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ABSTRACT

Sometimes problems considered as intrinsically vague, show their

vagueness in an apparent form. A meticulous analysis of them could lead

to a boolean modulation depending on the "logic" used in their treatment.

Among them we can think about problems involving evaluation judgements

as, for instance, preferences in competitions (etc. toral, etc..) a

"subjective" evaluation of the candidates by several observers defines

a collection of fuzzy sets on the set of candidates.

As it was already discussed in [18], in order to model the

"fuzzy environment" in which these "experiments" take place it seems

reasonable to accept that when we operate such fuzzy sets by previously

adopted logic connectives or when transformations such that do not alter

their "necessity" ([17]) operate in them, new fuzzy sets are obtained.

Such reasonable families of fuzzy events are called fuzzy algebras and

they are DeMorgan algebras closed by Watanabe transformations.

Once the logical reasonability of events connected with an

evaluating experience has been established, measures to evaluate the

possibility of occurrence of such events are defined. Such "evaluations

of possibility" unify different definitions ([14],[28] and [8]) given with

similar aims. Examples and basic properties of such measures are also

studied.

Finally the concepts of "conditional fuzzy algebra" and "condi

tional evaluation of possibility" are introduced where the conditioning

event is either in the initial algebra or does not belong to it. In the

latter case a "wider" fuzzy environment, in which "old" and "new" elements

could be considered together, is constructed, and a new evaluation of

possibility which allows to evaluate the elements of such new environment

is defined.



1. PRELIMINARIES

In this paper we accept the theory of Zadeh [22] for fuzzy subsets

of a set S, in which (AUB)(x)= max{A(x),B(x)}, (APB)(x)=min{A(x),B(x)}

[3] with the modification of defining fuzzy sets as functions A:S->0 with

{0,1)CJC[0,1], and considering a negation function n which has as

symmetry level [16] a significance level xe(0,l)nj previously fixed.

Then a "complementary" is obtained by A= n«A. For J= [0,1] and n=l-j,

being j the identity function in [0,1] we obtain fuzzy sets in.the

classical sense.

So with Pj(S) =Js and <f>(x) =0, X(x) =lfor all x€S, we have the
DeMorgan algebra (Pj(S);U,n,-,<J>,X) in which the set of its boolean ele

ments is the set P(S) of classical subsets of S, and X€P,(S) defined by
— j

X(x) = X in any xeS satisfies X= u (AHA) which is essential for
~ A€Pj(S)

DeMorgan algebras to be embeddable [13]. This is a suitable hypothesis

to the representation of questions by fuzzy sets.

From now on, when no mention is made we will assume J= [0,1] and we

will write P(S) otherwise J will be specified.

Among admissible transformations of fuzzy sets, the so called

Watanabe transformations [19], introduced by the author in [21], have a

special importance. By one of such transformations a fuzzy set A is

changed into another B which membership values are kept above,

below or in the symmetry level X as they were in the fuzzy set A.

Functionally expressible morphisms [19] are examples of Watanabe trans

formations.

The relation ^defined in P(S) by :"If A,BeP(S), it is A€B if and

only if there exists a Watanabe transformation which transforms A into

B" is an equivalence relation which is the same that the "ML-fuzzy at
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the level X" relation defined in [19]. The equivalence class containing

afuzzy set Ais denoted by WX(A). We observe that given AePj(S),
J={0,1} we have WX(Z) ={A}, if we consider such set with relation to

J f {0,1}, then W (A) contains more elements than A.

Note that B£WX(A) implies J3 =A(the nearest crisp to Aand Bwith

respect to X, respectively). The converse of this assertion is not

always true. It is AGWX(A) if and only if A-1(X) =(().

If A'€WX(A) and B"€WX(B) then A' UB1 eWX(AUB). Reciprocally, if

DGWX(AUB) there exist FGWX(A) and E€WX(B) such that D=FUE. The

smae result holds for n.

The definition of Watanabe transformation can be easily extended

to consider Watanabe transformation of A e P(S), for any c e P(S) instead of

only in the universe S: Let ceP(S), for any Aep(S) Aec, WX(A) is the

set of Watanabe-transformed of A in C; that is B<=W (A) if and only if

the following conditions hold:

(i) C(x) > B(x)>X if and only if A(x)>X

(11) B(x) < (XnC)(x), B(x)j«X if and only if A(x)<X, and

(iii) B(x)= X if and only if A(x) = X

For C= S we get the usual definition.

Fuzzy partitions are considered here in the general form defined in

[18].

Let P={P,,...,P } be a finite fuzzy partition. We consider

P. ={xeS;Pi(x)>X}andPX ={xes^^x) =X} for each P.. ep, and
P = {xeS; max P.(x)<X}. Let I= {!,...,n} be a set of integers. For

l£i<n 1
each subset KCI such that K + 0 we define a subset of S in the follow

ing way: T„ = n p. n n p being K the complementary set of K with
IN £ /=!• 1 - J1£K j£Kc

respect to I.
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It is immediately verified that Q=^-^j^Vkc^ {P}

is a classical partition of S. We say that Q is the classical partition

induced by the fuzzy partition P in S.

Let P and P' be fuzzy partitions. P is said to be finer than P'fP^')

if and only if the classical partitions Q and Q' induced by P and P',

respectively are Q finer than Q'. Such relation is a partial order

relation in the set of all fuzzy partitions of S.

Given two finite fuzzy partitions P={P-j ,...,Pn} and V={V-j ,...,Vm},

the family P V = {C, .;C.. = P.nv.; 1= 1,.. .n, j= l,...m, C.. ^ 0} is a

fuzzy partition of S, but such fuzzy partition is not always comparable

with P-j and 9^.

If P and V satisfy the condition that for each x€S there exist

P.ep and V. e V such that P.(x)>X and V.(x)>X then P x Vis a fuzzy
i j i j

partition finer than P and V. It is easy to verify that P xV =sup{P ,V}.

When P is a fuzzy partition not satisfying the previous hypothesis,

that is, such thatfc^S, max P.(x)£X}^ S frequently one of the following
l<i<n 1

hypothesis can be accepted.

