press, 1980.

Sauer, C. H. and Chandy, K. M. Computer Systems Psrformance
Madeling, Prentice-Hall, 1981.

Smith, A. J. “A Modified Working Sst Paging Algorithm," IEEE
Trans. on Comp., C-25,9, (Sep 1875), 807-814.

Spirn, J. R. and Denning, P. 1 *Experiments with Program Local-
ity.” Proc. AFIPS 1972 FJCC, AFIPS Press, (1972), 811-821.

Spirn, J. R. Program Behavior: Models and Measuremenls,
Elsevier, 1977,

Vantilborgh, H. “On the Working Set Size and its Normal Approx-
imation,” Bit, 14, (1874), 240-251.

Wilson, J. R. and Pritsker, A. A. B. *A Survey of Research on the
Simulation Startup Problem,'* Simulation, 31, (1878),55-68.

Wilson, J. R. and Pritsker, A. A. B. *A Procedure for Evaluating
Startup Policies in Simulation Experiments,” Simulation, 31,
(1078), 79-89.



23

Appendix ]

Ia this appendix we calculate Lhe asymptotic distribulion of the index of
mismatches (/m) for the null hypothesis (Hg), i.c., for independently diatri-
buted variables.

Let a generic random veriable s have a standard normal distribution.

Thuas,

p(s<a)= \/‘EE ‘!.-c-‘dz .

The random variable z;=|z | thua has a distribution auch that

p(z‘<a) = v-%-‘z' ‘-:'.-dz‘ . ('.l)

The moments of z, can be calculated uaing equation (I.1):

s =/ Efne Tan /LI, - 02

- »?
Baf) = N/ B[ xte Van = /B T

Var(z,) = EGR)-[E@E)E = 1 -§—= '-';—2 . (1.3)

Since m = é—;ﬂ |£¢—mp¢l. the aet of probabilities p; constitutes a mul-
=1

Jonpy
Vnp (1-p,)

distribution aa n increases. Thus, in this case, the delinition of /m can be

tinomial density function and %, = has an asymptotic normal

94

rewritten as follows:

_ 1 R |
Im = i;‘gﬂ Vnp(1-p]) = v ﬁ"a Vai—p)

=)
where z,=|x,| end g, has s standard normal distribution N(0,1).

The random variable y; = z,v/p,{1=p;) hus a distribution whose meon

and variance aro given by

E(y) = VPdi-p) k(=) .

Var(y,) = pi(1-p,) Vor(z() .

I all y,°s are independently defined and m is large, then /m has an asymp-

totic normal distribution with mean and variance given by

E(Im) = 5‘}7‘23(3.) Vpi-p/) (L4)
Var(im) = Z'T.ﬁ. Var(z,) p(1-p,) (5)

But, since only m —~1 of lhe y,'s are independent because ﬂp‘ =1 and
=l

E J¢ = n, the variance of /m is, in fact, a little bil bigger. Knowing thal
=

ﬂ]‘ - ﬂnp‘ = 0, one can oblain
= 4=y

Jomp = g%“m‘l E (1.6)

However, by introducing absolule values, the number of values of | Jonpd
which satisfy (1.8) when only the set of absolute values | f gnpy | with j i is
known growa with m (the interested reader may verify this by him/hersels).

Due to this fact, one fs inclined Lo believe that |f,—np,| and the sel of
L
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| Iy -ap,l with j #1 become uncorrelated as m grows. Under this assumption,
equation (1.5) cen be considered a good approximation for the variance of

Im.

Substituting (1.2) and (1.3) in (1.4) and (1.5) one hes

E(/m) ‘,21;‘-5 g\/mﬂ-m) )
Var(im) & 22 $p,(1-p0) (1.8)

In addition to m large, assuming also p;<<1 and knowing that ip‘ = 1, one
-1

can obtain simpler formulas for (1.7) and (1.8) as follows:

E(Im)» \/2‘?.? g\/i? (1.9)
v n-2
ar(/m) ~ nn (1.10)

Therelore, for n-+« and m large, /m has an asymptotic normal distribution
whose mean and variance are approximately given by (1.7) or (1.8) or by (1.8)

and (1.10).

The simpler approximate formulas (1.8) and (1.10) were used to calculate

the value of K}, presented in chapter 5.

Some preliminary Monte Carlo experiments were performed in order to
evaluale the accuracy and robustness of the estimates of E(/m ) and Var(/m )
given by equationa (1.7) through (1.10). Two multinomial distributions were

chosen. The probabilities p; £=1,...m were delined as follows:

S -"lT- i=1....m for distribution 1,

and

P = -;-—, f L ILZ—L 1=2,...m [for distribution 2.

For each distribution, two cases were considered: few (m =10) and many

(m =100) possible different outcomes.

The mean and variance of /m for each case of the above mentioned dis-
tributions were estimated by comparing the expected number of outcomes
with the number of outcomes obtained from a process of random sampling
using a linear congruential pseudo-random number generator. The null
hypothesis (Hg) that equation (1.7) or (1.8), and (1.8) or (I.10) yield the
correct values of E(/m) and Var(/m), respectively, was lested. Confidence
intervals for E(hr;) and Var(/m) were obtained using standard stalistical pro-

cedures [Hogg78).

In order to reduce the chances of a Lype 1 error, i.e., reject Hy when it is
true, a 1% significance test was chosen. The size of the corresponding 98%
confidence interval for the non-rejection of Hy was reduced through muitiple
independent replications of the experiment. A number of replications equal
to 1000 yielded a confidence Interval which was considered reasonably nar-

row for our purposes.

