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ABSTRACT

This paper presents three general schemes for extending differentiate

optimization algorithms to nondifferentiable problems. It is shown that

the Armijo gradient method, phase I - phase II methods of feasible direc

tions and exact penalty function methods have conceptual analogs for

problems with locally Lipschitz functions and implementable analogs for

problems with semi-smooth functions. The exact penalty method required

the development of a new optimality condition.
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Introduction

Over the last several years, we have first witnessed systematic

efforts to extend the concepts of the calculus to locally Lipschitz

functions (see e.g., [CI, LI, L2]), and to extend optimality conditions for

differentiable optimization problems to optimization problems with

locally Lipschitz functions(see e.g., [C2, Gl,12, P7, P13.]). As a result, we

now have an analog of the extended F. John multiplier rule for nondif

ferentiable mathematical programming problems [C2], analogs of Lagrang-

ians [CI] and an analog of the Maximum principle for nondifferentiable

optimal control problems [C3].

The development of nondifferentiable optimization algorithms, for

the non-convex case, has been far less systematic. Two distinct

approaches have emerged: that of the Kiev school, which constructs algo

rithms without a monotonic descent property [SI, S2, P12], and the one

favored in the West, which always insists on monotonic descent of the

cost or of a surrogate cost [B2, Gl, P2, P4, P7]. In this paper we are con

cerned with algorithms of the second type. Although the literature on

nondifferentiable optimization algorithms of the second type is still

extremely small, two principles seem to have emerged. The first principle

(see e.g., [B2, Gl, L2, D2, P7]) is that in extending adifferentiable optimi

zation algorithm to the nondifferentiable case it is necessary to replace

gradients not with corresponding generalized gradients, but with bundles

of generalized gradients in order to make up for the lack of continuity

of the generalized gradients. The bundle-size parameter (e) then has to be

driven to zero as an optimal point is approached. The second principle was

developed in [Ml, L2, L5, Wl, W2, P2, P7]. The gist of it is that when functions

are semi-smooth, it is possible to get a good approximation to the nearest point
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from the origin to their generalized gradient bundles in a finite number

of operations. The importance of this fact is that it defines an impor

tant class of nondifferentiable optimization problems for which one can

obtain implementable algorithms, i.e., algorithms in which all the com

putations that are required to be performed in each iteration can be

carried out in a finite number of simple operations.

In this paper we develop three general schemes for the extension of

differentiable optimization algorithms to non-differentiable problems.

The first one is for unconstrained optimization, while the remaining

ones are for constrained optimization algorithms. To illustrate the

applicability of these schemes, we use them to construct several con

ceptual algorithms for optimization problems with locally Lipschitz

functions. These include an extension of the Armijo gradient method

(which had previously been presented in [P7]), extensions of two phase

I - phase II methods of feasible directions of the type discussed in [P3],

the extensions of exact penalty methods [C5, P14]. The extension of exact

penalty methods required the development of a sharper optimality condi

tion for constrained problems than the ones found in [C2]. Finally,

for the semi-smooth case, we show that the conceptual algorithms give

rise to implementable algorithms in a totally systematic manner. We

hope that the results presented in this paper will contribute to the

understanding and development of nondifferentiable optimization algorithms.

1. Preliminary Results

Our analysis of algorithms for non-smooth optimization will be based

on a \/ery small number of non-smooth analysis results. For the sake of

convenience, we begin by summarizing these; for details and proofs, the

reader is referred to [CI, C2, LI].
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n 1

Definition 1.1 [CV]: Let f :IR ->IR be locally Lipsc&itz continuous. The

generalized gradient of f at x is defined to be the set

3f(x) = co{lim Vf(x+v.)} (1.1)
v.->0 1
i

where co denotes the convex hull of a set, and the v. are such that

Vf(x+v.) exists, and limVf(x+v.) exists. n
v.+0 1
i

Definition 1.2 [CI]: Let f:IRn -*- R1 be locally Lipschitz continuous. The

generalized directional derivative of f at x in the direction h is de

fined to be

d°f(x;h) A lim f(x+y+Ah)-f(x+iY)
y+Q A
X^O

Fact 1.1 [CI]: Let f:IRn +IR1 be locally Lipschitz continuous. Then
a) 3f(x) exists and is compact at all x £]Rn;

b) af(x) is bounded on bounded sets;

c) 3f(*) is u.s.c. in the sense that {xi -»• x, y. e 3f(x.) and

yi + y} •* {y e 3f(x)h

d) d°f(x;v) exists for all x, v€IRn;
e) d°f(x;v) = max <£,v>; m 3)

f) Whenever the directional derivative df(x;v) exists,

df(x;v) <d°f(x;v), (1#4)

furthermore, when f is (C at x, equality holds;

g) if xand hare such that d°f(x+sh;h) <-a <0for all se[0,1], then

f(x+sh) - f(x) < - as V se [0,1] ,Vae (0,1) (1.5)
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Fact T-2 (Mean Value Theorem)[Ll]: Let f:IRn +1R1 be locally Lipschitz
continuous. Then, given x, y eiRn

f(y) - f(x) =<5, y - x> (1.6)

for some 5 € 3f(x+s(y-x)) and s e [0,1]. h

Fact 1.3 [C2]: Let f:IRn -IR1, g1' :En +IR1, iem> {1,2,...,m};
hJ :lRn- IR1, je £A{i,2,...,£} be locally Lipschitz continuous and
let x be a solution of the problem

min{f(x)|g1(x) <0, iem, hJ*(x) =0, j€£} . (1.7)

Then

oeCo{3f(x) uOg^xJIi e I(x)} u {tWoOlje*}}, (1.8)

where I(x) A {i emlg^x) =0} and t. e{+l,-l}.
j

The above result is not quite strong enough to be used in the context

of exact penalty function methods and hence we had to propose the new

optimality condition stated below. We wish to thank Prof. F. Clarke for

supplying us with a proof (he has subsequently proved this result without

requiring that the set (x|F(x) = 0}, have measure zero).

Theorem 1.1: Let f, g1, ie m;hj, jej,, from IRn into IR1 be locally
Lipschitz continuous. Let x be a solution to (1.7) and let F :TRn-+ IR1

be defined by

F(x) ^max{f(x)-f(x); g^x^, i€m; |hj(x)|, j€=*,}, (1.9)

where g\x)+= maxCg^x), 0}. Suppose that (x|F(x) =0} has measure zero,
then
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0e co{3f(x) u Og^io+n ag1 (x)11 e I(x)} u {t.3hJ'(x)|j e &}}
j

(1.10)

where I(x) = {i 6 m| g^x) = 0}and t. e {+1,-1}.

Proof: Although F. Clarke has proved the above result for a somewhat

more general case, we shall only give a proof for the-slightly restric-

* i
tive case where x is also a local solution to min{f(x)|g (x) < 0,

iem; tjhJ(x) <0, je £}. (We note that (1.8) is also an optimality
condition for this case). We note that g1(x)+ >0and|hJ*(x)| >0for
somei £m, j €£ whenever x is infeasible. Furthermore, f(x) - f(x) ^0

for all x which are feasible. Hence, F(x) >_ 0 for all x. Consequently,

x = arg min F(x) so that 0 e 3F(x). Now, by assumption (x|F(x) = 0}
xeflT

has measure zero and hence (1.10) follows directly from the fact that
/\ .

3F(x) involves the limit of gradients Vg^x) evaluated only at points

x where gn(x) > 0. n

2. Unconstrained optimization

n 1
Let f :IR h- IR be locally Lipschitz continuous. Consider the

problem

min f(x). (2.1)

We shall consider algorithms for solving (2.1) of the form

x1+l = x. + X.h., (2.2a)

X. =arg max {6k|f(x.+3kh.)-f(x.) <aBk5,}, (2.2b)1 k€]N+ iii-i

where a,3 € (0,1) 1N+ = {1,2,3,...}, and 6. < 0. We recognize these

algorithms as a generalization of the class of descent algorithms,
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utilizing the Armijo step size rule [Al], that were discussed by Polak,

Sargent and Sebastian in [P9], for the differentiable case. Although

most, if not all, differentiable unconstrained optimization algorithms

of the form considered by Polak, Sargent and Sebastian can be analysed

in terms of the convergence theorem (1.3.10) in [P8], their structure

permits the introduction of more readily verifiable assumptions than

those found in Theorem (1.3.10) in [P8]. Consequently in [P9], we find

(in a slightly different form) the following result, which is intended

to be used for algorithms of the form (2.2a), (2.2b) when 6. = df(x.;h.)

