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ABSTRACT

In this paper we examine four tactics commonly advocated to

make a data base management system run faster. These pre:

use of dynamic compilation, use of microcoded routines, use

of a special purpose file system and use of a special pur

pose operating system. All tactics were applied to the

INGRES data base management system, and in most cases bench

mark timings are reported to indicate the success or failure

of the technique.

I INTRODUCTION

Common folklore indicates the existence of a variety of

techniques which can be used to make a data base system run

faster. These include compiling commands, enhancing the

file system, lowering the cost of commonly used system
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calls, judicious use of microcode, using special purpose

hardware, clustering multiple record types in a single

operating system file, etc.

In this paper we report on the application of four of

these tactics in the environment of the INGRES relational

data base system [ST0N76, ST0N80]. To the extent that

INGRES is representative of other systems, the results may

have general applicability. In the next subsections we out

line the tactics we studied.

1.1 Compilation

INGRES is currently an interpretive data base system.

Consequently, commands are parsed, validated and then an

access plan is built and executed, all at run time.

Although ad-hoc commands from a user at a terminal have only

the notion of run time, commands from a host language pro

gram can have some of the above functions performed at com

pile time. As a result, run-time overhead would be reduced.

For example, System R [ASTR76, BLAS79] compiles commands

into machine language programs to be executed at run time.

The various options have been sketched in [KATZ78] and

include several possibilities between the INGRES pure inter

preter and the System R pure compiler.

Performance studies in [HAWT79] suggest that parsing

and validating an INGRES command at compile time would be a

major win for so-called overhead intensive queries (i.e.

short commands). In fact, the parse-at-run-time strategy is
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one of the major mistakes in the design of INGRES noted in

[ST0N80J. Implementors of future relational systems should

avoid this mistake, and it is possible that INGRES will be

modified to parse at compile time at some point in the

future.

However, in longer transactions parsing at compile time

would have little impact. The overhead of parsing and vali

dating a command is dominated by the effort needed for data

searching. On long commands about 95 percent of the CPU

time is spent by INGRES inside an inner loop [HAWT79] con

sisting of a large case statement which compares a record to

a template and reports whether the record satisfies the

qualification indicated by the template.

To reduce the overhead of record interpretation we

could incorporate a pure compiler in INGRES, but this would

involve a complete rewrite of the system and is infeasible.

On the other hand, we feel that dynamic compilation is a

viable alternate strategy. Hence, we would compile a pro

cedure to perform record selection while processing an indi

vidual command. As a result, instead of paying N interpre

tations for N records, we pay the cost of 1 compilation fol

lowed by N executions of the compiled code.

The use of dynamic compilation has several advantages

compared to generating machine code at compile time. First,

access path selection can continue to be done at run time.

The code to accomplish this is very complex, and an inter-
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preter for it is much easier to build than a compiler. In

addition, access path selection at run time can make use of

current statistics concerning relation sizes and the actual

sizes of partial results when planning the next step to take

[EPST80].

In Section II of this paper we report on the design of

our dynamic compiler and give benchmark results concerning

its performance.

1.2 Microcode

The INGRES project possesses a VAX 11/780 computer with

a user writable control store. Hence, we could write micro

code for commonly executed routines. The folklore claims

that a major speed improvement can result from judicious use

of microcode. At least two sources contribute to this

potential speed-up. First, one can replace multiple machine

language instructions by a single one and save the instruc

tion fetch portion of each execution cycle. Perhaps more

importantly, one can code a better algorithm in microcode

than is possible with the machine instructions provided by

the computer designer. This area has been fully exploited

in speeding up context switches and subroutine calls in

several environments.

Of course, the problem with microcode is that few tools

are available to assist in its construction. For example,

we were unable to locate a microcode assembler which would

run under UNIX, and the documentation on how to use the
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microstore is nearly impenetrable. Because of the poor

tools and documentation, we were unsuccessful in producing a

microcode version of INGRES which could be benchmarked.

However, in Section III we report on our experiments with

profiling INGRES to isolate high traffic routines. Then, we

estimate the size and expected speed-up of INGRES with a

microcode assist.