(H-l) If, apart from not verifying the mentioned hypothesis P is such

thatfc^s, max P.(x) =X}=JZf, then a new fuzzy partition P'3 P
l<i<n

can be considered instead of P with the convenient number of

fuzzy set for the previous condition to be satisfied.

(H-2) If {x€S, max P.(x) =X} =0 then we substitute P by a new parti-
l<i<n ^

tion P'= {Pi»--->pn>pn+i'--->pm} bein9 pi»--.-»Pn the fuzzy sets
of P conveniently modified by "modifiers" [26] (such as very,

highly, approximately, etc.) to get the condition of H-l):

{x€S, max P.(x) = X} =0. Then as in the previous case we add
l<_i<n n

the convenient number of fuzzy sets to get the desired hypothesis.
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For example, if S is the set of political parties of a democratic

county whatsoever, let R and L be the fuzzy sets (given by an observer)

associated to the concepts "rightist" and "leftist" respectively. If

p={R,L} does not satisfy that for each xes either R(x)>X or L(x)>X,

but {xGS;max{R(x),L(x)} =X} =/b then, we make the hypothesis that consi

dering, for instance, the fuzzy set C corresponding to the concept

"centered" we may get a new partition P' = {R,L,C} satisfying the re

quired condition. In due case in which {x^S, max{R(x),L(x)} =X}^0 we

make the hypothesis that changing R and L by fuzzy sets as for instance

ER and CL corresponding to the concepts "extremely rightist" and "center

leftist" and then proceeding as in the previous case we may get the

desired hypothesis.

The possibility of admitting or not H-l and H-2 will depend on the

kind of problem we are faced. To admit there is any problem would mean

that changing the initial partition into a proper one "everything becomes

clear enough" and that is doubtful specially in problems with inherent

vagueness.

Given fuzzy partitions P and V a proper fuzzy partition finer than

P and V can be also constructed in the following way: Let Q and R be

the classical partitions induced by P and V respectively, then the

classical partition QxR= {Q^r q eg, R.GR} is finer than Q and R.

So, any fuzzy partition which has QxR as induced classical partition

will be finer than P and V. Particularly QxR itself is finer than P

and V. This is another way of treating the same problem which is

specially useful in problems where H-l and H-2 are difficult to accept.

All these concepts and results will be used in the next chapters.
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2. A CONCEPT OF FUZZY ENVIRONMENT

2.1 Fuzzy Experiments and Related Questions

A random experiment is carried out any time that, by a random

procedure which can be repeated, one and only one element of a universe

S is selected. In many problems one or more of such basic hypothesis are

not fulfilled, and to give a probabilistic modelization of them can be

a matter of discussion. If, for example, the problem is "to choose a

painting that you like" from an exhibition, it seems clear that subjec

tive criteria are followed in the election and that the unicity of the

result is also a questionable hypothesis.

Then it seems convenient to construct a new mathematical model

which includes also situations as the previous one; that is, where

problems involving other kinds of vagueness, different from randomness,

could be reflected. This is the aim of this work.

The word "proposition" is considered in this paper in a primitive

sense, so it is not going to be defined. Of course such propositions

are considered as it is usual in multiple valued logic; that is, once

there is argreement in what a proposition is, we accept that the concept

of "truth" applied to them can be evaluated, and that such evaluation is

much more a matter of degree than an absolute concept. In this sense we

accept that given a universe of discourse S and a set P(s) of propositions

on it, there exist mappings v:p(s)-»-[0,l] such that v(p)€[0,l] is the

degree of truth of the proposition p. In this line v(p)=l means "p is

true" and v(p) =0 means "p is false" as far as v is concerned.

Then a fuzzy question on S is denoted by p? being p€P(S). We

accept the English use of ? and we agree that we know what p? means.

Of course once a linguistic question p? has been made we expect an
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answer: we agree that possible answers are not only yes or not but a

graded sequence of them ordered from yes to no.

Next definitions and results are an attempt to formalize these ideas

Definition 2.1. A fuzzy experiment is made when a real number of [0,1]

is assigned to each element of a classical set S (finite or infinite);

that is, when a fuzzy set A on S is given. Element AeP(S) is called

result of the fuzzy experiment and P(S) is the set of all possible out

comes .

Random experiments are particular case of fuzzy experiments in

which the result is the characteristic function of a classical singleton.

Defintion 2.2. Given a set S, a fuzzy question A? is any question with

a graded sequence of possible answers. An answer to A? is a function r

with r(A?)e[0,l].

Example 2.1.1.

a) Let S be a set of individuals and x€S. We consider the fuzzy

question "x is rich ?". The proposition "x is rich" can be expressed

by its relational assignment equation R(amount money (x))= "rich,"

being "rich" a fuzzy set which has an adequate membership function
o

r,i •h«:[0,10 ]~*[0,1], and Ra fuzzy restriction on the attribute

"amount of money" of x to which the value "rich" is assigned by this

equation [26]. Then a fuzzy set A:S +[0,1] such that A(x) = r .h

(amount money (x)) can be defined. An answer to the question can be

given by r(is x rich ?) = r(A?) = A(x).

b) Let S be an exhibition of paintings considered as the set of

all paintings: S= {x.} i= l,...,n, and "is S nice ?" a fuzzy question.
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In this case the proposition "S is nice" can be expressed by n equa

tions: R(beauty(x.)) = nice i= l,...,n being "nice" a fuzzy set with

membership function: r„ . i,:S + [0,l] given by exemplification [26].

We define A = r ,. . The rule to give the answer r(A?) will be defined
nice 3

depending on the characteristics of the problem.

Of course classical questions in the sense that we only admit for

them two answers "yes" and "not" are particular case of fuzzy questions.

Let n be an strong negation function [16] with symmetry level X

and A,B€P(s).

If A? and B? are fuzzy questions we accept that they are also

fuzzy questions:

1) (A?), given by (A?) =A?= (noA)?

2) (A?) v(B?) and (A?) a(B?) defined by:

(A?) v(B?) = AuB?) and (A?) a(B?) = (AOB?)

3) All fuzzy questions D? being D£WX(A) and H? being HewX(b).

4) A? and B? defined by A? = A? and B? = B?

5) X?