Theorem 2.1: Suppose that f :IRn-»- IR is C and that there exist two

continuous functions N-j, N2 :IRn-* K+, which vanish only at points x
for which Vf(x) = 0, such that for h. in (2.2a)

dfU^h.) =<Vf(x.), h.> <-N^x.), (2.3)

IlhJ < N2(x.) (2.4)

hold.

Then, given an x such that Vf(x) f 0, there exist a p > 0, and a

ken such that for all x- € B(x,p) = {x€lRn|0x - xll < p},

^(x.+Xh^ -f(x..) <Xadf(x.;h.) <-XaN^x)^, VX e[0,&R]. (2.5)

Relation (2.5) leads to two conclusions: for all x. e B(x,p)

(i) X1 >$\ and
(ii) f(xi+1) - f(x.) <-B^aN^x)^,
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i.e. the algorithm map defined by (2.2a) (2.2b), with 5. = df(x.;h.),

is locally uniformly monotonic (see [Tl]). As an immediate consequence,

we see from theorem (1.3.9) in [P8] that any accumulation point x of
A,

{*.} satisfies Vf(x) = 0.

Assumption 2.1: From now on, we shall assume that the function

f : TR -»• IR is locally Lipschitz continuous. n

Any attempt to extend Theorem 1.1 to the case of f(-) locally

Lipschitz only, by replacing df with d°f in (2.3) is doomed to failure,

as can be seen from the counter example in [W2]. This is due to the

fact that although an h. satisfying d°f(xi;h1) <-^(x^ and (2.4) is
obviously a descent direction, it is not possible to ensure that the

step size X.. is bounded from below in a ball about an x such that

0 £ 3f(x). To insure that a nonsmooth optimization algorithm is locally

uniformly monotonic, it becomes necessary to "look ahead" for the

"corners" of f(-) by "smearing" 3f(x), as follows.

Definition 2.1: For any e > 0, we define the e-smeared generalized

gradient by

3_f(x)Aco{ u 3f(x')} (2.6)
e x'eB(x,e)

n

Fact 2.1: For any e > 0, 3£f(x) is compact, bounded on bounded sets;

furthermore 3£f(*) is upper semi continuous (u.s.c.) (see [P7]). n

Definition 2.2: For any e > 0, we define the e-smeared generalized

directional derivative of f(-) at x, in the direction h by

d°f(x;h) ^ max <£,h> (2.7)
e eeaef(x)
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With the introduction of djjjf(•;•)» and ignoring for the moment the
problem of choosing e > 0, as well as that of computing 3 f(x) and

d£(x;h), we are ready to extend Theorem 1.1 to the non-smooth case. We

shall refer to algorithms which assume that 3cf(x) and d°(x;h) can be
computed exactly as conceptual.

In anticipation of the application of the new theorem to conceptual

optimization algorithms for non-smooth problems, we find it necessary

to relax the continuity of N,, N« in Theorem 1.1 to a requirement which

is somewhat weaker than semi-continuity, as we shall now see.

Theorem 2.2 (conceptual Algorithms): Let e > 0 be given. Suppose that

there exist two functions N,, N2 :IRn-»- 1R+ such that
(i) If N.,(x)N2(x) = 0, then 0e 3£f(x),

(ii) For every x€IRn such that 0£3£f(x),
there exist a p(x) > 0 and b..(x) > 0, i = 1,2, such that for all

x'€B(x,p(x))

N^x') ^(x) , (2.8a)

N2(x') < b2(x) . (2.8b)

Now consider the process (2.2a) (2.2b) and suppose that for i = 0,1,2,...,

d£f(xi;h.) < -N^x.), (2.8c)

OhJ < N2(x.). (2.8d)

Then, given any x such that 0 £ 3 f(x), there exists a k sin such that

for all x. e B(x,p(x)) for all xe[o,B^]
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ftx^X^) - f(x.) <Xad^fU^h.) <-Xa b-,(x). (2.9)

Proof. Let x eiRn be such that 0£ 3£f(x). Let k eiN+ be such that
$b2(x) <e. Then, for all xi e B(x,p(x)) and for all X€ [0,Bk],
(x.+Xh..) € B(x..,e) and hence for all such x. and X,

d°f(x.+Xh.;h.) = max <£,h.>
1 1 1 sesfU.+Xfru) 1

< max <£,h.>
~€e3£f(x.) 1

-djf^h,)

<-N^x.) <-b^x). (2.10)

The desired result now follows from Fact 1.1(g). n

Corollary 2.1 (Conceptual Algorithms): Let e > 0 be given and suppose

that the assumptions in Theorem 2.2 hold. Then any accumulation point

xof asequence {x..}?^ constructed by an algorithm of the form (2.2a,b)
with d^x^h..) <8. <-N^x.) satisfies 0€3£f(x).

Proof: Suppose that xj £x, with KC{0,1,2,...} and that 0f 3f(x).
Then, by Theorem 2.2, there exists an in and a k€ IN+ such that for

/\ u

all i>iQ, i€K, X1 >0k and

f(x.+1) -f(x.) <X.ad^x^h.)

<_ X.a61-

<-B^b^x). (2.11)
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Now, {f(x.)} is monotonically decreasing and x. £ x, hence, since f(-)

is continuous, f^.J-ffx). But this contradicts (2.11) and hence we
are done. n

The simplest algorithm in the class considered in Theorem (2.2) can

be viewed as an "e-smeared" steepest descent method. It sets

hi = he(xi} = -Nr(V(xi}) =ar9 ™n{llhll|h e 3f(x,)} (2.12)

and

,2
6. = -Oh. (2.12b)

Hence

d£f(x.;h.) =-Oh/. (2.13)
2

Setting H^(x^) = IlhJ ,we see that N^-) is lower semicontinuous (l.s.c.)

because 3£f(xt)is u.s.c. (see proof in [P7]). Next, if we define N2(x) by

N2(x) =arg max{llhB|h e 3£f(x)}, (2.14)

we see that flhJ <U2{x.) and that N2(-) is u.s.c. because 3£f(-) is
u.s.c. (see proof in [P7]). Hence we can set b^x) =N^x)/^ and
b2(x) = 2N2(x) to show that this algorithm satisfies the assumptions of

Theorem 2.2.

Obviously, we would prefer to have algorithms which generate

accumulation points x such that 0 € af(x) rather than 0 e 3 f(x), with

e > 0. Hence, it is necessary to propose at least one e-reduction

scheme. The most natural thing to do is to reduce e as x. approaches a

stationary point. This fact is not postulated in the theorem below, but

unless it holds it is not possible to find a function N,(«)-
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Theorem 2.3 (Conceptual Algorithms): Suppose that there exist three

functions N,, N2, N3 :IRn +IR such that
(i) If N1(x)N2(x)N3(x) = 0, then 0€ 3f(x).

(ii) For every x€IRn such that 0£ 3f(x), there exist a p(x) > 0

and b^x) >0 i= 1,2,3, such that for all x" <=B(x,p(x))

N^x') < b^x) , (2.15a)

N2(x') < b2(x) , (2.15b)

N3(x() > b3(x) . (2.15c)

Now consider the process (2.2a)(2.2b) and suppose that for i = 0,1,2,...,

dN3(x1)f(x1;h1) ^-Nl(x1>" (2'15d)
"h.ll < N2(Xi) . (2.15e)

Then, given any x such that 0 £ 3f(x), there exists a keil+ such that

for all x1 € B(x,p(x)), for all Xe [0,3F],

f(x.+Xh.) -f(x.) <Xctd° (x.jfU^h.) <-Xab^x) . (2.16)
w 1

* NFurthermore, any accumulation point x of a sequence {x.}.=Q constructed

by an algorithm of the form (2.2a,b) with 6. =d2 /v \f(x.;h.) satisfies
^ i ^3^Xjy i l

0 6 3f(x). n

We omit a proof of this theorem since it is obtained by a trivial

modification of the proofs of Theorem 2.2 and Corollary 2.1.

