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ABSTRACT

A theory for the asymptotic modal decomposition of a linear multi-
variable feedback system subject to high gain output feedback has been
developed and applied to the linear, ideal syhchronous machine by
identifying the latter with such a high gain output feedback system.
This new conceptualization leading to the asymptotic decoupling of
machine modes brings a unified and rigorous understanding to synchronous
machine dynamics. The numerical simulation runs show that the

asymptotic decoupling approximation is highly accurate for a wide range

of situations.
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1. Introduction

As the size and the complexity of an electric power system grow,
providing simpler models for the components of the system to be used in
numerical or analytical studies becomes an important concern. The syn-
chronous machine is such a component that plays a crucial role in power
system dynamics. The relative success of the Liapunov theory developed
and applied to multimachine power systems stability assessment [16]
owes a lot to the simplicity of the classical transient model of the
sychronous machine used within the systemic model. The limitations of
the classical transient model [6], however, has been demanding a clear
and thorough understanding of other modeling choices for which the
theory in question can be extended in meaningful ways.

The example cited above is just one instance, nevertheless impor-
tant, that renders the development of a unified and rigorous conceptual
framework for the model réduction procedures of the synchronous machine
a task worth undertaking. The present paper is such an attempt.

The basis for the dynamical reduction of a linear; ideal synchronous
machine model is modal (or time scale) selection. The so called sub-
transient, transient, and steady state models with their variants that
include or exclude amortisseur windings, rotor iron effects etc., are, ineffect
obtained by selecting the appropriate modes of the transformer equations
after applying Park's.transfonmation. As a further step in the simpli-
fication one can identify the algebraic input-output equations for the
quasi steady state of the selected modes by a phasor diagram which, in
turn.‘corresponds to some linear electrical circuit.

A serious theoretical obstacle in deriving the reduced equations
has been the absence of an analytical solution or a well defined approx-

imation to the modal decomposition problem of the transformer equations.
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Historically this obstacle has partially been circumvented by introducing
a series of assumptions, approximations the motivations and justifications
of which 1ies mostly in empirical evidence.. In spite of the validity of
most of the end results due to the extent of scrutiny involved in
empirical verification, the overcomplicated derivation patterns for modal
reduction lack conceptual coherence, simplicity, and rigour as can be
witnessed in classical texts 1ike [1], [2] as well as relatively modern
ones [3], [4].

This paper removes the obstacle in question by solving the modal
decomposition problem as a 1imit case of the synchronous speed. The only
empirical verification required is to show that the 1imit in question is
achieved at the nominal synchronous speed for all practical purposes.

The decomposition problem is solved in two steps. First a result
is provided within the paper that solves the asymptotic modal decompo-
sition problem for a general linear multivariable feedback system under
high gain output feedback. It is then shown that the transformer
equations of a synchronous machine can be identified with a linear
multivariable feedback system where the d-q axis voltages and fluxes act
as the inputs and the outputs respectively, and the electrical rotor
speed acts as the feedback gain parameter. It turns out that the
nominal synchronous speed of the rotor justifies the "high gain®
assumption and the theoretically "asymptotic" result becomes a very
good approximation as.long as the synchronous machine is operated within
the range of its nominal speed.

The problem of tracing the asymptotic behavior of the closed loop
eigenvalues of a linear multivariable system under high gain output

feedback has received some attention in the last decade [7] - [13]. In
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spite of the relative abundance of the results for the asymptotic root
locus problem, however, no attempt seems to have been made to solve the
associated asymptotic modal decomposition problem. Section II of this
paper addresses itself to this problem and the main result is presented
in a single theorem. In section III after a concise description of the
linear, ideal synchronous machine model a transfer function relation is
derived. This relation provides a clear understanding of the high gain
feedback mechanism involved within the synchronous machine without any
reference to the modal decomposition result. The theoretical result of
section II is .then applied to the synchronous machine and the decoupled
state equations as well as the output equations are derived. Making
use of the results of Appendix C which relate the classical definitions
and approximations to the results of this paper the decomposed model is
further simplified énd its consequences to model reduction are pointed
out.

In section IV three numerical simulation runs are presented in order
to assess the accuracy of the asymptotically decoupled model using
typical data for a synchronous machine. The numerical study consists of
field voltage adjustment, short circuited machine, and stability
simulations. The decoupled model used in these simulations is further
refined by incorporating a second order adjustment term in the armature
modes that diminishes the steady state offset error. In section V
prospects for possible extenﬁions of the results of this paper are

discussed.



II. Modal Decomposition Under High Feedback Gain

The'system to be investigated is described by the following state

equation
x = (A-kBC)x + kBu + Gv oo (2.1)

where x € R", u€ Rm, vVE Rm; A, B, C, and G ére constant matrices of

appropriate size with rank B = rank C = m. The parameter k denotes

the common feedback gain of the multivariable system. The purpose in
this section is to obtain an analytical expression for the asymptotically
valid modal decomposition of (2.1) for large k, and make precise the
nature.of the approximatiqn in terms of apbropriate limits.

At the outset we make the following assumptions:
Al. det CB # 0, and the eigenvalues of CB are distinct.
A2. The zeroes of the system (A,B,C) given by the roots of

sI-A B
det =0
-C 0

are distinct.

Remarks

1. It is well known that under assumptioh Al. (A,B,C) has precisely
(n-m) zeroes and as k goes to +« (n-m) closed Ioob poles approach these
zeroes and the remaining m closed loop poles go to infinity along
directions dictateq by the eigenvalues‘of -C8 [7]. This fact will
eventually be reproved as a byproduct of the analytical construction

of the modal decomposition.

2. The 'distinct’'ness assumption both for the zeroes of (A,B,C) and
the eigenvalues of CB can be relaxed by allowing for simple repeated

roots. For the sake of simplicity, however, we restrict our analysis
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subordinate to the assumptions stated above.
The first step in the analysis is the construction of the eigen-
spaces corresponding to the asymptotic eigenvalues given by the zeroes
of (A,B,C). Thus Tet Aj,...,A  denote the zeroes of (A,B,C) and

define the nontrivial vectors (x%,-q%)'and (§},E})' by

AiI-A B xi

= 0 ,

-c 0 -qi

A I-A. B\ i;

1 = 0 [ i=1,.-‘,n-m, ..0(202)
-C 0 Eﬂ

and furthermore let

X := (X],...,Xn_m)

Q := (9s0.05a, 1)
X z= (Xqaeeenx o)
6 = (-q-],""-q-n-m)' 000(2.3)

Lemma 1 Under the assumption A2. for each i

i}xi #0, ...(2.4)
and if X3 (or i} or both) is normalized so that

——

xixi =1,

then

=1 o ...(2.5)

