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ABSTRACT

A theory for the asymptotic modal decomposition of a linear multi-

variable feedback system subject to high gain output feedback has been

developed and applied to the linear, ideal synchronous machine by

identifying the latter with such a high gain output feedback system.

This new conceptualization leading to the asymptotic decoupling of

machine modes brings a unified and rigorous understanding to synchronous

machine dynamics. The numerical simulation runs show that the

asymptotic decoupling approximation 1s highly accurate for awide range

of situations.
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1. Introduction

As the size and the complexity of an electric power system grow,

providing simpler models for the components of the system to be used in

numerical or analytical studies becomes an important concern. The syn

chronous machine is such a component that plays a crucial role in power

system dynamics. The relative success of the Liapunov theory developed

and applied to multimachine power systems stability assessment [16]

owes a lot to the simplicity of the classical transient model of the

sychronous machine used within the systemic model. The limitations of

the classical transient model [6], however, has been demanding a clear

and thorough understanding of other modeling choices for which the

theory in question can be extended in meaningful ways.

The example cited above is just one instance, nevertheless impor

tant, that renders the development of a unified and rigorous conceptual

framework for the model reduction procedures of the synchronous machine

a task worth undertaking. The present paper is such an attempt.

The basis for the dynamical reduction of a linear, ideal synchronous

machine model is modal (or time scale) selection. The so called sub-

transient, transient, and steady state models with their variants that

include or exclude amortisseur windings, rotor iron effects etc., are, in effect

obtained by selecting the appropriate modes of the transformer equations

after applying Park's transformation. As a further step in the simpli

fication one can identify the algebraic input-output equations for the

quasi steady state of the selected modes by a phasor diagram which, in

turn, corresponds to some linear electrical circuit.

A serious theoretical obstacle in deriving the reduced equations

has been the absence of an analytical solution or a well defined approx

imation to the modal decomposition problem of the transformer equations.
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Historically this obstacle has partially been circumvented by introducing

a series of assumptions, approximations the motivations and justifications

of which lies mostly in empirical evidence. In spite of the validity of

most of the end results due to the extent of scrutiny involved in

empirical verification, the overcomplicated derivation patterns for modal

reduction lack conceptual coherence, simplicity, and rigour as can be

witnessed in classical texts like [1], [2] as well as relatively modern

ones [3], [4].

This paper removes the obstacle in question by solving the modal

decomposition problem as a limit case of the synchronous speed. The only

empirical verification required 1s to show that the limit in question is

achieved at the nominal synchronous speed for all practical purposes.

The decomposition problem is solved in two steps. First a result

is provided within the paper that solves the asymptotic modal decompo

sition problem for a general linear multivariable feedback system under

high gain output feedback. It is then shown that the transformer

equations of a synchronous machine can be identified with a linear

multivariable feedback system where the d-q axis voltages and fluxes act

as the inputs and the outputs respectively, and the electrical rotor

speed acts as the feedback gain parameter. It turns out that the

nominal synchronous speed of the rotor justifies the "high gain"

assumption and the theoretically "asymptotic" result becomes a yery

good approximation as long as the synchronous machine 1s operated within

the range of its nominal speed.

The problem of tracing the asymptotic behavior of the closed loop

eigenvalues of a linear multivariable system under high gain output

feedback has received some attention in the last decade [7] - [13]. In
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spite of the relative abundance of the results for the asymptotic root

locus problem, however, no attempt seems to have been made to solve the

associated asymptotic modal decomposition problem. Section II of this

paper addresses itself to this problem and the main result is presented

in a single theorem. In section III after a concise description of the

linear, ideal synchronous machine model a transfer function relation is

derived. This relation provides a clear understanding of the high gain

feedback mechanism involved within the synchronous machine without any

reference to the modal decomposition result. The theoretical result of

section II is .then applied to the synchronous machine and the decoupled

state equations as well as the output equations are derived. Making

use of the results of Appendix C which relate the classical definitions

and approximations to the results of this paper the decomposed model is

further simplified and its consequences to model reduction are pointed

out.

In section IV three numerical simulation runs are presented in order

to assess the accuracy of the asymptotically decoupled model using

typical data for a synchronous machine. The numerical study consists of

field voltage adjustment, short circuited machine, and stability

simulations. The decoupled model used in these simulations is further

refined by incorporating a second order adjustment term in the armature

modes that diminishes the steady state offset error. In section V

prospects for possible extensions of the results of this paper are

discussed.
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II. Modal Decomposition Under High Feedback Gain

The system to be investigated is described by the following state

equation

x = (A-kBC)x + kBu + Gv ... (2.1)

where x € Rn, u € Rm, v€ Rm; A, B, C, and G are constant matrices of

appropriate size with rank B = rank C = m. The parameter k denotes

the common feedback gain of the multivariable system. The purpose in

this section is to obtain an analytical expression for the asymptotically

valid modal decomposition of (2.1) for large k, and make precise the

nature of the approximation in terms of appropriate limits.

At the outset we make the following assumptions:

A.l. det CB f 0, and the eigenvalues of CB are distinct.

A2. The zeroes of the system (A,B,C) given by the roots of

iI-A B \
det I No

•C 0 /C
are distinct.

Remarks

1. It is well known that under assumption Al. (A,B,C) has precisely

(n-m) zeroes and as k goes to +«(n-m) closed loop poles approach these

zeroes and the remaining m closed loop poles go to infinity along

directions dictated by the eigenvalues of -CB [7]. This fact will

eventually be reproved as a byproduct of the analytical construction

of the modal decomposition.

2. The 'distinctness assumption both for the zeroes of (A.B.C) and

the eigenvalues of CB can be relaxed by allowing for simple repeated

roots. For the sake of simplicity, however, we restrict our analysis
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subordinate to the assumptions stated above.

The first step In the analysis is the construction of the eigen-

spaces corresponding to the asymptotic eigenvalues given by the zeroes

of (A,B,C). Thus let ^|»•••»\,_ra denote the zeroes of (A,B,C) and

define the nontrivial vectors (x'.,-qi)'and (x"!,?.)' by

X^-A

-C
= 0 ,

Xjl-A

-C

and furthermore let

x (ql Vra1
° (xi» —»xnJ'

s 0 , 1sl,..•,n-m,

Lemma 1 Under the assumption A2. for each i

x'.x1 f 0,

and if x* (or x* or both) is normalized so that

x]xi = 1,

then

XX = IM m
n-m

...(2.2)

...(2.3)

...(2.4)

...(2.5)

The proof of Lemma 1 is given in Appendix A.

Now define matrices Y and Y by requiring that they satisfy the

relations
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CY = Q ...(2.6)

YB=Q ...(2.7)

XY + YX = 0 . ...(2.8)

These relations do not specify a unique Y and T. In fact

Y^BCCB)"^ + XE

Y:»IT(CBr1C - EX ...(2.9)

is a possible solution to (2.6) - (2.8) where E is any (n-m) x (n-m)

matrix. That (2.9) furnishes a solution follows from Lemma 1 and the

relations

cx =° ...(2.10)

**=0 ...(2.11)

which are true by virtue of (2.2).