We shall now exhibit a natural candidate for N3(x) in extending the

"e-smeared" steepest descent method to one with an adjustable e.

Thus, let ve (0,1), eQ > 0, 6 >0 be given.
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Let

EA{e|G =e^ k6IN+} u {0}. (2 J7)

Next, for any e > 0, let

h£(x) 4 -Nr(3£f(x)) ^ - arg min{llhll2|h e 3£f(x)}. (2.18)

Then we define e : IRn -»• w} by

e(x) ^ max{e e E|flh£(x)02 >6e}. (2.19)

Proposition 2.1(a): For every x eiRn such that 0 £ 3f(x), there exist

a P3(3T) such that

eCXj) >v e(x) >0 VXj e B(x",p30D). (2.20)
b) If x. -^ x as j h- * with 0 e 3f(x) then e(x.) -• e(x) = 0 as j + ».

Proof: (a) Let x be such that 0 £ 3f(x). Then, since 3f(-) is u.s.c.

there exists an e, >0 such that llh. (x)H2 >ilhn(x)[l2 >0. Hence,
I e>i — c. u

since e' <e" implies that Oh ,(x)ll2 >llh „(x)02,it follows that
s e

e(x) >max{e e e\ e<min{er ^- llho(x)02}} >0. (2.21)

Next, since by the maximum theorem in [Bl], Oh /-\(*)R2 is l.s.c, and

•lh£^(3<)B2 >6e(x), there exists ap3(x) >0such that

,lhve(5D(xi)I12 ±^(xW0* ±6ve(x) for a11 xi €B(x,P3(x))
(2.22)

and hence (2.20) follows directly.

(b) Suppose that 0e3f(x). Then OhQ(x)II2 =0and for any e>0
llh (x)II = 0. Hence e(x) = 0. Next, suppose that x. + x as j -• «> and
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that lim e(x.) > 0, i.e. for some K C {0,1,2,...} and some e > 0
j

e(x.) ^ e > 0 for all j€ K. Since we must have x € B(x.,e) for all

j sufficiently large, we must have that 0 e 3^f(x.), for all j suf-
e j

ficiently large and hence llh , \(x.)ll2 =0 < e(x.) for all j e K
£\Xj y j j

sufficiently large. But this contradicts the definition of e(x.) and
j

hence we are done. n

The final version of the progressively-smeared steepest descent

method is sufficiently important to be stated formally:

Algorithm 2.1 (Conceptual).

Parameters: a, 3, v€ (0,1), eQ >0, 6 >0.

Data: xQ e.IRn .
Step 1

Step 2

Step 3

Set i = 0 .

Compute h. - ^(x.)^).
Compute

Is

X^arg max{& |

ffx^h.) -f(x.) l^d^.jfx^h.)}. (2.23)

Step 4: Set xj+1 = xi + X.h., set i= i+ 1 and go to step 2. n

Theorem 2.4: Suppose that {x^T.q is asequence constructed by Algo-
rithy 2.1. Then any accumulation point x of {x.} (if it exists) satis

fies 0 e 3f(x).

Proof: We only need to show that the assumptions of Theorem 2.3 are

satisfied. Clearly, we must set N3(x) = e(x) and by Proposition 2.1,

it has the required properties. Next, we set N,(x) = llh /\(x)B2.

Then the required properties of N^-) follow from those of e(-) (with

p-j(x) = p3(x)) and» by inspection,
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d?(x)f(x»he(x)(x)) =N1W (2-24)
Finally, we set N«(x) = arg max{llhll| h e 3 f(x)}. Since N«(*) is u.s.c.c eQ c

by the maximum theorem in [Bl], we are done. n

Next we turn to implementable algorithms. These are characterized

by the fact that they approximate the sets 3£f(x) by means of finite

operations while retaining a great resemblance to the conceptual algo

rithms from which they are derived. It does not appear to be possible

to construct a truly useful general convergence theorem of the form of

Theorem 2.3 for such algorithms. Instead, it seems simplest to use a

minor modification of theorem (1.3.10) in [P8], as follows.

Theorem 2.5: Consider algorithms of the form (2.2a,b). If for every

x€]Rn such that 0£ 3f(x) there exist a keiN+, a"6>0anda^>0

such that for all x. e B(7,"p),

f(x.+BFh.) -f(x.) <-aB^ <-af^? . (2.24)

Then any accumulation point xof asequence {x^}"^ constructed by such

an algorithm satisfies 0 e 3f(x).

Proof: Suppose x. &xand 0£ f(x). Then there exists an iQ such that
for all ie K, i> iQ, X.. > 3 and hence

f(x.+1) -f(x.) <-a3k"S Vi>iQ, ieK. (2.25)

But {f(x.)} is monotonically decreasing and f(-) is continuous; hence

f(x..) * f(x) as i -»• ». But, clearly, this contradicts (2.25) and we

are done.
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At the present time, we only know how to construct implementable

algorithms for optimization problems in which the function f(*) is

semi-smooth (see [Ml]).

Definition 2.3 [Ml]: A locally Lipschitz continuous function f(-) is

said to be semi-smooth if it is directional ly differentiable and if for

any x, he]Rn and for any sequences {\}c IR »^z\r}^ ^k}C ^ sucn
that XK •*• 0, OAk)vk •*- 0 and zk e 3iJ;(x+Xkh+vk), the sequence {<z. ,h>}

converges to df(x;h). n

From our point of view, the most important property of semi-smooth

functions, which does not appear in the definition, is the following one:

n 1
Proposition 2.2: Suppose that f :IR -»-IR is semi-smooth. Then, given

any x, h, i\h {vk} as in Definition 2.3,

lim df(x+X.h+v. ;h) = df(x;h) (2.25)
k-*» R *

We assume, until the end of this section, that f(-) is semi-smooth.

We are now ready to construct an implementation for Algorithm 2.1,

which satisfies the assumptions of Theorem 2.5. The implementation is

based on the following observations derived from results of Lemarechal

[L2] and Wolfe [Wl, W2]. Suppose that x1 ^ IRn ,e>0are given and that
0£ 3£f (x..)- Let Yg c Sgffx^ be the convex hull of a finite number

of points in 3 f(x) and let

ns = -Nr(Ys) (2.26)

Now, let ks GIN be such that
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3e <3 Hnsll < e. (2.27)

Then, either

k k k
f(x.+3 \) -f(x.) <-a3 SHtis82 <-a3 ^O^U^O2 (2.28)

holds or not. If (2.28) does hold, then h. =ns turns out to be an

adequate approximation to nP(x.), as far as convergence is concerned.
K

If (2.28) does not hold, then there must be a point u e [0,3 ] such

that

f(xf+uns) - f(xt) =-TTaOnsll2 (2.29)

and

df(x.+]lTis) >-allnsll2. (2.30)
k

Now suppose that u. <= [0,3 s],j = 1,2,..., are such that u. V y and
j j

that y. e 3f(x1+p.ns)t for j= 1,2,... . Then, because f(-) is semi-

smooth,

<yj'V "*" df(xi+ws' as J^°° » (2.31)

and, consequently, given a a e (a,l), there exists a j such that

<yj.ns> >-Sflnsll2 Vj >jQ . (2.32)

We see that if we set Yg+1 = co(Ys u {y }), ng+1 = -Nr(Y$+1) is smaller then

ns in norm. We can now replace ns by ns+1 and return to the test in (2.28),

etc. This cycle of operations cannot continue indefinitely, because, as

shown in [Ml, P7], if s -»• «> than r\ ->- 0, which contradicts the obvious

fact that nc > h (x.) > 0. Tlence the test (2.28) will be passed in a
- s i .

finite number of operations. Note also that 3 is locally (w.r.t. x)
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bounded both from below and from above. Hence the convergence of the

algorithm below is very easily deduced from the preceeding results. Note

that the algorithm below uses a bisection procedure for finding jj and

for constructing the u,-«

Algorithm 2.2.

Parameters: eQ > 0, a,3, ve (0,1), ae (a,l).

Data: xrt ejRn.