Tables 1.1 and 1.2 present the various eslimales of the mean and vari-
ance of Im, respectively, obtained from equations (1.7) through (1.10) and
those obtained from the sampling procedure described above. The following

notation applies to tables 1.1 and 1.2:



dist.

m

mf

maan

var,
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type of distribution;

number of possible different outcomes;
sample size;

multiplying factor for all values in this row;
lower limit of the 89% confidence interval;
sample mean of eslimates;

unbiased estimalor of Lthe populalion veriance;

upper limil of the 99% confidence interval.

From Table 1.1 we can see that, as long as n>>m, the value yielded by

equation (1.7) seems Lo be a good eslimale of E(/fm). The formula given in

equalion (1.8) overestimates /m. When n=m both formulas overestimate /m,

99X C.1. for E(/m)
dist. | ;m n mf L7 19
u mean ul
100 | 107! || 1.1888 | 1.2616 || 1.1880 | 1.1905 | 1.2150
10 1000 | 107 | 3.7647 || 3.9884 || 3.7438 | 3.8175 | 3.8012
! 100 | 107" || 3.9694 || 3.9804 || 3.6454 | 3.6712 | 3.6989
100 1000 | 107 | 1.2552 § 1.26186 || 1.2412 | 1.2490 | 1.2560
100 | 107% | B.1166 | 8.3507 [| 7.7055 | 7.9340 | 6.1625
10 1000 | 107® || 2.6607 § 2.8570 || 2.4914 | 2.5619 | 2.8024
¢ 100 | 107% || 8.3939 § 9.6313 }| 7.7709 | 7.0993 | 8.2277
100 1000 | 107% | 2.6557 J 3.0457 |j 2.5547 | 2.6259 | 2.6871

Table 1.1

i

99% C.). for Var(im)

dist. m r mf 1.8 1L10
/] var. ul

100 | 107* || 8.1761 || 9.0845 | 6.1119 | 0.0080 | 10.2274

10
1000 | 1070 || B8.1761 || 9.0845 § 7.7702 | 8.6921) 9.0027

100 | 1074 || 6.9937 || 0.0845 | 8.0441 | 0.9800 | 11.2005

100 1000 | 107° || 6.9937 || 8.0045 § 0.2028 | 9.1031 | 10.434Y

100 | 107 || 6.0548 || D.0045 § 7.0472 | 7.0712 | B.8709

10 1000 | 107° }{ 6.0646 ]| 9.0845 § 6.7081 | 7.4825 | 6.4399

¢ 100 100 | 107 | 6.0646 || .0845 | 6.0986 | 7.6383 | B8.6143

1000 | 107° || 6.0548 || 9.0845 | 7.0362 | 7.8580 8.86092

Table 1.2

though the estimale given by equation (1.7) ia lesa than 10% above the sample

mean for Lthe cases considered in Table 1.1.

For all casea presented in Table 1.2, the sample variance, as expecled,
was a little bit bigger Lhen the estimate given by equation (1.8). The formula
given in equation (1.10), however, overestimates the variance in mosl cascs
preseated in Table 1.2 . In fact, a good estimalte of Lhe variance of /in scems
to be the arithmelic mean of the values given by equalions (1.8) and (1.10). AL
least, this value would nol cause Hg to be rejecled in any of the cases

presenied in Table 1.2 . Nevertheless, further investigation is required.



Appendix I

Table Il.1 shows the stack distance probabilities used in the three
phase-transition models for the generation of the original traces. The genera-
tion of unimodal, bimodal and trimodal working-set density functions was

accomplished by using one, two and three localities, respectively. For the

stack | unimodal bimodal trimodal
dist.

loc. 1 loc. 1 | loc. 2 [ toc. 1 | loe. 2 | loc. 3

1 0.02 0.1 0.02 0.3 0.02 0.02
2 0.02 0.1 0.02 0.3 0.02 0.02
3 0.02 0.1 0.02 0.2 0.02 0.02
4 0.02 0.1 0.02 0.1 0.02 0.02
5 0.02 0.2 0.02 0.05 0.02 0.02
8 0.05 0.2 0.02 0.01 0.02 0.02
7 0.05 0.05 0.02 0.01 0.02 0.02
8 0.05 0.05 0.02 0.01 0.02 0.02
9 0.1 0.02 0.02 0.01 0.02 0.02
10 0.1 0.02 0.02 0.01 0.02 0.02
11 0.1 0.02 0.02 0.1 0.05
12 0.1 0.01 0.02 0.1 0.05
13 0.05 0.01 0.02 0.1 0.05
14 0.05 0.01 0.02 0.1 0.05
16 0.05 0.01 0.02 0.1 0.05
16 0.02 0.01 0.1 0.05
1?7 0.02 0.01 0.05 0.05
18 0.02 0.01 0.05 0.05
19 0.02 0.01 0.05 0.05
20 0.02 0.01 0.05 0.06
21 0.01 0.02 0.05
22 0.01 0.02 0.05
23 0.01 0.02 0.05
24 0.01 0.02 0.03
25 0.01 0.02 0.02
26 © 0.01 0.02 0.02
27 0.01 0.02 0.02
28 0.01 0.02 0.02
29 0.01 0.02 0.02
30 0.01 0.02 0.02

Table 1.1

100

unimodal, a locality composed of pages 1-30 was defined. For the bimodal,
locality 1 is composed of pages 1-16, and locality 2 of pages 1-30. For the tri-
modal, locality 1 is composed of pages 1-10, locality 2 of pages 11-30, and
locality 3 of pages 1-30.

A transition between localities was taken after k references within one
specific locality. The variable ¥ had an exponential distribution with mean
equal to 50 references. In the case of the trimodal, when leaving a specific
locality, the transitions to either of the remaining ones were made to be

equally likely.
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