The approximation for the eigenvectors corresponding to the

asymptotic eigenvalues X^— .X^are simply the column vectors of the

matrix (X-^Y). Indeed rewriting (2.2) in matrix notation as

XA- AX=BQ ...(2.12)

where

A := diag(Xr...,Xn-m) ...(2.13)

and using (2.6), (2.10), and (2.12) one arrives at

(A-kBO(X-^Y) *(X-lY)A ♦ {• (YA-AY) ...(2.14)

in which it is readily observed that the error term is of the order k'1.
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Using the dual of the arguments above, an approximation for the

left eigenvectors of (A-kBC) follows from

(X-{Y)(A-kBC) =A(X-lY) +̂. (AY-YA). ...(2.15)

Moreover the relation

(X-lY)(X-lY) =In.ra +̂ YY ...(2.16)

is a first step in constructing an approximate inverse for an approxi

mate modal matrix of A-kBC, and follows from (2.5) and (2.8)

The second step in the analysis is the computation of approximate

eigenvectors for the unbounded eigenvalues. If Yi»«»»»Ym are the eigen

values of CB let

Y:=diag(y.|,...,Ym) ...(2.17)

and P be a modal matrix of CB satisfying

CBP = Py . ...(2.18)

We then define

U := BP ...(2.19)

V := BR + ABPy"1 ...(2.20)

where the mxm matrix R is yet to be determined. The approximate eigen

vectors are the columns of the matrix (U-^V). Establishing this result,
however, requires some further work which we take up next.

The unbounded eigenvalues of A-kBC converge to the parametric

asymptote loci given by -Y^k + cu for i= l,...,m where

a, :=PT]cABP Jy< ...(2.21)
i l • • i i
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with PT and P .denoting the 1th row and column vectors of P and P
1 • •!

respectively. As stated earlier this statement will also be reproved as

a byproduct of the modal decomposition.

We shall require, for reasons to be revealed in the forthcoming

analysis, that R satisfy the matrix equation

CBR+ CABPy"1 =Ry +Pa ...(2.22)
where

a^diagfc^,...,^) ...(2.23)

Solutions of equation (2.22) for Rare characterized by the following

result whose proof is straightforward and is therefore omitted.

Lemma_2• Let y be as in (2.17) and L be a constant matrix, then solu

tions of the linear matrix equation

KY "YK = L ...(2.24)

for Kexist iff diagonal entries of L are zero, and are given by

K= *() + s ...(2.25)
where

[L]..

[Ko]iJ s y^T •1'J

s° »1sJ ...(2.26)

and S is any diagonal matrix •

Post multiply (2.22) by P"1 and rearrange terms after using (2.18) to
obtain

P-^Y -YP-1R aP^CABPy"1 -a ...(2.27)
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which upon application of Lemma 2 yields the general solution for R as

R= PKq + ps ...(2.28)

where KQ is given by (2.26) with

L=P^CABPy"1 -a ...(2.29)

and S is any diagonal matrix.

Now letting R given by (2.28) be a solution of (2.22) the required

relation for the eigenvectors are derived as follows

(A-kBC)(U-lv) = -kBCU + AU + BCV -1 AV

=-kBCBP +ABP +BCfBR+ABPY"1) -£AV

='-kBPY +ABP* BCCBR+CABPy"1) -£AV .

Using (2.22) for replacing the term within the parenthesis

(A-kBC)(U-lv) »-kUY +ABP +B(Ry+P<x) -£AV ,

=-kUY +(BR+ABPy'^Y +Ua -̂ AV ,

(A-kBC)(U-lv) =(U-£v)(-kY*a) +£(Va-AV) ...(2.30)

The proofs for the dual formulas are done similarly. Here we simply

summarize the results by stating the definitions and the relevant

relations below .

U := y-1P-1C ...(2.31)

V := y^CRC +y'VcA) ...(2.32)

ffCB +y'V^AB =yR +aP"1 ...(2.33)

R=KqP"1 +SP"1 ...(2.34)
+The asymmetry of dual definitions arise from the fact that normalization
of eigenvectors are achieved by scaling dual vectors.
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where S is any diagonal matrix, and TL solves

Y*0 " V =y'V^ABP - a ,>Qr i r u«or - a , ...(2.35)

and

Itt-x(IT-^VJfA-kBC) =(-kY+a)(U.^Y) +jL (av-VA) ...(2.36)

Next, we show that by an appropriate choice of Sand/or S(in
(2.28) or (2.34)) one can set

FV+7U =0 ...(2.37)

In order to prove (2.37) the following result is required whose proof is
given in Appendix A.

Lemma 3

If S1 and S2 are square matrices that solve the equations

V - *!s V"1
YS2 -S2y =y"1^

where YIs given by (2.17) and CQ is aconstant matrix, then s,y +y5.
1 t

is a diagonal matrix m

Now, forming

UV +?U =y'V^BR+ABPy"1) +y"1(RC+Y"V1CA)BP

=y'V^CBR+CABPy"1) +y"1(HCB+y"1P'1CAB)P ,

using (2.22) and (2.33)

BY "V'Wa) +RP +Y-1a ,

and substituting for Rand IT from (2.28) and (2.34)
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UV +YU =y'^KqY+Y^o5 +S+T+ ^ ...(2.38)
where

KqY -YK0 =[P^CABP-ycOy"1

Y^o "Vs y'V'W-cxy]

Therefore Lemma 3 applies and the right side of (2.38) is a diagonal

matrix which can be zeroed by a suitable choice of S and/or 5* and thus

(2.37) is proved.

Finally the relations

UU - Im . ...(2.39)

XU = 0 , UX = 0 ...(2.40)

ITY + VX = 0, XV + YU = 0 ...(2.41)

hold, where it is straightforward to prove (2.39) and (2.40). In order

to prove the first equation of (2.41) note that

UY +YX =y"V]CY +y'^IK+y'V^AJX

and using (2.6), (2.10) and (2.12) for AX

uy +vx =y'V1*} +y'^cxa) +y"2p"1(cbq)

-Y'V^ -Y'V1*)

= 0

and the second equation of (2.41) is proved similarly.

