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The Waveform Relaxation Method for Time Domain Analysis

of large Scale Integrated Circuits.1

Ekachai Lelarasmee, Albert E. Ruehli and Alberto L. Sangiovanni-VincenteUi

Abstract

The Wavefom Relaxation Method (WRM) is an iterative method for analyz
ing nonlinear dynamical systems in the time domain. The method, at each
iteration, decomposes the system into several dynamical subsystems each of
which is analyzed for the entire given time interval Sufficient conditions for
convergence of the WR method are proposed and examples in MOS digital
integrated circuits are given to show that these conditions are very mild in
practice. Theoretical and computational studies show the method to be
efficient and reliable.
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I. Introduction.

The spectacular growth in the scale of integrated circuits being

designed in the VLSI era has generated the need for new methods of circuit

simulation. "Standard" circuit simulators, such as SPICE2 [l] and ASTAP [2],

simply take too much CPU time and too much storage to analyze a VLSI cir

cuit. These standard circuit simulators are essentially based on three tech

niques:

(i) Stiffly stable implicit integration methods, such as Backward Euler for

mula, for obtaining a system of nonlinear algebraic equations from the

original system of nonlinear algebraic-differential equations describing

the behavior of the circuit.

(ii) Newton-Raphson iteration to linearize the system of nonlinear algebraic

equations of (i).

(iii) Sparse gaussian elimination to solve the system of linear algebraic equa

tions of (ii).

New simulators, such as MOTIS [3], SPLICE [4.5], DIANA [6] and MACRO

[7], in their quest for speed have rejected one or more of the principal

features of standard simulators. In particular MOTIS and the timing simula

tion part of the mixed-mode simulator SPLICE use Backward Euler integra

tion and relaxation techniques to decompose and solve the system of non

linear algebraic equations, eliminating the need for sparse gaussian elimina

tion. The decomposition achieved by relaxation allows the use of selective

trace algorithms for exploiting the 'latency" of VLSI circuits, a fundamental

feature of SPLICE.

In MOTIS and SPLICE, the relaxation process is not carried out to con

vergence: only one "sweep" of relaxation is taken [3.4,5]. Therefore the



numerical properties, such as stability and accuracy, of the Backward Euler

integration no longer hold. In [8] these properties are examined. It turns

out that the types of circuits which can be dealt with by these techniques are

rather limited: MOS circuits with quasi-unicfirectional device models and a

grounded capacitor to every node. Moreover, in some cases, the step size has

to be chosen very small to avoid instability and inaccuracy of the solution.

The Waveform Relaxation Method (WRM) is introduced in this paper for the

analysis of large scale circuits. The basic idea here is to apply relaxation

directly to the system of nonlinear algebraic-differential equations describ

ing the circuit As a result, the system is decomposed into decoupled subsys

tems of algebraic-differential equations each of which can then be solved by

means of standard techniques, Le. stiffly stable integration method and

Newton-Raphson iteration. The decomposition achieved allows the latency to

be exploited in the most natural way.

This paper is organized as follows. In section 2, the method is presented

and its basic features discussed. In section 3, some circuit examples are

given to show how the method works on practical cases. In section 4, the

convergence properties of the WRM are rigorously proven. In section 5, the

method is specialized to the analysis of VLSI MOS circuits. Two WRM algo

rithms are described and their convergence properties are rigorously pro

ven. In section 6, the computational aspects of WRM are studied from an

experimental WRM circuit simulator, the results being compared to those

obtained from a standard simulator, SPICE. Finally, section 7 contains dis

cussions on how to further increase the computational effiency of WRM. •



IL Mathematical Formulation and the WRM Algorithm ModeL

We consider dynamical systems which can be described by a system of

mixed implicit algebraic-differential equations of the form:

F(y{t)t y(t), u(t)) = 0 (2.1a)

*<v(0)-y0) = 0 (2.1b)

where y(t) c if is the vector ofunknown variables at time t, y(t) € if is the

time derivative of y at time t% u(t) CRT is the vector of input variables at

time t, y0 e if is the given initial value of y, F: ifxlfxlf+lf is a continu

ous function, and E € H?"*, n£p is amatrix of rank n such that By(t) is the

state of the system at time t.

Note that for any lumped nonlinear dynamical circuit, (2.1) is a general

formulation which subsumes all other well known formulations such as Nodal

Analysis [11], Modified Nodal Analysis [12], Hybrid Analysis [13] and Tableau

Analysis [14]. To simplify the notations, we shall drop the time argument

whenever there is no ambiguity. Hence we rewrite (2.1) as

Fiy,ytu) a 0 (2.2a)

£fo(0)-t/o) = 0 (2.2b)

The general structure of a WRM algorithm for analyzing (2.2) in a given

time interval [0,7*] consists of two major processes, namely the assignment"

partition process and the relaxation process.

In the assignment-partition process, each unknown variable is assigned

to an equation of (2.2a) in which it is involved. However, no two variables can

be assigned to the same equation. Then (2.2a) is partitioned into m disjoint*

There are cases in which the algorithm has better convergence properties if the subsys
tems are nondisjoint. For such cases, we can consider the nondisjoint subsystems as being ob
tained from partitioning an augmented system of equations with an augmented set of unlaiown
variables.



subsystems of equations, each of which may have only differential equations

or only algebraic equations or both. Then, without loss of generality, we can

rewrite (2.2) after being processed by the assignment-partition process as
follows:

^i(*i. Vi. dlt u)

s 0 (2.3a)

£(2/(0)-y0) = 0 (2.3b)

where, for each i = 1,2 m, yi € if* is the subvector of unknown variables

assigned to the i-th partitioned subsystem. Ft :if'xlf'xH^^xlf-♦!?* is a

continuous function, and

a\ = col (yt y^j, yi+l ymt

V\ ft-1. ft+1 VmY (2.3c)

With respect to the i-th subsystem. y« and yi% j#i are called vectors of

endogeneous and ezogeneous variables respectively. It is clear that if the

vectors a\, i = 1,2 m, are treated as inputs, then (2.3a) can be solved by

solving m independent subsystems. Therefore they are called the decou

pling vectors of the subsystems. This gives rise to the notion of the decom

posed system as given in the following definition.

Definition 2.2. The decomposed system associated with an assignment-

partition process applied to (£2) consists of m independent subsystems,

called decomposed subsystems, each of which is described by

fiGii. Vi* Zi.u) = 0 (2.4a)

•col(a. 6)£(°)
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£t(5i(0)-yt(0)) = 0 (2.4b)

where yt e if* is the vector of unknown variables. ^(0) e if* is the subvector

of the given initial values, u e if is the vector of the given inputs,

2^ €Hft»-2pt ^ {he yg^Qj. of [he decoupling inputs. ^ eif*1**, n^p* is a

matrix of rank ^ such that Eiyt is a state vector of the i-th decomposed

"subsystem, andFt is the continuous function defined in (2.3a). •

The relaxation process is an iterative process. For simplicity, we shall

consider two most commonly used types of relaxation namely the Gauss-

seidel (GS) and the Gxuss-/aco6i (GJ) relaxation. The relaxation process

starts with an initial guess of the waveform solutions of the original dynami

cal equations (2.2) in order to initialize the approximated waveforms of the

decoupling vectors. During each iteration, each decomposed subsystem is

solved for its endogeneous variables in the given time interval [0,T] by using

the approximated waveform of its decoupling vector. For the GS relaxation,

the waveform solutions obtained by solving one decomposed subsystem are

immediately used to update the approximated waveforms of the decoupling

vectors of the other subsystems. For the GJ relaxation, all waveforms of the

decoupling vectors are updated at the beginning of the next iteration. The

iterative process is carried out repeatedly until satisfactory convergence is

achieved.

