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ABSTRACT

Inspired by the recent solution of the Berman-Hartmanis conjec

ture that NP cannot have a sparse complete set for many-one

reductions unless P=NP, we analyze the implications of NP or

PSPACE having sparse hard or complete sets for Turing reduc

tions. Three special cases of Turing reductions are considered.

First we show that if NP {PSPACE) has a tally ss^-hard set then

P=NP (P=PSPACE). Here <£_7 denotes a subcase of polynomial

time Turing reducibility in which, for some constant A:, the reduc

ing Turing machine is allowed to make at most k queries to the

oracle. We also show that if co -NP (PSPACE) has a sparse hard

set for conjunctive polynomial time reductions then P-NP

(P=PSPACE).
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1. Introduction

This paper is one in a series of research initially stimulated by a conjecture

of L. Berman and J. Hartmanis [l] that all sets <£-complete for NP are polyno

mial time isomorphic; i.e. that between any two such sets there is a polynomial

time bijective reduction with polynomial time inverse. Because the conjecture

implies that P*NP, it understandably is still open.

Another implication of the conjecture is that ail <^-complete sets have

similar density. Since all the known complete sets have exponential density [l],

•Thiswork wascarried out when I wasvisiting the ComputerScience Division of the Universi
ty of California at Berkeley. I am indebted to Professor Michael A. Harrison for providing me
with this opportunity. The work was supported bythe Academy ofFinland and bythe Finnish
Cultural Foundation. Partial support was provided by the National Science Foundation Grant
MCS 79-15763 (Univ. of California).
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Berman and Hartmanis additionally conjectured that no sparse set (a set with

polynomial density) could be ^-complete for NP unless P=NP. Recently, this

conjecture was proved by Mahaney [8]. However, the first significant step

towards the solution was made already by P. Berman [2] who proved that if NP

has an «s£-complete set in 1* (a tally complete set), then P=NP. Fortune [3],

and later Meyer and Paterson [9], improved Berman's result by showing that if

NP has a co-sparse <£-complete set, then P=NP.

With the Berman-Hartmanis conjecture solved for <£-complete sets, it is

natural to consider implications of NP having sparse hard or complete sets with

respect to reductions more general than ^£. Particularly interesting is the

polynomial time Turing reduction ^f since, as noted by Meyer (see [l]), NP has

polynomial size circuits if and only if NP has a sparse =sf-hard set. For Turing

reductions it is known [5] that if NP has a sparse <f-hard set (or equivalently,

polynomial size circuits) then the polynomial hierarchy collapses to SfnEIf.

Mahaney [8] establishes a related result by showing that if the sparse <f-hard

set for NP is actually in NP, then the polynomial hierarchy collapses to Af.

Finally Long [7] proves a companion result that the polynomial hierarchy equals

Afif NP has a co-sparse ^-complete set.

Thus the question whether the existence of a sparse (or co-sparse) <;£-hard

set for NP implies P-NP is still open. Instead of the <f-reducibility, which is

the most general form of polynomial time reducibilities, we consider in this

paper some more restricted reductions which still are properly more general

than <£. First we consider polynomial time Turing reductions restricted to

machines which may make at most a constant number of queries to the oracle.

Such reducibility is denoted by ^-T where k is the integer constant limiting the

number of queries. We show, generalizing an original result of P. Berman [2],

that if NP has a ^.^-hard tally set (i.e., a set over one symbol alphabet), then

P-NP. We also consider two other subcases of Turing reductions, the polynomial

time conjunctive and disjunctive reductions </* and <$. It is shown, generalizing

a result of Fortune [3], that if co-NP has an ^-hard sparse set (or,

equivalently, NP has an ^f-hard co-sparse set), then P=NP. These proofs are

easily modified to show that if PSPACE has a tally <jf_7^hard set or sparse <>%-

hard set (or co-sparse <£-hard set) then P=PSPACE.
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2. Polynomial time reducibilities

We assume familiarity with classes P, NP, co —NP, PSPACE and with the

concepts of hardness and completeness for a class of languages with respect to

a given form of reductions between languages [4]. Unless specified otherwise, all

sets are languages over a fixed finite alphabet S of at least two elements. In par

ticular, sets in 1*, i.e. sets over one symbol alphabet, are called tally languages.