1.3 File Systems

It is often asserted that the operating system is the

real villan which slows down the performance of a data base

system [STON80a]. What is usually meant is that system

calls and task switches are too slow or that the file system

is not designed to adequately support the needs of a data

base system.

In the UNIX environment the file system was designed to

serve time sharing users [RITC75, BSTJ78]. Hence, it is

easy and efficient to create and destroy files and to change

their length dynamically. However, UNIX randomly allocates

disk blocks to a file. As a result logically adjacent

blocks in a file are not necessarily physically close.

Since INGRES does a substantial amount of sequential access

[HAWT79], random allocation is undesirable. Moreover, UNIX

uses a collection of indirect blocks to map logical pages to

physical blocks. These indirect blocks must be read during

an access and increase the overhead associated with reading

or writing a file. Lastly, the block size used by UNIX
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(1024 bytes) appears rather small for data base use.

Consequently, we have designed our own relation storage

system that operates on top of a "raw" disk. This software

efficiently supports the storage of relations and allows

reads and writes to them without going through the UNIX file

system. In Section IV we briefly discuss the design of this

software and then show via benchmark studies the impact

which it has on the performance of the overall system.

1.4 General Purpose Operating System

Operating systems usually support processes with a lot

of state information. As a result switching tasks is often

an expensive operation. Moreover, on most current systems

interprocess messages are very expensive. Since a data base

system must use both facilities extensively or implement its

own multitasking system in user space [ST0N80a], the operat

ing system may stand in the way of efficient data base

operation.

To study this issue we designed a small special purpose

operating system, MANGOS. This software runs on a bare

machine and supports only the facilities that a data base

system and a network manager need. It has no mechanisms to

swap processes out to the disk since both software systems

want to be permanently resident in main memory. Processes

are very lightweight objects, and messages are simply

pointers to buffers that can be exchanged with only a few

instructions of overhead.
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In Section V we indicate the design of MANGOS and make

estimates concerning its performance. Since it is not yet

completely coded, benchmark studies have not been run in

this environment.

1.5 The Benchmark

In order to test our dynamic compiler and raw device

file system we constructed the following benchmark. It con

sisted of two sections, the first was designed to test com

mands which would sequentially scan an entire relation which

was stored as a heap while the second tried to illustrate

performance when a keyed access path could be used.

The first section consisted of four queries using the

following PARTS relation:

PART(pnum, pname, pcolor, pweight, qoh)

It contained 34 byte tuples and was stored as a heap. Runs

were made with 1, 210 and 3360 tuples occupying respectively

1, 8 and 118 pages.

(a) retrieve (a = 1)

(b) range of p is PARTS
retrieve (p.pnum)

(c) retrieve (p.pname, p.pnum)
where p.pnum > 3 or p.pname = "processor"

or p.color = "black"

(d) retrieve (p.pnum) where p.qoh < log(9-5) * p.weight
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Query (a) is intended to show the cost of compilation

for a very short query. In this case, the query require no

database accesses and its interpretation is extremely cheap.

On the other hand, compiling such a query should only gen

erate additional overhead.

Queries (b) through (d) require a complete sequential

scan of the PARTS relation. Moreover, c) and d) have a com

plex qualification which should be expensive to interpret.

A compiler should perform well in these situations.

The second porion of the benchmark deals with a PARTS

relation which has tuples widened to 200 bytes with a filler

field. Moreover, PARTS contains 3360 tuples and was stored

indexed sequential (isam) with pnum as a key. The data

level of this structure contained 646 1K pages each with 5

tuples and 130 1K overflow pages each with a single record.

This situation models a perfectly built keyed structure for

3230 tuples followed by 130 random inserts.

(e) retrieve (p.qoh) where p.pnum < 2500

(f) range of q is PARTS
retrieve (p.qoh, q.qoh) where p.pnum = q.pnum

(g) retrieve (p.qoh, q.qoh) where
p.pnum = q.pnum and p.color = "black"

(h) retrieve (p.qoh) where
p.pnum = q.pnum and p.pnum <2500

(i) retrieve (p.qoh, q.qoh) where p.pnum = q.pnum
and p.color = "black" and p.qoh < log(9.5) * p.weight

and q.qoh < log(9.5) * p.weight
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Query e) illustrates a range search on a portion of PARTS.