The algorithm shown below sets up a general structure of all WRM algo

rithms which we shall be working on throughout this paper. Therefore it is

called the WRM Algorithm ModeL Let the superscript index k denote the

iteration count Then the WRM Algorithm Model can be formally described as

follows:



WRM Algorithm Model 2.1

Step 0: (Assignment-partition process)

Assign the unknown variables to equations in (2.2) and partition (Z2)
into 7)x subsystems of equations as given by (2.3).

Step 1: (Initialization of the relaxation process)

Set k = 1 and guess an initial waveform (y°(r) ;t e [0.7]) such that
V°(0)=y(0).

Step 2; (Analyzing the decomposed system atthe *-th iteration)
For each i = i,2,...,m, set

- * s c°i to rf-i. y& «*-».

vt yUytt ySr1)

for the GS relaxation, or

d? = colfof-i y&,y& y*-i.

vt"1 tfW.ifci1 y$Tl)

for the GJ relaxation, and solve for (yf(t); * e [0.7]) from

Fi(yty?.df,u) = 0 (2.5a)

«W(0)-w(0)) = 0 (2.5b)

Step 3: (Iteration)

Set J: =Jb+1 and goto step 2. a

Remarks.

1) Asimple guess for (y°(t) ;t €[0.7]) is y°(f) =y(0) for all t e [0.7].

2) In the actual implementation, the relaxation process stops the iteration

when the difference between (y*(0 ; t e [0.7]) and (yk~l(t) ;* € [0.7]).

Le' «m[or] "^^ -«fc-i(*)ll. * sufficiently small.



3) In analogy to the classical relaxation methods for solving linear or non

linear algebraic equations (see [15] for examples), it is possible to

modify a WRM algorithm by using a relaxation parameter u £ (0,2). With

a, the iteration equation (2.5) is modified to yield

F<(5t 5f. df. u) = 0 (2.6a)

*<S?(0)-*((») = 0 (2.6b)

y* = y?-l + o(y?-y*-1) (2.6c)

4) Note the following two important characteristics of the WRM Algorithm

Model 2.1.

a) The analysis of the original system is decomposed into the

independent analysis of m subsystems.

b) The relaxation process is carried out on the entire waveforms,

Le. during each iteration each subsystem is individually analyzed

for the entire given time interval [0,7]. •
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flX Examples and their physical interpretation.

In this section, we shall use a few specific examples to demonstrate the

applications of the WRM Algorithm Model 2.1 in the analysis of lumped

dynamical circuits and to give the circuit interpretation of the decompos-

tion. Different formulations of the dynamical equations will be used to illus

trate the resulting decompositions.

The first example is a ring oscillator shown in Rg. 3.1a. The dynamical

behavior of the circuit is described by

/i(vi,v1,v2,v3,v3liilu) = 0 (3.1a)

f&i.Vi.v&v&vs) s 0 (3.1b)

/sfri, i>2. v2, v3, v3) s 0 (3.ic)

where vlt v2, v3 are the node voltages, u is the triggering input voltage and

the functions f v f2, /3 represent the sums of all currents entering (or leav

ing) nodes 1,2,3 respectively. Let vlt v2 and v3 be assigned to (3.1a), (3.1b)

and (3.1c) respectively and let the system be partitioned into 3 subsystems

consisting of f(3.1a)J. {(3.lb)J and |(3.1c)j. Applying the WRM Algorithm Model

2.1, the A:-th iteration of the corresponding GJ-WRM algorithm is given by

/iG>i ,vf .vi",.v8-1iv!-I,ti1u) = 0; «J(0)sv,(0)

fz(ykr\v\'\vi %v\ .vj"1) = 0; 1/J(0) =v8(0)

/ato"1.^-1,^,^ ,v| ) =0; vS(0) =v8(0)

where Vi(0). v2(0), v3(0) are the given initialvalues of vx% vz, v3 respectively.

The circuit interpretation of the decomposed system at the Jb-th iteration is

shown in Fig. 3. lb. •

The second example is a dynamic shift register shown in Fig. 3.2a. The

dynamical behavior of this circuit is described by
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/i(*i.vi, i. ii. u„ Uz) = 0 (3.2a)

/2(*>1, V2, V2. t>3. U^uJ = 0 (3.2b)

i -/d,(vi. v2, Ug) = 0 (3.2c)

/a(v2, v2, v3. v3) = 0 (3.2d)

where /^ is the function describing the drain-to-source current i of the pass

transistor. The rest of the notations are the same as in the first example.

Let vlt v2% i and v3 be assigned to (3.2a), (3.2b), (3.2c) and (3.2d) respec

tively and let the system be partitioned into 3 subsystems consisting of

{(3.2a)}, J(3.2b).(3.2c)J and [(3.2d)J. Applying the WRM Algorithm Model 2.1.

the fc-th iteration of the corresponding GS-WRM algorithm is given by

/ito.uf.i*-1. ui, ultuz) = 0; vf(0) =vx(0)

/ 2to, ii\, v\, v\'x. u2% u2) s 0 ; v\ (0) s v2(0)

i*-/dtto. vl.u^ = 0

/sfrt.vivt.fa) = 0; v|(0) = v3(0)

The circuit interpretation of the decomposed system at the Jb-th iteration is

shown in Fig. 3.2b. •

The third example is shown in Fig. 3.3a and its dynamical behavior is

described by

clv1-il = 0 (3.3a)

c2v2-i2 = 0 (3.3b)

e3v3-i3 = 0 (3.3c)

t/a-Vj+t/2 = 0 (3.3d)

^r-+ii +i3-it = 0 (3.3e)

jj^+iz-i* = ° (3.3f)
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Let i/x, v2, i3, v3, *t» *2 De assigned to (3.3a) through (3.3f) respectively

and let the system be partitioned into 3 subsystems consisting of

{(3.3a).(3.3e)J, f(3.3b).(3.3f)J and {(3.3c),(3.3d)J. Note that we cannot assign

Vj, v2, v3 to (3.3a), (3.3b), (3.3c) respectively since one of them has to be

assigned to (3.3d). Applying the WRM Algorithm Model 2.1, the fc-th iteration

of the corresponding GJ-WRM algorithm is given by

c^f-i? = 0; t/f(0) =Vl(0) (3.4a)

•S^+i? +iS-* -u a 0 (3.4b)
lR

for the first subsystem,

v2

Cgvt-il = 0; v|(0) = v2(0) (3.4c)

_ +i| -ig"1 = 0 (3.4d)
K2

for the second subsystem, and

c$)\ -i| = 0 (3.4e)

v|-vfc-i +v|-i = o (3.4f)

for the third subsystem.