Definition 2.3. A family of fuzzy questions F is said to be a reasonable

family if and only if

(i) If A?€F, then (A?) EF

(ii) If A? B? EF, then (A?) a(B?)eF. (and as a consequence

(A?) v(B?)£'F)

(iii) If A? eF, then D? eF for any DeWX(F)

(iv) If A?GF, then A?eF.

(v) X?eF.

Previous definitions generalize the classical case as the following

scheme shows:
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Fuzzy Case Classical Case

A?, Aep(s), J = [0,1] A?, Aep(s), J = {0,1}

(A?) = (noA)? (A?) = ((1-j) A)?

(A?) v(B?)= (AUB)?

(A?) a(B?)= (AHb)?

(A?)v (B?) = (AUB)?

(A?) a (B?)= (AOB)?

{D?;D€WX(A)} {D?;DEWX(A)} ={A?}

A? A? = A?

2.2. Family of Fuzzy Sets Associated to a Reasonable Family of

Fuzzy Questions: Fuzzy Events

Let F be a family of fuzzy questions related to a universe S.

Between F and P(S) a morphism (f> with respect to lattice operations

V, and can be defined as follows:

<j> : F-

A?-

P(S)

-A

Of course it is a morphism since:

<f>( (A?)) = <f>(A?) = A

<|>((A?) a(B?)) = (j)((AnB)/) = AHB,

which implies <J>((A?) v(B?)) = <j>((AUB)?) = AUB.

Moreover, if DewX(A) it is (D?) = D€WX(A).

(|>(A?) = *(A?) = A

(f>(X?) = X.

The image set <{>(F) of cj) is a family of fuzzy sets such that

satisfies:
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(FAl) If A is in the family, then A is in the family.

(FA2) If A and B are in the family, then A B is in the family.

(FA3) If Ais in the family, then all fuzzy sets of WX(A) are in the

family.

(FA4) If A is in the family, then A is in the family.

(FA5) X is in the family.

Definition 2.2.1. Elements of P(S) corresponding to fuzzy questions are

called fuzzy events. A family A of fuzzy events satisfying (FAl), (FA2),

(FA3), (FA4) and (FA5) is a fuzzy algebra [18].

Obviously from (FAl), (FA2) and Demorgan laws it follows that A B

is also in the family. So, fuzzy algebras are DeMorgan algebras closed

by Watanabe transformations.

It is clear that,for any fuzzy algebra A, it is WX(<J>)u WX(S)cA.

Definition 2.2.2. We call the coarse fuzzy algebra AG the fuzzy

algebra

AQ ={X} uWX(<|>)UWX(S)

Obviously A« is the smallest fuzzy algebra and it is contained

in any other.

Definition 2.2.3. A Bernouilli fuzzy algebra is any fuzzy algebra

having the following form:

A(A) =WX(A)UWX(A)UWX(AUA)UWX(AUA)U{X}

It corresponds to the idea of algebra associated to "only one fuzzy

question."

In the classical case, the coarse algebra is AG={S,<j>} ,and a
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Bernouilli algebra is A(A) = {A,A,<J),S}. Both are particular cases of

previous definitions.

Obviously the finest fuzzy algebra is P(S). In the classical case

the finest algebra is P(S).

Proposition 2.2.1. The intersection of fuzzy algebras is a fuzzy algebra,

Proof. Let A and 8 be fuzzy algebras.

(i) If A^AHg , then A^A and A<=B. As A^A and A^B it is AGAHB.

(ii) If A,BGAOB, then A,BeA and A,BGB. As AUB^Aand AUBGB, it

is AUBGAOB.

(iii) If AeAnB and BeWX(A), then AeA and AeB. As B^A and B^B

it is BeAHB.

(iv) If AGAOB, then A€A and AeB as AeA and AeB it is AeAnB.

(v) xeA and X e B, then XGAnB. n

Definition 2.2.4. Let P be a collection of fuzzy subsets of S. The

fuzzy algebra generated by P, A(P), is the smallest fuzzy algebra

containing P. Then P is said a generating system of A(P).

The fuzzy algebra generated by P is the intersection of all fuzzy

algebras that contain P. If P is a fuzzy partition [18] then A(P) is

called the fuzzy algebra generated by the fuzzy partition P.

It is easy to prove the following.

Proposition 2.2.2. If in a generating system P ={P^^j a fuzzy

algebra A(P) a fuzzy set P.. is replaced by any other of W (P..) then

we obtain a new generating system of the same algebra.
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The motion of fuzzy algebra can be easily extended to consider fuzzy

algebras in any cep(s) (instead of considering them only in S). In this

general form a fuzzy algebra in c is defined as a fmaily Ac of fuzzy sets

pointwise included in c such that:

(i) Each A €A has a complement in A ,

(ii) A is closed by unions and intersections,

(iii) WX(A)^A for each A^A (see §1),

(iv) A^ceA for each AeA ,

(v) xnceA.
~ c

(Of course for c=S we get the defintion of fuzzy algebra previously

given and in this case we write A instead of A$.)

A fuzzy algebra models the fuzzy environment in which our

problem takes place in the sense that it contains all the fuzzy events

that we can observe as far as our model is concerned.

Once the fuzzy environment has been constructed, special real

functions (called variables) on the universe s can be defined (see [18]).

Such functions behave with respect to the fuzzy environment as it is

usual for measurable functions but according to the theory of Zadeh and

they generalize the concept of random variable. An elementary calculus

in the set of such functions is also established.

A characterization of such variables when the fuzzy algebra is

generated by a finite fuzzy partition is also given in [18].

2.3 Fuzzy Questions Related to Fuzzy Experiments

Let Aep(S) be the result of a fuzzy experiment and BeP(S) a fuzzy

event. It can be interesting to formulate fuzzy questions about the

result A such as: Does A satisfy B? In order to answer this kind of

question we proceed in the following way:
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A

From fuzzy sets A and B we define a new fuzzy set B :S->[0,1] by:

r 1 - |A(x)-B(x) if A(x)-B(x) f 0

if A(x)-B(x) = 0

BM(x) = <
0

^

Then, through such new fuzzy set, by some criterion (depending on

the problem) an answer to old question can be given: A fuzzy even B

occurs with a certain degree a whenever the actual outcome A satisfy

A
such previously given criterion. We represent our question by B ? as,

A
actually we have moved our question on B to a question on B .

