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Introduction

Over the last several years, we have first witnessed systematic
efforts to extend the concepts of the calculus to locally Lipschitz
functions (see e.g., [C1, L1, L2]), and to extend optimality conditions for
differentiable optimization problems to optimization problems with
locally Lipschitz functions (see e.g., [C2, G1,L2,P7,P13]). As a result, we
now have an analog of the extended F. John multiplier rule for nondif-
ferentiable mathematical programming problems [C2], analogs of Lagrang-
ians [C1] and an analog of the Maximum principle for nondifferentiable.
optimal control problems [C3].

The development of nondifferentiable optimization algorithms, for
the non-convex case, has begn far less systematic. Two distinct
approaches have emerged: that of the Kiev school, which constructs algo-
rithms without a monotonic descent property [S1, S2, P12], and the one
favored in the West, which always insists on monotonic descent of the
cost or of a surrogate cost [B2, GI, P2, P4, P7]. In this paper.we are con-
cerned with algorithms of the second type. Although the literature on
nondifferentiable optimization algorithms of the second type is still
extremely small, two principles seem to have emerged. The first principle
(see e.g., [B2, 61, L2, D2, P7]) is that in extending a differentiable optimi-
zation algorithm to the nondifferentiable case it .is necessary to replace
gradients not with corresponding generalized gradients, but with bundles
of generalized gradients in order to make up for the lack of continuity
of the generalized gradients. The bundle-size parameter (e) then has to be
driven to zero as an optimg] point i; approached; The second principle was
developed in [M1, L2, L5, W1, W2, P2, P7]. The gist of it is that when functions

are semi-smooth, it is possible to get a good approximation to the nearest point
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from the origin to their generalized gradient bundles in a finite number
of operations. The importance of this fact is that it defines an impor-
tant class of nondifferentiable optimization problems for which one can

obtain implementable algorithms, i.e., algorithms in which all the com-

putations that are required to be performed in each iteration can be
carried out in a finite number of simple operations.

In this paper we develop three general schemes for the extension of
differentiable optimization algorithms to non-differentiable problems.
The first one is for unconstrained optimization, while the remaining
ones are for constrained optimization algorithms. To illustrate the
applicability of these schemes, we use them to construct several con-

ceptual algorithms for optimization problems with locally Lipschitz

functions. These include an extension of the Armijo gradient method
(which had previously been presented in [P7]), extensions of two phase

I - phase II methods of feasible directions of the type discussed in [P3],
the extensions of exact penalty methods [C5, P14]. The extension of exact
penalty methods required the development of a sharper optimality condi-
tion for constrained problems than the ones found in [C2]. Finally,

for the semi-smooth case, we show that the conceptual algorithms give

rise to implementable algorithms in a totally systematic manner. We

hope that the results presented in this paper will contribute to the

understanding and development of nondifferentiable optimization algorithms.

1. Preliminary Results

Our analysis of algorithms for non-smooth optimization will be based
on a very small number of non-smooth analysis results. For the sake of
convenience, we begin by summarizing these; for details and proofs, the

reader is referred to [C1, C2, L1].
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Definition 1.1 [C1]: Let f R" +]R]-be Tocally Lipschitz continuous. The

generalized gradient of f at x is defined to be the set

af(x) £ col Tim VF(x+v,)) | (1.1)
v.+0

where co denotes the convex hull of a set, and the v; are such that

Vf(x+vi) exists, and 1lim Vf(x+v1.) exists. 0

v.»0
i

Definition 1.2 [C1]: Let f : R" - ]R] be locally Lipschitz continuous. The

- generalized directional derivati've of f at x in the direction h is de-

fined to be
d%F(x;n) & 1im f(X+y+)‘2)'f(X+y) (1.2)
y>0
A0

Fact 1.1 [C1]: Let f : R" +R

be Tocally Lipschitz continuous. Then
a) 3f(x) exists and is compact at all x €R";
b) 3f(x) is bounded on bounded sets;
c) 9f(*) is u.s.c. in the sense that {xi + ;, y; € af(xi) and
yi > §1 = {y € of(x)};
d) dof(x;V) exists for all x, v €R";