Note that v% is not initialized at time t = 0 since it is not a state variable

of the decomposed system. However, one can check that

v§(0) =Vi(0) -v2(0) for all k. The circuit interpretation of the decomposed

system at the fc-th iteration is shown in Fig. 3.3b. •
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Rfi. 3.1

a) A MOS ring oscillator.

b) The circuit interpretation of its decomposed circuit at the fc-th iteration

of the GJ-WRM algorithm.
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Rg. 3.2

a) A MOS dynamic shift register.

b) The circuit interpretation ofits decomposed circuit at the Jfc-th iteration

of the GS-WRM algorithm.
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Fig. 3.3

a) A simple RC circuit.

b) The circuit interpretation of its decomposed circuit at the fc-th iteration

of the GJ-WRM algorithm.

v»

uv M C|tK

.k-i
I.

(.«•>

va

"i

Jrr

.k-i

4~€>

U © R,
£

.fls v'"9 tj <K' tl-h

en



k

£

15

IV. Convergence of WRM.

In this section we shall derive sufficient conditions to guarantee that the

WRM Algorithm Model 2.1 converges, i.e. it generates a converging sequence

of iterated solutions whose limit satisfies the dynamical equations (2.2a) and

the given initial conditions (2.2b). As in most literature on iterative methods,

much results on the convergence of any iterative method are stated when

the iteration equation can be written in an explicit form, i.e. the iterated

variables can be written as functions of their previous values and other non-

iterated variables. Hence* we shall later introduce an explicit form of the

iteration equation (2.5) of the WRM Algorithm Model 2.1 and refer to it as the

canonical representation of the algorithm. Sufficient conditions to ensure

the existence of the canonical WRM algorithm will also be given. These condi

tions are basically related to how the assignment-partition process treats the

state variables of the original dynamical system and give rise to the following

definition of the compatibility of an assignment-partition process.

Definition 4.1 An assignment-partition process is said to be compatible

with a given dynamical system (2.2) if the choice of the state vector of its

associated decomposed system (2.4) is also a valid choice of the state vector

of the original system (2.2), Le. there exist matrices Eit E2. . . . , Em and E

as defined in (2.4) and (2.1) such that

col [Exyx, E2y2 Emym] = Ey

Any WRM algorithm which uses a compatible ass-ignment-partition process is

called a compatible WRM algorithm.. m

Note that in the WRM Algorithm Model 2.1, only the state variables of the

decomposed system are initialized at time t = 0 by the given initial condi-
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tions of the original system. The initial values of other variables of the

decomposed system (except the inputs u) can vary from one iteration to the

other. However, if the algorithm is compatible. (2.2b) will be satisfied at

.every iteration. Hence, when the sequence of the iterated solutions con

verges, its limit will also satisfy (2.2b). Due to the definition of the state vari

ables, this also implies that, for a compatible WRM algorithm, when the

sequence of iterated solutions converges, the sequence of initial values of the

non-state variables also converges to the values given by the initial condi

tions of the original system. On the other hand, for a non-compatible WRM

algorithm, it is possible that the sequence of iterated solutions converges to

the limit which satisfies the original dynamical equations with another set of

initial conditions. An example of this phenomenon is given in the appendix.

The same example also indicates that non-compatible WRM algorithms tend

to have poor convergence properties. Therefore, throughout this paper, we

consider only compatible WRM algorithms.

In most engineering designs, the assignment-partition process can be

guided by the physical interpretation of the states of the dynamical system.

For example, the state variables of lumped electrical circuits are usually the

voltages across the capacitors and the currents through the inductors. Based

on this physical interpretation, a designer can select a compatible

assignment-partition process as demonstrated in the examples of section III.

However, for the most general case, there is a need for a systematic method

for finding a compatible assignment-partition process, especially when the

number of equations is large. Such a method is discussed in [16].

We now give the definition of the canonical fonr of a WRM algorithm, fol

lowed by conditions which guarantee that the WRM Algorithm Model 2.1 can
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be tranformed into a canonical form. It should be noted that we do not have

to perform the tranformation explcitly in order to implement the WRM Algo

rithm Model 2.L Based on its canonical form, we can state sufficient conver

gence conditions of the WRM Algorithm Model Zl in a simplified form as given

in Theorem 4.5.

Definition 4.2. Acanonical WRM algorithm is characterized by the following
iteration equations.

x* = /(**,**-», x*-l,z*-i,u) (4.1a)

** = g&.4"l.±k-\*i-l.u) (4.1b)

where xeET.zelt.ifceKr and/, g are continuous functions. •

Lemma 4.3 Asum*n»g> that for each decomposed subsystem described by

(2.4). there exist continuously differentiable functions /< and Jft and a non-

singular matrix
A e E?<xp< such that (2.4) can be rewritten as

«i = 7t(*t. ^i.u)

*i(0) = ^(Vi(0))

k j
A

(4.2a)

(4.2b)

(4.2c)

(4.2d)

where x< e H* and z4 e Hf<~n<, Le. each decomposed subsystem has a state-

equation representation. If the WRM Algorithm Model 2.1 is compatible, then

it can be tranformed into a canonicalWRM algorithm. •

Instead of proving the above Lemma, we give the following example to

show how such a tranformation can be done for a simplified case. The formal
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proof of this Lemma is given in [16].

Example 4.4 Consider the compatible WRM Algorithm Model 2.1 which

satisfies the assumption of Lemma 4.3. Hence we can rewrite the i-th subsys

tem of (2.3) as

it = /i(xil2i,u) (4.3a)

*i = 5<fe«2i.u) (4.3b)

«i(0) = -£i(y<(0)) (4.3c)

a\ = col(xj Xj.l xj+j., . . .x^,

*1 *i-i. *i4-l. • • - .^n.

*1 *i-L *i+l *m) (4.3d)

where x< € if1, z4 € if4"**, 3* € R^"^ and fit £< are continuously

diflerentiable functions. For a simplified case, we shall assume that /< and g^

are independent of {£*, i=l,2,...,mj. Note that this assumption verifies the

compatibility of the algorithm. Hence we can rewrite the iteration equation

(2.5) in the following form:

xf = AW.af.u) (4.4a)

z? = fiM.tf.u) (4.4b)

*f(0) = Etiy^O)) (4.4c)
where

af = coi(x*-i xf-v.^.v *&-1.

±Tl ifcil.*fc» x*-1,

*Tl tf-V.^fci1 zlk-1) (4.5a)
for the GJ relaxation, or
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# - col(xf xi*.lfx?_Y,...,x*-i,

*? *ti.ifcil ±5r\

*i ***-i. ZiVi1 2&"1) (4.5b)

for the GS relaxation and fi% gi are continuously differentiable functions.

Hence the GJ-WRM algorithm can be tranformed into its canonical form

by substituting (4.5a) into (4.4) and concatenating the subsystems

i=l,2,...,77i together. For the GS-WRM algorithm, we substitute (4.5b) into

(4.4) and make forward substitutions of the first i-1 subsystems into the i-

th subsystem in order to eliminate xf xf.j, z\ z/L, from the right

hand side. The canonical form is then obtained by concatenating the result

ing substituted subsystems. •

In the above example, we can see that the differentiability of /< and J* is

not needed in the transformation of the WRM Algorithm Model 2.1 into its

canonical form- Also the number of state variables in the canonical form is

equal to that of the decomposed system, Le. n =2*^ and *= L,(Pi -ni)-

However, when the assumption that /< and ^ are independent of

fzj, i=l,2t...,T7iJ does not hold, we have to differentiate some of the equations

in (4.4) in order to tranform the algorithm into its canonical form. For exam

ple, in the third example of section III, we have to differentiate (3.4f) in order

to obtain the canonical form. As a result of the differentiation, some extra

state variables are created in the canonical form, e.g. v3 in the third exam

ple of section IIL The initial values of these extra state variables may be fixed

or vary from one iteration to the ot. «;r. In this paper, we shall consider the

convergence conditions of the compatible WRM Algorithm Model 2.1 in which

the initial values of the extra state variables (if exist) of its canonical form
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are fixed. These conditions are given in the following theorem which is proved

in the appendix. The convergence of the canonical WRM algorithm in which

the initial values of some or all state variables are not fixed is discussed in

[16].