Then commands f) - i) suggest various natural joins all of

which connect PARTS to itself using the keyed field. These

queries are intended to be illustrative of complex commands

and differ in the amount of added qualification. In all

cases performance numbers were generated for both an isam

structure and for a PARTS relation hashed on pnum. Since

the results are similar, we only present the isam numbers.

All numbers will be in seconds and come from a DEC

PDP-11/780 (VAX) computer running the UNIX operating system.

II A DYNAMIC COMPILER

In this section we sketch the design of our dynamic compiler

and then give results on the performance improvement

obtained.

2.1 Design of DC-INGRES

Dynamically Compiled INGRES (DC-INGRES) is entirely

concerned with compiling commands that affect a single rela

tion. The code to decompose multi-relation commands into a

sequence of single relation commands is unaffected.

For example, the following command finds all employees

under 30 or in the toy department or who make less than

$20,000.
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RANGE OF E IS EMPLOYEE

RETRIEVE (E.name) WHERE E.age < 30 OR
E.dept = "toy" OR
E.salary < 20000

Current INGRES algorithms will scan a subset of the employee

relation record by record, interpreting the above qualifica

tion for each one to establish whether the record qualifies.

The implementation is via a straightforward stack-

oriented interpretation of a postordered list of symbols

representing the command. Figure 1 gives an example of the

data structure used for the qualification "WHERE 13 +

E.salary = 100". The second entry in the stack indicates

that salary is the first field in EMPLOYEE and is a four

byte floating point number. The other entries are self-

explanatory.

This is a high overhead approach to record evaluation.

For example, if there are 1000 tuples that must be checked

against this qualification, then the code for EACH of the

operators will check its arguments each of the 1000 times to

determine the type of its operands. That is to say, the code

for opPLUS will determine that it must add an integer to a

float anew for each tuple. Moreover, the integer 100 will

be converted to a float 1000 times so that opEQ can compare

two operands of the same type.

To alleviate this overhead, the DC-INGRES compiler pro

duces a form of code loosely based on direct threaded code

[BELL73, DEWA75]. The compiler takes as input a list such
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+ +

! INT, 2 |
I 13 I
+ +

I VAR, 1, FLOAT, 4!
i i
i i

+ +

! opPLUS |
I I
I I

+ +

! INT, 2 |
! 100 ]
+ +

! opEQ !
! !
+ +

The Qualification "where 13 + EMP.salary = 100"

Figure 1

as the one in Figure 1, then builds a tree-formatted inter

mediate code data structure with it. In this tree, shown for

the above qualification in Figure 2, the nodes are special

ized operators, and their descendants are their operands.

Hence, all necessary conversions are built into the tree and

no decision making concerning types is done during tree

evaluation. Moreover, the code required to do necessary

conversions is pointed to directly by a node. For example,

the node F4PLUS is a pointer to code to add two four byte

floats and return a four byte float.

Two improvements to this structure and the evaluation

machine which processes it have been implemented. First,

the evaluation machine has a collection of registers capable

of holding a value of any type. Each operation is given as
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RETBOOL
i
i

+ P4EQ +

! !
+ F4PLUS + CV I2T0F4
i i — i

CV I2T0F4 F4VAR I2VAL
T I I

I2VAL 1 100
i
i

13

The Intermediate Code Tree

Figure 2

arguments the registers of its operands and where to put its

result. Second, DC-INGRES processes constant expressions as

it builds the tree, generating code to calculate the expres

sion and to leave the result in a register, then calls for

the execution of the code, leaving the constant values in

registers it has allocated for the purpose. Consequently,

the right-most branch of the tree in Figure 2, converting

100 to a float, is done once during construction of the

tree.

Although DC-INGRES does not produce in-line machine

code, we feel that the performance penalty for our threaded

code solution may not be large. The additional overhead is

perhaps two or three instructions per operator in the tree.