e) d%(x;v) = max <(&,v); (1.3)
EE¥F(x)

f) Whenever the directional derivative df(x;v) exists,
df(x;v) < dO¢(x;v), (1.4)

furthermore, when f is a:] at x, equality holds;

g) if x and h are such that dof(x-l-sh;h) < -a < 0 for all s € [0,1], then

f(x+sh) - f(x) <-as ¥s€[0,1], ¥a€(0,1) (1.5)



Fact 1.2 (Mean Value Theorem)[L1]: Let f : R" ->-]R1 be lTocally Lipschitz

continuous. Then, given x, y eRr"
fly) - f(x) = (&, y - x) ' (1.6)

for some & € 3f(x+s(y-x)) and s € [0,1]. u

Fact 1.3 [C2]: Let f:R"+R', o' :R" =R, iemd (1,2,....m};

o R R', j€ &A {1,2,...,2} be locally Lipschitz continuous and

let ; be a solution of the problem

min{f(x)|g'(x) <0, i €m, hi(x) = 0, j € 2. (1.7)
Then

0 € colaf(x) U {ag' (x)|i € I(x)} U {tjahi(;)lj.e&}} , (1.8)

where I(x) £ {i € m|g'(x) = 0} and t; € (+1,-1},

The above result is not quite strong enough to be used in the context
of exact penalty function methods and hence we had to propose the new
optimality condition stated below. We wish to thank Prof. F. Clarke for
supplying us with a proof (he has subsequently proved this result without

requiring that the set {x|F(x) = 0}, have measure zero).

Theorem 1.1: Let f, gi, iemn; hd, je s, fromR " into IR] be locally
Lipschitz continuous. Let x be a solution to (1.7) and let F : R"» IR]

be defined by
F(x) & max{f(x)-F(x); g'(x),. i €m [W(x)], j € 2}, (1.9)

where gi(x)_,_ 4 max{gi(x), 0}. Suppose that {x|F(x) = 0} has measure zero,

then



0 € cofaf(x) U {3g (x),N 3g' (x) |1 € I(x)} U {tjahj(;c)la‘ € 41}
(1.10)
where I(x) = {i € m| g'(x) = O}and ty € {+1,-11.

Proof: Although F. Clarke has proved the above result for a somewhat
more general case, we shall only give a proof for the-slightly restric-
tive case where x is also a local solution to min{f(x)lgi(x) <0,

i€m tjhj(x) <0, j €2}. (We note that (1.8) is also an optimality
condition for this case). We note that gi(x)+ > 0 and Ihj(x)l > 0 for
some i € m, j € & whenever x is infeasible. Furthermore, £(x) - f(x) >0
for all x which are feasible. Hence, F(x) > 0 for all x. Consequently,
X = arg meinn F(x) so that 0 € aF(;). Now, by assumption {x|F(x) = 0}
has measﬁremzero and hence (1.10) follows directly from the fact that
aF(;) involves the 1imit of gradients Vgi(x) evaluated only at points

X where gi (x) > 0. =

2. Unconstrained optimization

Let f : R"~ lR] be locally Lipschitz continuous. Consider the

problem

min  f(x). (2.1)
X€R

We shall consider algorithms for solving (2.1) of the form

Xi41 = X3+ A5hys (2.22)

A; = arg max {Bklf(x1.+skh.)-f(x.) < asks 1, (2.2b)
i i’ — i
kKEN,
where a,8 € (0,1) N, = {1,2,3,...}, and ai < 0. We recognize these

algorithms as a generalization of the class of descent algorithms,
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utilizing the Armijo step size rule [A1], that were discussed by Polak,
Sargent and Sebastian in [P9], for the differentiable case. Although
most, if not all, differentiable unconstrained optimization algorithms
of the form considered by Polak, Sargent and Sebastian can be analysed
in terms of the convergence theorem (1.3.10) in [P8], their structure
permits the introduction of more readily verifiable assumptions than
those found in Theorem (1.3.10) in [P8]. Consequently in [P9], we find
(in a slightly different form) the following result, which is intended
to be used for algorithms of the form (2.2a), (2.2b) when &, = df(x,sh,).