All the necessary relations have now been established in defining

the algebraic transformation for the modal decomposition. We define

a new set of variables by the transformation
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x := TS ...(2.42)

where

T:= (Xiu) -jL(Y|V) ...(2.43)

If we further define

-©-i© •••<*•«>
then using the previously derived results of this section one can show

that

1 fWiWN
17 =ln +^2 \w]"wy ...(2.45)

The equation corresponding to (2.1) in the transformed variables can

then be written as

k=(TT)"1? (A-kBC)T£ +(Tjy}T (kBu+Gv) ...(2.46)

After partitioning the modal state variable £ according to the parti

tioning of T and performing the necessary simplifications (2.46) can be
written as below

5, - ac, +{• (a^kj^+e^dosg)

'?"+Y e^kju +XGv +jL e12(k)v ...(2.47a)

c2 • (-kY+a)s2 +1(e21(k)c1+e22(k)s2)

+kp-1u+521(k)u +e22(k)v ...(2.47b)

where the matrices e.^k) and eL(k) i, j=1,2, are bounded in kfor
large k. Equations (2.47a) and (2.47b) are exact equations which are
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the transformed versions of (2.!). We define the approximate modal!v
decoupled equations as

€, « A5. - Qu + XGv ,9 ._ .
1 • ...(2.48a)

h' (-kY+a,^2 +kP"lu ...(2.48b)
and the approximate initial condition as

and finally the approximate original trajectory as

x(t) := X^(t) +UC2(t) ...(2.50)

Before we state the main result of this section we make a final

assumption related to the unbounded eigenvalues of the closed loop

system.

A3. All eigenvalues of the matrix CB are on the closed right half

plane.

Theorem Consider the system described by equation (2.1) and suppose

that assumptions Al. and A2. are satisfied. Let X, X, U, and U be matrices

defined by (2.3), (2.13), and (2.31) respectively. Under these con

ditions there exists matrices Y, Y, V, Y, (not necessarily unique) such

that 1fT andT areas defined in (2.43) and (2.44),they satisfy (2.45) and

the transformed differential equation with respect to the linear trans

formation given by (2.42) enjoys the structure given by (2.47a) and

(2.47b) where all 6 matrices are bounded in k for large k.
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If in addition to the above hypotheses u(«) and v(0 are vector

valued functions whose components are absolutely integrable on an^

finite interval [0,t], u(«) has components which are integrable functions

plus a finite number of shifted delta functions multiplied by finite

constants, x(0) is any given initial condition, and assumption A3 is

satisfied then for each t > 0 the error vector satisfies

lim Ox(t,k) - x(t,k)B = 0 ,
k-*»

...(2.51)

where x and x (the dependence on k has been emphasized) are given by

(2.42) and (2.50) respectively, and II •I denotes any norm on Rn.

Proof of Theorem

The first part of the Theorem has already been proved. In order

to prove (2.51) note that it is enough to prove the case where x and x

are replaced by £ and £ since the transformation defined by (2.42) con

verges in the limit to that defined in (2.50).

From equations (2.47) and (2.48) it follows that

5(f) -«{f) *(•«k>t,(«0)-C«») ♦ {} .^Nf-t")e(k)£(t.)dt.
rf

,M(k){V-fti1" 9ll(l<) \ u(t")dt"
e21(k).

eH(k)(f-t")[ Fe12(k) ]v(t")df)
0 Vi22(k) J j

*i
V

•M(k,(t,"tn,e(k)(5(t-)-5(t"))dt" ,

V 0 < f < t ,
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where

e^k) e12(k)
6(k) := "

e21(k) e22(k)

M(k) := diag(A,-Yk+a) .

Because of assumption A3, the matrix e 'k' is bounded in norm with

respect to k. This follows since the only unbounded entries of the

diagonal matrix M(k) are those for which the coefficient of k has non-

positive real part. Furthermore because of the assumption on the input

v(«) and A3, £2(*) is bounded on the interval [0,t]. In fact for the
case at the edge whereby y has some purely imaginary diagonal entries,

the corresponding critical components of £2(t) can be identified by the

Fourier transform of the derivative of a function which is zero outside

the interval [0,t] and has a finite number of jumps on this interval.

Since the Fourier variable is identified by k and the Fourier transform

is bounded in k the assertion on £(•) follows.

The observation above together with the fact that £(0) converges to

£(0) as k+ +« imply that the first two terms within the parenthesis in

(2.52) tend to zero. The fact that the remaining two terms tend to zero

is obvious except for the situation where y has some purely imaginary

diagonal entries. In this case the result follows by the well known

Rlemann-Lebesque lemma [15] using the absolute integrability assumptions on

u(-) and v(*) (the proof for the assertion that the convergence of the

terms within the parenthesis to zero is uniform for t* € [0,t] is

omitted).

In view of the arguments above the proof of the theorem follows

by applying the Bellman-Gronwall Lemma to (2.52) after taking norms on

both sides. «
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Remarks

1. The Theorem makes precise what is meant by "asymptoticity" of the

approximation equations. (2.51) shows that the error approaches to

zero as k goes to +«. Also observe that by adding higher order terms

to the approximation equations (2.48a) and (2.48b) nothing will be gained

theoretically because of the compatibility of the order of the coupling

terms in the original equations (2.47a) and (2.47b).

2. If the constant gain parameter k is replaced by kQ + k(t) where

k(t) is a given differentiate function of t, then it can be shown that

the main result of the Theorem extends to this case provided that the

term k(t)/(kQ+k(t)) is bounded in t. The relevance of this observation

stems from the application of the theory to the synchronous machine

where kQ is identified with the synchronous electrical rotor speed and

k(t) with the deviation from the synchronous speed.

3. If det CB = 0 or the system (A,B,C) has (nonsimple) repeated zeros,

or CB has (nonsimple) repeated eigenvalues then the analysis of this

section does not apply. It is a fact that under such circumstances,

unlike the case treated here, asymptotic expansions of closed loop

eigenvalues (hence eigenvectors) take place in noninteger powers of

k" [12]. Extensions of the theory to such cases remain an open

problem.

III. Modal Analysis of the Synchronous Machine

A. Synchronous Machine Model

We shall be dealing with the ideal, linear synchronous machine

model where the effects of iron core saturation and space MMF harmonics

are omitted. After applying Park's reference frame transformation and
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disregarding zero sequence quantities (since zero sequence equations

are totally isolated from the others and can be treated separately) the

relevant machine equations can be written, in the p.u. notation employed

in [3], as follows*,

*d=

0C =

-rtd-tfq-vd ,

-rFiF ♦ vF ,

0q =-riq +u0d -vq ,

f0dl
f

•f
s

I J >

V

d

AD

AD

q

AQ

e + De = P - P
m e

pe= »v«h-i#J

AD lad] r • *\

7d

"F LAD 1F

AD L0 5D

AQ

Q

'q

1Q

...(3.1)

...(3.2)

...(3.3)

...(3.4)

Equations (3.1), (3.2) are called the transformer equations, (3.3)

is called the swing equation where 9 is the electrical angle of the

These equations are for a salient pole machine modeled by a rotor
possessing three separate windings corresponding to field and
amortisseur circuits. Models for cylindrical rotor machines that
employ additional rotor windings to represent eddy currents (see for
example [5]) can be treated by the similar techniques developed in
this paper.
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rotor, u) = 8, P is the mechanical power applied, and P given by (3.4)

is the instantaneous counter electrical power induced when the machine

is operated in the generator mode.

We shall adopt the commonly utilized "small deviation in speed"

assumption so that the rotor speed w 1s taken constant that is equal to

the synchronous speed in the analysis of the transformer equations.