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Set i = 0.

Set e = eQ, s = 0.

Compute Ys c 3£f(x.), a convex hull of a finite number of points

in 3pf(x.).
k

Compute n = -Nr(Y_) and k_ GIN* such that 3'e <3 sHti 0 <e.

If Uns II <e, set e = ve and go to step 2.

If

k. k

fCx^B ns) - f(x.) <-a35llns» ,

(i) set h. = r\ and compute the smallest k. £1N such that

k. k.

fUj+8 \) -f(x.) <-a3 ^Ih.II ;

k.

(ii) set x1+1 = x1 + 3 h.;

(iii) set i = i+1;

(iv) go to step 1.

Step 6: Set j = 0.

K 2Step 7: Set ZQ =0, rQ =3sHnsln, uQ =r/2.

-17-
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Step 8: Compute ay.+] € Sf^+r.rij.).

Step 9: If

<*}+!» V >-Ylns02 . (2.34)

Set

Ys+1 =co({yj+1}UYs) , (2.35)

set s = s+1 and go to step 3.

Step 10: If

fUj+tyijJ -f(x.) >-ay Jnsa2 , (2.36)

set r.+1 =y., *.+1 =*., p.+1 .(rj+1«j+1)/2. '
Else set rj+1 =r., *j+] =y., yj+1 =(rj+1+iJ+1)/2.

Step 11: Set j = j+1 and go to step 8. n

Theorem 2.6: a) If Algorithm 2.2 generates afinite sequence (x^1? ,
jamming up at xN, then 0e 3f(xN). b) If Algorithm 2.2 generates an

GO ^infinite sequence Cx..}..^ then every accumulation point xof {x.}? Q
satisfies 0 e 3f(x). n

The success of Algorithm 2.2 depends on the following fact, due to

Wolfe [Wl, W2] (see also [P7]).

Proposition 2.3: Let S' be a compact, convex subset of a compact convex

set S and let a e(o,l). Let h' = Nr(S') and let g e s be such that

<g,h'> <ah'll2 (2.37a)

Then h" = Nr(co{g},S»}) satisfies
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llh'MI2 <max{a, 1-(l-^)2llh,ll2/4C2}Ilh,tl2 (2.37b)

where C^ max{tlgO |g e S}. n

Proof of Theorem 2.6: a) Suppose that the sequence {x.} is finite with

the algorithm jamming up at xN> cycling indefinitely in one of the loops

defined by steps 2 to 4 or steps 3 to 9 or steps 8 to 11. Suppose that

0£ 3f(xN).

(i) consider the loop defined by steps 2to 4. Since.0 f. 3f(xN),

e(xN) >0(see (2.19)) and hence for all e>e(xN), Yg C 3£f(xN),
llNr(Ys)(! >0Nr(3£f(xN))ll >»Nr(3£(x }f(xN))H > e(xN) >eand hence no
infinite cycling can occur in this loop.

(ii) consider the loop defined by step 8 to 11. This loop is always

finite because f(-) is semi-smooth and (2.33a) is not satisfied.

(iii) consider the loop defined by steps 3to 9. Since 0£3f(xN),

e> £(XN) while in this loop. Hence by Proposition 2.3,

"Vl" l™3^ !"(l-^)Hnstl2/4C2}llnsll2 (2.36)

where C=maxCMIn e 3£ f(xN)}. Since HnsII >e>e(xN) for all s, it
is clear from (2.36) that the sequence {r\$} must be finite, i.e. the

loop defined by steps 3 to 9 is exited after a finite number of operations

Consequently, the algorithm jams up at xN only if 0e 3f(x»). b) Now

suppose that the sequence {x..} is infinite. Suppose that x. & x, with

K c {0,1,2,...} and that 0 i 3f(x). Then, by Proposition 2.1, there

exists an iQ such that for all i6 K, i> iQ, e(x.) ^ ve(x) >0.

Consequently, for all i £ K, i > in (2.33a) is satisfied with
k ~"

•nsD 1 ve(x) and 3SBnstl >3e(x.) >3ve(x). Hence, by (2.33b), for
all ie k, i >_ iQ,
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k.

f(xi+1) -f(x.) <-a3 'UhJ2 <-a3(ve(x))2. (2.37)

Now f(x.) + f(x) by continuity and {ffx^} is monotonic decreasing.

Hence, we must have f(x..) •* f[x\ which contradicts (2.37). This com

pletes our proof. n

3. Constrained Optimization: Conceptual Algorithms

We begin by examining the easiest case, viz., problems of the form

minifMlg^x) <0, j e m} (3.1)

i n 1
where f, gJ :IR •*• IR are locally Lipschitz continuous. For the purpose

of conceptual algorithms, it is convenient to define the function

iKx) =max g^x) (3.2)
j%

and to treat problem (3.1) in the simpler form

min{f(x)|iKx) < 0} (3.3)

In implementable algorithms, since we may not be able to obtain a formula

for the set 3 ^(x), we may have to use the possibly bigger set

M.(x) ^co{ u 3gJ'(x)} (3.4a)
J€I£(x) e

with

I£(x) A{j em|gJ'(x) >*(x) -e}. (3.4b)

It is quite easy to construct an appropriate counterpart to Theorem

2.3, for algorithms which generate sequences {x.} by a construction of

the phase I - phase II feasible directions type [P3], using parameters

a, 3^ (0,1) viz:
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Xi =

x1+1 =xi + xihi« 1 =0,1,2,-.. (3.5a)

arg max{3

5ku \ ,,.,„x ^ _.„k

arg max{3

iKxf+3kh.) - ip(x) <a$k6. <0} if il>(x.) >0;
k.

f(x.+3kh.) - f(x.) <a3k6. <0; ^(x.+B^.) <0} if ^(x.) <0}
(3.5b)

Since "e-smearing" was needed for the unconstrained case, it is a fore

gone conclusion that it is also needed for the constrained case and we

shall not go into any further justifications of the case of "e-smearing."

Also, for the phase I part of the algorithms to work we need the following

Assumption 3.1: For all xsir" such that ip(x) > 0, 0£ 3<Kx). n

This assumption ensures that a feasible point can be computed by means

of an unconstrained optimization algorithm in a finite number of itera

tions.

Theorem 3.1 (Conceptual Algorithms):

1. Suppose that Assumption 3.1 holds.

2. Suppose that there exist three functions

NrN2,N3 :TRn+ IR+ such that
(i) If N1(x)N2(x)N3(x) = 0, then

either i|;(x) = 0 and 0 G co(3f(x)u 3<Hx));

or i|>(x) < 0 and 0 G 3f(x).

(ii) For every xeiRn such that N1(x)N2(x)N3(x) >0, there exist a
p(x) > 0 and b.(x) > 0, i= 1,2,3, such that for all x' e B(x,p(x))
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N^x') >b^x), (3.7a)

N2(x') < b2(x), (3.7b)

N3(x') > b3(x). (3.7c)

Now consider the process (3.5a), (3.5b) and suppose that for all i,

dN,, .^Vni) <^ i -^(x.), if i^(x1) >-N3(x.), (3.7d)

dMx.)f(xi;hi} 1 6i 1"W 1f *l*i) 10» (3.7e)
«3 1

OhJI < N2(x.). (3.7f)

If ^x^^q is an infinite sequence constructed by this process, then

any accumulation point xof {x^?^ satisfies ip(x) <0and 0e 3f(x) if
iKx) < 0, otherwise 0 € co{3f(x) u 3^(x)}.

Proof: We note that we can distinguish between two cases: a) ty(x.) > 0

for all i, and b) there exists an iQ such that ty(x.) 1 0 for all i >_ i*.

a) Suppose that Ux.)> 0for all i, that x1 &x, with Kc{0,1,2,3,...},
A. A. A,

and that N1(x)N2(x)N3(x) >0. Then, the process (3.5a,b) reduces to the

one considered in Theorem 2.3, and hence we conclude that iKx.) V -«>.

But this contradicts the fact that, by continuity of \\>9 ty(x) _> 0, and

hence this case is impossible.

bl)Suppose that \\>(x.) <0for all i>iQ and that x1 £x, with \\>(x) <0,
A. /\ A,

and N1(x)N2(x)N3(x) > 0. Then, because of our assumptions, there exist

i.j, keiN , i^ > iQ, such that iKx.,.+3 h.) <0 for all i> i, ie K.