Theorem 4.5 (Convergence Theorem of WRM Algorithms).

Consider the compatible WRM Algorithm Model 2.1 which can be

^transformed into the following canonical form:

x* = f(xktxk'l,xk'\zk-\u) (4.6a)

z* = g{xk%xk'\xk'\ zk'\u) (4.6b)

x*(0) = x(0) (4.6c)

where x e if, z e R? and u e if. Assumsfe that

a) u() : [0.f]-»lf is a given piecewise continuous function.

b) there exist norms in ifxR* and if. \x fc 0, \2 fe 0 and y c [0,1) such that

for any a, b,s,a\b, S € if, v, 5 e R? and u e if

/(a, 6, s,v,u) -/(a, 5, 5. v, u)
g(a, b, s.v, u) -$(a, 5. S, 5, u)

*Xi||a-a|| + XB||b -5||+7 s —s

V — V

i.e. (/, g) is globally Lipschitz continuous with respect to x and globally

contractive with respect to (x, z).

c) both / and g are continuous with respect to u.

Then, for any initial guess (x°(f), z°(f) ; t e [0,7]) such that x°() and

z°(-) are piecewise continuous, the sequence

K±*(0. xk(t), zk(t) ; t e[0.7])}rSi generated by the canonical WRM algo-

A function u() : [0,T]-*U is piecewise continuous if it is continuous everywhere except at
a finite number of paints and at any discontinuity point, the function has finite left- and right-
hand limits.
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rithm (4.8) converges uniformly to (x(t), x(t). z(t); t € [0,7*]) which satisfies

£ = /(£, x, x, z, u) (4.7a)

z = $(x, x,x, z,u) (4-7b)

x(0) = x(0) (4.7c)

•

JZemark: We do not need condition (b) of Theorem 4.5 to hold for the entire

spaces ifxK and if, Le. global Iischitz and global Contractive properties of

{/, g) are not necessary. The convergence is still guaranteed as long as the

condition (b) holds for subsets of ifxRT and if containing the sequences

{(x*(0, zk{t); t G[0,T])1^q and \(xk(t) ; t € [O.r^orespectively. •

It is possible to justify intuitively the derivation of the convergence con

ditions given in Theorem 4.5 if one is familiar with the contraction mapping

theorem (see [15] page 120) and the Picard-Iindelof theorem on the

existence and uniqueness of the solutions of ordinary difierrential equations

(see [17] page IB). From the contraction mapping theorem, the conditions

(b) and (c) guarantee that (4.7) can be written equivalently as

x = /(x.u) (4.8a)

z = 5(x,u) (4.8b)

HO) = x(0) (4.8c)

where / and g are Lipschitz continuous with respect to x and continuous with

respect to it. Hence, by the Picard-Iindelof theorem, (4.8) has a unique soiu-

tion (x, z) for any given initial condition and any given piecewise continuous

input. Theorem 4.5 simply shows that the canonical WRM algorithm is in fact
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a constructive proof of the existence and uniqueness of the solution. •'
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Y. Application of the WR method for the time domain solutions of MOS

integrated circuits.

In this section we shall apply the WRM Algorithm Model 2.1 to analyse an

important class of dynamical systems: MOS digital integrated circuits. In

fact, this was the original motivation behind the development of WRM. A typi

cal large scale digital circuit is usually an interconnection of several basic

subcircuits called "gates". Hence the analysis of this class of circuits lends

itself to the decomposition technique in the most natural way. We shall pro

pose two WRM algorithms for analyzing MOS digital integrated circuits and

show that, under very mild assumptions which are usually acceptable in

practice, the proposed algorithms converge. Although both GS and GJ relax

ations can be used in these algorithms, the GS relaxation is preferred since it

requires only one copy of the iterated solutions, as opposed to two copies

required by the GJ relaxation, and its speed of convergence is faster, espe

cially for MOS circuits where unidirectional models are used to model MOS

devices (for example see [3,4,5]), provided that the equations are properly

ordered (see [10] for a discussion of this aspect). For the sake of simplicity,

both algorithms use the simplest guessing scheme and an assignment-

partition process in which each partitioned subsystem ia a single equation.

The generalization of both algorithms to allow more than one equation per

subsystem is straightforward and will not be discussed.

Our first standing assumption is that each MOS device and its intercon

nections can be modelled by lumped (linear or nonlinear) voltage controlled

capacitors, conductors and current sources. The next assumption is that

every (internal or external) node In the circuit has a (linear or nonlinear)

capacitor to either ground or dc supply voltage rails. These assumptions are
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commonly acceptable in practice.

For the first algorithm, due to the above assumptions, we can use Nodal

Analysis to formulate the dynamical equations of any MOS integrated circuit

to obtain

C(v, u)v + g(v, u) a 0 (5.1a)

1/(0) = v0 (5.1b)

where v € if is the vector ofall unknown node voltages, v0 is the given initial

values of v, u € if is the vector of all inputs and their time derivatives,

g :ifxlf-»lf is a continuous function each component of which represents

the net sum of currents charging the capacitor at each node due to the con

ductors and the controlled current sources, C: ifxlf-♦if** is a symmetric

diagonally dominant matrix-value function in which -C^(v, u) ;i#j is the

total capacitance between nodes i and j, and Caiv.u) is the sum of the

capacitances of all capacitors connected to node i.

Due to the grounded capacitors, an obvious choice of the state vector of

the circuit is the vector of all unknown node voltages. It is thus natural to

assign vx to the i-th equation of (5.1a). Consequently, the assignment-

partition process is compatible with (5.1). Applying the WRM Algorithm Model

2.1 to (5.1), we obtain Algorithm 5.1 as described below.

Algorithm 5.1.

Step 1: Set k = 1 and v°(f) = v(0) for all t € [0.7].

Step 2: For i = 1.2 n, solve for \vk(t); t e [0,r]J from

iOjivt uf.nfff «*-l.u)wf +
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t diW *fc vM i*"1. u)vf +

Sifri «f. ufci1 vi"1, u) a 0 ; ttf(O) =Wi(0).

Step 3: Set k = k +1 and go to step 2. •

The second algorithm is intended for MOS circuits containing pass

transistors (or transmission gates), as for example the circuit in the second

example of section ID. Modified Nodal Analysis [ ] is used to formulated the

dynamical equations of the circuit to obtain

C(v, u)v + g(z. v. u) = 0 (5.2a)

z -g(v,u) = 0 (5.2b)

v(0) = v0 (5.2c)

where C,v,utv0 are as defined in (5.1), z € R* is the vector of drain

currents of the pass transistors, g :ifxlf -»R? is a continuous function each

component of which describes the drain current of each pass transistor in

terms of its terminal node voltages, and g : R: xR^xlf ->lf is a continuous

function each component of which represents the net current charging the

capacitor at each node due to the pass transistors .other conductive ele

ments and controlled current sources.