For j4cE*. A denotes the complement of A in S*. For a string ar, |a: | denotes the

length of x.

An oracle Turing machine is a deterministic multitape Turing machine

acceptor with a distinguished oracle tape and three special states Q, YES, NO. By

an acceptor we mean a machine where final states are divided to accept and

reject states. When the oracle machine enters state Q, the next state is YES or

NO depending on whether or not the word currently on the oracle tape belongs

to the oracle set. In this way, the machine with an oracle set B receives an

answer to a test of the form "xeB?" in one step. The set accepted by the oracle

Turing machine M with B as its oracle set will be denoted by L{M,B).

A set A is Turing reducible to a set B in polynomial time (A^fB), if

A=L(M,B) for an oracle Turing machine Mthat runs in polynomial time.

Set A is many-one reducible to set B in polynomial time (A<&B) if there is

a function /:S* -> S*. computable in polynomial time, such that for all ieS*.

xeA if and only if / (x)<£B.

The computations of an oracle Turing machine M, which operates with input

x, can be described by a binary computation tree T=T(M,x). The root of T is

labeled x. Every leaf is labeled either "accept" or "reject". Every internal node is

labeled with a query. Every right branch is labeled "yes" and every left branch is

labeled "no" corresponding to whether the state following the query state is YES

or NO. Apath from the root to a leaf is called an acceptpath (reject path) if the

leaf is labeled "accept" ("reject").

In what follows we analyze three restricted forms of the Turing reductions.

The first one is simply the <£-reduction limited to oracle machines that

independently of the input and the oracle may ask only a constant number of

questions. In more detail, let A<.$B via a machine M so that, for some fixed



integer k, the height of the computation tree T(M,x) is at most k for every

input x. Then we write A<g_TB and say that A is k-question Turing reducible to

B in polynomial time. Thus independently of the current oracle, any computa

tion of M contains at most A: queries.

To give the two remaining reductions we say that a set A is disjunctive

reducible to a set B in polynomial time, A^£B, if A^fB via an oracle Turing

machine whose accept states contain only the YES state. Furthermore, a set A

is conjunctive reducible to a set B in polynomial time, A^B, if A^fB via a

machine whose reject states contain only the NO state. These definitions are

more convenient to work with than the equivalent definitions in the literature

(e.g. [6]). Note that if A^B via a machine M then in every computation tree of

M, the path leading to the leftmost leaf is the only reject path. Similarly, if

A<i%B via M then the only accept path is the path leading to the rightmost leaf.

For completeness, we will recall from the literature some additional forms

of reducibility between languages and compare them with those given above.

First, an oracle Turing machine is called positive if whenever an oracle set B is

a subset of another oracle set B\ then L(M,B)qL(M,B'). Set A is positive redu

cible to a set B in polynomial time, A<J?B, ifA<$B via a positive Turing machine

[11]. Clearly, both <,£ and <£ are positive reductions.

Next recall that according to the original definition [10], a set A is

truth—table reducible to a set B (A^aB) if there is a recursive function / that

on input x computes a list of queries qlt . . . ,qk and a boolean function a such

that x€>l if and only if a(Cs(qi),...,Cs(qk)) = 1 where Cq is the characteristic

function of the set B.

The following characterization of <it is useful from the complexity theoretic

point of view [11]. Let c be a symbol not in jO.lJ. Then A^uB if and only if there

is an oracle Turing machine M such that A<>tB via M and a recursive function

/:{0,lj* -> (c[0,lj*)* such that, for each input x to M, M only makes queries to

B from the list f(x). If here M operates in polynomial time and / is polynomial

time computable, then we say that A is truth-table reducible to B in polynomial

time (<4<£f?). In addition, if M is positive, then .4 is positive truth-table reducible

to B in polynomial time (A^fttB), and if / :[0,lj* -* (c{0,l}*)fc for some fixed



integer A: (thus the length of / (x) is always A:), then A is k-question truth-table

reducible to B in polynomial time (A<£-ttB).