If {w}ep(s) is the result of a random experiment then classical

questions related to it have the following form: ({w}eA)? being Aep(s)

Such questions can be represented by A ? where A is defined by

A{w}(x) =

that is A{w} =A {w}.

Then to answer the question we give the following criterion

r

(A{w}?) ='•«

1, if A n{w} = {w} (answer: "yes")

0, if AH{W} f 0 (answer: "no")
V.

which is a translation of the ordinary version "weA" and "w^A."

Then, the study of fuzzy questions related to fuzzy experiments

has the study of questions related to random experiments as particular

case. This is shown in the following scheme:
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Experiments Questions Answers

V)

(O
o

E
O

c
(0

{w}es

or

{w}es

or

{w}cp(s)

{w}eA?

or

{w}eA?, Aep(s)

A{w}?j A{w} =An{w}

r(A{w}?) =<

r0, "no," if A n{w} =0

J, "yes," if AH{w} ={w}

o

N
3

Aep(s)

B? , BeP(S)

BA? , BAep(s)

r(BA?)ejc[0,l]
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3. EVALUATIONS OF POSSIBILITY

3.1 Concept and Examples

Let A be a fuzzy algebra. In order to have a measure to evaluate

the possibility of occurrence with a certain degree a of a fuzzy event

of A, we give the following

Definition 3.1.1. An evaluation of possibility m defined in a fuzzy

algebra A is a function m:A -»• R such that:

(EP1) If A,BeA, AC B then m(A)<m(B)

(EP2) If An +A, AneA for all n and AeA then lim m(An) =m(A).

(EP3) If BeWX(A), then m(b) =m(A).

An evaluation of possibility is called 0-additive if:

(EP4) There exists an operation 0:IR x ]R -»-IR such that, for any

pair A,BeA of incompatible elements (AnBcX), satisfies

m(AJB)= 0(m(a),m(B)).

Axiom (EP1) establishes that m is an increasing function with

respect to the pointwise order. Particularly, as <J>,seA it is m(<j>)<m(A)

.< m(S) for any AeA; that is m(<J>) and m(S) are the minimum and maximum

values of m, respectively. Axiom (EP2) postulate the continuity of m

with respect to order-increasing sequences of functions of A. Axiom

(EP3) is characteristic of the study we are carrying out as in the classi

cal case it is always W (A) = {A} and in this case no new information

is given by W (A). The incompatibility relation AHB c x in the

classical case, is equivalent to AHB = <j>, so axiom (EP4) generalizes

the classical additivity.

We give now some examples of evaluations of possibility.
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Example 3.1.1.

Any a-additive probability is a 6-additive evaluation of possibility

with respect to 9 = +.

Example 3.1.2.

Fuzzy measures of Sugeno [14] defined in a a-algebra are evaluations

of possibility and fuzzy-additivity is a particular case of 9-additivity

(e =v).

Example 3.1.3.

Possibility measures of Zadeh [28] and Ngugen [10] are Max-additive

evaluations of possibility.

Example 3.1.4.

Seaks of Namhias [8] are Max-additive evaluations of possibility.

Example 3.1.5.

If f:IR+-*IR+ is non increasing and such that f(m(<j>)) =+~and

f(m(s)) = 0, and m is an evaluation of possibility, then fom is a

generalized information in the sense of Kampe de Feriet-Bruno Forte [6]

and the condition (EP4) is equivalent to the F-composibility of such

information (F = 8).

Example 3.1.6.

Let A be the minimum fuzzy algebra such that it contains the follow

ing set:

K={f:[0,l] + [0,1] ; f continuous, XeRan f, f(0) =f(l) = 0}

Let m:A •»• IR be a function defined by:
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r 0 , if f$K and fcx

m(f) = < sup{x;f(x) = X} , if feK

sup{x;f(x) >X} , otherwise.

Then m is a Max-additive evaluation of possibility. Indeed,

(EP1) Let A,BeA such that Ac B, we have three possible cases:

a) If m(B) =0, then B£K and BCX so ACBCX, A£K and

m(A) =0<m(B) =0

b) Let m(b) = sup{x;B(x) = X}; that is BeK. If m(A) =0 we

easily get the inequality. If AeK, then m(A) = sup{x;A(x) = X}

and m(a)£m(B) as A and B are continuous. Otherwise, if

m(A) =sup{x;A(x)^X}, then m(A)£m(B) as in any xe(m(B),l)

it is A(x)£B(x) <X.

c) Otherwise, m(B) =sup{x;B(x)j> X}. If m(A) =0 there is nothing

to prove. If AeK, from the condition AeB we get

{x;A(x) = X}c{x;B(x) >X} which implies m(A)<m(B). If

m(A) = sup{x;A(x) >X}, as {x;A(x) >X}c{x;B(x) > X} we

also have m(A) <m(B).

(EP2) It can be proved from the usual behavior of supremums with res

pect to increasing sequences of sets.

(EP3) Let BeWX(A). If m(A) =0, it is A£K and ACX, so BCACX

and B£K; that is m(B) =0=m(A). If AeK finally we will have

m(B) =m(A). Otherwise, it is {x;A(x)>X} ={x;B(x)>_X} and

m(A) = m(B).

(EP4) Let A,BeA be incompatible, that is AHBCX. Then, if

m(AUB) =0 we have m(A)=m(B) = 0. If m(AUB) = sup{x;AUB(x) = X}

= sup[{x;A(x) = X] U{x;B(x) = X}] = max {sup{x;A(x) = X},

sup{x;B(x) =X}}= max{m(A),m(B)}. If m(AUB) = sup{x;A(x) B(x)>X},
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then it is sup{x;A(x)UB(x) >X} = sup({x;A(x) >X}u{x;B(x) >X}):

= max(m(A),m(B)).

Example 3.1.7.

Let (S,A,y) be a classical measurable space and A the minimum fuzzy

algebra containing all functions f:S + ]R such that {x;f(x) >_X}eA. We

define

m(A) = X «y({xeS;A(x) >X})

Then m is a 8-additive evaluation of possibility with respect to 9= j.