The voltages vd, vq, and vp are treated as the inputs. Using (3.1) and

(3.2) one can write the associated state and the flux equations separately

as

1d =-(Ld)-1Rd1d - o)(Ld)-1e1e'Lc'ic'

iq =-(Lc»rlRq1q +u)(Lqr1e1e^Ldid

0d = Ldid

0q = i/^q

id :- (1d.1F.1D)' .

^ :- (1q.V •
0d := (0d»0F.0D)' .

0q :- (» .»Q)-

where

Ld:=

Lq :=

( Ld LAD LAD

LAD LF LAD

LAD LAD LD

Lq LAQ

ILAQ LQ J

-19-
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Rd := diag(r,rF,rD) ,

Rq := diag(r,rQ) _(3#9)

and ei is the 1th unit vector of appropriate dimension.

We define new input voltage variables v, and v by
q q

vd " wvd

vq = o)Vq
(3.10)

The reason for this new adjustment is to set the synchronous machine

transformer equations in the form given by (2.1). It is to be stressed

that our purpose is to view the transformer equations as an instance in

a limiting process with respect to the synchronous speed. This specific

instance is when w = 1, the normalized nominal speed, and therefore a

practical meaning to the above definition need not be enforced. If the

necessity for such a practical interpretation is forced however, it is

possible to reason by stating that all_ the voltages in a power system

change in proportion to the synchronous speed of the system since they

arise from the induced e.m.f. of the generators within the system. In

the following derivations we shall use the new variables v. and v only

within the limit expressions.

From the above equations it can be seen that the model given by

(2.1) applies with:
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A :* diag(A,,A2)

A, := -(LU)-'R< ,d^lnd

-1A2 := -(Lq)-'Rq ,

B :=

C :=

bl °
0 b2/'

0 c2
-c} 0 '•

bl := (Ld)"V
b2:= (L")"V
cl := *- 9

c2 := elLq $

u(t) -(-yt>

G:= l(Ld)-\V9 0)'

v(t) := vF(t) ,

k :=a) ...(3.11)

The high gain assumption turns out to be valid for this example.

In fact, this empirical evidence is frequently reiterated in the

literature as the dominance of the speed voltages over the transformer

voltages. The open loop system (ofO) corresponds to the blocked rotor

case and if the armature and field voltages are taken as the inputs

then the open loop system consists of two (d and q axes) mutually

coupled passive R-L circuits. The feedback effect is due to the speed
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voltages induced in the armature circuits and the high feedback gain is

the electrical speed of the rotor.

Before we apply the results of section II it will be instructive

to give a transfer function solution of the transformer equations in

which the high gain feedback structure becomes transparent. First we

define the following transfer functions:

h^s) := e]LdMd(s)(Ld)-1e1 ,

h2(s) := e'LqMq(s)(Lq)-1e1 ,
^(s) := e«Md(s)(Ld)-1e1 ,

h2(s) := e»Mq(s)(Lq)"1e1 ,
hdF(s) := e«LdMd(s)(Ld)-1e2 ,

hdF(s) := e^Md(s)(Ldr1e2 ,

Md(s) := (SI+UW)-1 ,

Mq(s) := (sI+(Lqr1Rq)"1 ...(3.12)

where h,, h2 are the vd -0d and v -0 open loop (blocked rotor)

transfer functions; Ky FT2 are the vd - i*d and v - iq open loop trans

fer functions; and hdF, "fidF are the vF -0d and vF - i*d open loop

transfer functions.

Using the definitions given above and the Laplace transformed

version of equations (3.5) and (3.6), after a straightforward computa

tion one arrives at the following equations where the symbol '~' stands

for the Laplace transformed version of a variable.

*i • ""Vq " Vd +hdFvF •
•v i* mt

0q s o>h20d - h2vq ...(3.13)
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id =-a1F10q-h1vd+TTdFvF ,

1 =^£0d - F2vq ...(3.14)

Solving for 0d and 0 from (3.13) and substituting the result in (3.14)

the following input-output transfer function relations are obtained

l .

redi
1

-h^ , cah^hg,
'dF

v.

l+u)2h h2 -whjlu, -h2 , uihJi
dF

1
—T—1+u) h,hp

-h1 , aiF^, FdF+w h2(h1hd^h1hdF)

-o)F2h^, -F2 , wn2hdF

...(3.15)

...(3.16)

If n..(s)and d..(s) denote the numerator and denominator polynomials

of h^ (s), i= 1,2, then it can be shown (as is almost obvious from

(3.16)) that the closed loop eigenvalues are the roots of

d1(s)d2(s) +cAi^sJngfs) =0

It is interesting that the multivariable root locus problem has reduced

to a single variable one due to the cross coupled structure.of the

feedback. We shall postpone any further discussion on the above trans

fer function relations and compare them later with the approximate

expressions obtained via the modal analysis. At this stage it suffices

to remark that the equations (3.15) and (3.16) do not involve any

approximating assumptions based on high feedback gain and thus are

exact in this sense.

-23-



B. Modal Equations for the Synchronous Machine

The results of section 2 are now applied to the example of the

synchronous machine described by (2.1) and (3.11). First it is noted that

the zeroes of the representation (A,B,C) are simply the roots of the

polynomials n^s) and n2(s) (numerators of h^s) and h2(s)) since

Cfsl-A)"^ =
0 h2(s) '

-h^s) 0
...(3.17)

If we let Xd and XJj denote the distinct zeroes of n,(s), and X"

the zero of n2(s) then the following relations are a straightforward

consequence of the definitions of section II and (3.11).

X =

Q =

(X'dI-A1)"1b1 (XJI-AjT^
Xjhj(A'd) • X»h](X») •

0 0

-Xjc^XJI-A,)

-1

-1

(Xjl-Ag)"1^
WW

, -X"c2(X"I-A2) -1

xJTJTxjy W*F

WT
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...(3.20)



s =

-\"

CB =

-clbl

xd

xd

c2b2

0 )

-i

...(3.21)

Y = , p-

0 1

...(3.22)
-1 0

4

' 1 1
'

' 1 -J

j "j
4

_ 1

1 j

...(3.23)

a=j- (c^^^CgAgbg) • I2

U=BP =

bl bl "*

jb2 -jb2

U =y'Vc *1
-jc,

jc.

...(3.24)

...(3.25)

...(3.26)

where h^ and h2 denote the derivatives of h, and h2- Expressions for Y, 7, V,

V, and the auxiliary matrices R.R.Kq.ICq.S, S, that are used in computing

V and V, and the details of these computations are given in Appendix B.