Theorem 2.1: Suppose that f :R"> ]R] is C] and that there exist two
continuous functions Nl’ N2 : R Bi*, which vanish only at points x

for which Vf(x) = 0, such that for h, in (2.2a)
df(xi;hi) = (Vf(xi), hi> 5_-N](xi), (2.3)
Hhiﬂ 5_N2(xi) (2.4)

hold.
Then, given anx such that Vf(x) # 0, there exista p > 0, and a

K €N, such that for all x; € B(X,5) & (xeR"|Ix - X < 7},
Flxg#h,) = F(x;) < Aadf(x.5h.) < -haly (R)/2, ¥r € [0,8K].  (2.5)
Relation (2.5) leads to two conclusions: for all x; € B(X,p)

(i) ;> gk
(1) Flxyy) - Flx;) < -8%aN, (X)/2,

, and



j.e. the algorithm map defined by (2.2a) (2.2b), with 8 é=df(xi;hi),

is locally uniformly monotonic (see [T1]). As an immediate consequence,
we see from theorem (1.3.9) in [P8] that any accumulation point x of

{xi} satisfies Vf(x) = 0.

Assumption 2.1: From now on, we shall assume that the function

f:R"- 1R1 is locally Lipschitz continuous. o

Any attempt to extend Theorem 1.1 to the case of f(-) locally

Of in (2.3) is doomed to failure,

Lipschitz only, by replacing df with d
as can be seen from the counter example in [W2]. This is due to the
fact that although an h, satisfying dof(xi;hi) < -Ny(x,) and (2.4) is
obviously a descent direction,_it is not possible to ensure that the

step size Xi is boun&ed from below in a ball about an X such that

0 € 3f(Xx). To insure that a nonsmooth optimization algorithm is locally
uniformly monotonic, it becomes necessary to "look ahead" for the

"corners” of f(-) by "smearing" 3f(x), as follows.

Definition 2.1: For any € > 0, we define the c-smeared generalized

gradient by

3.f(x) Lol U af(x")} (2.6)
x'EB(x,¢e)

Fact 2.1: For any € > 0, aaf(x) is compact, bounded on bounded sets;

furthermore asf(-) is upper semicontinuous (u.s.c.) (see [P7]). =

Definition 2.2: For any € > 0, we define the c-smeared generalized

directional derivative of f(-) at x, in the direction h by

dgf(x;h) 4 max  (g,m (2.7)
ges_f(x)



With the introduction of dgf(';-L and ignoring for the moment the
problem of choosing € > 0, as well as that of computing aef(x) and
dg(x;h), we are ready to extend Theorem 1.1 to the non-smooth case. We
shall refer to algorithms which assume that aef(x) and dg(x;h) can be
computed exactly as conceptual.

In anticipation of the application of the new theorem to conceptual
optimization algorithms for non-smooth problems, we find it necessary
to relax the continuity of N], N2 in Theorem 1.1 to a requirement which

is somewhat weaker than semi-continuity, as we shall now see.

Theorem 2.2 (conceptual Algorithms): Let € > 0 be given. Suppose that
there exist two functions N], N, : R"+ R such that

(i) 1If N](x)Nz(x) = 0, then 0 € 3_f(x),

(ii) For every x €R" such that 0 € aaf(x),
there exist a p(x) > 0 and b].(x) >0, i =1,2, such that for all

x' € B(x,p(x))
Ny (x') > by(x) s (2.8a)
Nz(x') < bz(x) . (2.8b)
Now consider the process (2.2a) (2.2b) and suppose that for i = 0,1,2,...,
QF(xssh,) < -No(x;)s (2.8c)
Ih, I < Ny(x,) - (2.8d)