We choose to assign vt to the i-th equation of (5.2a) and z\ to the i-th

equation of (5.2b). Hence the assignment-partition process is compatible

with (5.2). Applying the WRM Algorithm Model 2.1 to (5.2), we obtain Algo

rithm 5.2 as described below.

Algorithm 5.2.

Step 1: Set k = 1. z°(r) = 0 and v°(t) =v(0) for all t € [0.T].
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Step 2: a) Fori = 1,2 n. solve for (vf(t) ; t e [O.T]) from

S G/lvi vt. vA-11 vk'1. u)i)k +

2 ^<«t vt. vm v*-\ U)vf +

iifz*"1. vf vft vfr1 vk'1, u) = 0; v,*(0) =Vi(0).
b) Compute z*(f); t € [O.T] from

zk = ^(v*,u)

Step 3: Set k = Jb+1 and go to step 2. B

Theorem 5.1. Assuming that

a) The charge-voltage characteristic of each capacitor, or the volt-ampere

characteristic of each conductor, or the drain current characteristic of

each MOS device is Lipschitz continuous with respect to its controlling

variables,

b) Cnia > 0 and Cm„ < - where

C^ € R is the minimum value of all grounded capacitances at any per

missible values of voltages, and

Coax GR is the maximum value of all capacitances between any two

nodes at any permissible values of voltages,

c) The current through any controlled conductor, e.g. the drain current of

an MOS device, is uniformly bounded throughout the relaxation process.

Then, for any MOS circuit with any given set of initial conditions, and any

given piecewise continuous u(-). Algorithm 5.1 or 5.2generates a converging

sequence of iterated solutions whose limit satisfies the dynamical equations

of the circuit and the given set of initial conditions. •
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The proof of the above theorem is in the appendix. Note that the

first assumption implies that for any capacitor, conductor or MOS device,

its incremental (or small signal) characteristic, i.e. capacitance,

conductance or transconductance, any any permissible dc operating point

must be uniformly bounded. Note also that the third assumption implies

that during the relaxation process, the current through any conductor

or MOS device must not grow arbitrarily large. These three assumptions

are usually very mild in practice and hence either Algorithm 5.1 or

5.2 is guaranteed to converge for any MOS integrated circuit.

In both algorithms the initial guesses are chosen, for convenience,

to be constant waveforms. From Theorem 4.5, we know that other choices

of initial guesses will not destroy the guaranteed convergence of both

algorithms if they are piecewise continuous waveforms. Hence, for MOS

digital integrated circuits, a logic simulation could be used to generate

the initial guesses for these two algorithms. It is also possible to

show that, under the same assumptions of Theorem 5.3, the corresponding

GJ relaxation versions of Algorithm 5.1 and 5.2 are guaranteed to converge.

Moreover, a relaxation parameter u) can be introduced into these GJ-

or GS-WRM algorithms (as described in section II) without destroying

their guaranteed convergence, provided thatWfe (0,2).

As an example, the ring oscillator described in section III is

used to verify the guaranteed convergence of Algorithm 5.1 The circuit

is schematically redrawn in Fig. 5.1a. The circuit interpretation of

the relaxation process is already shown in Fig. 3.1b. The resulting

waveforms at different iterations of the algorithm are shown in Fig.

5.1b through 5.1e and, for comparison the resulting waveform obtained

from a standard circuit simulator SPICE is sttowtaf IN Fig. 5.5.
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Note that since the oscillator is highly non-unidirectional due to the

feedback from to the input of the NOR gate, the convergence of the

interated solutions is achieved with the number of iterations being

proportional to the number of oscillating cycles of interest. More

examples as well as the techniques to increase the computational efficiency

of WRM algorithms are given in the next section.
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Pig. 6.1

a) Schematic diagram of a ring oscillator with its triggering input

waveform.

b) Thewaveform ofvt after the first iteration ofAlgorithm 5.1.

c) Thewaveform ofv j after the second iteration ofAlgorithm S.1.

d) Thewaveform ofv t after the third iteration ofAlgorithm 5.1.

e) Thewaveform ofvxafter the fourth iteration ofAlgorithm 5.1.

f) The waveform ofv i obtained by SPICE circuit simulator.
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VI. Experimental program RELAX A computational study of WKH.

To study the computational efficiency of TOM, an experimental FORTRAN

program called RELAX has been written for simulating MOS digital integrated

circuits. The algorithm implemented in RELAX is based on Algorithm 5.1 with

the following modifications.

1) RELAX allows each partitioned subsystem to have more than one equa

tion so that each subsystem corresponds to a physical digital subcircuit,

e.g. NOR. NAND, FLIP-FLOP etc.

2) The first iteration of RELAX is essentially the first iteration of Algorithm

5.2, but after that RELAX switches back to use Algorithm 5.1 for the rest

of the relaxation process. That is, in the first iteration of RELAX, the

drain currents of pass transisters do not contribute any loading effect

on the subcircuits to which they are connected. This is done because, in

the first iteration when all initial guesses are constant waveforms, a pass

transistor can be driven continuously into its conductive region and may

adversely effect the speed of convergence if its current is treated as a

load of the other subcircuit.

Note that these modifications are just examples of specializing WRM for

a particular class of dynamical systems so that some techniques that take

advantage of its characteristics can be exploited to improve the speed of

convergence. In addition, RELAX incorporates two techniques to speed up the

analysis of the decomposed circuit. The first technique is based on the

latency of each decomposed subcircuit and is similar to the technique

described in [7]. The second technique, which takes effect after the second

iteration, is based on the partial convergence of iterated waveforms. That is.

when the difference between a waveform at the current iteration and the
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same waveform at the previous iteration is within the specified convergence

error over a subinterval of the analysis time, the waveform will not be recom

puted for that subinterval in the next iteration.

Several MOS digital circuits have been analysed by RELAX and the

results have been compared with those obtained by two other simulation pro

grams, SPICE [1] and SPLICE [4]. In these tests, SPLICE has been run as a

timing simulator. All three programs use the Schichman-Hodges equation

[9] to model the drain current of an MOS device and linear capacitors to

model the charge storing mechanism of the device and its parasitic capaci

tances. Since the version of SPLICE used in this test does not allowthe timing

analysis of circuits containing floating capacitors , each test circuit has been

analysed with no floating capacitors for the comparison with SPLICE and with

floating capacitors for the comparison with SPICE. Since all three programs

use numerical integration methods with adjustable timesteps, the same max

imum timestep, which is an input parameter of each program, is specified for

the numerical integration routine of each program. For RELAX, the specified

convergence error is 0.05 volt, Le. the relaxation process stops when the

maximum difference of all voltage waveforms between the current iteration

and the previous iteration is less than 0.05 volt. However, as described ear

lier, the same convergence error is also used by RELAX to bypass unneces

sary analysis when a partial convergence is detected.