Since most nodes require a considerable number of instruc

tions to implement, the threaded code penalty may be as lit

tle as 5-10 percent. On the other hand, our compiler was

dramatically easier to construct than one which produce!

machine code directly.
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2.2 The Performance Results

This section discusses the results obtained running the

benchmark indicated in Section 1.5 for standard INGRES and

DC-INGRES. Two statistics were measured, elapsed wall clock

time with the benchmark as the only active task and CPU time

sr>ent inside INGRES.

query relation DC-INGRES INGRES IMPROVEMENT
size wall clock wall clock

0*
0*

8.3*
14.0*

0*
17.6*
51.3*

0*
20.0*

109.1*
9.4*

20.3*
5.7*

14.7*
6.5*

a 0

b 1

b 210

b 3360
c 1

c 210

c 3360
d 1

d 210

d 3360
e 3360
f 3360

g 3360
h 3360
i 3360

.9 .9

.9 .9
1 .2 1.3
5.0 5.7
1 .2 1 .2

1.7 2.0

7.6 11 .5
1 .0 1 .0

1.5 1 .8

5.5 11 .5
17.1 18.7
52.8 63.5
31.5 33-3
47.5 54.5
32.3 34.4

Wall Clock Tin

Table 1
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query

a

b

b

b

c

c

c

d

d

d

e

f

8
h

i

relation DC-INGRES INGRES IMPROVEMENT
size CPU time CPU time

0 .087 .087 0*
1 .123 .112 - 9.5*

210 .353 .401 13.7*
3360 3.88 4.73 21 .8*

1 .208 .195 - 6.4*
210 .605 .823 36.1*

3360 6.37 10.3 61 .9*
1 .177 .162 - 8.5*

210 .433 .812 87-3*
3360 4.25 10.6 148.3*
3360 6.43 8.96 39.4*
3360 42.4 53.1 25.2*
3360 10.6 13-1 23.2*
3360 33.1 41.9 26.3*
3360 11 .1 14.1 26.7*

INGRES CPU T:ime

Table 2

2.4 Conclusions

The results show that for commands affecting a single

tuple the compiler costs somewhat more CPU time (about .012

seconds) but generates the same response time. In general,

DC-INGRES cuts the cost of processing a record substantially

(from .0031 to .0019 sec. for query c) with 3360 tuples).

Consequently, if one evaluates more than about ten records,

one would expect DC-INGRES to outperform regular INGRES.

The win is very dramatic for complex one relation commands,

for example d) and e), when a large number of records are

examined. In general, the improvement in response time is

less impressive because INGRES is not CPU bound in all

cases.
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A multi-relation command is decomposed by INGRES into a

sequence of one relation commands. In f) through i) the/

are generally of the form

WHERE pnum = constant

and only a few records are evaluated for each one since

PARTS is keyed on pnum. However, DC-INGRES notes that a

sequnece of identical commands are generated differing only

in the constant used. Consequently, it reuses the compiled

form of the query and substitutes new constants. Hence, the

.012 sec. does not need to be paid each time. As a result

an improvement is still possible in all multi-relation com

mands in the benchmark.

Ill MICRO-INGRES

In order to evaluate the feasibility of a microcode

version of INGRES (M-INGRES) we first profiled the INGRES

run-time code to find high traffic routines as candidates

for conversion to microcode. Then, we hoped to recode some

of them in microcode so we could benchmark M-INGRES to test

its speed. In the section we report on our findings.

3.1 Profiling

In order to identify the high traffic routines, we ran

the benchmark with the profiler enabled. This package indi

cates the percentage of CPU time inside each procedure of

the INGRES run time code. The major portion of INGRES time
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is spent inside the code that evaluates so-called one vari

able commands (OVQP). A substantial fraction of this code

is the record selection code discussed in Section 2. Table

3 indicates the routines with more than 3.0* of the run time

CPU cycles.

*time routine short explanation

17.1 GETSYMBOL get symbol from list
14.8 INTERPRET interpret list
4.4 LOG logarithm
4.3 READ read system call
3-9 BMOVE block memory move
3.7 GET get tuple
3.1 FWRITE write to file
3.0 SCAN scan a relation

High Traffic Routines

Table 3

A brief description of each of these routines now fol

lows.