Then, given any x such that 0 & aef(x._), there exists a XK €N’ such that
for all x; € B(Xx,p(x)) for all A€ [O,BE]



0 . -
f(xi+Ahi) - f(xi)_s Aadef(xi,hi) < =ha b](x). (2.9)

Proof. Let X €ER" be such that 0 & 3.f(X). Let K €N' be such that
BEBZ(X)‘i €. Then, for all X5 € B(X,p(X)) and for all X € [O,Bk],

(xi+Ahi) € B(xi,a) and hence for all such X3 and A,

dof(x1.+Ah.;h.)= max_ (g,h)
L gEaf (x+Ah, )

< max (g,hy)
£€3_F(x;)

= 40 .
< Ny (x4) < -by(x). (2.10)
The desired result now follows from Fact 1.](9). -

Corollary 2.1 (Conceptual Algorithms): Let € > 0 be given and suppose

that the assumptions in Theorem 2.2 hold. Then any accumulation point

i=
. 0 s s "

with d_f(x;,h;) < 8; < -N(x;) satisfies 0 € 3_f(x).

x of a sequence {xi} 0 constructed by an algorithm of the form (2.2a,b)

Proof: Suppose that X5 K ;, with K € {0,1,2,...} and that 0 & 3f(x).
Then, by Theorem 2.2, there exists an 10 and a E S ]N+ such that for

all i > 90, 1 €K, A; > 6% and
F(Xepq) - F(x:) < r.ad?F(x. 3h.)
i+l i) < Aj0d Fxgsh,
i)\ia&i

el

< -8kab, (). (2.11)



Now, {f(xi)} is monotonical]y decreasing and Xs X ;, hence, since f(-)

is continuous, f(xi)-*f(;). But this contradicts (2.11) and hence we

are done. : n
The simplest algorithm in the class considered in Theorem (2.2) can

be viewed as an "e-smeared" steepest descent method. It sets

hy = he(x;) & -Nr(3_f(x;)) & arg min{Inl |h € 3_f(x,)} (2.12)
- and

85 = -In 12 (2.12b)
Hence

d F(xs3h,) = -Hhiilz. (2.13)

Setting N,(x.) = ﬂh.ﬂ% we see that N,(-) is lower semicontinuous (1.s.c.)
1'% i 1

because aef(x?)is u.s.c. (see proof in [P7]). HNext, if we define Nz(x) by
Nz(x) = arg max{lhl|h € aef(x)}, (2.14)

we see that "hi“ §_N2(xi) and that N2(-) is u.s.c. because aef(-) is
u.s.c. (see proof in [P7]). Hence we can set b1(x) = N1(x)/2 and
bz(x) = 2N2(x) to show that this algorithm satisfies the assumptions of
Theorem 2.2.

Obviously, we would prefer to have algorithms which generate
accumulation points ; such that 0 € af(;) rather than 0 € aef(;), with
€ > 0. Hence, it is necessary to propose at least one e-reduction
scheme. The most natural thing to do is to reduce e as X; approaches a
stationary point. This fact is not postulated in the theorem below, but

unless it holds it is not possible to find a function N](-).
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Theorem 2.3 (Conceptual Algorithms): Suppose that there exist three
functions N1, N2, N3 : R" >R" such that

(i) If Nl(x)Nz(x)N3(x) = 0, then 0 € 3f(x).

(ii) For every x €R" such that 0 & of(x), there ex%st ap(x)>0
and bi(x) >01=1,2,3, such that for all x'€B(x,p(x))

Ni(x') < by(x), (2.15a)
Ny(x') < by(x) , (2.15b)
N(x') > by(x) - (2.15¢)

Now consider the process (2.2a)(2.2b) and suppose that for i = 0,1,2,...,
0 . ) . _
ilhill < Nz("i) . ' (2.15e)

Then, given any X such that 0 € 3f(X), there exists a K €N’ such that
for all x; € B(X,p(X)), for all A € [0,Bk-],

F(xs#ah,) - F(x,) < Aadg3(x.)f(xi;h1.) < = daby (%) . (2.16)
1

N

i

by an algorithm of the form (2.2a,b) with §. = d0 f(x.3h.) satisfies
i N3(xi)

0 € af(x). ﬂ

Furthermore, any accumulation point x of a sequence {xi} =0 constructed

We omit a proof of this theorem since it is obtained by a trivial
modification of the proofs of Theorem 2.2 and Corollary 2.1.