The proof of Lemma 1 is given in Appendix A.
Now define matrices Y and Y by requiring that they satisfy the

relations



cY = Q . ...(2.6)
Y8 =17 eeo(2.7)

-X_Y+Yx=0 . oo.(2o8)
These relations do not specify a unique Y and Y. In fact

Y:=B(CB)™1Q + XE
Y:=(c8)" ¢ - X ...(2.9)

is a possible solution to (2.6) - (2.8) where E is any (n-m) x (n-m)

matrix. That (2.9) furnishes a solution follows from Lemma 1 and the

relations
Cx = 0 000(2.10)
XB =0 eee(2.17)

which are true by virtue of (2.2).
The approximation for the eigenvectors corresponding to the
asymptotic eigenvalues A].n.,knqnare simply the column vectors of the

matrix (X-%Y). Indeed rewriting (2.2) in matrix notation as

XA - AX = BQ ...(2.12)

where

A = diag(rg,...on ) ' ...(2.13)
and using (2.6), (2.10), and (2.12) one arrives at
(A-KBC) (X=1¥) = (X=LY)A + & (YA<AY) ..o (2.14)

in which it is readily observed that the error term is of the order k'].



Using the dual of the arguments above, an approximation for the

left eigenvectors of (A-kBC) follows from
(F-2 V) (A-kBC) = A(T-1V) + 1 (AV-YA). ..-(2.15)

Moreover the relation

+

yal 1y = 1

(X-kY)(X-kY) = In-m k2 Yy ...(2.16)
is a first step in constructing an approximate inverse for an approxi-
mate modal matrix of A-kBC, and follows from (2.5) and (2.8)

The second step in the analysis is the computation of approximate
eigenvectors for the unbounded eigenvalues. If Y{seeesYy are the eigen-

values of CB let
Y 1= diag(yqseensy,) ' ..o (2.17)
and P be a modal matrix of CB satisfying

CBP = Py . ees(2.18)
We then define
U := BP ees(2.19)

V i= BR + ABPY"] ...(2.20)

where the mxm matrix R is yet to be determined. The approximate eigen-
vectors are'the columns of the matrix (U-Tl-v). Establishing this result,
however, requires some further work which we take up next.

The unbounded eigenvalues of A-kBC converge to the parametric

asymptote loci given by 'Yik + o, for i = 1,...,m where

-1

ag 1= P2 CABP /v, ...(2.21)



with P'i'] and P, ’ denoting the ith row and column vectors of P'] and P

respectively. As stated earlier this statement will also be reproved as

a byproduct of the modal decomposition.

We shall require, for reasons to be revealed in the forthcoming

analysis, that R satisfy the matrix equation

CBR + CABPy™! = Ry + P ...(2.22)
where

Qs diag(a],...,am) ...(2.23)

Solutions of equation (2.22) for R are characterized by the following

result whose proof is straightforward and is therefore omitted.

Lemma 2. Let y be as in (2.17) and L be a constant matrix, then solu-

tions of the linear matrix equation
KY - YK = L .0.(2024)

for K exist iff diagonal entries of L are zero, and are given by

K= K0 +8S ee(2.25)
where
(Ll ..
[Kods5 = vy 0! #J
=0 » 1 =] ees(2.26)
and S is any diagonal matrix .

Post multiply (2.22) by p~1 and rearrange terms after using (2.18) to

obtain

1

PRy - yp~Tr = P lcaspy! - & ...(2.27)



-which upon application of Lemma 2 yields the general solution for R as

R = PK0 + PS ee.(2.28)
where Ky is given by (2.26) with

1 1

L =P CABPY ' -a eee(2.29)

and S is any diagonal matrix.
Now letting R given by (2.28) be a solution of (2.22) the required

relation for the eigenvectors are derived as follows

(A-kBC)(U-%V) = -kBCU + AU + BCV - %AV
= -KBCBP + ABP + BC(BR+ABPY™) - ]FAV

=c-KBPy + ABP + B(CBRYCABPY ') - 1 AV .
Using (2.22) for replacing the term within the parenthesis

(A-kBC)(U-Jﬁ-V) = -kUy + ABP + B(Ry+Pa) - ]}Av ,
=-kUy + (BR+ABPY ')y + Ua = 1 AV ,
(A-KBC) (U= V) = (U- V) (~kyta) + % (Va-AV) ...(2.30)

The proofs for the dual formulas are done similarly. Here we simply

summarize the results by stating the definitions and the relevant

relations be]ow*.
T:=yp ¢ ...(2.31)
V= yIRC + v ' ca) ...(2.32)
RCB + v 'P~1CAB = YR + o™ ...(2.33)
R= EbP'] + 570 | | ...(2.34)

*The asymmetry of dual definitions arise from the fact that normalization
of eigenvectors are achieved by scaling dual vectors.
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where S is any diagonal matrix, and Kb solves

YRy - Rov = v TcaBp - o, ...(2.35)

and

(U'-%V)(A-kBC) - (-kY+a)(U-’l<-V) + f(- (aV-VA) ...(2.36)

Next, we show that by an appropriate choice of S and/or S (in
(2.28) or (2.34)) one can set

v+W=0 eee(2.37)

In order to prove (2.37) the following result is required whose proof is

given in Appendix A.

Lemma 3

If S] and S2 are square matrices that solve the equations
S'I'Y - 'YS] = CoY

YSZ - SZY =

[
<
o
(=]

where y is given by (2.17) and C0 is a constant matrix, then S]Y + YSZ
is a diagonal matrix =

Now, forming

ov+Ww

v ' Tc(Breaspy”Y) + v N (RewyTp~Tca)ep

v 'p~1(cBReCABPY"T) + v (Res+y~1p~Tcas)p
using (2.22) and (2.33)

=y °](P-]Ry+a) + RP + y']a .

and substituting for R and R from (2.28) and (2.34)
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ov+W-= Y-](KOYWKO) +S+35+ zy‘] ...(2.38)

where

[P']CABP-Ya]Y-]

KoY - YKo
Ky - Koy

Therefore Lemma 3 applies and the right side of (2.38) is a diagonal

v P TcaBP-ay]

matrix which can be zeroed by a suitable choice of S and/or S and thus
(2.37) is proved.