Finally we apply the transformation P"1 to the last two variables

(the complex modes) in the approximate modal equations so that the

associated Jordan matrix is real. The resulting modal equations after

this modification are given by
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\\

zd =Xdzd +IT vq - WdF^d* * VF • ...(3.27a)
X"

Zd • XdZd +4 vq "WW ' VF • ...(3.27b)

Zq =XqZq"^vd » ...(3.27c)
Zsd =Vsd * uZsq - Vd ' ...(3.27d)
.

zen = u>z . + X z n - v„ ...(3.27e)
sq sd a sq q

where

Xa :s 7 (ciAibi+c2A2b2^ ...(3.28)

and hdF is given in (3.12). The corresponding asymptotic expressions
*\ 4* A.

for the d and q axes current and flux variables denoted by id, i ,0d>

0 are obtained using (2.50) as below.

fyxj) F,(x;j)
1d SW1? '"d +W^d7 "2d +^ "Zsd -(3.29)

F2(x")

1q =̂ ^T'2q +elb2'Zsq -(3-30)

0d = zsd ...(3.31)

0q=zsq ...(3.32)

where U«BP was replaced by Bin (2.50) and u=y'Vc was replaced
by Py^P^C » (CB) C in (2.49) because of the modification leading

to the real Jordan form as mentioned above.
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The approximate version of the induced counter electrical power is

given by

<\ «* A> /N

Pe - o)(iQ0d-0Qid) ...(3.33)

Equations (3.27a) - (3.27e) and (3.29) - (3.33) are the asymptotic

modal equations for the synchronous machine. The sense in which these

equations may be called "approximate" has already been made precise by

the Theorem of section II. Moreover because of Remark 2 following the

proof of the Theorem in section II the rotor speed u may be allowed to

vary with time (i.e. w(t) = uQ + e(t) where 0(t) is the instantaneous

deviation from the synchronous speed) and 1f 6(t)/(a> +e(t)) is bounded

in t as u)Q -** +« then our approximation remains valid when u> is replaced
by aj(t).

We shall now present a view that gives another related interpre

tation to our modal approximation by using Laplace transforms. Assume

that vd, vq, and vp are L-transformable functions of time on [0,+»).

Let s€cand s i X^, XJj, x». Again using »*• for the transformed

variable one computes the transform of the ?d using (3.10), (3.27a) -
(3.27e) and (3.29) as

Us)
fMxd> 1 xW i

nTTxJTHxJ +h]Tx3TFxJ vq(s)

+ elbl
^q(s)u)Z
(s-Xa)V

vd(s)a(s-Xa)

(s-Xa)z+(oZ

hdF<*d> MXd> 1 , "dF^W
RTTxD i^r + —hTTrn—Kftfi

-27-
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and therefore

? , x Ms) ^ ^(sjh.pfs)
J2L ^^V5^^5^-^^)^) -.(3.34)

using (Dl) and (D3) of Appendix D. But using the exact expression given

by (3.16) with v • (ov it follows that

Ms) - - Ms)hdF(s)
lim ^^TTTsTV5^^3^ Mi) >VF<S> -(3.35)

(O-H-oo Is
• 1im?d(s)

which shows that the transformed error approaches zero in the limit.

Using similar reasoning and (D2) one can show that iq(s), 0d(s)> and
I (s) approach in the limit to.i (s), fld(s), and 3(s) respectively.

C. Comparison with Classical Models

In Appendix C an account of the classical definitions and their

relations to the model developed in this section are presented. The

approximations involved in the derivation of this presentation stem

from the range of the values of the machine parameters and not from

the main and the only source of approximations used so far, namely

high rotor speed. Our purpose for using these parameter approximations

and the associated terminology is to relate our work to the existing

body of literature.

We first write the field excitation voltage vF as

VF = VF0 + AVF
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where it is assumed that vFQ has been applied for a long time and AvF

is the incremental adjustment for possible terminal voltage regulation.

The steady state values for iq, 0d, and 0 corresponding to the input vpo
are all zero except for 1d which is

dss rnnTTn + —rnu-rrnnxjqr^T xjhji^y FO

hdF(0) - h1(0)-hdF(0)
f^VT

FO

0 -
(l/rRA0/rF-

^ FO

LAD VF0
...(3.36)

where (3.27a), (3.27b), (3.29), (D3),and (3.12) have been used. If we

define

then

Ef := ttLAD "r
FO

Li
E' •= F . -2.
f * fcf 17

E"

dss al
Ef

HZ
Ef

-29-
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..(3.39)

..(3.40)



Now also using the approximations of Appendix C a new modally decoupled

model is obtained as presented below.

Tdud ="ud " vq + w3'AvF •

Td"d s"ud - vq +"»"AVF •

t"u" = -u" + v.
q q q d

(Ta"sd^usd)
o)Ta sq d

a

(x u +u )

cox. sd q

f 1 11
u' +

d

1 1 1
I5LJ-SCJ

1 _ 1
ojL" " ST"

q q j

**d = Usd

U>0„ = u
sq

U" + -TTT U ,uq SCJ usq •

("sd'YVd >
where

B' :- hdF(X»)

B" :- hdF(Xj)
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ud +uXJ usd'uZ^ •

...(3.41a)

...(3.41b)

...(3.41c)

...(3.41d)

...(3.41e)

...(3.42)

...(3.43)

...(3.44)

...(3.45)

...(3.46)

...(3.47)



and the term Ef/u)Ld in (3.48) can be replaced by EiM\ or EJ/wL*j

because of (3.41).

The model presented above is central to the reduced models of

different temporality derived in literature. If we substitute

ud ~ud Euq E°» ^d and qaxis modes *et u°excited) u =-vd,
usd =vq ^the armature complex mode given by (3.41d) and (3.41e) is in
its guasi steady state, i.e. LHS =0), and Avp =0 (voltage regulation

dynamics not excited),then we obtain the so called subtransient model

for the synchronous machine. If we substitute u^ =0 (d axis transient

mode not excited) and xjjuJJ =0, tJJuJJ -0, u$q =-V(J, u$d =vq (d axis
subtransient mode, q axis subtransient mode and armature modes follow

their respective quasi steady state values) and Avp =0we obtain the

transient model. and finally the steady state model is obvious. If in

addition we assume that in each of these models L!l = L", Li = L • and
d q d q'

Ld = Lq resPectively then the quasi steady state values substituted in

(3.42) and (3.43) can be identified by a(complex)equality of phasors

which, in turn, can be identified by an equivalent single phase linear

circuit in steady state consisting of a reactance and an independent

source behind it delivering an average AC power given by (3.46).

One observes that the d and q axis flux (or induced voltage = wflux)

variables coincide with the armature modal flux variables as seen from

(3.44) and (3.45). This complex mode with eigenvalues -- + jw
Ta "

contributes to the armature DC offset mode in 3 phase operation. This is

because the difference frequency is zero after performing inverse Park

transformation. The rather intriguing fact that, it is because an

asymptotic natural frequency of the closed loop system equals the

synchronous speed that there is an exponentially decaying DC offset
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mode in armature currents, has apparently remained unrecognized. For

various nonanalytical explanations of this phenomenon (involving various

definitions of negative sequence reactances) the reader is referred to

Kimbark [l]pp. 39, 68 or Concordia [2] pp. 87-95.

A considerable amount of effort is spent by the classical treatment

in explaining and justifying the assumption of the "constancy of the

field flux linkage" (see for example Kimbark [1] pp. 13-18). This

assumption admits a very elementary interpretation in modal formulation.