We shall now exhibit a natural candidate for N3(x) in extending the
"e-smeared” steepest descent method to one with an adjustable .

Thus, let v € (0,1 ),eo> 0, § > 0 be given.

-11- -



Let

el {ele = eovk

. k €N} U {0} (2.17)
Next, for any € >0, let |

h.(x) & -Nr(3_f(x)) & - arg min{lnl?|h € 3 F(x)}. (2.18)
Then we define € : R" + R! by

e(x) & max{e € E[th_(x)12 > sc}. (2.19)

Proposition 2.1(a): For every X €R" such that 0 € 3f(X), there exist

a p3(§) such that

e(xi) >ve(X) >0 ¥ X € B(§Lp3(§)). (2.20)
b) If x; > X as j + @ with 0 € 3f(x) then lx;) e(x) = 0 as j + ».

Proof: (a) Let x be such that 0 & 3f(x). Then, since 3f(-) is u.s.c.
there exists an g > 0 such that llh€ (Y)ll2 z%ﬂho(?)llz > 0. Hence,
since €' < " implies that Ilhe.(Y(')[]2 > llhe..(Y)[lz,it follows that

&(X) > max{c € E| € < minle;, 55 Iy (121} > 0 . (2.21)

Next, since by the maximum theorem in [B1], llhe(y)(-)ll2 is 1.s.c., and

2 .
llhe(;)(Y)ﬂ > 8e(x), there exists a p3(§) > 0 such that

2 2 —_
“hve(f)(xi)u > ﬂhe(?)(xi)" > Sve(x) for all x; € B(x,p3(x))
(2.22)
and hence (2.20) follows directly.
(b) Suppose that 0 € af(;). Then llho(x)ll-2 = 0 and for any € > 0

Ilhe(;)ll2 = 0. Hence e(;) = 0. Next, suppose that Xj > X as j + < and
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that.T?Eie(xj) >0, i.e. for some K C {0,1,2,...} and some € > 0
a(xj) 3_2 >0 for all j € K. Since we must have x € B(xj,e) for all
J sufficiéntly large, we must have that 0 € agf(xj), for all j suf-
ici )2 = : j e
ficiently large and hence "he(x.)(xa) 0 < e(xJ) for all j €K
sufficiently large. But this contradicts the definition of s(xj) and

hence we are done. ) ‘ n

The final version of the progressively-smeared steepest descent

method is sufficiently important to be stated formally:

Algorithm 2.1 (Conceptual).

Parameters: a, B8, v € (0,1), €y > 0, § > 0.
Data: Xo eR".
Step 1: Set i =0.
, A

Step 2: Compute hi he(xi)(xi)'
Step 3: Compute

A;=arg max{Bkl

i
k k.0 .
f(xi+s hi) - f(xi) < aB ds(xi)(xi’hi)}' (2.23)

Step 4: Set T xih{, set i =1+ 1 and go to step 2. =

i=
rithy 2.1. Then any accumulation point x of {Xi} (if it exists) satis-

fies 0 € 3f(x).

Theorem 2.4: Suppose that {Xi} 0 is a sequence constructed by Algo-

Proof: We only need to show that the assumptions of Theorem 2.3 are
satisfied. Clearly, we must set N3(x) = ¢(x) and by Proposition 2.1,
it has the required properties. Next, we set N](x) é=llhe(x)(x)ﬂ2.