Finally the relations

Ww=1 . .eo(2.39)
XU=0,0x=0 ...(2.40)
OGr+V=0, Xv+Yu=0 eee(2.41)

hold, where it is straightforward to prove (2.39) and (2.40). In order
to prove the first equation of (2.41) note that

-1

T + VX = v P~ oy + v (Resy~ TP~ Tea)x

and using (2.6), (2.10) and (2.12) for AX

v 1p g + v (cexa) + Y72 (cea)

Y P g - v

Uy + VX

=0

and the second equation of (2.41) is proved similarly.
A11 the necessary relations have now been established in defining
the algebraic transformation for the modal decomposition. We define

a new set of variables by the transformation
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X :=TE eee(2.42)
where

T = (X)) - ¢ (V}V) ver(2.43)

If we further define

T e (_f.)-% (Z) ...(2.44)
] v
then using the previously derived results of this section one can show
that
- 1 (W
TT = In + ;?’ vyi W ee.(2.45)

The equation corresponding to (2.1) in the transformed variables can

then be written as
£ = (TT)"1T (A-kBC)TE + (TT)"'T (kBu+Gv) ...(2.46)

After partitioning the modal state variable £ according to the parti-

tioning of T and performing the necessary simplifications (2.46) can be

written as below

) = M8y + g (0, {0E 46, (K)ey)
-+ - e fk)u+ Kav + 16 (kv ...(2.473)
€y = (~krval, + 1 (0, (K)E;#,(K)E,)

=1 ~ ~
+ kPl 40, (K)u + B0 (K)V ++(2.47b)

where the matrices 0, (k) and Eij(k) i, j = 1,2, are bounded in k for

large k. Equations (2.47a) and (2.47b) are exact equations which are
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the transformed versions of (2.1). We define the approximate modally
decoupled equations as

& = A& - Qu + Xev ...(2.48a)
& = (~kv+a)g, + kP Ty .+« (2.48b)

and the approximate initial condition as

. £, (0) X x(0)
E(O) = A = - 000(2049)
) 0) U x(0)

and finally the approximate original trajectory as
x(t) := Xg](t) + ng(t) «ee(2.50)

Before we state the main result of this section we make a final
assumption related to the unbounded eigenvalues of the closed loop
system,

A3. A1l eigenvalues of the matrix CB are on the closed right half

plane.

Theorem Consider the system described by equatioh (2.1) ‘and suppose

that assumptions Al. and A2. aresatisfied. Let X, X, U, and U be matrices
defined by (2.3), (2.13), and (2.31) respectively. Under these con-
ditions there exists matrices Y, V, V, V, (not necessarily unique) such
that i1f T andT are.as defined in (2.43) and (2.44),they satisfy (2.45) and
the transformed differential equation with respect to the linear trans-
formation §iven by (2.42) enjoys the structure given by (2.47a) and

(2.47b) where all o matrices are bounded in k for large k.
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If in addition to the above hypotheses u(-) and v(+) are vector
valued functions whose components are absolutely integrable on any
finite interval [0,t], u(+) has components which are integrable functions
plus a finite number of shifted delta functions multiplied by finite
constants, x(0) is any given initial condition, and assumption A3 is
satisfied then for each t > 0 the error vector satisfies

1im Ix(t,k) - x(t,k)l =0 , ...(2.51)
ko

where x and ; (the dependence on k has been émphasized) are given by

(2.42) and (2.50) respectively, and l0 denotes any norm on R".

Proof of Theorem

The first part of the Theorem has already been proved. In order
to prove (2.51) note that it is enough to prove the case where x and ;
are replaced by £ and E since the transformation defined by (2.42) con-
verges in the limit to that defined in (2.50).

From equations (2.47) and (2.48) it follows that
g

g(t') - E(t") = { MKt e(g) Froy) # 1| MO -t")g ()2 nygen
kg

! L6 (k
+ [ QMk)(t'-t") W oK) u(t")dt"

t! 1 °
+ I eM(k)(t'-t") F e]Z(k) V(t")dt"}
’ 052(k)

tl
3 J Mgt een-Eemaen

0

¥o<t' <t , : .e.(2.52)
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where

o) 81,00
o(k) :=
621(k) ezz(k)

M(k) := diag(A,-vk+a) .

M(k) is bounded in norm with

Because of assumption A3, the matrix e
respect to k. This follows since the only unbounded entries of the
diagonal matrix M(k) are those for which the coefficient of k has non-
positive real part. Furthermore because of the assumption on the input
v(+) and A3, §2(-) is bounded on the interval [O,tj. In fact for the
case at the edge whereby y has some purely imaginary diagonal entries,
the corresponding critical components of Ez(t) can be identified by the
Fourier transform of the derivative of a function which is zero outside
the interval [0,t] and has a finite number of jumps on this interval.
Since the Fourier variable is identified by k and the Fourier transform
is bounded in k the assertion on £(+) follows.

The observation above together with the fact that £(0) converges to
£(0) as k + +=» imply that the first two terms within the parenthesis in
(2.52) tend to zero. The fact that the remaining two terms tend to zero
is obvious except for the situation where y has some purely imaginary
diagonal entries. In this case the result follows by the well known
Riemann-Lebesque Temma [15] using the absolute integrability assumptions on
u(+) and v(+) (the proof for the assertion that the convergence of‘the
terms within the parenthesis to zero is uniform for t' € [0,t] is
omitted).

In view of the arguments above the proof of the theorem follows
by applying the Bellman-Gronwall Lemma to (2.52) after taking norms on

both sides. R
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Remarks

1. The Theorem makes precise what is meant by "asymptoticity" of the
approximation equations. (2.51) shows that the error approaches to
zero as k goes to +». Also observe that by adding higher order terms
to the approximation equations (2.48a) and (2.48b) nothing will be gained
theoretfcal]y because of the compatibility of the order of the coupling
terms in the original equations (2.47a) and (2.47b).

2. If the constant gain parameter k is replaced by kg * k(t) where
k(t) is a given differentiable function of t, thenit can be shown that
the main result of the Theorem extends to this case provided that the
term ﬁ(t)/(ko+k(t)) is bounded in t. The relevance of this observation
stems from the application of the theory to the synchronous machine
where k0 is identified with the synchronous electrical rotor speed and
k(t) with the deviation from the synchronous speed.

3. If det CB = 0 or the system (A,B,C) has (nonsimple) repeated zeros,
or CB has (nonsimple) repeated eigenvalues then the analysis of this
section does not apply. It is a fact that under such circumstances,
unlike the case treated here, asymptotic expansions of closed loop
eigenvalues (hence eigenvectors) take place in noninteger powers of
k'][IZJ. Extensions of the theory to such cases remain an open

problem.