GETSYMBOL: This routine fetches symbols from the data struc

ture representing the qualification indicated in Figure 1.

The symbols themselves are triples consisting of a type, a

length, and a value. The representation of the value

depends on both the type and length. Within the subroutine,

the legality of the type and length are checked and an indi

cation of whether the list has been exhausted is returned to

the calling routine. This routine is 105 lines of C.

INTERPRET: This is the main routine of OVQP. It processes

tuples against a qualification structured as in Figure 1 and
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uses GETSYMBOL to fetch the symbols. The code is structured

as a loop which first removes a symbol from the list, then

processes it using a series of nested switch statements.

This routine is 420 lines of C.

LOG: This is the logarithm function from the C procedure

library. It is present because the benchmark contains com

mands with a logarithm in them.

READ: This is the C procedure which formats a user disk read

and does the operating system call. This time does not

include the time spent inside the kernal executing the call.

BMOVE: This routine moves a block of data from one place in

main memory to another. It uses the VAX block move instruc

tion.

GET: This is the access method call to fetch a tuple. It is

called by the routine SCAN when another tuple is required

for evaluation.

WRITE: This is the C procedure which disposes of output.

The benchmark contains retrieve commands, the output of

which is directed to a file using this routine.

SCAN: This routine sets up a scan of a relation as a result

of access path selection code. It calls GET to fetch a

tuple and then calls INTERPRET to discover if the tuple

qualifies.
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3.2 Design of M-INGRES

The approach used to microcode the VAX was to view the

user microstore as a (fast) C subroutine and use the stan

dard C subroutine linkage as the interface. This has the

advantage of allowing one to pass arbitrary parameters to

the microcode in a straightforward, well-defined way. It

also allows us to call the microcode directly from C instead

of having to patch in assembler code. The overhead to enter

and exit the user microstore (ie the overhead exclusive of

the C subroutine entrance/exit) was timed at 3.3

microseconds.

3-3 Performance of M-INGRES

After laborious effort we were able to get an integer

add instruction to work correctly from the user microstore.

Most of the problems we encountered concerned inadequate

documentation and support tools. However, we gained enough

experience to estimate values for the columns in Table 4.

In that table we first give an estimate for the number

of microwords that we would have to write for the two

highest traffic routines. This number was obtained by mul

tiplying the number of assembly language instructions in the

routine by 16. This is the average number of microwords per

instruction in the system microstore which implements the

VAX 11/780 instruction set.
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The remainder of the table deals with a performance

estimate for the resulting microcoded routine. The time

savings due to a microcode version were assumed to result

entirely from avoiding an instruction fetch on failed branch

statements. The one-instruction prefetch mechanism used by

the VAX 11/780 was assumed to operate reliably in all other

cases. An estimate of the number of failed branch state

ments was taken to be one half the static count of branch

statements in the assembly level code. Since all six rou

tines rarely loop, this number is reasonable. The time for

instruction fetch was assumed to be 290ns.; which is the

average access time to the VAX 11/780 hardware cache. Hence,

the second entry in the table is our estimate of this

resulting time savings. Then, we report the results of tim

ing each of the routines by giving the average number of CPU

msec, per call. The final two columns respectively give our

estimate for the percentage speed up of each routine due to

microcode and its overall impact on INGRES performance.

3-4 Conclusions

subroutine estimated number estimated speed-up of
of microwords microcoded routine [ms]

GETSYMBOL 135 * 16 = 2160 (43/2) * 290 = .006
INTERPRET 514 * 16 = 8224 (119/2) * 290 = .017

Performance of M-INGRES

Table 4
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msec, per percentage increase in
call speed up overall INGRES

of routine performance

GETSYMBOL 0.07 8.6* 1.6*
INTERPRET 0.36 4.7* 0.7*

Performance of M-INGRES

Table 4 (continued)

The VAX instruction set has been designed to encompass

all of the common high level language constructs. For exam

ple, the C switch statement maps directly into the VAX

assembler case statement. Of the high traffic routines stu

died, none exhibited constructs not already present in the

existing assembly language instruction set. It is our

assessment that we would not be able to substantially out

perform their implementations. Hence, we would not expect to

be able to make algorithm improvements which would substan

tially impact Table 4.