Similarly, as in the proof of Theorem 2.3, there exist i0, k€IN+, with
A, C.

* — ki2 _> i-j and k^ k, such that Xi > 3 for all i >_ i*2, ie K. Hence, for

all ie K, i 2i i2
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k. "

f(x1+1) -f(x.) <a3 V <-a3kb3(x) <0. (3.8)

But f(x.) V for i> iQ and hence (3.8) implies that f(x.) V -«, which
A

contradicts our assumption that x. •+ x. Hence this case is not possible.
I* A. A,

b2) Suppose that ^(x^) <0 for all i> i' and that x. £ x, with i|/(x) =0
A, A, At

and N1(x)N2(x)N3(x) >0. Then our assumptions lead us to the conclusion
* +that there exists an i, ^ iQ and a k€]N such that

Al A,

f(x.+3kh.) -f(x.) <a3kd° (x.jfU^h.) <*Zk6. (3.9a)
Al A.

^(x.+3kh.) -ip(x.) <a3kd° (x.j'Hx.;*!.) <a3kS. (3.9b)
Al

kand consequently, Ai >_ 3 . Therefore, (3.8) holds for all i > i,,

i e K and the contradiction follows exactly as for case bl). We have
U A, A A. Al

thus shown that if x.. •»• x, then N1(x)N2(x)N3(x) =0 must hold and hence

the desired conclusion follows from assumption (i) on N-j, N2> N3-

We are now ready to apply this theorem to two phase I - phase II

methods in the class of the ones presented in [P3] for differentiable

optimization. We begin with the simpler one. We shall need the fol

lowing definitions. Let

*(x)+ = max{0, ip(x)}. (3.10)

Let eQ >0 and ve (0,1) be given and let

E= {e|e =eQvk, k<=1N+} U{0}. (3.11)

Next, let y > 0 be given and let r :IRn +IR be defined by

r(x) = exp(-Yi|>(x)+). (3.12)
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Finally,

for any e > 0, 6 > 0, we define

se*(x) = ft ip(x) if <i(x) >-e
<\> if ij>(x) < -e »

h£(x) ^-Nr(co{3£f(x), 3^(x)>), (3.13b)

h*(x) A-Nr(3e*(x)) . (3.13c)

6£(x) A-max{Or(x)h^(x)ll2, l(l-r(x)h*(x)l2} , (3.13d)

h£(x) ^r(x)h£(x) +(l-r(x))h*(x) , (3.13e)

eT(x) =max{e €E|9£(x) <-6e} . (3.13f)

We recognize h^(x) as a"steepest descent" direction for ip(--) at an
infeasible point, while h£(x) is a "usable" feasible direction when x

is feasible. The vector h_(x) moves from hf(-) to h[{-) as xmoves from

the infeasible into the feasible region. This type of construction is

the essence of the algorithms presented in [P3] and ensures that the

possible increase in cost is kept in check as the feasible region is

approached.

Algorithm 3.1 (Conceptual) .

Parameters: a,3, v€(o,l), eQ, 6, y>0.

Data: xQ €IRn.
Step 0 Set i = 0.

(3.13a)

Step 1:

Step 2

Compute h. = h , \(x.). Stop if h. = 0.l evx..; i i k ^
If ty{x.) > 0, compute the largest stepsize 3 1, k. e IN such

that
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k. k.

iKx^S \) - Kx^ <-a3 ^lhJI2. (3.14a)
k. . +

If 4»(X|") ^0, compute the largest step size 3 \ k.e IN , such that
k. k.

f(x.+3 \) -f(x.) < -a3 ^IhJ2 (3.14b)
and

k.

Mx.+3 \) < 0. (3.14c)
1 ^ " k.

Step 3: Set x.+1 =x. +3^^ set i=i+1and go to step 1. «

To bring this algorithm into correspondence with Theorem 3.1, we

define

Nl(x) ^•^(x)^5' <3-15a)

N2(x) ^ arg max{llhll|h e co{3p f(x), 3* ^(x)}, (3.15b)
e0 e0

N3(x) ^e^x), (3.15c)

and we set

6. 4-ah.ll2 for i=0,1,2,... (3.15d)

Lemma 3.1: For every e_> 0 and any xeIRn,

Hh£(x)02> -e£(x) (3.16)

Proof: Case 1: Suppose that ip(x) <-e. Then llh (x)ll2 = -e^x). Hence,
consider

Case 2: ^(x) >_-e. Consider the function g : [0,1] ->1R defined

by

g(t) A Oth^(x) + (l-t)h*(x)ll2 -(l-t)2llh*(x)II2 (3.17)
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Then g(0) = 0, g(l) = llhf(x)l2 >0 and
e —

2

Kg(t) =2{Bh^(x) -h*(x)ll2 -llh^(x)02}
dt* e e e

=2{llh£?(x)ll2 -2<h^(x), h^(x)>}

£0. (3.18)

because <h*(x), h*(x)> >llh^(x)ll2, by construction of h£(x) and h^(x).
Hence g(-) is concave on [0,1] and, since g(0) =0 and g(l) >^0, g(t) >0

for all t e [0,1]. Consequently,

Oh£(x)02 >(l-r(x))2llh^(x)Q2. (3.19)

Similar reasoning gives that

Hh£(x)D2 >r(x)2llh^(x)ll2 (3.20)

and we are done. n

Corollary 3.1: With 6. defined by (3.15d) and N^x^ defined by (3.15a),
we have 6. < -N^x.) for all i. n

Proposition 3.1: Consider the functions eV) defined in (3.13d).

(a) For any xGIRn, if e' >e" >o, then o[t(x) > e\{x). (b) For

e >0, 9£(*) is u.s.c.

Proof: a) Since e' > e" implies that 3 ,ip(x) D 3 „^(x) and

3£,f(x) 3 3£„f(x), this part is obvious.

e -~e — •" any

b) Since for any e > 0, 3"jj>(*) and 3 f(*) are both u.s.c, it follows

from the maximum theorem in [Bl] that llhf(-)U2 and ilh^(-)tl2 are l.s.c.

Hence e (•) is u.s.c.
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Lemma 3.2: For every xGiRn such that ejtx) f 0, e^x) >0and there
exists a "p > 0 such that

N3(x') Ae1(x1) >ve1 (x) =b3(x) >0for all x' GB(x,p) (3.21)

Proof: First, because the set valued maps 3f(-) and 3if»(-.) are u.s.c,

and eQ(x)' <0, there must exist an TGe, T>0, sue* that q](x) <-6e.
1 e

Hence e (x) > 0. Now,*for the sake of contradiction, suppose that

there is no p > 0 such that (3.21) holds. Then there must exist a

sequence {x.}, x. -*- x such that

0lve,(x)(xi) >"6vel(x) for all i (3.22)

Since by Lemma 3.2 9V£1(X).(-) is u.s.c, we conclude from (3.22) that

-five1 (x) <m e^l (S)(X1) <6^£l(x)(x) (3.23a)

But, by Lemma 3.2, 6£ira(x) 1 9V£1 (x")(x*) and hence (3.22a) implies
that

-«e (x) <6£i(30(7) (3.23b)

Which contradicts the definition of e^x). n

Theorem 3.2: Let {x^}?^ be any sequence constructed by Algorithm 3.1.
Then any accumulation point xof ix.}™=Q satisfies ${x) <0and
0 G co{3f(x) u 3i|;(x)}.