The schematic diagram of MOS circuits being tested and their input

waveforms are shown in Fig. 6.1a through 6.5a. Comparisons of output

waveforms obtained by RELAX and SPICE are shown in Fig. 6.1b, 6.1c through

6.5b, fc.5c. For RELAX outputs, each rectangular mark denotes the computed

A floating capacitor is a capcitor between two dependent nodes in a circuit. For example,
if the input of an IIOS inverter is not connected to an ideal voltage source, then the drain-gate
capacitor of its pull-down device ia a floating capacitor.
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value after every two internal timesteps to illustrate the effect of the imple

mented latency technique. A comparison of the analysis time in CPU seconds

spent by each program is given in Tables 6.1 and 6.2. All three programs run

on a VAX 11/780 using UNIX operating system. The tabulated figures do not

include the time spent in the read-in, set-up and read-out phases of each

program. For RELAX, the tabulated figure is the sum of the analysis time

spent at each iteration and hence the total number of iterations is also

included. As seen from the tables, the analysis time of RELAX is at least one

order of magnitude less than SPICE and at the same order as SPLICE. These

are accounted for by the following factors.

1) Both RELAX and SPLICE use decomposition techniques, although of

different natures. It is known that the complexity of the analysis of a cir

cuit without decomposition is proportional to nm where n is the size, Le.

the number of unknown variables, of the circuit and m is usually

between 1.2 and 3 depending on the sparseness of the circuit, Le. m is

small (large) if the number of interactions between the unknown vari

ables is small (large). With decomposition, the complexity is usually

proportional to n. Hence, the decomposition is a major factor in reduc

ing the analysis time of a circuit. The larger the circuit, the more

reduction is achieved as shown in Table 6.1.

2) Both RELAX and SPLICE incorporate latency techniques, although of

different types. These techniques take advantage of the latency of a cir

cuit by bypassing unnecessary computations. RELAX also has an addi

tional technique that takes advantage of the partial waveform conver

gence which enables it to reduce the analysis time of the decomposed

circuit at later iterations.
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3)

Due to the decomposition used in RELAX and SPLICE, each decomposed

subcircuit can be analysed with its own integration method and optimal

timestep sequence. "Without decomposition as in SPICE, the waveforms of

all unknown variables are computed from the same timestep sequence.

4) Both RELAX and SPLICE are specialized programs for analysing MOS

integrated circuits, as opposed to SPICE which is capable of analysing

circuits using different types of devices, e.g. MOS, bipolar transistors

etc. Therefore, many of the overheads that have to be included in SPICE

in order to be able to deal with different models and different devices

are eliminated in RELAX and SPLICE.

As for a comparison between RELAX and SPLICE, it is important to note

that while the analysis method in the timing simulation of SPLICE is only an

approximated method that sometimes suffers from instability and inaccu

racy problems (see [4] and [8]), the analysis method WRM, used in RELAX is

reliable and accurate. Note also that, without floating capacitors, the cir

cuits of Pig. 6.4a and 6.5a possess a unidirectional property which is referred

to as one-way property in [10]. Circuits having a unidirectional property can

be analyzed exactly by performing only one iteration of GS relaxation. Since

the present version of RELAX does not recognize this property, it has to per

form two iterations before the convergence can be detected. •

UNIX is a trade mark of Bell Laboratories.
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ng.e.1

«) Schematic diagram of adynamic shift register.
b) Output waveforms obtained by RELAX

c) Output waveforms obtained by SPICE.

XN I

I
0.

*. 1 Cti*0
CO

34



35

Fig. 6.2

a) Schematic diagram of a one-bit full adder with a pass transistor carry-

chain.

b) Output waveforms obtained by RELAX

c) Output waveforms obtained by SPICE.

5.0

* out

3.8

i.e

H-

•l .&L.
e.a

i i s (i«nO

RELAX

-kH-HOO

• • • • • •' • •

1.8 2.8 3.8

0 • V

3.8

»

1Jnce
i

i
i

i
i

! ^ "

1 .8

! • 1 Y
\ \ !\

1.8 -•t .1

5.8

-1.8L

cw

8.8

S.8

3.8

1.8

-1.8E

8.82.8 1.8

CO

3.8



5.8

3.8L

8.8

38

Fig. 8.3

a) A two-bits full adder obtained by cascading two one-bit full adder of Fig.

6.2a.

b) Output waveforms obtained by RELAX

c) Output waveforms obtained by SPICE.
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Fig. 8.4

a) Schematic diagram of a two-bits magnitude comparator implemented by

a NOR-NOR PLA with no minimization of the product terms.

b) Output waveforms obtained by RELAX

c) Output waveforms obtained by SPICE.
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ng. 8.5

a) Schematic diagram of a two-bits full adder implemented by a NOR-NOR

PLAwith no minimization of the product terms.

b) Outputwaveforms obtained by RELAX

c) Output waveforms obtained by SPICE.
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Table 6.1

A comparison of the analysis time between SPICE and RELAX

39

Circuit1 of Fig. 6.1 Tig. 6.2 Fig. 6.3 Fig. 6.4 Fig. 6.5

§ of unknown nodes 4 8 16 27 45

# of MOS devices 6 21 42 131 263

CPU-SPICE (sec) 21.30 121.57 211.53 818.00 1334.80

CPU-RELAX (sec) 1.08 4.38 5.85 18.42 22.30

# of RELAX iterations 5 5 7 5 4

CPU-SPICE/CPU-RELAX 19.70 27.73 36.16 44.42 59.86

1With floating capacitors. The ratio of a floating capacitance to a grounded capacitance is
approximately 1 to 12.
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A comparison of the analysis time between SPLICE and RELAX

40

Circuit2 of Fig. 6.1 Fig. 6.2 Fig. 6.3 Fig. 6.4 Fig. 6.5

# of unknown nodes 4 8 16 27 45

§ of MOS devices 6 21 42 131 263

CPU-SPLICE (sec) L18 5.00 8.62 20.95 37.47

CPU-RELAX (sec) 0.53 4.68 7.82 27.00 44.73'

# of RELAX iterations 2 3 7 2 2

1 With no floating capacitors. Although the circuits and their input waveforms used in Table
6.1 and 6.2 are the same, the initial conditions are different.
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YD. Conclusion and discussion.

WRM is a new method for the time domain analysis of large scale dynam

ical systems based on the relaxation of the nonlinear algebraic-differential

equations describing the system to be analysed. Since the method decouples

these equations, independent integration of the each decomposed subsystem

can be performed with different integration formulae and timesteps. In addi-

.tion, latency of subsystems can be easily detected and exploited to reduce

the analysis time. This method is particularly suitable for VLSI circuits. In

comparison with the relaxation methods used by timing simulators, e.g.

MOTIS and the timing simulation part of SPLICE, WRM is guaranteed to con

verge for a wide class of circuits while sharing the main advantages of these

techniques.

On the negative side, for WRM we need to store the waveforms at the

current iteration for use in the next iteration. For large time intervals, the

amount of needed storage can be very large. However, in the same way as is

normally implemented in any computer using a time sharing operating sys

tem, the waveforms can be stored in the secondary storage and brought

back into the primary storage only when they are needed. To avoid delays

due to the slow access time of the secondary storage, a buffering scheme can

be implemented to transfer the waveforms from primary to secondary

storage and back without stopping the execution of the method.

The computational efficiency of WRM can be further improved by the fol

lowing techniques:

1) The use of an adaptive error control scheme. In this scheme, the errors

incurred in computing the solutions of the decomposed system during

the initial iterations are allowed to be large and are progressively
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decreased as the sequence of iterated solutions converges to the final

solution. Various approximation techniques can be used to compute the

solution of the decomposed system during the initial iterations of the

method. These are discussed together with the proof of convergence of

WRM with this adaptive error control scheme in [16].