As can be seen, we would gain a total of 2.3* improve

ment from about about 10K words of microcode. This increase

certainly does not justify the time and expense of micro-

coded enhancements. If the improvement were doubled or even

tripled, we would still come to the same conclusion. In

addition, the overhead to call a microcoded routine (3.3

microseconds) was not included in the calculations. If it

had, a net negative time savings would have resulted.

IV FS-INGRES
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This section reports on the design of INGRES enhanced

with a special purpose file system. This composite is PS-

INGRES which is now described.

4.1 The Design of FS-INGRES

The basic objectives of FS-INGRES are:

(1) To provide an extent based file system, with a minimum

extent size of one track. In this way random alloca

tion of disk blocks will be avoided.

(2) To avoid the UNIX requirement of copying data from sys

tem, buffers to the INGRES cache. This is accomplished

by a direct read to user space.

(3) To organize the data on the disk so that high traffic

relations, for example the system catalogs, are advan

tageously placed near the center of the disk surface.

To accomplish these objectives, FS-INGRES implements

the notion of a relation on top of a raw disk. Instead of

directories and files, there are only data bases and rela

tions. Each relation is stored in up to 8 extents, each of

which is a variable size physically contiguous collection of

disk blocks. Such extents are allocated as needed, and the

minimum extent size is one track. Instead of having a file

control block, FS-INGRES stores information on the extents

of a given relation in the RELATION relation. This relation

contains one row of INGRES specific information for each

relation in a data base.
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Free space is managed using a bit map which resides at

a known location on the disk. Moreover, start-up informa

tion, such as the address of the RELATION relation, is also

at hard-wired addresses.

Lastly, UNIX supports only synchronous I/O; i.e. p pro

cess which issues a disk read does not get control again

until the requested data is in main memory. Therefore, it

is impossible for FS-INGRES to implement any prefetching

policy because it would require asynchronous I/O. As noted

in [ST0N80a] INGRES usually knows which block it will access

next and an intelligent prefetch could be realized, but only

by modifying UNIX.

As an interim approach which would not require operat

ing system changes, FS-INGRES reads an entire track of data

at a time in those case where it is doing sequential pro

cessing. In this way it obtains 16 logically contiguous

1024 byte blocks as a result of each read. It is likely

that UNIX will be modified to support asynchronous I/O in

the future so that a more sophisticated strategy can be

implemented.

4.2 Benchmark Results

Tables 5 and 6 give benchmark results for standard

INGRES and FS-INGRES and indicate wall clock time and total

CPU time with the benchmark as the only executing task.
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uery size FS-INGRES INGRES IMPROVEMENT

a 0 0.7 0.9 28.6*

b 1 0.8 0.9 12.5*
b 210 1 .1 1 .3 18.2*
b 3360 5.2 5.7 9.6*
c 1 1 .1 1 .2 9.1*
c 210 1.9 2.0 5-3*
c 3360 11 .2 11 .5 2.7*
d 1 1 .0 1 .0 0*
d 210 1.7 1 .8 5.9*
d 3360 11 .0 11.5 4.5*
e 3360 10.8 18.7 73.1*
f 3360 54.2 63-5 17.2*
g 3360 18.0 33.0 85-0*
h 3360 46.0 54.5 18.5*
i 3360 19.4 34.4 77.3*

Performance Comparisons for Wall Clock Time

Table 5

query

a

b

b

b

c

c

c

d

d

d

e

f

g
h

i

size

0

1

210

3360
1

210

3360
1

210

3360
3360
3360
3360
3360
3360

FS-INGRES INGRES IMPROVEMENT

.083 .087 4.0*

.122 .112 - 8.2*

.378 .401 6.2*
4.24 4.73 11 .6*
.187 .195 1.0*
.787 .823 4.7*

9-77 10.3 5-5*
.160 .162 1.0*
.767 .812 5.9*

9.87 10.6 7.0*
6.64 8.96 35.0*

48.7 53.1 9.2*
9.11 13.1 43.8*

37.6 41 .9 11 .4*
10.0 14.1 40.3*

Performance Comparisons for INGRES CPU Time

Table 6

4.3 Conclusions
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Several conclusions are evident from the above tables.