Proof: With N^N^Ng^ defined as in (3.15a) - (3.15d), we see that

at any x such that N1(x)N2(x)N3(x) f 0, By Lemma 3.2, there exists a

P>0such that b^x) =b3(x) =ve1 (x) >0satisfy (3.7a) and (3.7c) for
all x1 G B(x,p). Since 3£ f(x) and 3f(x) are both u.s.c, it is clear
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that a required b2(x) >0 exists for (3.7b) to hold in B(x,p). Finally,

by Corollary 3.1, we have that 61 <-N^x^ for all i. Furthermore,

Assumption 3.1 and Lemma 3.2 ensure that N1(x)N2(x)N3(x) =0implies

that condition (i) of Theorem 3.1 is satisfied. Consequently, the de

sired result follows directly from Theorem 3.1. n

Our second algorithm has exactly the same structure as Algorithm

3.1 except that h. is computed by evaluating a different optimality
2

function,9££xj(x). It is adirect extension of the most efficient

phase I-phase II method of feasible directions known. ([P3]) We need

the following notation. Given y >0, for any e >_ 0 and xGiRn we define

62(x) Amin n4llh02 +max{<£f, h> -y*+(x), 5f €3f(x);
n^ jk

and

h2(x) =arg minn {^IhD2 +max{<£f, h> - y*+(x), Sf g3£f(x);
n ^ik

%* h>, ^6 3)(x)}}. (3.24b)

It follows by duality that when ij>+(x) = 0, for all e^ 0,

9£(x) »92(x) and h2(x) =h^(x). Hence, the behavior of the two algo
rithms can differ only in the infeasible region. We now define

e2(x) 4max{e G][|e2(x) <-<5e} (3.25)

where e and 6 are as in (3.13f).

Not surprisingly, the conclusions of Lemma 3.1, Propositions 3.1,

Lemma 3.2 and Corollary 3.1 remain valid when e2(x), h2(x) and 62(x)

are substituted for e](x), h£(x) and 6£(x) in the appropriate definitions.
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Consequently, we may state, without proof the following

Theorem 3.3: Suppose that Algorithm 3.1 is modified so that

ni = nel(x )^xi^ in Step "** If ^xi^i=0 1S an lnfinite sequence con
structed by this modified algorithm then any accumulation point x of

{Xj}"B0 sattsfl*es *(x) <0and 0Gco{3f(x) U3^(x)} «
Finally we turn to problems with both inequality and equality

constraints, i.e., problems of the form

P :min{f(x)|g1(x) < 0, iG m; hJ(x) = 0, jG z] (3.26)

where f, g1, ig jn and hJ, jg it from lRn into IR are all locally

Lipschitz continuous. In the differentiable case, i.e. when f, g1

and h , i G m, j G i_ are all continuously differentiable, there are

two major approaches, based on exact penalty functions, for solving (3.26),

The first is due to Mayne and Polak([M3]). It replaces the problem P with

P , below, c > 0

p\ :min{f(x)-c j h^xjjg^x) <0, iGm; hJ(x) <0, j€ a}
jGfc -

(3.27)

and, under mild assumptions, computes a finite c which makes P and P

"locally equivalent" in the vicinity of Kuhn-Tucker points of P for all

c >_ c The second approach, see e.g. [C5, P14], replaces P with P

below, c > 0,

P2 :min fQ(x) (3.28a)
xGJRn

where

fc(x) Af(x) +c[max g^x^ +max|hJ(x)|] (3.28b)
iGm jg£

cAgain, it can be shown that, under mild assumptions, P and P« are
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"locally equivalent" for c sufficiently large, in the vicinity of

feasible Kuhn-Tucker points of P (see [PI4]).

In the nondifferentiable case both approaches tend to break down

when equality constraints are present because stationary points of P2

which are feasible for P cannot be shown to be also stationary for P.

Furthermore, arbitrary feasible points of P may be stationary for P?.

Thus, consider the problem P2. Suppose, for simplicity, that there are no

inequality constraints in P, and that z = 1, i.e., that there is only one

equality constraint. Then (3.26) and (3.28a) become

P : min {f(x)|h(x) = 0} (3.29)
xGlRn

and

P2 :min {f(x)+c{|h(x)|} (3.30)
xGRn

respectively. Suppose that for some c > 0, x IRn satisfies the necessary

optimality condition for P2, and that h(x) =0. Then

0 G 9f(x) + co{3h(x) u -3h(x)} (3.31)

Now, from (3.31) we would like to conclude that (1.8) holds, i.e., that

either

0 g co{3f(x) U3h(x.)} (3.32a)

or

0 GCo{3f(x) u-ah(x)} (3.32b)

While in the differentiable case (3.32a) or (3.32b) follows directly from

(3.31), a similar conclusion does not hold in general in the nondifferentiable

case, as can be seen from tne following example. Let x=(x^x2)1 g IR2 ,

let f(x) =-\ x1,
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(x1)2 + (x2)2 -5 if x1 <1

x1 + (x2)2 -5 if x1 >1
T

and let x = (1,2) . Then x is feasible for P in (3.29) and

3h(x) =co{(l,4)T,(2,4)T}. It is reasily seen that for all c>1

(3.31) holds, but neither (3.32a) nor (3.32b).

This example shows that when 3h(x) is not contained in a one

dimensional subspace of IR and h(x) = 0, then co{3h(x) u -3h(x)}

can be "blown up" by increasing c so that x becomes a stationary point

for fc(Ot i.e. arbitrary feasible point of P become stationary points

of P2- Hence it seems that an exact penalty function method can be

generalized to the nondifferentiable case only when the generalized

gradients of all the equality constraints are each contained in a one

dimensional subspace of lRn , so that co{3hJ(x) u -3hJ(x)} does not

have an interior point in any multidimensional space. In the presence

of inequality constraints alone, exact penalty methods should work, for

the following reason. Suppose that x satisfies ip(x) = 0 and

0 G af(x) + c3i|>(x) for some c > 0. Then we have that

Cf + ca^ =0 (3.33)

for some £f G 3f(x), £ G d^(x) and a^ [0,1]. Consequently,

<1+ca> TOT 5f +jgz 5, -0 (3.34)
i.e. 0 Gco{3(x),3ij;(x)}. Hence it should be possible to solve P by

exact penalty function methods, provided the following assumption holds

Assumption 3.2 For all jG i9 the functions hJ(«) are continuously

differentiable.

-31-



For the differentiable case the approach based on P is considerably

more attractive, since it permits the use of a broad class of algorithms

for solving P. However, this advantage is lost for the nondifferentiable

case. We will therefore consider here the more traditional approach
2

based on PQ. Although it is not possible to precompute a satisfactory
A, P

penalty c for Pc, the theory in [P10] on abstract exact penalty

methods shows that such a penalty can be computed adaptively, provided

an appropriate test function can be constructed. We shall exhibit such

a test function for the problems in question.

We now define

n(x) Amax|hj(x)| (3.35a)
JeA

and

i/>(x)+ Amax gn(x)+ (3.35b)
iGm

<j>(x) A max{n(x),i|/(x)+} (3.35c)

p
Next we establish a number of properties of the problem P^. The first one

is obvious.

Al 2
Proposition 3.2: Suppose x is a local minimizer for P such that

<j>(x) = 0. Then x is also a local minimizer for P.

Proposition 3.3: Suppose that Assumption 3.2 holds and that xG 3Rn is

feasible for P, which for some c > 0 satisfies

m A
Qeaf(S) +c I W{x)+ +c I 3|h(x)| (3.36)

i=l j=l

Then x satisfies (1.8).

Proof By assumption, there exist: (i) a£f g3f(x), (ii) C^ G 3gn(x)
and a t.. G [0,1] for all i G i(i)9 (iii) t. G [-1,1] for all j € 19

such that
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5f +c JA U^+c [ t, Vhj(x) =0. (3.37)
f iGl(J) " 1 j% J

By dividing each element of (3.37) by l+c( I t. + J |t.|) we get (1.8)
iGl(x) 7 jG£ J

Before we can establish the existence of finite penalities, we must

invoke the following, commonly used hypothesis.

Assumption 3.3: For every xG iRn and any t,,t2,...,t. G{-1,1}

0esa I 391(x) +s. I t. Vhj(x) (3.38)
9iGlQ(x) nj€j(x) J

where

I0(x) ={i em|g1(x) =*(x)}

J(x) A{j g £|hj(x)| =<J)(X),

_fi if *+(x) =<J)(x)
Sg \0 if l>+(x) <(J>(x)

and

fl if n(x) =4>(x)

h \o if n(x) <<fr(x).
We are now ready to establish the existence of exact penalities.

Proposition 3.4: Suppose that x is a local minimizer for P. Then there

exists a c > 0 such that

0G3f(x)+c I ^3g1(x).+c I 3|hj(x)| (3.39)
iGi(x) + jG£

for all c > c, i.e. x is stationary for P .