Theorem 3.1.1. Axioms (EP1), (EP2), (EP3) and (EP4) are independent.

Proof. We will give four examples of mappings from A to IR , each one

of them satisfying three of the four axioms but no the other one.

(i) Let {fi,A,P} be a space of probability such that P is 9-additive.

Considering n(x) =l-j and a=A, and defining m(A) =pT?ry >axiom

(EP1) is not satisfied. But (EP2) is easily verified and so are

(EP3), as W1/2(A) ={A}, and (EP4) for 9(x,y) =̂ ,as 9(m(A),m(B))
• i$S8 =PIAFPTBT " m<AUB> when AnB " »•

(ii) As it is very well known, with any probability P defined in a classi

cal algebra A, being not 9-additive, with a=A and with m(A) = P(A),

axioms (EP1) (EP3) and (EP4) with 9=+ are satisfied whereas (EP2)

may fai1.

(iii) Let a=P([0,l]) and n=l-j. We define a function m:P[0,l] +IR+ by

m(f) =sup{f(x);xe [0,1]}. As m(f)£m(g) it is fCg for any f,gea,

so axiom (EP1) is satisfied. Given f,gep([0,l]) and e>0,

because of the definition of m(f vg) there exist an xQe[0,l] such

that m(fvg)-ffvg)(x0)<e. The, m(f vg)-< (f vg)(xQ)

< max(m(f),m(g)), which implies 0£m(fv g) -max{m(f),m(g)}< e
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that is m(f vg) =max(m(f),m(g)). So, m satisfied (EP2) and

(EP4) with respect to max operation. To establish that (EP3)

is not satisfied, let us consider f(x) = j x+j and g(x) =x.

It is gew1/2(f) but m(g) =1fm(f) =|.
(iv) Let (ft,A,P) be a space of probability being P 9-additive. Then

m(A) = P(A) + l with a=A satisfying the first three axioms. If

there existed 9:]R +xIR+-»-]R+ such that m(AUB) =9(m(A),m(B)) for

any pair A,B such that AHB =0 it would be (x=P(A), y=P(B))

x+y+1 = 9(x + l,y +l); that is for any pair u,v,2>u, v>J

it would be 9(u,v)=u+v-2. But, as m(AUB)> max(m(A),m(B)) it

is 9(u,v) >_max(u,v). So 9(u,v) =u+v-2 >max(u,v) which implies

min(u,v) >Z which is absurd. Then m is not 9-additive for any

operation 9. °

If 9-additivity is satisfied, we will establish now which proper

ties should 9 necessarily satisfy.

+

Theorem 3.1.2. Let m:a -*• ]R be an onto evaluation of possibility such

that for each (x,y,z)eiR x IR x IR there exist A,B,Cea mutually in

compatible with m(A) = x, m(B) = y, m(C) = z in a way that if x < y then

there exist A,Bea, ACB, such that m(A) = x and m(B)=y. Then if m

is 9-additive, 9 should necessarily be associative, commutative, non-

decreasing, with m(<j>) as null element, and such that 9>_max.

Proof. Given x,y,zejR , let A,B,Ceasuch that m(A) = x, m(B)=y,

m(C) = z, being all of them mutually incompatible fuzzy events. Then

each one of them will be incompatible with the supremum of the other

and we will have: 9(x,9(y,z)) = 9(m(A),9(m(B),m(C))) = 9(m(A),m(BUC))

= m(AU(BuC)) = m((AuB)uC) = 9(m(AuB),m(C)) = 9(9(m(A) ,m(B)),m(C))

= 9(9(x,y),z), then 9 is associative. (Notice we use the fact that if
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C is incompatible with A and B then C is also incompatible with AUB.)

Analogously 0(x,y) = 0(m(A),m(B)) = m(AUB) = m(BUA) = 9(m(B),m(A)) = 9(y,x)

leads to the commutativity of 9.

As <j> is incompatible with any Aea, we have 9(m(<j>),x) = 9(m((j)),m(A))

= m(AUcj)) = m(A) = x, this is, m((t>) is the null element of 9. 9 is non-

decreasing because given x£z; x,zeK and being A,B such that ACB,

m(A) = x_<m(B) =z5 then taking C incompatible with A and B and such that

m(C)=y we have 9(x,y) =9(m(A),m(C)) =m(AUC) <m(BU C) =9(m(B),m(C))

= 0(z,y). *

Notice that, if to the fact of 0 being associative, commutative,

non-decreasing and with m(<i>) as null element, we add the hypothesis of 0

being continuous, strictly increasing and Archimedean (0(x,x) > x for any

x>0), we have that the restriction of 0 to [m((|)),+«>] admit the Aczel-
1 +

Ling [7] representation: 0(x,y) =<jf (<j>(x) + <J)(y)), being (j>:[m(<|)),+»]-»-IR

strictly increasing and satisfying <J>(m(<f>)) =0, <J>(+°°) = +00- Function <j>

is called the additive generator of 0. If 0=+, it is (J> =j (the identity).

Through this functional representation, from the 0-addivity condi

tion we have: m(AuB) =0(m(A),m(B)) =<f^(frMA)) +<fr(m(B))); that is,

((j)om)(AuB) = (<J>om)(A) + (<f>om)(B). Then, in this case <f>om comes to be a

measure, in the traditional sense, associated to m.

3.2 Properties

In order to analyze the basic properties of an evaluation of

possibility we will define some auxiliary functions.

Given a,beIR+,let Tab be the ordering symbol defined by:

Tab
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For any A,Bep(s) we define:

NAB(x)=A(x)TA(x)jB(x) , NAB(x)=A(x)0-TA(x)>B(x)),

NBA(x) =B(x)TB(x)>A(x) , NBA(x) =B(x)(l-TB(x)>A(x)).

Then by simple computation we can prove the following

Proposition 3.2.1. For any A,Bep(S) the following conditions are

satisfied:

(i) NAB£A and NABSA.

(ii) NABUNBA =AUBandNABUNBA=AnB.