III. Modal Analysis of the Synchronous Machine

A. Synchronous Machine Model

We shall be dealing with the ideal, linear synchronous machine

model where the effects of iron core saturation and space MMF harmonics

are omitted. }After applying Park's reference frame transformation and
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disregarding zero sequence quantities (since zero sequence equations
are totally isolated from the others and can be treated separately) the
relevant machine equations can be written, in the p.u. notation employed

in [3], as fol1ows+,

¢d= -rid - Uﬂq - Vd ’

Pe = =TFiE* Ve s

éD = -rDiD s

éq = -riq +uwly - Vq

8, = ~Taiq | SNER )
(%) [t ap tw] [Ta

Pl |t tr b | | R -

L P L o tap Lo || o

( 2 ] ) ’ Ly tag i

o) |t ko i | o (3.2)
3+®=%-% - ...(3.3)
Pe= wlify-148.) ...(3.4)

Equatibns (3.1), (3.2) are called the transformer equations, (3.3)

is called the swing equation where 6 is the electrical angle of the

?These equations are for a salient pole machine modeled by a rotor
possessing three separate windings corresponding to field and
amortisseur circuits. Models for cylindrical rotor machines that
employ additional rotor windings to represent eddy currents (see for
eg?mp1e [5]) can be treated by the similar techniques developed in
this paper.
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rotor, w = é, Pm is the mechanical power applied, and Pe given by (3.4)
is the instantaneous counter electrical power induced when the machine
is operated in the generator mode.

We shall adopt the commonly utilized "small deviation in speed"
assumption so that the rotor speed w is taken constant that is equal to
the synchronous speed in the analysis of the transformer equations.

The voltages vy, v,, and Vg are treated as the inputs. Using (3.1) and

q
(3.2) one can write the associated state and the flux equations separately

as
1= -0 TRY? - 1) Teren 40 - (1 Tegvy + (1) ey
9= -9 TR oL e - (0 Teyy, . (3.5)
gd - Ld;d
p9 = L%9 eeo(3.6)
where
d

Qo (s 5 e

it (1q,1Q) R

Gd = (gd’gF'gD). »

q.. \

9" (Qqsﬂo) ...{(3.7)
(L4 Lap Lap)

d _

L":= Jlpp L Lpyp|
R

LY := ...(3.8)

1tag L

-19-



rd .= diag(r,rF,rD) ’
RY ;= diag(r,ro) eee(3.9)

and e, is the ith unit vector of appropriate dimension.

We define new input voltége variables Gd and Vq by

vy = de

(3.10)

q- “q

v

The reason for this new adjustment is to set the synchronous machine
transformer equations in the form given by (2.1). It is to be stressed
that our purpose is to view the transformer equations as an instance in
a limiting process with respect to the synchronous speed. This specific
instance is when w = 1, the normalized nominal speed, and therefore a
practical meaning to the above definition need not be enforced. If the
necessity for such a practical interpretation is forced however, it is
possible to reason by stating that all the voltages in a power system
change in proportion to the synchronous speed of the system since they
arise from the induced e.m.f. of the generators within the system. In
the following derivations we shall use the new variables Vd and Vq only
within the 1imit expressions.

From the above equations it can be seen that the model given by

(2.1) applies with:



A := diag(A],Az) ,
Ay = =(L9)7TRY,

Ay 1= =(L9)TR9

= (19y"]
b2 . (L ) e] ’
- o1 d
C-I = e]L 9
¢ = q
€2 = &bt s
-V, (t)
u(t) := d
-Vq(t)

6= (WD), 0)
v(t) = ve(t) ,

kK :=ow ...(3.11)

The high gain assumption turns out to be valid for this example.

In fact, this empirical evidence is frequently reiterated in the

literature as the dominance of the speed voltages over the transformer
voltages, The open loop system (w=0) corresponds to the blocked rotor
case and if the armature and field voltages are taken as the inputs
then the open loop system consists of two (d and q axes) mutually

coupled passive R-L circuits. The feedback effect is due to the speed
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voltages induced in the armature circuits and the high feedback gain is

the electrical speed of the rotor.

Before we apply the results of section II it will be instructive
to give a transfer function solution of the transformer equations in
which the high gain feedback structure becomes transparent. First we
define the following transfer functions:

h](s) := el'Lde(s)(Ld)Je1 R

hy(s) := e;Lqu(s)(Lq)"e] ,

ﬁ}(s) = eiMd(s)(Ld)'1e1 ,

Ry(s) = e ()LD ey

hgp(s) : eiLde(s)(Ld)']e2 ,

Rye(s) := eMy(s)(Lh e,
My(s) == (s1+(Lh) TR,

My(s) &= (s1+(L9)"TrY)"! ...(3.12)

where h1, h2 are the Vg - ¢d and vq - Qq open loop (blocked rotor)
transfer functions; h,, ﬁé are the Vq - id and vq - iq open loop trans-
fer functions; and hdF’-ﬁdF are the Vg - ﬂd and Vg - id open loop
transfer functions.

Using the definitions given above and the Laplace transformed
version of equations (3.5) and (3.6), after a straightforward computa-
tion one arrives at the following equations where the symbol '~' stands

for the Laplace transformed version of a variable.

By = -uhflg = MyVg * RgpVp

gq (l)hzgd - hzvq 000(3']3)

=22~



= ~whyf = hyvg + Rgeve

-to ¢
Q.
{

oo
[

= U)T'I-Zﬂd - szq 0.0(3014)

Solving for 5d and Eq from (3.13) and substituting the result in (3.14)

the following input-output transfer function relations are obtained

~ ( ~
g : hya uqhye g Y4 |
- = -—————-2 v ]
1+w h_h q
gq ] 2 -wh] 2’ -hz 9 whzhdF ~
YF
000(3']5)
ol “hy s uqhys Rgptahy(hihgghihge) | | v
~ | ST 2 >
. 14w hyh \/
1q ] 2 ‘wﬁzh] ’ '.5'2 [y whzhdF ~q
\ vf J
...(3.16)

If ni(s)and di(s) denote the numerator and denominator polynomials
of h, (s), i = 1,2, then it can be shown (as is almost obvious from

(3.16)) that the closed loop eigenvalues are the roots of
d(s)dy(s) + wny (s)ny(s) = 0

It is interesting that the multivariable root locus problem has reduced
to a single variable one due to the cross coupled structure.of the
feedback. We shall postpone any further discussion on the above trans-
fer function relations and compare them later with the approximate
expressions obtained via the modal analysis. At this stage it suffices
to remark that the equations (3.15) and (3.16) do not involve any
approximating assumptions based on high feedback gain and thus are

exact in this sense.
-23-



B. 'Modal Equations for the Synchronous Machine

The results of section 2 are now applied to the example of the
synchronous machine described by (2.1) and (3.11). First it is noted that
the zeroes of the representation (A,B,C) are simply the roots of the

polynomials n](s) and nz(s) (numerators of h](s) and hz(s))since

0 hz(s)

C(sI-A)"'B = ...(3.17)

-h1(s) 0

If we let x& and Aa denote the distinct zeroes of n](s), and ka

the zero of nz(s) then the following relations are a straightforward

consequence of the definitions of section II and (3.11).