Indeed it sums up to saying that the component of the field flux along

all the quick modes are negligible and therefore it can approximately

be identified with the d axis transient mode which is slow. In order to

quantify this statementwe first write the field flux as

0f - xfr\(x>d)—• zd+ xjhjtxj)— -zd
A

which follows from the definition of 0F and (2.50). It is already seen

from this formula that components along the complex armature mode and

the q axis subtransient mode are zero. Now observe

IX" I» L H Id
IAd L » T^* L
a Ld LF LD

which in practice is valid, and consider

XjJLd +Rd - XjJLd,

e'Ld(X5Ld+Rd)-1e1 - e'Ld(X3Ld)-1e1 - jr eje, =0 ,

implying that the component along the d axis substransient mode is

negligible.

Finally one observes that a simple interpretation for the d and q

axis subtransient and transient reactances can be given without even
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any reference to the modal decomposition result. Assuming that x is
4.

small enough (otherwise the given definitions on subtransient and

transient phenomena are devoid of any meaningful interpretation) one

can write from (3.15)

id(«) - vq(s)
Pq(s) = -vd(s)

which upon substitution in (3.16) yield

F,(s)- 1 "11d(s)s^h7(i7- Ms)
-' . F,(s) -
Vs>4hffiTVs)'

and using (C31), (C34), (C37)-(C39) in (Dl) and (D2)

1d(«) -

y«> {*

x"
Ad

q **d

xi
•q J S Aq

xd
**d

v«>

Ms)

which gives the dynamical relations between the flux and the current

variables. For a unit step input in vd (or equivalently 0d) and
vq(0 ) the corresponding currents are

id(t)=rl +
d

f 1 11

*d K,
1-e

*Td M
L.

1-e
Td^

Ta 1s 2g| sma11 1f tne resistance r in (CIO) is taken as the armature
resistance of the machine which would be the case if machine is short
circuited at its terminals. It is the line resistance added to r that
makes x& small even within the subtransient time scale.
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yt)«Ty +
H q

t_

- 1 - - -"f 1 i W X" ^
J L i.e q
Ln L" *e

I q q J

which require no further explanation.

IV Simulation Results

In this section we present three numerical simulation experiments

in order to assess the accuracy of the asymptotically decoupled model

using typical synchronous machine data. The experiments in question

are field voltage adjustment, short circuit analysis, and stability

analysis.

First let us emphasize the fact that the decoupled model given by

(3.27)-(3.33) becomes identical to the model given by (3.41)-(3.47)

provided that we replace the approximate time constants xd, and xjj by

their counterparts obtained from the roots of n^s), and replace L^

by Ldmod where

1 hl(Xd}
Ldmod := 1/(q"XJhjfXJ)^ (4J)

in the latter model. In order that no other source of approximation

contaminates we shall use our original model given by (3.27)-(3.33).

There is, however, a final empirical adjustment to be made so as to

diminish the steady state error contributed by second order terms.

In particular we replace (3.27d) and (3.27e) by

X

:sd =Vsd • ^sq " vd * T vqz«H = McH " wzcn - v. - -f vn (4.2a)

£sq =w2sd +Aa2sq ' vq +f vd ' (4'2b>

so that in the steady state the relations
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Sq / (4.3)
zsd ' w *

hold irrespective of the relative magnitude of X.. If the armature
a

resistance is relatively large (when line resistance is added) the

contribution of the offset error terms to id or 1 may be of the order

of 30% unless the above adjustment is made. On the other hand our

adjustment is theoretically neutral since addition of second order terms

to the right side of (2.48) do not influence the theoretical conclusions.

The machine data used for the simulations is almost identical to

the one given in [3] p. 176 and is given in Appendix E. In Table 1 the

closed loop poles are given as a function of <d. This tabulation exhibits

the validity of the high gain assumption as far as the asymptotic root

convergence is concerned.

In all the three simulations the synchronous machine is connected

to an infinite busbar of voltage magnitude Vb. If eis the electrical

angle between the voltage of the phase a and the quadrature axis of the

rotor, then using the definition of Park's transformation it can be

shown that vd and v are given by

vd = -Vb sin 9
(4.4)

vq = Vb cos e .

It has been assumed that the connecting line resistances and reactances

are incorporated in Ld, L ,and r for the sake of simplicity. Only in

the short circuit simulation we replace r by

r = .0021 pu
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to observe the effect of relatively larger time constant for the armature

modes (machine short circuited at its terminals). For the simulations

we do not use the assumption of small speed deviation, and therefore

use the actual rotor speed variable both within the original and

decoupled transformer equations. The differences arising from this

approximation, however, are observed to be insignificant in all our

simulations.

The starting conditions for all the simulations are:

Vb = 1 pu

vF0 = .5 x 10 pu (Ef = 1.044 pu) .

Pm = .3 pu.

The corresponding equilibrium angle is given by

6 = 29.23°.

Fourth order Runge-Kutta routine is used in solving the original and the

decoupled equations.

In the first simulation a 10% step Increase is applied to vF and

the resulting id and i are plotted both within the fast and slow time

scales as shown in figures 1-4. The oscillatory response of the original

model in the fast time scale is due to the second order effect of the

step increase in exciting the armature modes. The dynamical error is

seen to be within 5% from the slow time scale plots.

In the short circuit simulation the resulting d and q axis transient

currents exhibit an error low enough not to be visible from the plots

of figures 5 and 6. The discrepancy between the angles of the original

and the decoupled model given in figure 6* is of interest. Since the
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angle is proportional to twice the integral of the difference between

the mechanical power and the transient electrical power given in figure

5' it is seen that due to the large amplitude of the electrical power

transients higher order terms are important in the determination of

the angle deviation. Although in the more realistic situation the

effect of saturation limits the electrical power swing to a somewhat

lower level the practice of using only the swing equation for computing

the angle deviation during a short circuit fault interval may well

give rise to erroneous results in computing critical clearing times

for stability analysis. A full model for the short circuited machine

that incorporates electrical transients and saturation effects may be

advisable under such circumstances.

The final simulation deals with the stability of the synchronous

machine. In all the cases the initial speed is the synchronous speed

and the initial angles are chosen as -120°, -150°, -180°, and -160°;

and the resulting swing curves are given in figures 7-10 respectively.

These figures exhibit the fact that the decoupling approximation

deteriorates when the initial angle is within the boundary of stable

region. This is to be expected since the sensitivity of the solution

with respect to the initial angle becomes high in the vicinity of the

stability boundary and higher order terms dominate. All the curves

show the dramatic damping effect of the subtransient modes recalling

that the mechanical damping is taken as zero. As a comparison of

interest we state the interval of stability computed by the equal area

criterion; and for the decoupled, and original models as observed in

the simulation. These intervals are [-168°, 176°], [-175°, 184°], and

[-160°, 198°] respectively.
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V. Conclusions

A theory for the asymptotic modal decomposition of a linear multi-

variable feedback system subject to high gain output feedback has been

developed and applied to the linear, ideal synchronous machine by

identifying the latter with such a high gain output feedback system.