(iii) If NAB(x)>X it is NgA(x) =0, NAgnNBA= <j><X; that is NAB

is incompatible with NgA. The same holds for NAB and NBA-

(iv) NA„ and N_A are the unique elements in the set [ifi,A]eP(S) such

that NABUNAB =A, NBAuNBA=B and NABnNAB =NBAnNgA= +; so,

NAB is incompatible with NAB.

(v) If AeWX(P1) and BeWX(Pj.) being P^P^e?, itj, and pa
fuzzy partition then NAB,NBAea(P) being a(P) the fuzzy algebra

generated by P.

Now we will analyze some basic properties of an evaluation of

possibility.

Theorem 3.2.1. Let m be a 0-additive evaluation of possibility defined

in a fuzzy algebra a. such that for any pair A,Bea it is NAB, NgA, NAB,

NBAea. Then:

(a) For any A,Bep(S) it is m(AUB) <0(m(A),m(B)). If 0=max then

m(AUB) = max(m(A),m(B)).

(b) 0(m(AUB)-m(AnB))<0(9(m(A),m(B)), min(m(A),m(B))).

(c) If A-., ,A are mutually incompatible, each one of them is incom-
1 n n n

patible with the union of the other and m( u A. )= 0 m(A-).
1=1 1 i=l 1
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(d) 0(m(AUB),m(AOB)) = 0(m(A),m(B)).

Proof. Property (a) can be proved by simple computation using the

previous proposition and the fact of 0 being non-decreasing: m(AuB)

=m(NABuNBA) =0(m(NAB),m(NBA))<0(m(A),m(B)). (b) is obtained using

(a) and m(AOB) <min(m(A),m(B)). To prove (c) it is basic to consider

the associativity of 0. (d) comes in the following way: 0(m(A),m(B))

=6(m(NABuiiAB), m(NBAU^BA)} =e(0WNAB)'m('W)' 0WNBA)'m(^BA)))
=0(0(m(NAB),m(NBA)), 0(m(NAB),m(NBA))) =0(m(AUB),m(AnB)). *

It is necessary to remark that Theorem 3.2.2 is not true in any

fuzzy algebra, though the fuzzy algebra is generated by a fuzzy parti-

tion, as not always NAB, NAB, NgA and NBA are in the algebra. However,

when property (v) of Proposition 3.2.1 holds, Theorem 3.2.1 can be

established.
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4. CONDITIONING IN FUZZY ENVIRONMENT

The model introduced in §2 represents the result of a fuzzy experi

ment as one of the elements A of the set of fuzzy sets P(S) of a pre

determined universe S. Fuzzy events are also fuzzy subsets of S.

In §3 a positive real number is assigned to each fuzzy event in a

manner to evaluate the possibility of the occurrence with degree a of the

fuzzy event.

But, it occurs frequently that before the actual outcome of the

trial is known, partial information is received about the character of

the outcome. Such information may lead to revise what the possibility

of occurrence with certain degree of any given fuzzy event should be.

We wish to examine how the original evaluation of possibility should be

modified when partial information is obtained about the character of the

outcome.

We begin with an example which illustrates the essential question.

Let S be the set of all paintings of ah exhibition and A.ep(s)

the fuzzy subset of S obtained when a qualitative opinion about this

painting is given qualitatively by an individual i. Such assignment is

a fuzzy experiment and A. its result.

Let B be the fuzzy set on S corresponding to the concept "nice."

On basis to the opinion of art experts we could assign a real number

to the fuzzy event B which evaluates the possibility of occurrence with

certain degree, of such event when the fuzzy experiment is carried out.

Suppose information is received that the opinion of i with respect

some other related concept (for instance "visual harmony") is given by

the fuzzy set G. Of course, this new knowledge will make experts to

modify the possibility assigned to B.
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This example suggests that when partial information is received

concerning the nature of the outcome of a fuzzy experiment, the result

may be expressed as knowledge that a specific conditioning fuzzy event

has occurred. Our aim now is to establish how, given knowledge that a

conditioning event G has occurred a possibility of occurrence, with a

certain degree, to the fuzzy event B could be assined.

It seens clear that when such situation happens what we are really

looking for is the possibility of occurrence of Bnc, so in a certain

sense a new basic space C has been identified as all new fuzzy events

are obtained by intersection of the previous fuzzy events with the

fuzzy set C and, as a consequence, new events are pointwise included in C.

4.1 Construction of the Conditional Environment

Let S be the universe of discourse, a.ep(s) a fuzzy algebra in S,

and CeP(S) a fuzzy event. In order to construct the corresponding

conditional fuzzy algebra we will distinguish two cases:

(a) Cea. In this case let a' be the subset of a defined by

a1 ={A';A* =Anc for every Ae^}. The fuzzy set fi' =Anc (being

A=noA the complement of A in P(S) defined by A'(x)=I(x)aC(x)

for any xes comes to be a complement of A' =Anc in the sense

that it satisfies the involution property and DeMorgan laws. Clearly

A' =Anceo.', then we given the following:

Definition 4.1.1. Complement A' = Anc is called the complement of

A' =Anc with respect to C.

Then we can prove the following.

Theorem 4.1.1. If a is a fuzzy algebra in S and Cea then the set

a' = {A';A' = Anc, for each Aea} is a fuzzy algebra in C.
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Proof, (i) Taking A' =Anc as complement of A', we have already

mentioned that A'^a'.

(ii) If A'.B'^a' then A' ne« ea' as A'nB' =(Anc) n(Bnc)

= (AnB)nC= (AnB)'ea'. In the same way A'uB'ea'.

(iii) WX(A')ca' for any A'ea'. Indeed, if B'eWX(A*) then B'ewX(A*),
** c

as A'ea it is B'ea. Then B'nC=B'ea'.

(iv) If A'ea' then A'nee a' as A'ea and so is A1. Of course,

(v) xncea. n

Definition 4.1.2. a1 is called the conditional fuzzy algebra relative

to C.

(b) C£a. Let a(C) be the Bernouilli fuzzy algebra (Def. 4.2.3)

generated by C: a(C) =WX(C) uwX(C)uWX(CuC) uWX(CnC) U

(a(C) can also be regarded as the fuzzy algebra generated by the

finite fuzzy partition C={C,"C}).