In simple commands FS-INGRES gives better response time than

standard INGRES (typically 10-20*) with comparable CPU time.

The explanation is probably faster access to the system

catalog relations due to track-at-a-time reads. On longer

commands which involve sequential access (b, c and d with

3360 tuples) FS-INGRES saves about 10* in CPU time with a

lesser response time gain. In these situations UNIX notes

sequential access and prefetches the next logical page in

advance. Hence, processing the previous page is overlapped

with fetching the next one. Consequently, it stays nearly

even with FS-INGRES which fetches whole tracks.

Case e) shows dramatic improvement. In this situation

INGRES accesses primary pages intersperced with overflow

pages. UNIX will note a run of two primary pages and fetch

the third one in advance. However, a switch to an overflow

page will destroy sequentiality and UNIX will fail to pre

fetch both the overflow page and the next two primary pages.

Consequently, CPU and I/O activity are not consistently

overlapped, and standard INGRES suffers poor response time.

On the other hand, FS-INGRES will read a track at a

time and capture a whole run of primary pages. It must wait

for overflow pages like normal INGRES but not for the next

primary page. As a result, there is a dramatic gain in

response time.
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In command g) INGRES decomposition will first find all

black parts as follows:

retrieve into temp(p.pnum) where p.color = "black"

This command will involve a complete sequential scan of

PARTS and is accomplished by reading primary pages inter

sperced with overflow pages. Moreover, since there are few

black parts, processing the rest of the query is quite sim

ple. Consequently, the argument for case e) applies to this

query and a dramatic win is observed. Case i) is a similar

command and exhibits the same behavior.

Queries f) and h) are dominated by the time to do the

actual join. Although PARTS is read sequentially as above

and an improvement recorded, this speedup must be spread

over considerably more CPU time. Consequently, the percen

tage improvement is less impressive.

In general, FS-INGRES saves 5 to 40* in CPU time and

produces a command-dependent improvement in response time.

Future experimentation is needed to determine the impact of

parameters not considered. These include the effect of

asynchronous I/O (which should benefit FS-INGRES which could

then implement an accurate prefetching mechanism), modifying

UNIX to store pages contiguously and read a track at a time

(which might allow standard INGRES to realize most of the

gain in query e), and running the benchmark in a multiuser

environment (which would add the effects of disk contention
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and multiprogramming to both systems).

V MANGOS

To assess the performance improvement of a special pur

pose operating system, we designed MANGOS (MArgie's Non Gen

eral Operating System). In this section we report on its

design and estimate its performance. MANGOS is intended to

operate on a dedicated processor which receives INGRES com

mands from another machine.

The main modules in MANGOS are:

(1 ) the buffer manager which is responsible for handling

the buffer pool

(2) the process manager which co-ordinates processes

(3) the device drivers, which handle all of the actual I/O

initiation and interrupt handling

(4) INGRES, which executes commands against the local por

tion of the data base.

(5) The network manager, which receives INGRES commands

from the outside world and returns the results of such

commands

5.1 Buffer Management

A buffer consists of a 4096 byte page-aligned section

of shared user address space and an associated header in a

separate data structure. Every header appears on one of the

following lists: free, owned by the disk, owned by the
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network, disk I/O in progress and network I/O in progress.

5.2 Process Control

The only processes supported by MANGOS are instantia

tions of INGRES. Such processes execute in a single address

space with one copy of the INGRES code and a shared buffer

pool. Each process contains a private data area which hold

the data structure corresponding to the current command and

its state of execution. The number of processes is esta

blished at system initialization time and each has an asso

ciated process control block (PCB).

Processes are coordinated by moving their PCB's on and

off various queues. Each process is initially on an idle

queue, then it is moved to the ready queue when allocated to

an arriving INGRES command. Thereafter, it cycles between

the ready and blocked queue as it does I/O.