2) The implementation of WRM on pipeline or parallel processors. Both

types of relaxation, Le. GJ and GS relaxation, can be implemented. How

ever, parallel processors are better suited to GJ-WRM since the analysis

of all decomposed subsystems for any given iteration can be done con

currently. •
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Appendix

Example Al. The purpose of this example is to illustrate some behaviors ofa

WRM algorithm that use a non-compatible assignment-partition process, as
defined in Definition 4.1. The dynamical equations to be analyzed are:

Vi+yz-u = 0; y,(0) =0 (ALla)

Vi-Va = 0 (A1.lb)

Let Vl and y2 be assigned to (Al.lb) and (Al.la) respectively and let (Al.l)

be partitioned into 2subsystems consisting of {(Al.la)} and {(Al.lb)J. Apply

ing the WRM Algorithm Model 2.1. the fc-th iteration of the resulting GS-WRM
algorithm is given by

y\ = -y\'X +u (Al.2a)

Vi = yi (A1.2b)

Notice that, while the original system (Al.l) has one state variable, the

decomposed system (A1.2) at the fc-th iteration has no state variable since it

consists of only algebraic equations. Hence the above assignment-partition

process isnotcompatible. It is easy to show that the solutions of (A1.2) are

Thus both y^(f) andy|(f) diverge when the initial guess is yf(t) =e"*. a>l.

Now suppose that the initial guess is of the form yf(t) =£a<f* where I is a

finite positive integer and a,, J=1.2....,I are constants. Then we can deduce

the following results:
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a) When the input u(f) =a;ffeO. the solutions of (Al.l) are

Vi(0 =V2(0 =a(l-e"') but both y$(f) and y|(i) converge to

Vi(0 =5z(0 =ol which are solutions of (Al.l) with a different initial con

dition, i.e. yx(0) = a.

b) When u{t) = e-*, a>l, both y$(f) and y|(f) diverge while the solutions

of (A1.1) are Vl(t) =y2(t) =-Me"- - e'*).

c) Ifu(-) is piecewise continuous with at least one discontinuity point, then

both yf (•) and y|() will be unbounded at those discontinuity points but

the solutions of (A1.1) will be continuous and bounded within the given

time interval.

This example shows that for a non-compatible WRM algorithm, the itera

tion may converge to solutions of the original dynamical system with a

different set of initial conditions. Furthermore, the convergence to the

correct solutions arises only under special conditons on the input waveforms,

initial guesses and initial conditions. Hence non-compatible WRM algorithms

tend to have poor behaviors and should not be used. •

The following facts are useful for the proofs of Theorem 4.5 and Theorem 5.3.

Lemma A2. Let f|-|U. IMI» be norms in if, if*' respectively. Then there

exists a constant u such that

IML * HIzlU for all x elf and z eR?

Proof. We use the fact that all norms in a finite dimensional space are

equivalent (see [15] page 39). That is. if ||-||a and |||L are norms in if, there
a

exist constants jjlx and y^ such that for any x € if



WL * /*,|Ix|L and ||x|L * M2||x||t

Define

w^l
A ||X

and xll a
zilr Ob

Then from (A2.1), there existult jj^ such that

IML^IWL and ||f|5^|f||6
(A2.2) and (A2.3) implythat

IM. * ^h*»bl*»»kl
Therefore, the proof is completed.

Lemma A3. Define ||-||. in if and if*1 as follows:

IMI- ={nax \xi | where x< is the i-th component of x e if, and

"i4"" =SS 2 A; where 4> is the (i.;)-th element of Ae if*".
***»i»i

A3

(A2.1)

Z\lb
(A2.2)

(A2.3)

Let Xand C/ be strictly* upper and lower triangular matrices in if*1 such
••

that£ssO, U^Q and

||£+tf||. = max
l*i*n

ss 1

where Ly. Cfy are the (i,jf )-thelements of I, C/ respectively. Then

\\(I-L)-lU\\m as IIZ+^IU * 1

Proof. Let J = col(l.l,...f1) e if, then from (A3.1) we have

(A3.1)

•

Astrictly triangular matrix isatriangular matrix whose diagonal elements are zero.
Arector x ora matrix A whose elements are all nonaegative is denoted by xfcO or A±0

respectively. *
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<

(I-L-U)x fe 0 (A3.2)

Since L is strictly lower triangular, we have

(I-L)'1 = I + L+LZ+ • • • + Ln~l

Therefore

(l+u)-(i-l)-1u = [(/-xr1 -/](/-/; -C/)

= CL+£z+ ••• +Ln-l)(/-£-C7)

(L +C/)x-(/-£)-* £/£ = U+Z,2+ ... +Zn-l)[(/-£r-C7)x] (A3.3)

(A3.2). (A3.3) and L*Q imply that

(£+£/)£-(/-£)-* L& * 0 (A3.4)

Since (L+U) ^ 0 and (/-I)"1 U=(/ +I + ... +£»-«) £7 2s 0, we have

\\L+U\U = lltt+^|. and ||(/-I)-»C'||.a||(/-x)-»cS|U

Therefore (A3.4) implies that

lU +tfll. * K/-I)-ir/|U

temma A4. Let /,, f2 :DCif «* R be two bounded Lipschitz continuous

functions, then the product function fjz is also bounded Lipschitz continu

ous in D. If /8 is also bounded away from zero, i.e. inf |/2(x)| =/2> 0,
reD

then ——is also bounded Lipschitz continuous in D.
JZ

Prt»f. Let fx =sud^\fx(x)\,f2 =^uj^ |/2(x)| and \x, X2 be the Lipschitz

constants of flt f2 respectively. Then for any x, y e D

IfDis a bounded subset of«f\ then any function which is Lipschitz continuous inDis also
bounded in D.
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\(fJnfe)-(fifw)<v)\ = \fi(*)fz(*)-fi(y)fz(y)\

• IC/iW -/i(v)]/t<*> +[/80O -/2(y)]/i(y)l

* l/ito -/i(y)l l/2(*)l + |/2(x) -/2(y)| \fx(y)

* Xi?8||»-y|| +Ab?i||*-y ||

= (Xi^a +XjJIIr-yll

Therefore / xf2 is Lipschitz continuous in Dand is bounded by fxfz.

Now, if / 2is bounded away from zero, then

fz(v)-fz(x)
/e(«) fz(y) fz(y)fz(*)

/2

That is ——is Lipschitz continuous in Dand is bounded by •=—. Therefore by
*z fz

using the previous result, the product fx-j— =^— is also a bounded
fz fz

Lipschitz continuous function in D. •

Proof of Theorem 4.1. Define

D = \t e [O.r] | t is a discontinuity point of eitheru(), x°() or z°()j

Xxz4 {(*("). *(')): [0,r]-lf xR? | x() and *(•) are piecewise
continuous with possible discontinuity points in DJ

F : XxZ-»XcZ such that 5()
"CM satisfies

x = f(x,x,x,z,u); x(0)=x(0)

« = g(x, x,x,z,u)

(A4.1a)

(A4.1b)
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Since / is lipschitz continuous with respect to x, by the Picard-Iindelof

Theorem on the existence and uniqueness of the solutions of ordinary

differential equations (see [17] page IB), the above equations have a unique

solution (x(-), ?(•)) which belongs to XxZ Therefore F is well defined. From

these definitions the canonical TOM algorithm described by (4.6) can be writ

ten as

• «%> (A4.2)

Let y = max(7, 0.1) and a be a positive constant whose value will be chosen

later. Define norms in ifxk xlf and XxZ as follows:

x(f
zlt
xlt - li&)l*^w«>n (A4.3)

1:81 ±.w"
(A4.4)

where y, Xg and the norms in ifxRr and if are as given in Theorem 4.5. Since

81 fe e~*r max
i e [o.r]

x(t
zlt
xlt

Therefore, it can be shown that the space (XxZ, ||-||) is closed (hence it is a

Banach space). Next we shall show that Fis contractive in (XxZ, ||||).