Then the required properties of N1(-) follow from those of e(*) (with

py(x) = ps(x)) and, by inspection,

-13-



de(x) Flrshg ) 00D = My (x) C (2.28)

Finally, we setANz(x) A arg max{lhll| h € 3 f(x)}. Since Ny(-) is u.s.c.
0 )

by the maximum theorem in [B1], we are done. u

Next we turn to implementable algorithms. These are characterized
by the fact that they approximate the sets aef(x) by means of finite
operations while retaining a great resemblance to the conceptual algo-
rithms from which they are derived. It does not appear to be possible
to conﬁtruct a truly useful general convergence theorem of the form of
Theorem 2.3 for such algorithms. Instead, it seems simplest to use a

minor modification of theorem (1.3.10) in [P8], as follows.

Theorem 2.5: Consider algorithms of the form (2.2a,b). If for every
x €R" such that 0 & 3f(X) there exist a EGINt ad>0andap>0
such that for all X; € B(X,p),

Flx,*8%h,) - Flx;) < -a8s; < -08"G . (2.24)

Then any accumulation point 2 of a sequence {xi}?=0 constructed by such

an algorithm satisfies 0 € 3f(x).

Proof: Suppose X; L x and 0 & f(;). Then there exists an 10 such that

for all 1 €K, 1 > 15, A5 > éE and hence

flxgyy) = F(x) < 08T ¥ i > g, 1€K. (2.25)

But {f(xi)} is monotonically decreasing and f(-) is continuous; hence
f(xi) -> f(§) as i » ». But, clearly, this contradicts (2.25) and we

are done. "

-14-



At the present time, we only know how to construct implementable
algorithms for optimization problems in which the function f(-) is

semi-smooth (see [M1]).

Definition 2.3 [M1]: A locally Lipschitz continuous function f(-) is

said to be semi-smooth if it is directionally differentiable and if for
any x, h €R" and for any sequences {Ak}C 1R+, {zk}, {Vk}C R" such
that A+ 0, (1/>\k)vk + 0 and z) € 3w(x+xkh+vk), the sequence {(zk,h)}
converges to df(x;h). o
From our point of view, the most important property of semi-smooth

functions, which does not appear in the definition, is the following one:

Proposition 2.2: Suppose that f : R" ->1R]

is semi-smooth. Then, given

any X, h, {Ak},'{vk} as in Definition 2.3,

1im df(x+Akh+vk;h) = df(x;h) (2.25)
k-

We assume, until the end of this section, that f(:) is semi-smooth.
We are now ready to construct an implementation for Algorithm 2.1,
which satisfies the assumptions of Theorem 2.5. The implementation is
based on the following observations derived from results of Lemarechal
[L2] and Wolfe [W1, W2]. Suppose that x; € R, ¢ > 0 are given and that
0E 3 flx;) LletyY C aef(xi) be the convex hull of a finite number

of points in asf(x) and let
ng = _Nr(ys) (2.26)

Now, let kS élN+ be such that
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kS
Be < 8 °Inl <e. (2.27)

Then, either

k k k

s

Fx;+8 "ng) - f(x;) < -aB sﬂnsﬁz < -a SﬂNr(Bsf(xi)“2 (2.28)
holds or not. If (2.28) does hold, then h; = ng turns out to be an
adequate approximation to ne(xi), as far as convergence is concerned.
k

If (2.28) does not hold, then there must be a point n € [0,8 3] such
that

F(x;Hmg) = £(x;) = -Eaﬂnsﬂz (2.29)

and
df(x;#mng) > -aln 12, (2.30)

k
Now suppose that M € [0,8 1, = 1,2,..., are such that M N 7 and
that Y5 € af(xi+“j"s)’ for j = 1,2,... . Then, because f(-) is semi-
smooth,

(yjomg? » df(x;+un.) as j » =, (2.31)

and, consequently, given a @ € (a,1), there exists a j. such that
2 . o s
(ysng) > Flngl® ¥5 > §j - (2.32)