( "] [ -]
(A'41-A))" by (*éﬁ’fl)n by
] 1 1 ] ]
Aght(d"y) Aghy{Ag) ]
X = o

0 . 0 s -—gnﬁTr-wy——
ey

0

000(3.]8)
( -Aéc](xal-A])'1 . 0
X = -xgcl(xgl-A])'1 , 0
-1
3N Yo
L 0 . chz(qu Az) J
000(3']9)
( 1 ] 0 )
Aghi0g) Aghi(rg)
a= 0 0 -“EJCIWT
! *a"2'%q’ |
...(3.20)
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( . 9
0 Ay
q= | 0 A ... (3.21)
M 0
L & )
0 c2b2 0 1
CB = ) = 0-0(3.22)
j 0 1 1 1 -
Y- p - plel
- , P= -
0 -J b -J 1 J
000(3.23)
a = % (cqAby*eohob,) « 1 ...(3.24)
by by
U=BP= . . 000(3025)
Jb2 -Jb2
c =-jc
1 2
T=vy"lc=7] _ ... (3.26)
“ Jcp

where h]' and hé denote the derivatives of h1 and h2. Expressions forY, Y, V,
V, and the auxiliary matrices R, R, Ky KO’ S, S, that are used in computing
Vand V, and the details of these computations are given in Appendix B.

Finally we apply the transformation P'] to the last two variables
(the complex modes) in the approximate modal equations so that the

associated Jordan matrix is real. The resulting modal equations after

this modification are given by

-25-



L] A&

' -

Zd - A&Z& + zr-vq - AéhdF(A&) . VF ’ 000(3.273)
: Ay
za = Agzg + A AghdF(Ag) "V s «o.(3.27b)
: A"

- ]
Za = Aaza - © Vd 9 000(3027C)
st = Aazsd - wzsq - Vd ') ooo(3.27d)
zsq =wz gyt Aazsq - vq ...(3.27¢e)

where

e

la [ ?‘(C]A]b1+C2A2b2) 000(3028)

and hye is given in (3.12). The corresponding asymptotic expressions

for the d and q axes current and flux variables denoted by ?d’ ?q’ Bd.

~

P

are obtained using (2.50) as below.

q
? = F](Aé) ' F](Ag) n TR
RV (O I I Hew) At M M -++(3.29)
~ h,(A")
~ _ MalAg) )
1q - Aqhz Aq z; + eibz zsq oo.(3o30)
P4 = 2gq ...(3.31)
g = oo 0 '32
93 = 2Zsq (3.32)

“1p-T¢ was replaced

where U = BP was replaced by B in (2.50) and u = v
by Py']P']C = (CB)"IC in (2.49) because of the modification leading

to the real Jordan form as mentioned above.



The approximate version of the induced counter electrical power is

given by
Pe = w(ifgB,iy) .2(3.33)

Equations (3.27a) - (3.27e) and (3.29) - (3.33) are the asymptotic
modal equations for the synchronous machine. The sense in which these
equations may be called "approximate" has already been made precise by
the Theorem of section II. Moreover because of Remark 2 following the
proof of the Theorem in section II the rotor speed w may be allowed to
vary with time (i.e. w(t) = wy + é(t) where é(t) is the instantaneous
deviation from the synchronous speed) and if §(t)/(&0+é(t)) is bounded
in t as Wy * + then our approximation remains valid when w is replaced
by w(t).

We shall now present a view that gives anothe? related interpre-
tation to our modal approximation by using Laplace transforms. Assume
that Vh, V&, and v are L-transformable functions of time on [0,+»).
let s €Cand s # l&, AN, Aa. Again using '~' for the transformed
variable one computes the transform of the id using (3.10), (3.27a) -

(3.27e) and (3.29) as

- hy(24) hy (%) -
A 1'7d’ 1 1'd =
’d(-")‘[ HenksvilETiou) s-rg] Vqls)

Vo (s)u? _vglsdals-1,)

+ e7b
P e %? 7 (s )%

g MO O BOY T
hy(ag) s-Ag hy(33) =Xy |'F

-27-



and therefore

hy(s)hye(s)
in cl(s) - qu(s) + (hyp(s) - —T(i;—)v,:(s) .. (3.38)

using (D1) and (D3) of Appendix D. But using the exact expression given

by (3.16) with v_ = wv. it follows that

q 9
. ( ) ~ ](s)hdF(s) ~
lim d(S) -——(—y vq(s) + (Rgp(s) - NN We(s) ...(3.35)
= 11m ?d(s)
Wt

which shows that the transformed error approaches zero in the limit.
%
Using similar reasoning and (D2) one can show that 1q(s), ﬁd(s), and

ﬁq(s) approach’ in the limit to.ﬁq(s);-ﬁdﬁs);'and ﬁq(s) respectively.

C. Comparison with Classical Models

In Appendix C an account of the classical definitions and their
relations to the model developed in this section are presented. The
approximations involved in the derivation of this presentation stem
from the range of the values of the machine parameters and not from
the main and the only source of approximations used so far, namely
high rotor speed. Our purpose for using these parameter approximations
and the associated terminology is to relate our work to the existing
body of literature.

We first write the field excitation voltage Vg as
VE 7 VEo * AV
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where it is assumed that VEo has been applied for a long time and Avp

is the incremental adjustment for possible terminal voltage regulation.

The steady state values for ?q, ad’ and aq corresponding to the input VED

are all zero except for ?d which is

A

Tdss =

where (3.27a), (3.27b), (3.29), (D3), and (3.12) have been used.

Ay (ag)“hgp(xg)

Ry (3g)hge (g

Ay (Ag)

Ay (0)

define
v
— FO
Ef «= wLAD —r;"
Ll
o= . d
L" -
v .- . _d
E% = Ef I;;
then
; Ef E% E;

- [Fypt0 - F](0)~hd,.-(0)} Veo

(1/P)°LAD/rF
0 - Ld7r VFo
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...(3.36)

If we

...(3.37)

...(3.38)

«..(3.39)

...(3.40)



Now also using the approximations of Appendix C a new modally decoupled

model is obtained as presented below.