Let

> «

= F and

> 1

?(•)

M
= F

1 * 'i

condition (b) of Theorem 4.5, we have that

, then from (A4.1) and the



?(0-P(0||
?(*) - ?(t)"

/(?. X>. *», 8'. u) -f (?. *t i2§ z2 u)
*(?. *'. i». *«. «) -y(?. **, **. S2, u)

* X,|P(0 -?(OII +Xeltr'(0 -**(*)ll +7|*!gJ :*$j I

After some algebraic manipulations using (A4.3), y and the above inequality,
we have that

A.7

ix»(0-«*(0 I X

'M -*M> +(Xi+^|p(f} "?(oy (M-5)
Prom LemmaA2, there exists a constant fi such that

i?(0-?(0
||?(0-?(OH *m I ?(*)-?«)

From (A4.5) and (A4.6). letting ji, =/xy and /jg =/i(Xj +^). we have
7

(A4.6)

||?(i)-?(0!l *A
i'(0-i2(0

+Mdl?(0-?(OII (M*7)

Applying the fundamental results in differential inequalities to (A4.7) (see

[17] coroUary 6.2. pages 30-32), using the fact that x*(0) - x8(0) =0. we have

* -tiix«(o-2«(oii * m*fy**

• *•*./.

From (A4.4) we have

±'<t)

*'(r)
dr

J«(0-?(0
1%-or 5'(0-?(0

i'(0-i?(0

dr (A4.B)



x»(t)-x*(t)
«1(t)-«*(t)
x»(t) -x*(t)

for all re [0.7"]

Substituting this inequality in (A4.8), we have

ii?*,)-?™ * m-*Bj:!:Sf:!i/;.,^'-T
_ Ml*

/*

a-A^2

rl(.)»x2(.)|| , (a-^t

A.8

2b!fj*l(->-*•(•) assuming a - Aig>0

Substituting this inequality in (A4.5) and multiplying by e~at, we have

,-««

2(f)-?(t)

?(i)-?(t)
^ 7e -«<

x>(0 -±*(t) i ^+ "^

Hence, using (A4.4), the above inequality implies that

M.(Xi +^
7 ||x'()-x*()

o-/^ tl*»C)-*2()

That is

Mi(Xi + -r

7 +
a-A*2

x>()-**()

Since 0.1 -s y < 1, it is possible to choose a large enough so that

*<Xi +*
r +

Therefore F is contractive. Hence, by the contraction mapping theorem (see

< i

x>0-**(•)



[15] page 120), it has aunique fixed point in XxZ satisfying

Le.

SO s F SO

X S / (£, J, J, J, U) ; J(0) - X(Q)

* = $(x, X, X, Z,u)

A.9

and for any given initial guess (x°(), z°()) eXXZ the sequence
{(**(•). «*(-))Jff»i generated by (A4.2) converges uniformly to

(*(•>. £(•))€XxZ Since we can choose (x°(), z°()) eXxZ such that
*°(0 =x(0) and z\t) =0 for all t e [0.7], therefore we conclude that the

discontinuity points of (x(), z()) belong to the set of discontinuity points of
tx(-) only. Le. they do not depend on x°() and z°(). Hence the proof is com
plete. •

ftoof of Theorem 5.3. Define

L, U : Ifxlfxlf - lf*n

H: Ifxlfxlf - If*»

F: ifxlfxlf -# If

as follows:

/ : ifxlfxlfxlf -> rf1

F : R?xlfxlfxlf -> if

7 : Ifxlfxlfxlfxlf - If

£v(a,6.u) s

ty(a.6.u) 4

0 ; if i ss ^
Q/(ai °i. &t+i *>n,u)
C*(*i oc, 6i+1 bn, u) : * * > J

Qffri °<' bi»i fen.^) . ,f . . .
<*(*! «i.*m &».u> * Ut<*
0 ; if i fe j
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i

H(a,b.u) 4 [I -L(a.btu)YlV(*,b,u)

Fiia.b.u) i - ji(*1 *'*« b»'u\
Ca{ax, . . . , Oi, 6<+1 bn, u)

/(a,6.s.u) 4 [I-L(a.b,u)]-lF(a.b,u)+H(atb,u)s

JK«.a.6.u) 4 -***/*1 °t.W..,6n,u)
Ctt(alt . . . .at, 6i+1 On, u)

7(o.6.s,z,ix) 4 [/ -^(o.b.uJJ-^z.o.o.u) +H(a,b,u)s

where C, g, g are previously defined in Algorithm 5.1 and Algorithm 5.2. Then

Algorithm 5.1 can be tranformed into the following canonical form

iik = f{vk,vk-l,vk~\u) : v*(0)=v(0)

AndAlgorithm5.2 can be tranformed into the following canonical form

iik s f(vk, vk~l, vk_x, zk'\ u) ; v*(0) =v(0)

z* = g(vk.u)

JYom Lemma A4 and the assumptions of Theorem 5.3, we can deduce that

a) / • /» 9 are continuous functions and are lipschitz continuous with

respect to vk and v*"1.

b) J is also Lipschitz continuous with respect to z, i.e. there is a constant

X>0 such that

||/(a, 6,s.z,u)-/(a, b,s, z,u)\\m * X||z-zJU (A5-1)
where ||-||. denotes the standard max-norm as defined in Lemma A3.

Applying the result of Lemma A3, we have

||#(o.b.u)||_ * \\L(a.b.u) + U(a.b.u)\\m
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i

~ 2 ^j(al °i. &<+l. ....&», u)
ffl (A5.2)

= max —£Pt -
*u*n Qi(ai, . . . . Oi, 6<+1 6n, u)

From the definition of C and the assumptions of Theorem 5.1, we have

Qi(ai a*. &i+i 6*. u) * Cam - (A5.3)

2 Q/(ai =i. &m 6n. *0

- 2 Offai <k, 64M 6n, u) * (n - lJC^ ^^

Since, for all a s£ 0 , the function g —is monotonically increasing with

respect to a therefore (A. 15), (A 16) and (A 17) imply that

Therefore Algorithm 5.1 satisfies all the conditions of Theorem 4.1 and hence

it converges for any piecewise continuous input u.

For Algorithm 5.2, we define ||-|| in ifxR* such that for any s e if and

z erf

1:1 i ni-+^ii*ii-
where Xis as given in (A5.1) and 7 is as given in (A5.5). Then

\\na-b-lll.$:fe:l)l'-u)\\ =II7(». *.....«)-?(.. 6.5.5. «)|U
* X||* -«U. +||ff(a.6.»)|U|s -S||.

*r[||s-;il-+^|x-J||-]



= 7
s -s

z —z

A12

Therefore Algorithm 5.2 also satisfies the conditions of Theorem 4.1 and

hence it converges for any piecewise continuous input u. •
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