The basic relations between these reducibilities are now outlined. From [6]

we quote:

Theorem 1 [6].

We also have:

B _ A^B ^
A*™B %> a*£b ^ A-&B =* A*&R "

Theorem 2. As&B => A*£-UB => A*£-TB => A^zk_x)_ttB => As&B => i4ssf5.

Proof. All the implications in the theorem are almost trivial. We show here only

the second and the third one.

Let A<^.itB via a machine M. For each input the list of allowed queries is of

length A:. Hence M may ask the oracle only A: different questions. This does not

necessarily mean that the number of queries in every computation is < k

because the same question may occur several times. However, by providing M

with an extra tape for bookkeeping queries and answers we obtain a polynomial

time machine which needs to ask each different query at most once. This shows

that A<>$_TB.

If A<k-fB via a machine M, then every computation tree T(M,x) contains

at most 2fc-l queries. Let f (x) denote a list of such queries. Then f (x) can be
computed in polynomial time a(2*.p(|x|) by simulating each of the at most 2k

paths from the root to a leaf in T(M,x). Hence A<JL_ B. •



3. k-question Turing reducibility and tally oracles

Now we are ready to generalize the original result of P. Berman [2] to the

^.-y-reducibility. Technically we follow, when appropriate, the exposition of [8].

The proof is based, besides on properties of ^£-t, on the following self-

reducibility structure of satisfiable boolean formulas: the problem of deciding

the satisfiability of a formula F reduces to problems of whether either of Ft and

Ff are satisfiable, where Ft (Ff) is the result of setting the first variable in F to

true (false) and simplifying. It is important that then |Ft |^ |F | and |Ff |< |F |.

Theorem 3. // NPhas a tally ^g-f-hard set, then P-NP.

Proof. Let SAT be the set of satisfiable boolean formulas. Since SAT is in

complete for NP, it suffices to prove that if SkU^E-jB for some BQl*. then

SATeP.

Suppose that BQl* and SAT<£_t\£? via a machine M. Let Fbea boolean for

mula whose satisfiability is to be decided. The self-reductions of F form a binary

tree with F as the root and Ft and Fj, as defined above, as the left and right

sons of the root; and so on. The leaves will simply be true or false. If F has m

variables, then the tree will have 2m+1-l nodes.

We perform a depth-first search of this tree and use properties of M and B

to prune the search so much that the time requirement is only polynomial in

\F\. The search will either find a satisfying asssignment or determine that none

exists.

At every node G encountered during the search we simulate all the compu

tations presented by the tree T(M,G). During the simulation we form a list

l=(lx,lz lp) such that the list has an element Z* for each computation found

in T(M,G). Since T(M,G) contains at most Zk computation paths from the root

to acceptance or rejection, we have jo<2fc. Each 1+ is of the form

Zi=((g1,a1),(g2,a2) (q^.a,.)). Here gj-el* is the jth query in the computa

tion represented by lit and aj =l or 0 depending on whether the computation

takes after the ^"th query the YES branch or the NO branch. Since M is afc-

query machine, we have r<Jc. We label node G with l=l(G). All this can be



accomplished in time 0(2kp(\ G\)) where p is the polynomial bounding the time

requirement of M. Since |G|<|F| for every formula G in the self-reducibility

tree of F, we obtain 0(2*7>(j G|))^0(2fcp(|/'|)). Thus the search needs a polyno

mial time at each node.

For a node G, its label 1(G) is called a reject label, if we know that G is not

in SAT. During the search we can infer that certain labels are reject labels as fol

lows:

(1) I(false) is clearly a reject label;

(2) if l(Gf) and l(Gi) are reject labels, then 1(G) is also a reject label since

then Gf as well as Gj are not in SAT which means that G cannot be in SAT.