An INGRES process invokes the services of the buffer

manager via a subroutine call which returns when the action

is complete (except in the case of asynchronous I/O where

control is returned after I/O is initiated, but not neces

sarily complete).

Context switches only occur when a process calls the

buffer manager requesting service and is placed on the

blocked queue. Since processes all execute in the same

address space, we need only save the current processor

state, find the processor state of the next ready process
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and restore it. We have estimated that 10 machine instruc

tions are required to accomplish this task.

5-3 Device Drivers

The disk driver is responsible for all dealings with

the disk controller. As such it moves blocks between the

disk and the buffer pool in a standard way. The other

driver present in MANGOS is the network manager which will

be a modified version of COCANET [R0WE79]. COCANET moves

blocks between the buffer pool and the network.

5«4 Messages

The only messages in MANGOS are communications among

INGRES, the network manager and the buffer manager. Mes

sages are implemented by removing a buffer from one list and

placing it on another. In essence, a message is a pointer

to a 4096 byte block of storage. The overhead to send or

receive a message has been estimated at 9 instructions.

5.5 Performance Estimates

MANGOS will enhance INGRES performance in two ways,

namely it will speed up system calls (notably messa^ps and

task switches) and support parallelism due to a multiproces

sor configuration. We will estimate the impact which would

result from faster task switches and messages. It is diffi

cult to obtain statistics for the number of times INGRES

blocks (which is the event which would cause a task switch).
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Hence, we will use the fact that an approximation for this

quantity is the number of disk accesses which UNIX ma'ces on

behalf of INGRES. This number is less than the number of

pages touched by INGRES because of the fact that UNIX caches

disk blocks in main memory and does not need to fetch

accessed blocks from the disk which are already in the

cache. Table 8 summarizes this information for each command

in the benchmark along with the number of messages.

Currently, UNIX/VM on a PDP-11/780 requires 0.270 msec, to

perform a task switch and 1.4 msec, to send a message to

another process [J0Y_80]. (Extensive tuning has made these

numbers nearly a factor of 3 smaller than previous UNIX/VM

timings.) These would drop to about 10 and 9 microseconds

respectively in MANGOS. Consequently, Table 9 contains our

estimates for MANGOS performance based on these numbers.

query size number of number of
actual reads messages

0 4
5 4

13 • 4
125 4
609 4

1572 4
1210 4
1317 4
1224 4

Access Statistics for MANGOS

Table 8

a 0

b,c,d 1

b, c,d 210

b,c,d 3360
e 3360
f 3360

g 3360
h 3360
i 3360
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[uery size MANGOS

CPU time
INGRES

CPU time

IMPROVEMENT

a 0 .081 .087 6.9*
b 1 .105 .112 6.3*
b 210 .392 .401 2.3*
b 3360 4.69 4.73 0.8*
c 1 .188 .195 3.6*
c 210 .814 .823 1.1*
c 3360 10.26 10.3 0.4/*>
d 1 .155 .162 4.3*
d 210 .803 .812 1.1*
d 3360 10.56 10.6 0.4*
e 3360 8.79 8.96 1.9*
f 3360 52.7 53.1 0.8*
g 3360 12.8 13.1 2.3*
h 3360 41.5 41 .9 1.0*
i 3360 13.8 14.1 2.1*

MANGOS Performance

Table 9

VI CONCLUSIONS

Loosely speaking the results of this paper can be sum

marized as follows.

tactic

DC-INGRES

M-INGRES

FS-INGRES

MANGOS

effect

no effect for short
commands; 25-100*

for longer commands

2.3-6.9*

5-40* CPU time
5-50* response time

1-4*

estimated difficulty

4 man-months

more than 6 man-months

2 man-months

6-12 man-months

Clearly compilation and file system tactics have a high pay-
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off and are relatively easy to accomplish. Microcode and a

special operating system do provide a performance improve

ment but not a large one and at very high cost.

It is hoped that these studies will give data base sys

tem designers some insight into where to put their own human

resources to obtain maximun cost effectiveness.
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