This new conceptualization leading to the asymptotic decoupling of

machine modes brings a unified and rigorous understanding to synchronous

machine dynamics.

The simulation results confirm that the asymptotically decoupled

model is an excellent approximation for the linear ideal synchronous

machine for a wide range of situations. Possible exceptions are

pointed out in section IV. What is more important, however, is that the

decoupled model is a theoretical starting point for model reduction

methods and is related to the original model through an analytically

well defined approximation based only on high rotor speed.

The theoretical result of section II can possibly be extended to

the case where CB is singular; or zeros of (A»B,C) or eigenvalues of

CB are nonsimple repeated. Another possibility that can be exploited

is to retain higher order terms in the asymptotic expansions of the

eigenvalues and the eigenvectors for greater accuracy. These questions

remain open and efforts along these directions would be a welcome con

tribution to the theory.

An extension of asymptotic modal decoupling results to the linear

but the nonideal synchronous machine looks promising. The recent work
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of Youla and Bongiomo [14] depicts the existence of a Floquet frame

under nonideal circumstances and moreover they conjecture a very simple

dependence of this frame on the rotor speed. These results have an

important bearing to the modal analysis of the nonideal machine and are

therefore worth a careful scrutiny.

If machine saturation is treated in a post-Park manner, which seems

to be the usual practice (and an unjustified one), then our results are

valid for the linearized machine with saturation. If, however,

saturation is modeled before Park's transformation,situation is more

difficult. The existence of a Park-like transformation for a saturated

machine becomes a problem in itself. If at a given solution linearization

is performed, the resulting linear system is periodic and coincides with

a linear nonideal machine. One therefore concludes that an asymptotic

modal analysis for the pre-Park saturated linearized machine is reduced

to the case of a linear, nonideal machine.
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Appendix A

1. Proof of Lemma 1

First we establish the fact that

x^. =0 , i f j ...(Al)

Using (2.2) we may write

Xj(XiI-A)xi =xjBqi =0 ,

xJ((X1-Xj)I+(XjI-A))x1 =0 ,

(vV?^+?i¥A,xi"0'

(X.-X.)7'x. +q'Cx1 - 0 ,

<W7jX1 =° •

which implies that x~'.x. = 0 by assumption A2. We prove the statement
j *

x'.x. f 0 by contradiction. If we assume that xlx. = 0 for some i, then

by (2.2) we can write

x^(xiI-A)xi =0 ,

or

x]Ax.j =0 .

Now consider the product of matrices

M

x'.
A i

J\ IE

sI-A B

-C 0

xi Xi

-q. Q.
Mi yi

where Xi, Ql, X., and Q. are constant matrices of appropriate size so

that the first and third matrices in the above product are nonsingular.
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Multiplying out we obtain

M =

xI(sI-A)x. {xj(sI-A)-q*C}X1

X»{(sl-A)-Bq.}

where we have used (2.10) and (2.11) repeatedly. Finally using

xlx. = x'.Ax. = 0

M =
{xi(sI-A)-qlC}X.

Xl{(sl-A)x.-Bq.}

But because of (2.2) the first column and row vectors of M are polynomial

vectors which vanish at s = A.. Thus M can be factored as

M= d1ag((s-A1),l,...,l)-P(s) diag((s-A.),l,... ,1)

where P(s) is a polynomial matrix. Therefore

det M=(s-A^2 det P(s) =Const, det
' sI-A B 1

-C 0

which clearly contradicts assumption A2. Hence xlx. f 0 and the rest

follows easily. •

2. Proof of Lemma 3

For i f j

rsi - [co]ii.

Bl - [Co]ii,[S2]1J ^(yJ-yJ)
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therefore

[s^s^, - [Sl]i .v +[s2]. Yl AA.o -•M i 2Jij 1 Yj-Yi y.-Yj
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Appendix B

First define:

61 := clAlbl

52 := c2A2b2

Then one easily computes

P^CABP =j
6-|+62, ^2"^1

^2*^1» ^l+^2

Thus using (2.27) and (2.28)

Y a £Y

p-W
s, 1(62-5,) '

-j(V6i)

fi-|+62» ^l"^2

[ W 6l+62 J

R 4 J(s1+j(a2-«1))i -Jtsg-Jtfig-a,))

...(Bl)

...(B2)

,.(B3)

...(B4)

from which using (2.20) we obtain

-JA1b1+J(51-J(62-61))b1. JA^+l^+j^-a^) '

A2b2+4(sl+j(62"6l))b2* V^V^VV^
V =

...(B5)

The dual relations are computed similarly and are given below
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RP={

R s -r

V = *

If we choose

U*2-*}) '

.-j^-a,), s2

i2-J(a2-6T), J(s2+j(62-61))

-Jc1A1+J:(s1-j(a2-61))c1, 'C2l^2^(s}'i{^2'^))c2

jc^+l^+j^-a,))^, -cgAg+^Tg-jtag-a.,))^

...(B8)

s, - 2j(a1+52), s2 «-2^+^)

sl SST S2 = s2 •

...(B6)

...(B7)

then it can easily be shown that (2.37) is satisfied. Thus the corre

sponding matrices V and 7 are

V =

v 2

-JVi^fvJVV JAibTJ(!6i+J6i,b2

A2b2"(l62+l6l)b2' A2b2"(l62+l6l)b2

-J^A^Jtlfi^gJc,, -c2IK2H^62+^)c2

^iV^fvlV0! • -C2A2+(T52+T51)C2
...(B9)

Finally we may use (2.9) with E s 0 in order to compute a Y and a 7

matrix as
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Y =

Y =

*aW 2 *3W 2

I -X'qCl

Xdc2

XdC2
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If d,(s) and d2(s) denote the denominator polynomials of the transfer

functions h,(s) and h2(s), a straightforward computation shows that:

d^s) =det(s.Ld+Rd)/det Ld ,

det Ld =LJ|(LDLF-L2D) , ...(Cll)

d^s) = [L5(LDLF-L2D)s3 +{L^ +L^r^r)

" LAD(rF+r )}s2 +{(LdrF+LFr)rD +LDrrF}s

+rDrpr]/det Ld , ...(CI2)

d2(s) =det(sLq+Rq)/det Lq ,

det Lq =LJjLQ , ...(C13)

d2(s) =[LqLgs2 +(LqrQ+LQr)s +rrQ]/det Lq . ...(C14)

One can similarly compute the numerator polynomials n,(s) and n2(s) as

n^s) =[L2(LFLD-L2D)s2 +{L^ +UdLD-L2D)rF}s

+LdrFrD3/det ^ * ...(CI5)

n2(s) =(L^LQs+LqrQ)/det Lq . ...(C16)

If one makes use of the approximation

rD » rp (C17)

+

where both rQ and rF are measured in pu quantities , then the following

*f*
(CI7) is to be attributed to the strong coupling between the field and

armature circuits and is not true for the actual resistance values.
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approximate expressions can be written for d,(s) and n,(s):