The search is pruned by not searching below a node whose label is already

known to be a reject label. Observe that if 1(G) is a reject label by rule 1 or 2

then all G' such that l(G')=l(G) have a reject label, of course. This conclusion is

correct only if we can now infer that every such G' is not in SAT. Because G is

not in SAT, machine M with oracle B must follow some reject path of T(M,G).

Let ((gi,a1),(g2,a2) (gr-O) be the encoding of this path in the label 1(G).
Thus each q^B if and only if ot=l. Since l(G)=l(G'), a reject path with the

same encoding occurs in T(M,G'). With orcle B, machine M must follow this path

and will reject G\ Thus G' is not in SAT.

The search stops when either a leaf with formula "true" is found or when

1(F) is found to be a reject label. In the former case the path from the root to

the "true" leaf indicates a satisfying assignment. In the latter case F cannot be

satisfiable.

To complete the proof we must show that the outlined searching algorithm

runs in polynomial time. The following lemma establishes this.

Lemma 4. Let Fbe a formula with m variables and let p be a polynomial bound

of the running time of M. Then the algorithm, above visits at most

m+mx(2(p(\F\)+l))kzk interior nodes of the self-reducibility tree for F and
therefore runs in polynomial time.

Proof. If G and G' are two unsatisfiable formulas with the same label (i.e.



l(G)-l(G')) occurring in the interior of the pruned search tree, then they must

be on the same branch from the root. Otherwise, one of the formulas, say G,

would be searched first, and its label 1(G) would be determined to be a reject

label. But then the depth-first search would not go below G', contradicting the

assumption that G' is not a leaf.

Thus the number of distinct paths from the root to unsatisfiable interior

nodes is bounded by the number of distinct reject labels. This number surely is

at most equal to the number of all possible labels. This in turn equals

(2(p(|Jr|)+l))*"sfc because each label 1(G) is of the form (^ lp), where
p<& and each Z* is of the form ((gj,a1),(g2,a2), . . . , (g,..^)) where r<k and

each gj-el* is of length at mostp(| G\)<p(\F\) and each Oj equals 0 or 1. Since

the tree has height m, there are at most mx(2(p(\F\) +l))k'2k interior nodes

with reject labels. A satisfying assignment visits at most another m nodes. •

The method presented in the proof of Theorem 3 above for deciding the

satisfiability of a boolean formula can easily be adapted for deciding in polyno

mial time the validity of a quantified boolean formula, c.f. [3]. Since the set of

valid quantified boolean formulas is <£-complete for PSPACE, we obtain:

Theorem 5. // PSPACE has a tally ^g-r-hard set, then P=PSPACE. •

Moreover, the generalization of Fortune's [3] results given by Meyer and

Paterson [9] applies also to our proof of Theorem 3. Thus every language which

has self-reducibility property in the precise sense defined in [9] and which

<,£-t-teduces to a tally language, can be recognized in polynomial time.

4. Conjunctive reducibility and sparse oracles

In conjunctive and disjunctive reductions a Turing machine uses its oracle

in a very limited way. Therefore for these reductions we may obtain a result

similar to Theorem 3 without a restriction to A:-question machines. Also the res

triction to tally oracles can be relaxed. It suffices to assume that the oracle is

sparse, that is, there is a polynomial q such that the number of elements in the

oracle of length at most n is at most q(n).
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Theorem 8. If co-NP has a sparse ^g-hard set (or equivalently, NP has a co-

sparse ^£-hard set), then P=NP.

Proof. We first note that because A^B if and only if A<$B, the two alternative

premisses of the theorem really are equivalent.

The set of non-tautological boolean formulas, SAT, is ^-complete for

co—NP. Hence it suffices to prove that if SAT<1?B, where BcH* is sparse, then

BATeP. Then also SATeP which means P=NP, as required.