We see that if we set Yoo = co(YS L’{yj}), g4y = -Nr(YS+1)'is smaller then

n. in norm. We can now replace n_ by n_,, and return to the test in (2.28),
s

S s+l

etc. This cycle of operations cannot continue indefinitely, because, as
shown in [M1, P7], if s > » than ng > 0, which contradicts the obvious
fact that ng > hs(xi) > 0. THence the testk(2.28) will be passed in a
finite number of operations. Note also that 8 S is locally (w.r.t. x)
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bounded both from below and from above. Hence the convergence of the
algorithm below is very easily deduced from the preceeding results. Note
that the algorithm below uses a bisection procedure for finding p and

for constructing the “j‘

Algorithm 2.2.

Parameters: € > 0, a,8, v € (0,1), o € (a,1).

Data Xq eR".
Step 0: Set i = 0.
Step 1: Set e = € S = 0.
Step 2: Compute Yo © aef(xi)’ a convex hull of a finite number of points
in Bef(xi). )
. - + . s
- Step 3: Compute n. = -Nr(Y.) and k. €N such that e < 8 Inl <e.
Step 4: If "nS" < g, set € = ve and go to step 2.
Step 5: If
f(x +Bks ) - f(x:) < - ksﬂ 12 (2.33a)
itP Mg i/ < -oB “ingl, At
(i) set h; = ng and compute the smallest k, eN' such that
K, ki
f(x;#8 Thy) - F(x;) < -a8 '0n, 1% (2.33b)
g K;
(i1) set Xje1 = X3 + B hys

(ii1) set i = i+1;
(iv) go to step 1.

Step 6: Set j = 0.
k

. = = s 2 =
Step 7: Set 2.0 0, Yy ] llnsil > Mg Y‘O/Z.
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Step 8: Compute a Y541 € af(xi+rjns).

Step 9: If
(Yirys Nd > =ylIn 12 ' (2.34)
j#10 N7 ZTYTST .
Set
Yo = collyznl VYS), (2.35)

set s = s+] and go to step 3.

Step 10: If

Flxpugng) - F(x;) > -on,ln t?, (2.36)
set riel ° uj, 2§+] = 2j, My = (rj+]+zj+])/2.
Else set i = rj, 2j+1 = My By = (rj+]+2j+])/2.
Step 11: Set j = j+1 and go to step 8. "
Theorem 2.6£ a) If Algorithm 2.2 generates a finite sequence {xi}§=0,

jamming up at Xys then 0 € af(xN). b) If Algorithm 2.2 generates an

©

:;0 then every accumulation point x of {xi}i=0

satisfies 0 € 3f(x). n

infinite sequence {xi}

The success of Algorithm 2.2 depends on the following fact, due to

Wolfe [W1, W2] (see also [P7]).

Proposition 2.3: Let S' be a compact, convex subset of a compact convex

set S and let @ €(0,1). Let h' = Nr(S') and let g €S be such that
(g,h*> < alh'12 (2.37a)

Then h" = Nr(co{g},S'}) satisfies
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112 < max(@, 1 - (1-3)20h*12/ac?}in 12 (2.37b)

where C > max{llgll|g € S}. n

Proof of Theorem 2.6: a) Suppose that the sequence {xi} is finite with
the algorithm jamming up at X\ cycling indefinitely in one of the loops
defined by steps 2 to 4 or steps 3 to 9 or steps 8 to 11. Suppose that
0 & af(xy).

(1) consider the loop defined by steps 2 to 4. Since 0 € af(xN),
e(xN) >0 (see (2.19)) and hence for all € z_e(xN), Yo © aef(xN),
INP(YOR > INr(d_F(xy W > "Nr(ae(xN)f(xN»ﬂ-i e(xy) > € and hence no
infinite cycling can occur in this loop.

(ii) consider the loop defined by step 8 to 11. This loop is always

finite because f(:) is semi-smooth and (2.33a) is not satisfied.