Tglq © -ué - vq + wB‘AvF.

taud

Tll{‘ll =

qq

(Tausg*usq) _

= -ug -V

“ut + v

q

har(Ag

+ wB"AVF

-30-

...(3.41a)
...{3.41b)

...(3.41¢c)
...(3.41d)
...(3.41e)

usd'ZI; »
...(3.42)

...(3.43)

...(3.44)
...(3.45)

...(3.46)

...(3.47)



and the term Ef/de in (3.48) can be replaced by E%/wLa or E;/wL;
because of (3.41).
The model presented above is central to the reduced models of

different temporality derived in literature. If we substitute

Yd
Usqg =
its guasi steady state, i.e. LHS = 0), and Avp = 0 (voltage regulation

sq

uq =u; =0, (d and q axis modes yet unexcited) Ueq = ~Vgo
Yq (the armature complex mode given by (3.41d) and (3.47e) is in

dynamics not excited),then we obtain the so called subtransient model

for the synchronous machine. If we substitute ud 0 (d axis transient
0 - Ut o = o = s
mode not excited) and Td"d 0, Tq“q 0, Usq Vgs Ugq Vg (d axis
subtransient mode, q axis subtransient mode and armature modes follow
their respective quasi steady state values) and AvF = 0 we obtain the

transient model, and finally the steady state model is obvious. If in

addition we assume that in each of these models Lg = La, Lé = Lq, and
Ld = Lq respectively then the quasi steady state values substituted in
(3.42) and (3.43) can be identified by a(complex)equality of phasors
which, in turn, can be identified by an equivalent single phase linear
circuit in steady state consisting of a reactance and an independent
source behind it delivering an average AC power given by (3.46).

One observes that the d and q axis flux (or induced voltage = w*flux)
variables coincide with the armature modal flux variables as seen from
(3.44) and (3.45). This complex mode with eigenvalues - %; + v
contributes to the armature DC offset mode in 3 phase operation. This is
because the difference frequency is zero after performing inverse Park
transformation. The rather intriguing fact that, it is because an
asymptotic natural frequency of the closed loop system equals the

synchronous speed that there is an exponentially decaying DC offset
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mode in armature currents, has apparently remained unrecognized. For
various nonanalytical explanations of this phenomenon (involving various
definitions of negative sequence reactances) the reader is referred to
Kimbark [1]pp. 39, 68 or Concordia [2] pp. 87-95.

A considerable aﬁount of effort is spent by the classical treatment
in explaining and justifying the assumption of the "constancy of the
field flux linkage" (see for example Kimbark [1] pp. 13-18). This
assumption admits a very elementary interpretation in modal formulation.
Indeed it sums up to saying that the component of the field flux along
all the quick modes are negligible and therefore it can approximately
be identified with the d axis transient mode which is slow. In order to
quantify this statementwe first write the field flux as

- eéLd(A&Ld+Rd)']e]'z'+eéLd(i\'&Ld+I:d)']e] L

F A&hi(k&) d Aghi(xd) d

which follows from the definition of aF and (2.50). It is already seen
from this formula that components along the complex armature mode and

the q axis subtransient mode are zero. Now observe

r r

F 'D
|A% | >> L, = =2
d Ld LF LD

which in practice is valid, and consider

"'c'l'-d spd=z Agl.d,

eéLd(Angmd)']e] = eéLd(Ang)"e, - "E’J ese; = 0,

implying that the combongnt along the d axis substransient mode is

negligible.

Finally one observes that a simple interpretation for the d and q

axis subtransient and transient reactances can be given without even
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any reference to the modal decomposition result. Assuming that T is
small enough+ (otherwise the given definitions on subtransient and
transient phenomena are devoid of any meaningful interpretation) one

can write from (3.15)

Bals) = vy(s)
Bq(S) = -;d(S)

which upon substitution in (3.16) yield
ﬁ'( ) -
’d(s)“am Bqls)

2()
i (S)"-h—(—yﬂ (s)

and using (C31), (C34), (€37)-(C39) in (D1) and (D2)

which gives the dynamical relations between the flux and the current
variables. For a unit step input in V4 (or equivalently ﬂd) and

vq(ﬂq) the corresponding currents are

o] 1 1 Td 1 1 d
i (t) = + | = - 1-e + | — - 1-e
=g [ feag] ) o (G-
1-

T, is not small if the resistance r in (C.10) is taken as the armature

resistance of the machine which would be the case if machine is short
circuited at its terminals. It is the line resistance added to r that
makes Ty small even within the subtransient time scale.
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t

T"
iq(t)agm+ [-L]—-P]r]{l-e q]
q q q

which require no further explanation.

IV Simulation Results

In this section we present three numerical simulation experiments
in order to assess the accuracy of the asymptotically decoupled model
using typical synchronous machine data. The experiments in question
are field voltage adjustment, short circuit analysis, and stability
analysis.

First Tet us emphasize the fact that the decoupled model given by
(3.27)-(3.33) becomes identical to the model given by (3.41)-(3.47)
provided that we replace the approximate time constants Ta, and t4 by
their counterparts obtained from the roots of n](s), and replace Lé

by L&mod where

L1 Oy
Limod ©° 1/({3-- Xgﬁ{fﬁgy). (4.1)

in the latter model. In order that no other source of approximation
contaminates we shall use our original model given by (3.27)-(3.33).
There is, however, a final empirical adjustment to be made so as to

diminish the steady state error contributed by second order terms.

In particular we replace (3.27d) and (3.27e) by

\ .
> = - - - §

Zsd " Ma%sd " YZsq " V4" W Vg (4.2a)
. Aa b
Zoq = WZgq * AgZgq - Vot Ve . (4.2b)

so that in the steady state the relations
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zsq= -

(4.3)

Yd
W
‘g

w

zsd

hold irrespective of the relative magnitude of Aa. If the armature
resistance is relatively large (when line resistance is added) the

contribution of the offset error terms to id or i_may be of the order

of 30% unless the above adjustment is made. On t:e other hand our
adjustment is theoretically neutral since addition of second order terms
to the right side of (2.48) do not influence the theoretical conclusions.

The machine data used for the simulations is almost identical to
the one given in [3] p. 176 and is given in Appendix E. In Table 1 the
closed loop poles are given as a function of w. This tabulation exhibits
the validity of the high gain assumption as far as the asymptotic root
convergence is concerned. '

In all the three simulations the synchronous machine is connected
to an infinite busbar of voltage magnitude Vb‘ If & is the electrical
angle between the voltage of the phase a and the quadrature axis of the

rotor, then using the definition of Park's transformation it can be

shown that V4 and vq are given by

v -V, sin ©
d b (4.4)

[}

v

q Vb cos 8 .

It has been assumed that the connecting line resistances and reactances

are incorporated in Ld, L., and r for the sake of simplicity. Only in

q
the short circuit simulation we replace r by

r = .0021 pu



to observe the effect of relatively larger time constant for the armature
modes (machine short circuited at its terminals). For the simulations

we do not use the assumption of small speed deviation, and therefore

use the actual rotor speed variable both within the original and
decoupled transformer equations. The differences arising from this
approximation, however, are observed to be insignificant in all our
simulations.