Let SAT<^i? via a Turing machine M whose only reject state is the NO state

and whose running time is bounded by a polynomial p. Let F be a boolean for

mula whose satisfiability is to be decided. We again perform a similar depth-first

search in the tree of self-reductions of F as in the proof of Theorem 3. The

labeling function I must be modified as follows. The label of a node correspond

ing to a formula G, 1(G), equals the list of all queries occuring in the tree

T(M,G). The list is easy to form because it is the sequence of queries on the

(rightmost) path on which each query to the oracle is answered "yes". So 1(G) is

of the form l(G)=(q^ qr) where each qi€.T,'P^F^ and r^p(\ G\)<p(\ F\).

Hence 1(G) can be computed in time 0(p(\F\)).

As in the proof of Theorem 3, a label 1(G) is called a reject label if we know

that GeSAT. (Actually, machine Mwill accept such a formula G, but we prefer to

stick to the old terminology.) Now we have three possibilities (l)-(3) below to

infer that certain labels are reject labels ((1) and (2) are as in the proof of

Theorem 3):

(1) I(false) is a reject label;

(2) ifl(Gf) and i(Q) are reject labels, then 1(G) is also a reject label;

(3) if each element gi in the label l(G)=(qx qr) occurs in some reject

label, then 1(G) is also a reject label.

If l(G') is a reject label then M accepts G', which is possible only if M

obtains the answer "yes" to every query it makes for input G'. So every element

of l(G') must be in the oracle set B. This implies that also the new rule (3) is

correct. Suppose, namely, that 1(G) is to be a reject label by rule (3), i.e. that

each element of 1(G) occurs in some other reject label found so far. Then we
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know (formally, by induction hypothesis) that every element of 1(G) must be in

B. This implies that M must accept G, and hence GeSAT.

Now the search procedure can be completed as in the proof of Theorem 3:

the search is pruned by not searching below a node whose label is already known

to be a reject label. In this way, either a satisfying assignment is found or 1(F) is

found to be a reject label, in which case .FeSAT.

In the following lemma we show that the running time of the pruned search

is polynomially bounded.

Lemma 7. Let F be a formula with m variables. Letp be a polynomial bounding

the running time of M and q a polynomial bounding the density of the sparse

oracle set B. Then the algorithm above visits at most m+mxq(p(\F\)) interior

nodes of the self-reducibility tree for F and therefore runs in polynomial time.

Proof. We will again show that the number of distinct paths from the root of the

pruned search tree to an interior node is polynomially bounded. Because now

the number of different labels of nodes does not necessarily have a polynomial

bound, the proof of Lemma 5 must be modified.

Let t be a path in the pruned tree from the root to a leaf corresponding to

an unsatisfiable formula. Suppose moreover that the interior nodes of t are not

properly contained in the interior nodes of any other path. Let G be the last

interior node of t. Then all sons of G must be leaves.

Consider the moment when the search reaches a node G. Denote by A the

set of those strings in E* which occur in some label known to be a reject label.

Since G is an interior node, at least one element q of l(G) must be outside A.

Otherwise we could infer by rule (3) that 1(G) is a reject label and the depth-first

search would not go below G, contradicting the assumption that G is not a leaf.

Hence the search goes below G. When returning back to G, l(G) is deter

mined to be a reject label. The current set A therefore will contain also q. So

each path t must increase the size of A at least by one. On the other hand, A

must always be a subset of the sparse oracle B. The length of each element of A

is at most p(\F\). There are at most q(p(\F\)) such elements in B. Thus
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q(p(\F\)) is an upper bound for the number of distinct paths t. Then, since the

tree has height m, there can be at most mxq(p( \F\)) interior nodes with reject

labels. A satisfying assignment again visits at most another m nodes. •

As for Theorem 3, we also in this case have the following related result:

Theorem 8. // PSPACE has a sparse <*%-hard (or co-sparse ^£-hard) set, then

P=PSPACE. •

Moreover, the generalization in [9] applies to the proof of Theorem 6. Thus

every language which has the self-reducibility property of [9] and the comple

ment of which^-reduces to a sparse language, can be recognized in polynomial

time.
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