Definition 4.1.3. The smallest fuzzy algebra which contains a and a(C)

is called the conditional fuzzy algebra relative to C.

If & is the fuzzy algebra generated by a. finite fuzzy partition

P=**Viei' I= {l»-"9n}» satisfying the condition that for any xe S

there exists a ?^e? such that Pi(x)>X, and if the finite fuzzy parti

tion C={C,C} satisfy the same hypothesis, then (§1) P xC ={P,n C,P,n C,...,

Pnn c»pnn^ 1S a finite fuzzy partition finer than P and C with respect

to the order relation given in §1, satisfying also the previous hypothesis

required to P and C.

Let H be the fuzzy algebra generated by the fuzzy partition ?xC.

Then
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Proposition 4.1.1. For each P. ep, it is P. eH.

Proof. We will prove that P.^WX[(Pi nc)u (Pi nc)] for any iei. indeed,
if [(Pinc)u(Pinc)](x)>X it is either (P. nC)(x) >Xor (PinC)(x)>X

which implies both P.(x)>X and (CUC)(x)>X. If [(P.. nC)u (Pi n?)](x) <X

then (Pi nc)(x)<X and (P^CMx) <X. If C(x)<X then C(x)<X so the

previous result implies Pi(x)<X. [(Pi nC)u(Pi nC)](x) =X is only

possible if P.(x) =X as (CUC)(x)>X for any xeS because of the hypothesis

assumed for C. n

Proposition 4.1.2. Fuzzy sets C and C satisfy CeH and Cetf.

Proof. As in the previous proposition we can prove that CeW [(P^ nC) u

(P2nc)u... u(PnnC)] and CeWx [(P-, nC) u... u(PnnC)].

From the last two propositions it is easy to prove the following

result.

Proposition 4.1.3. H is the smallest fuzzy algebra that contains a(P)

and a(C).

In both cases the conditional fuzzy algebra modelizes the new fuzzy

environment within which one problem can be more accurately reformulated,

taking into consideration the occurrence, in a certain degree, of the

fuzzy event C.

To study how a previously defined evaluation of possibility for the

fuzzy events of a. is affected by the occurrence of C, is the aim of

next section.
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4.2 Conditional Evaluation of Possibility

Let a be a fuzzy algebra, Cea a fuzzy event and m:a —*IR+ an

evaluation of possibility in A. Let <x' = {A';A! = Anc, for each ACa} be

the conditional fuzzy algebra relative to C.

As a* Co., events of a' can be evaluated by the same m. The new

evaluation of possibility of an event Aea given knowledge of the occurrence

(in a certain degree) of the fuzzy event C is given by the following.

Definition 4.2.1. If C is a fuzzy event, the conditional evaluation of

possibility given C, which is denoted by m- is defined, for each fuzzy

event A, by mr(A) =k *m(Anc) being kr a positive constant depending on
L c t

C and * any isotone operation in IR satisfying a*b = 0 if and only if a=0

or b = 0.

In fact mc is an evaluation of possibility which most of the pro

perties of the original evaluation on possibility m. This assignment is

derived from the evaluation of Anc, and the consideration of a fixed

constant related to C corresponds to the convenience of keeping in some

problems levels or boundary conditions. This is due case when a is a

a-algebra and m a probability, then we define kp =m(C).

This problem becomes a little more complicated when we consider the

conditional fuzzy algebra H related to a fuzzy event C which is not in a.

We will consider here only the case in which a is generated by a finite

fuzzy partition 1? satisfying the condition required in Section 4.1 and

already mentioned in §1.

So, let a(P) be a fuzzy algebra, CeP(S) such that C£a(P) and

m:a(P) + IR+ a 0-additive evaluation of possibility defined in a{?).

Let a(C) be the Bernouilli fuzzy algebra generated by C, that is the

fuzzy partition C={C,"C} (we make for C the hypothesis already made in
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Section 4.1.) Suppose also that a 0-additive evaluation of possibility

r has been defined in a(C) with-the only condition of being r(<J)) = m(<j>)

and r(S)=m(S). Then in the conditional fuzzy algebra H=a{?xC) evalua

tion of possibility can be defined such that if m« is one of them, then

mc(A) =m(A) for any Aea(P) and mc(C') =r(C) for any C'ea(C). In order

to get it, let * be an operation in F satisfying the conditions re

quired in Definition 4.2.1, distributive with respect to 0, with

m(S) = r(S) as neutral element, and m(<J>) = r(<f>) as absorbent. Clearly

such operations exist.

Theorem 4.2.1. An evaluation of possibility defined in the elements of

PxC by mc*P1 nc.) =m(Pi)*r(C.) with mc(<J>) =m(4>) =r(<J>) and mG(S) =m(S) =r(s)

is such that mc(A) =m(A) for each Aea(P) and mc(B) =r(B) for each

Bei(C).

Proof. It is mc(Pi)=mc[(PinC)u(PinC)] as ^^[(P^Oul^nC)].
Then mc[(P.nc)u (p.. nc)] = etm^P.nO.m^P.nC)] as P..nC and Pi nC

are elements of a fuzzy partition and, as a consequence, they are incom

patible. Taking account of the definition of mc it is 0[mc(P. nC),mc(P.. nC)]

= [r(C)0r(C)]*m(Pi) =r(CuC)*m(Pi) =r(S)*m(Pi)=m(Pi) as, because of the

hypothesis required to C, C and C" are incompatible and C u c e w (S).

Analogously we can prove that mr(C.) =r(C).