^(s) ^ [L^(LFLD-L2D)s3 +(tiLFrD+(LDLrLjD)r)s2 +"(LdPF+LFr)V

+VFr]/det l* ...(C18)

n^s) =ELdUFLD-LAD)s2 +LdLFrDs +LdrFrD]/det ^ • --(C19)

Furthermore again using (C17) and its application into the first order
p

approximate factorization of as + bs + c when c is small (which is:

2 be
as +bs+c~ a(s+-)(s+M) yields the following approximation for n,(s)

n^s) - (s+iHs+X) , ...(C20)
1 Td Td

whereas

n2(s) =(s+ir) . ...(C21)
q

If n,(s) and n"2(s) denote the numerator polynomials of the transfer

functions F, (s) and TT2(s) then

^(s) -[(LFLD-L2D)s2•+ (LDrF+LFrD)s +rFrD]/det Ld , ...(C22)

n2(s) =(LQs+rQ)/det Lq , ...(C23)

which by virtue of (C17), (Cll) and the same approximation that led to

(C20) becomes

n^s) a[(LFLD-L2D)s2 +LprDs+rFrD]/det Ld , ...(C24)

^(s) -Ar(s+4r-)(s+-r-) , ...(C25)
1 Ld Tdo Tdo

whereas

n2(s) =-Ar(s+4r-) . ...(C26)
q qo
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Finally

-c^b, =e'Ld(Ldr1Rd(Ldr1e1 =fr ,

-c2A2b2 =e^Lq(Lq)"1Rq(Lq)"1e1 =£ .

and therefore

i(ciAibi+c2A2b2) =-f(q+^ =-^ •

...(C27)

...(C28)

...(C29)

The definitions of the decoupled model of section III are related

to the classical definitions as follows

xi

Ad

Xq

xa =

i

Td

W nl<Xd> - 1 1

where (C20), (C25), (C30) and the approximation

f 1 11

rdo Td
T—T

Td Td
ldo ~Ld

which in practice is valid since

T* » t" t"
Td y> Td' Tdo
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are used in deriving (C31). In a similar way:

*W ni(*d> „ f 1
Ld

where the approximation used is

f_l 1 )
T

T
do T(

n
T1 - T11
Td Td

because of (C33) and

Tdo>>Td

1 1
(C34)

(C35)

(C36)

In addition to the approximations above we have the exact expressions

and

h2(Xg} n2(Xq} f l ll

•q-Z-q- i -q

eibisei(Ld)'lei=q •
eib2 =e;(Lqr1e1=i .

•q J
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AppendixD

Weshallprovetheformulas:

h^s)hl<Xd>1W1
h^s)=elDlTTJTxp"s=Xj+T^JFx*

and

h2(s)
h^iT

h2(XM,
^2+^-i^

F(SlF1(5)hdF(s) v(s)--i^m—

fy**)-^)1F^X-J.h^tXJ)j
hJTx^'s"xdW

Wehave

h^TsT

where

n^s)
Ms)

=K+
n^sJ-Kn^s)

n-,(s)

n,(s)
K:=lim-W-y

|sk+»nl(s)Is

hl(s)1
U+»VS'Ld]1

Therefore

TT«|(s)n^sj-ej^n^s)
h^TF)=elbl+(s*xj)(s-xj)

n,(Xd),n-(xjj),
sSib,+.,_•>»

11^d"^+̂FF^

...b+nl(Xd>1"l(xd>1
_elbl+H^xdTFXJH^Fxj
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from which (Dl) follows since n.,(Xd) =n,(A") =0and thus

n^) E,(Xd) n, (X*) R^xy
W= "W' W= W'

The proof for (D2) is similar. In order to prove (D3) we first write

the left side of (D3) after cancelling the common terms in the

numerator and the denominator as

VsJ-hjpts)
hdF(s) - ttfJT

_CffdF(s)nl(s)""l(s)ndF(s)]
n1(s)d1(s) ...(D4)

where the symbol V is used for denoting the numerators of the corre

sponding transfer functions. The partial fraction expansion of (D4)

can be written as

h„r(s) -
'dF

h«|(s)hdF(s)

3 (n^X.jn^X^-n^X.^X.)} ]
" 1-1 n^X^d^X.) s-x.

h,(xd)-hdF(xd) , Mxyhjptxj) ,
i^xT h'(X'l)WF •vn& ^

where X^.Xg.Xj are the roots of d^s). It therefore suffices to prove

the relation

...(D5)

in order to prove (03). The proof of (D5) requires brute force compu

tation making use of d^X.) «0 i= 1,2,3.

-54-



A
p
p
e
n
d
i
x

E
S
i
m
u
l
a
t
i
o
n

D
a
t
a

a
n
d

R
e
s
u
l
t



S
y
n
c
h
r
o
n
o
u
s

M
a
c
h
i
n
e

D
a
t
a

(
i
n

p
u
)

L
d
-
1
.
7

L
f
»
1
.
6
S

L
D
=
1
.
6
9
5

L
q
t
j
"
"
1

i
w
v
)

1
=
1
.
6
4

L
Q
=
1
.
S
2
6

Lf
lQ
=1
.4
90

r
-
.
0
1
8
9
6

r
p
=
.
0
0
0
7
4
2

rD
=.
01
31

rQ
=.
05
4

D
=
0
.
0



D
e
r
i
v
e
d

T
r
a
n
s
i
e
n
t

P
a
r
a
m
e
t
e
r
s
:

Ld
'
=
.2
43
9,

Ld
mo
d'
=
-2
38
3,

Ld
"
=
,1
84
7,

Lq
"
=
.1
85
2

Td
'=
32
5.
3

pu
(o
r

.8
62
8

se
c.
)

(
c
l
a
s
s
i
c
a
l

a
p
p
r
o
x
.
=
3
1
9
.
1

p
u
(
o
r

.
8
4
6
4

s
e
c
.
)
)

T
d
"
=
8
.
4

p
u
(
o
r

.
8
2
2
4

se
c.
)

(
c
l
a
s
s
i
c
a
l

a
p
p
r
o
x
.
"
8
.
6

p
u
(
o
r

.
8
2
2
8

s
e
c
.
)
)

T
"
-
3
.
2

p
u
(
o
r

.
8
0
8
5

s
e
c
.
)

T
.
-
1
6
.
9

p
u
(
o
r

.
0
4
4
8

s
e
c
.
)

a

(
f
o
r

t
h
e

s
h
o
r
t

c
i
r
c
u
i
t

s
i
m
.

T
=
8
4
.
5

p
u
)

a
r



// //

w

* *d X
q

• .-J
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.4 -3.0719*10"3 -.1198 """ • VJF •—• k. -.0492-.J .38

.6 -3.0732*10"3 -.1190 • -J fc_ %J -.05401.J .59
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1 . -3.0739*10"^ -.1186 -.317 -.0572ij.99

CXD -3.0742*10"3 -.1184 •"• 1 O -.05931 jw
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