The starting conditions for all the simulations are:

Vb =1 pu
VEg = -5 X 1073 pu (E¢ = 1.044 pu) .
Pm = .3 pu.

The corresponding equilibrium angle is given by
8 = 29.23°.

Fourth order Runge-Kutta routine is used in solving the original and the
decoupled equations.
In the first simulation a 10% step increase is applied to VE and

the resulting id and i_ are plotted both within the fast and slow time

scales as shown in fig:res 1-4. The oscillatory response of the original
model in the fast time scale is due to the second order effect of the
step increase in exciting the armature modes. The dynamical error is
seen to be within 5% from the slow time scale plots.

In the short circuit simulation the resulting d and q axis transient
currents exhibit an error low enough not to be visible from the plots
of figures 5 and 6. The discrepancy between the angles of the original

and the decoupled model given in figure 6' is of interest. Since the
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angle is proportional to twice the integral of the difference between
the mechanical power and the transient electrical power given in figure
5' it is seen that due to the large amplitude of the electrical power
transients higher order terms are important in the determination of

the angle deviation. Although in the more realistic situation the
effect of saturation 1imits the electrical powe} swing to a somewhat
Tower level the practice of using only the swing equation for computing
the angle deviation during a short circuit fault interval may well

give rise to erroneous results in computing critical clearing times

for stability analysis. A full model for the short circuited machine
that incorporates electrical transients and saturation effects may be
advisable under such circumstances.

The final simulation deals with the stability of the synchronous
machine. In all the cases the initial speed is the synchfﬁnous speed.
and the initial angles are chosen as -120°, -150°, -180°, and -160°;
and the resulting swing curves are given in figures 7-10 respectively.
These figures exhibit the fact that the decoupling approximation
deteriorates when the initial angle is within the boundary of stable
region. This is to be expected since the sensitivity of the solution
with respect to the initial angle becomes high in the vicinity of the
stability boundary and higher order terms dominate. All the curves
show the dramatic damping effect of the subtransient modes recalling
that the mechanical damping is taken as zero. As a comparison of
interest we state the interval of stability computed by the equal area
criterion; and for the decoupled, and original models as observed in
the simulation. These intervals are [-168°, 176°], [-175°, 184°], and
[-160°, 198°] respectively.
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V. Conclusions

A theory for the asymptotic modal decomposition of a linear multi-
variable feedback system subject to high gain output feedback has been
developed and applied to the linear, ideal synchronous machine by
identifying the latter with such a high gain output feedback system.
This new conceptualization leading to the asymptotic decoupling of
machine modes brings a unified and rigorous understanding to synchronous
machine dynamics.

The simulation results confirm that the asymptotically decoupled
model is an excellent approximation for the linear ideal synchronous
machine for a wide range of situations. Possible exceptions are
pointed out in section IV. What is more important, however, is that the
decoupled model is a theoretical starting point for model reduction
methods and is related to the original model through an analytically

well defined approximation based only on high rotor speed.

The theoretical result of section II can possibly be extended to
the case where CB is singular; or zeros of (A,B,C) or eigenvalues of
CB are nonsimple repeated. Another possibility that can be exploited
is to retain higher order terms in the asymptotic expansions of the
eigenvalues and the eigenvectors for greater accuracy. These questions
remain open and efforts along these directions would be a welcome con-
tribution to the theory.

An extension of asymptotic modal decoupling results to the linear

but the nonideal synchronous machine looks promising. The recent work
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of Youla and Bongiorno [14] depicts the existence of a Floquet frame
under nonideal circumstances and moreover fhey conjecture a very simple
dependence of thfs frame on the rotor speed. These results have an
important bearing to the modal analysis of the nonideal machine and are
therefore worth a careful scrutiny.

If machine saturation is treated in a post-Park manner, which seems
to be the usual practice (and an unjustified one), then our results are
valid for the linearized machine with saturation. If, however,
saturation is modeled before Park's transformation,situation is more

difficult. The existence of a Park-like transformation for a saturated

machine becomes a problem in itself. If at a given solution linearization
is performed, the resulting linear system is periodic and coincides with

a lTinear nonideal machine. One therefore concludes that an asymptotic
modal analysis for the pre-Park saturated linearized machine is reduced

to the case of a linear, nonideal machine.
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Appendix A

1. Proof of Lemma 1

First we establish the fact that

x’ixj=0 s T #173J ...(A1)

Using (2.2) we may write
EE(AiI-A)xi e i}qu =0,
Y&((Ai-kj)l+(AjI-A))xi =0,
()\1.-Aj)§3.xi + ?c‘a.(ij-A)xi =0,
(Ai~lj)§}xi f qéCxi =0,
(Ai-kj)Y:'jxi =0,

which implies that >'(5.x,i = 0 by assumption A2. We prove the statement
x;.xi # 0 by contradiction. If we assume that i}xi = 0 for some i, then
by (2.2) we can write

Xi(kiI-A)Xi = O 9
or

x%ﬂ\x,i =0

Now consider the product of matrices

X'yooqy | | s1-A B X X

X: Q

-C 0 "q.i Q

where X!, ﬁ}, Xi, and Qi are constant matrices of appropriate size so

that the first and third matrices in the above product are nonsingular.
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Multiplying out we obtain
x,}(sI-A)xi {x%(sI-A)-q;C}xi
X;{(sI-A)-Bq;} . *

where we have used (2.10) and (2.11) repeatedly. Finally using

3! = 3! =
1.xi xiAxi 0

0 {x%(sI-A)-q%C}Xi
X%(&I—A)xiqui} *

But because of (2.2) the first column and row vectors of M are polynomial

vectors which vanish at s = Ai. Thus M can be factored as

M= diag((s-xi),I,...,I)'P(s) diag((s-xi).1,...,l)

where P(s) is a polynomial matrix. Therefore

2 { sI-A B
det M = (s-ki) det P(s) = Const. detl .
-C

which clearly contradicts assumption A2. Hence Rgxi # 0 and the rest

follows easily. n

2. Proof of Lemma 3

For i # J
[Cods5
b T
[CO]i'
[Szlij ) Yi(Yi-Yj)
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therefore

ij¥i

2 odi; |, oodyy

Yj‘Y-i Y; "'Yj

"



Appendix B

First define:

e ...(B1
8, = cyAib, (B1)

. ...(B2
8, 1= CHAsb, (B2)

Then one easily computes

6]‘"629 62"5] 6]+62) 6-"62
P-lcABP = & Y =3y
...(B3)
Thus using (2.27) and (2.28)
51 3(85-8;)
PlR=1 | ,
-J(GZ-GI) 52
5]‘j(82'5]): 52+j(62’6])
R =+
j(51+j(62‘6])): '3(52'3(52'61))
...(B4)
from which using (2.20) we obtain
Sa (O O P L C (ORI
YV =
Agby (s +3(8,-61)b,. Agby-3{s,-3(8,-61))b,
...(B5)