Proof By Theorem 1.1 and assumption 3.3, there exist

5f e3f(x), X1 >0, ^. G3gi(X) n8gi(x)+, 1GI(x),
and XJ g ir , j g z, such that

Cf + l,^ x1 ^ 1+ lx* VnJ(x) =° (3-4°)T iGl(^) *.i jG£
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Therefore, for all c > 0,

5f +cI £ h1+c I T VnJ(i) =° <3-41>T l'Gl(x) C ^ JGA C

Obviously, there exists a c > 0 such that, for all c >_ c, satisfying
xi ,i a J±. <land ±- ^fi 6 3g'(x), 1g l(x); and |^-| <1, jg I. Hence, for
c >_ c, (3.39) follows from (3.41) and the fact that 0G 3|hJ(x)|, for all

j G*,, and 0 G ag1^) for all iG i(J). n

The following proposition is a direct corollary of Assumption 3.3.

Proposition 3.5: Suppose that xG ]Rn is such that <j)(x) > 0. Then there

exists a c > 0 such that

0G3f(x)+cS I ag^xJ+cS,, I ^V|hj(x)|
9 1€I0(x) h jGJ(x)

where

i0(x) ={1 Gmlg^x) =ip(x)},

J(x) - {j ei\ |hj(x)| -n(x)>.

fl if *+(x) -♦(x)

9 \0 if *+(x) <<J>(x)

/l if n(x) -<D(x)
S" \o if n(x) <♦(«)

Proof: By Assumption 3.3 there exists a 6 > 0 such that for every

S1 eSg^x) with iGiQ(x) and every jGj(x),

Sn I 51 +Sh I V|hj(x)| >69iGI^(x) hj£j(x)
Now, it is clear that proposition 3.5 holds with

c =j • max{D?f0|cf e 3f(x)}.
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We now construct an exact penalty function method which computes

the required penalty parameter c adaptively, making use of the scheme

proposed in [PIO]. This scheme uses a test function t (•) to determine
c

whether c should be increased or not. As in (2.18) and (2.19), we

define, for e^ 0 and any x IRn ,

hCj£(x) A-Wr(3£fc(x)) (3.42a)

and (with 5 > 0),

e_(x) ^ max{e G £| h (x) 2>6e} (3.42b)

Then for any c > 0, x GiRn we define

8c(x»A-|hc.e(x)W|2 (3-42c>
and

tc(x) =-ec(x) +~<J)(x) (3.42d)

In accordance with [M3], we therefore propose the following con

ceptual

Algorithm 3.2:

Parameters: a, 3, vG(0,1), eQ >0, <5 >0, and asequence {c.}"=Qc 1R+
c .-A oo.

j

Data: xQG ]Rn
Step 0: Set i = 0, j = 0.

set i.
J

•ff

Step 1: If t (x.) > 0, set z. = x. and increase j to the first jCj 1 j 1

such that t *(x.) < 0. Set j = j .
j

Step 2: If 0G 3f (x.)> stop. Else compute x.+, by applying Algorithm 2.1

to f (•)» f^om x., using the parameters supplied. Set i = i + 1 and
Cj 1

go to Step 1. a
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Theorem 3.4:

(i) If {z.} is finite, with last element z.*, then either the
j j

sequence {x.} is finite and its last element, say x. satisfies <j>(x.) = 0

and (1.8), or it is infinite and any accumulation point of {x.}, say -
A. *

x, satisfies $(x) - 0 and (1.8).

(ii) If {z.} is infinite, then it has no accumulation ppints.
j

Proof (i) Suppose that both {x.} and {z.} are finite, {x..} terminating

at x.. Then for some j = j*, we must have 0 G 3f (x.) and t (x.) < 0.
N cj* K cj* K —

Since er (x. ) = 0, it follows that <j>(x.) = 0, and since 0 g af (x. )
J J*

it follows from Proposition 3.3 that

'l(C\ -J e= TfC\.i\h3fC'0 Gco{3f(x);3g'(x)+,i GI(x);3|hJ(J) | ,j Gz}

k fiNext, suppose that {x..} is infinite, with x. 5x,kCN+ and

that {z.} is finite, terminating at j*. Let i.* be such that x. = z..
j j l •* j

Then for all i > i* we have that
J

*c (xl} ="ec (xi> +7L<fr(xJ <° (3.43)Cj* i Cj* i Cj* t -

But as in the proof of Theroem 2.1 we have that e (x.) £ e (x) =0,
Cj* cj*

and hence from (3.36) and the continuity of cj) we get that <j>(x) = 0.

Finally, since er (x) = 0 implies that 0 G af (x), it follows thatCj* Cj*

0 Gco{3f(x); Zg\x)+9 i Gl(x); 3|hj(x)|, j Gl}.
(ii) Now, suppose that {z.} is infinite and that z. £ x for some

j j

subsequence indexed by Kc N+. Now, c. /» ~ and {z.}ei/ is compact.
J J J=N

Hence {cf>(z.)}.*-„ is bounded and therefore -L (|)(z.) -^ 0. SinceJ JEK Cj j j^

t (z.) > 0 for all j G K, we must therefore have that
cj-l J

i/

ec (zi^ *" °« Now» because of Assumption 3.1, there exist a
j-1 J j-*»

j0 G K and an e > 0, e G e such that for all j1 jn, j G K
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IIWr(3-f (z.))ll2 >e (3.44)
e cj-l J

which shows that er (z.) > I for all j > jn, jG k, which contradictsCj-1 j — — u
the fact that er (z.) + 0.

j-l J
To conclude this discussion, we must point that one could also

construct a similar exact penalty function method in which each con

straint is penalized individually, by setting

fc(x) ^f(x) + I cV(x)+ (3.45)
. 1-1

with g"*'3 A|hJ|for j=1,2,.. .1. The penalties c1 must then be increased

individually when t ..(x) > 0, with

tj(x) Aec(x) +£g1(x)+ C3.46)

4. Constrained Optimization: Implementable Algorithms

We shall consider only the problem (3.1) and the implementation

of phase I - phase II methods, since the implementation of exact

penalty function methods is essentially the same as in Algorithm 2.2.

We shall consider problem 3.1 in the compact form

m1n{f(x)|K>(x) <0} (4.1)

n 1
with f, i|/ : IR +IR locally Lipschitz and semi-smooth. Furthermore,

we shall assume that 0 £ 3iJ>(x) for all x such that \{j(x) > 0. We shall

make repeated use of the bisection method described in Section 2

(equs.(2.26)-(2.30)) which can be used (for semi-smooth functions) to
p

find a £ G a f(x) (or I G aMx)) such that <£,h> < ollhll whenever

h G]Rn is such that

,2f(x-Xh) - f(x) > -aXllhlr (4.2a)
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or

iKx-Ah) - if/(x) > -aXtlhlr ,

with Xilhll < e and 0 < a < a < 1.

We now present an implementation of Algorithm 3.1.

Algorithm 4.1 (Implementable)

Data: eQ >0, 6>0, a, 3, v G(0,1), aG(a,l), xQ G]Rn
Set i = 0.

Set e = eQ.

If ty{x.) 2. "e» 9° t0 steP ?•

^(x^ <-e.

Set j = 0 and compute an h« G 3 f(x.).

f ?If llh.II < 6e, set e = ve and go to step 3.
j

Else, proceed.

Step 5: Set s. =arg max{3k|3k <(e/Hhfll), k G]N+}.
j j

Step 6: If

f(x.-s.hf)-f(x.)<-sJhjf»2,

Step 0:

Step 1:

Step 2:

CASE 1:

Step 3:

Step 4:

(4.2b)

(4.3a)

set h. = h. and go to step 13.

Else, (i) use the bisection method to compute a £. G 3 f(x.) such
J e l

that

<£, hf.) <Sllh^ll2, (4.3b)

f f f(ii) compute h^+1 = Nr co{£., h'.}, set j=j+1and go to step 4.

Step 7

CASE 2

Step 8

If tKx..) > 0 go to step 14,

if>(x.) G [-ef0].