As pairs of elements of P are incompatible, for any Aea(P) such

that AewX( up.), JCI, 1= {l,...,n} itismr(A)= 0mr(P.)= 0m(P.)=m(A)
i€y \ L is] L 1 ie] 1

and for any A W( UP.) it is mr(A) =mr(<{>) = m(<j>) =m(A). In a similar
iej n u t

way we will prove that mc(B) =r(B) for any Bea(C). n

A general characterization of 0-additive evaluations of possibility

is given by the following result.
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Theorem 4.2.2. Let H = A(P*C) and H.. = P. n c. e p x c. A function

m. : H -* IR is a 0-additive evaluation of possibility if and only if

r'% %
em (H^.), when A= U H!., HI. SW^H.,)
ij c 1J ij=1 ia 1J 1J

•C(A) = mSfi) , when A= n Hi., Hi. e WA(HnM)

mc(S) , when Ae wX(S)
^

for any % < n, being n = #P * C.
k

Proof. (EP4) If A and B are incompatible and such that A = u H'.,
H k SL si=l

B = U H'., then mr(AUB) = mr( u H'. u u H'.), as partition
tj=l tJ c c si=l S1 tj=l tJ

? x C satisfies the hypothesis mentioned in 4.1 all fuzzy sets H'. are
k I k+

different from Hi,. 'Then, m( u H'. u u HI.) = mr(U Hi) all Hi
tJ c si=l sl tj=l tJ c r=l r r

different. Taking into account the definition of m it is

k+Jl k+A

mc( U h;) = 0 mp(Hi) = 0 mc(Hl_.) 0 0 mc(Hi1) = mc(A)8 m.(B).
c r=l r r=l c r si=l c S1 tj=l c *J c c

° t m

If A and B are incompatible and such that A = u Hi., B = n HJe
£i=l A1 js=l JS

t m t

(or vice versa), then mJA B) = m„( u H'. U n HI) = rn ( u H'.)
c c i=i i js=l Js c i=l ^

t

= 0 ^C(H^) = mc(A). As mc(<J>) is the null element of 0 in mc(H), then

mc(A) = mc(A)0 mc(<frj = mc(A)0 mc(B).
s t

If A and B are incompatible and such that A = n H! +, B = n H\
it=l 1X jA*l J*

s t

then it is mr(AUB) = ra_( n u n h' ) = mr(cj>) = mr(*)0 mr(<fr)
c c it=l j£=l ^ c c c

= m (A) m (B).

IEP3) If A' e WX(A) and A* U HI,.then it is A' e WX( U HI.)
1JH n % U-l 3

and there exist V.. e WX(Hi,) for each ij such that A1 = u V,, (§1).
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Because of the definition of m„ it is mr(A) = 0 m.(H.j), and because
ij=l J£

of being V.. eWX(H« .) it is V.. eWX(H..) and mr(A») = 0 m.(H..).
ij ij ij ij c ij=l J

This is m_(A) = mr(A'). Other cases can easily be proved
I t

(EP1) If A C B and A = U Hi., B = U H* it should be I < t,
ij=l 1J rs=l rs

and because of the definition of m

t

r it is mr(A) = 0 m (H..) andc c ...=1 c ij

+ .^ .m„(B) = 0 ni (G„,J. As m„ has its.values in IR it is m_(A) = 0 mr(H..)c rs=] c rs c c .j=1 c ij
t

< 0 m_(H„c) = m.(B). Other cases can easily be proved.
rs=l c rs c

(EP2) can be stated from (EP1) and the definition of m . Easily

we can prove that the condition is also necessary. n

4.3. Example

An exhibition of paintings is opened to the public during one

month in an out gallery. The admittance is free but visitors are

requested to fulfil forms in which they have to assign to each painting

a quantitative value between 0 and 1 according to each one of k criteria

c-|,...,c^ given to them in a list. For instance c-. could be the degree

of "visual pleasauce," c2 due "harmony of sizes"—etc.—.

Let S = {p-|»...9pn} be the set of paintings. Each visitor v^

establishes k fuzzy sets on S according with the criteria c-, j = l...k:
j

v^s -[0,1]

Let V be the set of visitors and #V = m.. With the assignments

corresponding to each criterion we construct k fuzzy sets in the following

way:

c. :S - [0,1]

Pi -^.(p.) = (vjj(p.),...,v^(p.)
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j = l,...,k; i = l,...,n and being <J> an adequate function of the values

civr (p,-)» r = l9...,m (<J> can be the arithmetic mean of values, due maximum,

the wei ghted mean, etc ).

The set of all fuzzy sets c, j = 1 k is a X-fuzzy partition
j

P ([18]) of S for a certain X € [0,1].

If the only possible value for X is X = 1, this means that more than

one criterion c attains in a p. e s the value 1. Then we consider that
j •

such criteria do not bring information different enough to be considered

together and we omit, in the first list, the convenient criteria to .

keep X e [0,1).

If the X-fuzzy partition P obtained after the first score does not

satisfy the hypothesis that for each p^ e s there exists a c. e psuch

that c(p.) > X, we add some convenient criteria in the list to obtain
j *

a new partition P' = {c^,... ,ck,ck+1,...,ck+t> which satisfies the

required hypothesis. If such hypothesis is still not satisfied, new

criteria would be added again, etc... (we assume that the hypothesis

are reached after a finite number of criteria).

Let A(P) be the fuzzy algebra generated by P. Supposing that,

following the rules of an evoluation of possibility, a real number

m(Aj >0 can be assigned to each fuzzy set AJieA(P) representing the

"possibility" that a new visitor v following his own criterion ca,
c

defines afuzzy set Vq01 satisfying A^ in acertain degree (Particularly

m(Aj can be frequentially deduced from early visitors). The obtained

evoluation of possibility is a function

m :A(P) -»» R
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If about visitor v0 we know that he usually considers the criterion
cic,, being c in the list and that when it occurs "vQJ satisfies a fuzzy

j j

set c'. e A(P)" (for instance c'. ewx(c)), then the "possibility" of
J j.j

each A. e A(P) is modified in the following form

mc'.(V = kc,.*mtA£Tlcp
j j

If about vQ we know that he usually considers the criterion c^,

being c^ not in the list, and that when this occurs Vq^ does not satisfy
c

any element of A(P), i.e. SQ £ A(P). Then we have to consider the
c _c

algebra Hgenerated by P*Cbeing C={Vq^Vq*0}.

Let denote by H.. = c n v., c. e p, v. e c each element of P x c.
•j * j ' j

Function iii defined in H by

' j>HijewX(Hij>>e[m(c.)*r(Vj.)], if A=UHi

m(A) = /m(<|>) = r(<|>), if Ae wx(4>)

m(s) = r(s), if Ae wX(S)

is a -additive evaluation of possibility.

In this case m (A) = k *m(AOc ). The election of proper operations

* and 0 will depend on the things we are looking for in our problem.
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