The dual relations are computed similarly and are given below
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_ [ 5 3(85-8,)
P = I ’ ...(BG)
\ ’j(sz"‘s])’ 32
_ . ( §]+j(62'6]): 'j(g-l'J(Gz'a]))
-1 ...(B7)
{ Sz'j(az'd]'): J(§2+J(62'6-|))
. “Jeghg(Emalepma e, ey 53678 ))ey
=7
R e O P (O ORI
...(B8)

If we choose
5] = 2j(61+62)’ 52 = '2j(61+62)
s-| = s-l’ 52 = 52 [

then it can easily be shown that (2.37) is satisfied. Thus the corre-
sponding matrices V and V are
[ _jab 436,405 )b, §Abo-3(38,+1s, )b
1719471 4°2°°1° 171 9%71 471772
3. .1 3..,1
| Agba-(g85r38y)bs  Agbym(g8stgéy )b,

o ai3e ] 3,
SIeARgsitasylers -t ah ),

VN 3, .1
JerA-3(geirasyleys  -cRpt(itgdy)e;
...(B9)
Finally we may use (2.9) with E = 0 in order to compute a Y and a Y

matrix as
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<
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[

lw.vl

+S3JuR}ORaJ pue Sasueldnpui nd uaaM3aq =0wpucwummv Ou SL 343Y3
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If d1(s) and dz(s) denote the denominator polynomials of the transfer

functions h](s) and hz(s), a straightforward computation shows that:

dy(s) = det(s.L9+R%)/det L9 ,

det L9 = Ly(Lote-L3y) ...(cm)
- [y 2 3 ,
dy(s) = [Lg(Lple-Lyp)s™ + {LyLprp + LD(LdrF+LFr)
- LﬁD(rF+r )}s2 + {(LdrF+LFr)rD + LDrrF}s

+rorerl/det L9, ...(C12)

dy(s) = det(st3+R%)/det L9

q_qn
det L LqLQ ’ . ...(C13)

- " 2 q

dz(s) [LqLQs + (Lqu+LQr)s + erJ/det Lt . ...(C14)
One can similarly compute the numerator polynomials n](s) and nz(s) as

nq(s) = [L(LeLa-L2 )82 + {LiLery + (LoLn-L2 ) reds

1 d*“F-D “AD dFD d*D “AD’/'F
+ Lrer1/det LY (c15)
dFD ’ te
= " q

nz(s) (LqLQs+Lqu)/det L. ...(C16)
If one makes use of the approximation

rD >> rF ...(C17)

where both o and rp are measured in pu quantities*, then the following

+(C17) is to be attributed to the strong coupling between the field and
armature circuits and is not true for the actual resistance values.
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approximate expressions can be written for d](s) and n](s):

=P g 12 13 23 1.2,
d](s) [Ld(LFLD LAD)s +(L&LFrD+(LDLF-LAD)r)s + (LdrF+LFr)rDs

d

+ rDrFr]/det L ...(C18)

n(s) = {l.;;(l.,,LD-Lf\D)s2 + LiLprgs + Lyrerpl/det L9, ...(C19)

Furthermore again using (C17) and its application into the first order

2

approximate factorization of as”™ + bs + ¢ when ¢ is small (which is:

asz+bs+c"a(s+%)(s+-§).) yields the following approximation for n.I(s)

nl(s)é(s+;1§)(5+;]g) » ... (C20)
whereas
ny(s) = (s+%u-) . ...(c21)
q

If ﬁ}(s) and ﬁé(s) denote the numerator polynomials of the transfer

functions ﬁ}(s) and Fé(s) then

m(s) = [(LFLD-L§0)52~+ (LoretLprg)s + rerplrdet L4, L. (c22)
ny(s) = (LQs+rQ)/det a , ...(c23)

which by virtue of (C17), (C11) and the same approximation that led to
(C20) becomes

.. d
m (s) [(|.,,1.D-|.f“))s2 + Lprpstrerpl/det L9, ...(C24)
my(s) & felst ) (s+ =) ... (c25)

d Yo Tdo

whereas

my(s) = [‘-.r(s+;‘w-) ) ...(c26)
q 'qo



Finally

1

- CZA

202

and therefore

F(c1Ap,

*eohoby) = -7

eiLd(Ld)-]Rd(Ld)-Iel
L3N TRILY) e,

ot
Ld Lq

...(c27)

...(C28)

...(C29)

The definitions of the decoupled model of section III are related

to the classical definitions as follows

Ay = -

All;_

d

h](ké)

- = L _1
PN O B VUL OV R S

Er s

.-il_.

n(Ag) _

ﬂ-
s

e
"

L
ol

o
-
a-
L ]

which in practice is valid since

Tg >> Tg» Tgo
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are used in deriving (C31). In a similar way:

F ()\" F ()\u)
l1 d = u.I d = 1— - _]l' (C34)
Mg X g | T T L

where the approximation used is
k-]
o dlzy ...(C35)
-7
because of (C33) and

Tho >> Tﬁ . ...(C36)

In addition to the approximations above we have the exact expressions

2 2 1 1
ﬁ'ﬂ'(‘gT)':—l—r(&r)"-' ™ - T ...(C€37)
MhalAg)  AgalAg [ ‘4 Lq ]
and
' - ] d -1 - ]
e]b] = e](L ) e] = La FY ...(038)
' = at(19 -1 = 1
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from which (D1) follows since n](A&) = n1(A3) = 0 and thus

mOg) ROy ROy h (A% .
nfg) - ThiTRgT * ng) - ATRp

The proof for (D2) is similar. In order to prove (D3) we first write
the left side of (D3) after cancelling the common terms in the

numerator and the denominator as

h(s)he(s)
= 1(8)"hge
hr(s) - =)

_ Ligp(sdng (s)-Rq(s)ngp(s)]

n,(s7d,(s] J ...(D4)

where the symbol 'n' is used for denoting the numerators of the corre-
sponding transfer functions. The partial fraction expansion of (D4)

can be written as

_ hy(s)h (s)
h.(s) - L dF
dF TRs)
3 {ngeOIng ()= (A nge (A}
i 121 nq(R;)d;(3;) 5=

R I
hl(Ad) s-g h](Xg) s-Ag

where A],AZ,A3 are the roots of d](s). It therefore suffices to prove
the relation

nge(2y) M)

= » 1=21,2,3 , ...(D5)

in order to prove (D3). The proof of (D5) requires brute force compu-

tation making use of d](ki) =0i=1,2,3.
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