Set j=0. Compute ?J G3gf(x.)t £* G3£i|;(x.) and
h£ =NrfcouJ, *o»-

Step 9: If Until <6£, set e =ve and to to step 2.
j
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Step 10: Set s, =arg max{3k|3k <(e/Uhfll), kG]N+}.
j j

Step 11: If

^(xi-sjhf) - <Mx.) <-Sjailhjll2, (4.4a)
set h!j+1 =hi and go to step 12.
Else, (i) use the bisection method to compute a

£T+. G a ip(x.) such that

<Sj+r hj>l^hjl,2» (4-4b>
(ii) compute h?+1 =Nr(co{£j, c|» 5j+"i*)» set

j = j + 1 and go to step 9.

Step 12: If

f(x.-SjhJ) - f(x.) <-SjatlhV, (4.5a)
f

set h. = -h. and go to step 13.
• j

Else, (i) use the bisection method to compute

a ^i+l G 3ef^xi' such that

<Cj+r hf.) <HIIhjB2, (4.5b)

(ii) compute ht+1 =Nr(co{£?, £?+1, e|}),
set j = j + 1 and go to step 9.

Step 13: Compute

X. =arg max{3k|f(xi+3khi) - f(x.) <

a3kHh.ll2; *(x1+Bkh1) <0, kG]N+} (4.6)

set x.+1 = x. + X.h., set i = i + 1 and

go to step 1.

CASE 3: ^(x^ >0.
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f . -^(x.)
Step 14: Set j=0. Compute fQ G 3£f(x.), Cg e 3^^), r(x.) =e n

hj =Nr co{cJ, ^>. Set hg =^, hj =r(x.)hj +(l-r(x.))hg.
Step 15: If max{llr(x.)htll2, ll(l-r(x.))h?ll2} < 6e set e=ve and go

i j 'j

to step 14.

Step 16: Set s. =arg max{3k|3k <{e/llh^ll, kGIN+}.
j j

Step 17: If

^(xi"sjhj} " *(xi} l-sj^hjn2, (4.7a)

set h? =-h^ and go to step 20.
Else, use the bisection method to compute

a rf+1 G3ip(x.) such that

<^+r hj> <ahjll2 (4.7b)

and proceed.

Step 18: If j<[r(xi)"1] (the integer part of) and

f^.-SjhJ) "f(xi*) >sjaBhj,,2» use tne Msection
method to compute a£?+1 G3ef(x..) such that

<4+l» hj>l^hg«2. (4.8)

Else set Zf.+} =cj.
Step 19: Compute

h*+1 =Nr(co{hJ, C*+r}), Rj+1 =Nr(cottJ+1. 5J. h}. e*+1»

hJ+1 "T^U +(W<*i»h}+r
Set j = j +1 and go to step 15.

Step 20: Compute

X. =arg max{3kk(x.+3khi) - ^(x.) < -3kallh.ll2; kGIN+} (4.9)
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set x.+1 = x. +X.h..

set i = i + 1 and go to step 1. «

Theorem 4.1: Suppose that Algorithm 4.1 constructs a sequence {x.}.

If {x.} is finite, with last element xN (i.e. the algorithm jams at

xN) then i|i(xN) <0and 0Gco{3f(xN) u3*ij/(xN)}. If {x.} is infinite,
Al Al

then any accumulation point x of {x.} satisfies i|;(x) <_ 0,

0G co{3f(x) u 3gi|;(x)}.

Proof: a) Suppose that {x.} is finite, terminating at x». Suppose

that either. iKxJ >0 or that ty(x*.) <_ 0 and 0£ co{3f(x.J U 3qI|/(Xm)}.

Case 1: Suppose that iJj(xn) <_ 0 and 0£ co{3f(xN) u 3Q^(xN)}. Then,

referring to (3.13f), e (xN) >0 and we can consider two subcases:

Subcase la: The algorithm is cycling between steps 3 and 6. In this case,

because of Proposition 2.3, we must have Until +0 as j -»• «> and hence
j

e\ 0as j-*• ». Consequently, there exists ajQ such that e<e'(xN)
for all j _> jQ and hence (see 3.13b) we must have that

llhj112 -llhe(x )^XN)[|2 >5e(xN^ for a11 j-V wh1ch 1s clearly acon"
tradiction.

Subcase lb: The algorithm is cycling between steps 2, 7 and 12. Since

by Proposition 2.3, hf -> 0as j•»- », eJv 0. If ip(xN) <0, then there
exists aj such that ip(xN) < -e and hence the algorithm transfers

permanently into the loop defined by steps 3 to 6. But we have already

shown that the algorithm cannot jam up in this loop. Hence, suppose

that ip(xN) =0. In this case, there exists ajQ such that e>_ e^xj
for all j>jQ and hence, llhjll2 >llhf1(x )(xN)U2 >6e»(xN) >0and,
again, we have a contradiction.
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Case 2: Suppose that i|;(xN) >0. Then, by Assumption 3.2,0 £ 3iJ>(xN) and

e'(x») > 0. Now, if j ->• ~, then, by Proposition 2.3, we must have

h? -»• 0 as j •* <» and hence, by construction in step 19, h. -»• 0 as j -*• ».
j u

Consequently, eV0as j-*• », so that there exists jQ such e_< e1 (x..)
for all j ^> jQ. But then, for all j >^ jQ we must have that

llh|D2 >!h*(x )(xN)D2 and Unto2 >IhV )(xN)B2. Consequently,

max{llr(xN)hjD29 ll(l-r(xN))h|n2} >-0^(x j(xN) >6e(xN) >6e, which
contradicts the conclusion that e V 0.

We have thus shown that the algorithm cannot jam up at a point

xN such that t|i(xn) >0 or i|/(xN) _< 0 and 0£ co{3f(xN) u 3QiKxN)}.

b) Suppose that the sequence {x.} is infinite and that x. •* x, with
A, A. A, ,

Kc {0,1,2,...} and either ijj(x) >0 or i|>(x) <0 and 0£co{3f(x) u 3Q^(x)}
Al ^ Al

Case 1: ty(x.) > 0 for i. In this case ip(x) >_ 0 and e (x) > 0. By
1 *Lemma 3.2, there exists an iQ such that e (x.) _> ve'(x) >0 for all

11 "'O' nG K' Consequently, since the test value of e in the imple

mentable algorithm is always greater than or equal to that in the con

ceptual algorithm, we must have, by Lemma 3.1, that

2 1 "*Qh.ll _> 6ve (x) >0 for all i^ iQ, iG K. Also, there exists ab<»

such that BhJ < b for all i G K. Consequently, in (4.7a), for all

i e K, i > i* a

Hence, by (4.9)

1 2 1iG K, i > iQ and j = 0,1,2,..., we must have s. >_ Be'(x-) > 3v e (x)/b.

<J>(x.+1) -H>(x.) <-[W(x)/b] 6ave1(x) =-Sc^vVu^/b <0
(4.10)

for all i G K, i _> i*. However, by continuity, \\>(x.) * ty{x) and hence,
A.

since ty(x.) V , we must have that ip(x.) + ij/(x). But this is contradicted

by (4.10) and hence the theorem is proved for the case where ty(x.) > 0

for all i.
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Case 2: There exists an in such that ip(x. ) < 0. Then, by construction,

we must have \\>(x.) <0 for all i_> iQ. Now suppose that x. -*• x,

KC{0,1.2,...}, with ip(x) <0and 0£co{3f(x) U3^(x)}. Then
•I Al "J Al
e (x) >0 and there exists an i-, _> iQ such that e'(x.) >_ ve (x) >0

for all iG K, i >_ i,. Consequently, with b = sup{llh.0|i G K} < »,
Al

we have once more that s. >_ ve'(x.)/b >_ 3ve'(x)/b for all i 6 K, i > iQ,

and Oh.II2 >Ih^x )(xi)II2 >6e'(x.) >6ve(x) for all i GK, i >iQ. It
now follows from (4.3a) and (4.5a) that

f(x1+]) - f(x.) <-a3v2e](x)2/b (4.11)

for all i K, i> i. Now, f(x.) + f(x) by continuity and f(x^) ,

hence f(x^) •* f(x). But this is contradicted by (4.11) and hence

we are done.
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