(ii1) consider the loop defined by steps 3 to 9. Since 0 & 3 f(xN),
€ 3_e(xN) while in this loop. Hence by Proposition 2.3, '
Ing, I < max(@, 1 - (1-3)In_12/4c%}In_112 (2.36)
s+l — ? S S :

where C = max{linl|n € 3. flxy)}. Since ﬂnsﬂ >e > s(xN) for all s, it
0 Ze2
is clear from (2.36) that the sequence {ns} must be finite, i.e. the
Toop defined by steps 3 to 9 is exited after a finite number of operations.

Consequently, the algorithm jams up at N only if 0 € af(x b) Now

N)°
suppose that the sequence {xi} is infinite. Suppose that X; ¢ ;, with
K C{0,1,2,...} and that 0 & af(;). Then, by Proposition 2.1, there
exists an i, such that for all i €K, i > g e(xi) Z.Ve(;) > 0.
Consequently, for all i €K, i > i (2.33a) is satisfied with

“ns" z.ve(;) and Bksﬂnsﬂ E.Be(xi) Z.BVS(;)- Hence, by (2.33b), for

all i €K, i > g,
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Kipe 12 2
f(xi+]) - f(xi) < -af Hhiﬂ < -aB(ve(x))“. (2.37)

Now f(xi) L f(x) by continuity and {f(xi)} is monotonic decreasing.
Hence, we must have f(xi) + f(x), which contradicts (2.37). This com-

pletes our proof. R

" 3. Constrained Optimization: Conceptual Algorithms

We begin by examining the easiest case, viz., problems of the form

min{f(x)|g'(x) < 0, j € m} (3.1)

1

where f, gJ :R"> R' are locally Lipschitz continuous. For the purpose

of conceptual algorithms, it is convenient to define the function

v(x) & max gi(x)_ (3.2)
j€m

and to treat problem (3.1) in the simpler form
min{f(x)[¥(x) < 0} (3.3)

In implementable algorithms, since we may not be able to obtain a formula

for the set asw(x), we may have to use the possibly bigger set

Aco{ U J
Me(x) co{jEIe(x)asg (x)} (3.4a)
with
I(x) & 3 €mlg () > ¥(0) - e (3.40)

It is quite easy to construct an appropriate counterpart to Theorem
2.3, for algorithms which generate sequences {xi} by a construction of
the phase I - phase II feasible directions type [P3], using parameters

o, BE (0,1) viz:
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Xje1 = %5 F A4hys 120,752,000 (3.5a)
[ arg max{Bkl
W(x;#8n,) - w(x) < ag®s, < 0} iF w(x,) > 0;
A; =
V| arg max{BkI
f(xi+6khi) - fx;) jbaBkai < 0; w(xi+3kh1) < 0} if y(x;) < 0}

(3.5b)

Since "e-smearing" was needed for the unconstrained case, it is a fore-
gone conclusion that it is also needed for the constrained case and we
shall not go into any further justifications of the case of "e-smearing."

Also, for the phase I pa}t of the algorithms to work we need the following

Assumption 3.1: For all x €R" such that w(x) >0, 0 € 3y(x). H

This assumption ensures that a feasible point can be computed by means
of an unconstrained optimization algorithm in a finite number of itera-

tions.

Theorem 3.1 (Conceptual Algorithms):

1. Suppose that Assumption 3.1 holds.

2. Suppose that there exist three functions

N],NZ,N3 : R"> R* such that

(i) If Nl(x)Nz(x)N3(x) = 0, then
either y(x) = 0 and 0 € co(5f(x) U 3Y(x));
or y(x) < 0 and 0 € 3f(x).

(i1) For every x €R" such that N](x)Nz(x)N3(x) > 0, there exist a
p(x) > 0 and b;(x) >0, i = ],2,3, such that for all x' € B(x,p(x))
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Ny (x*) 2 by (x), | (3.72)
Np(x') < by(x), (3.7b)
N3(x') > b3(x). (3.7¢)

Now consider the process (3.5a), (3.5b) and suppose that for all i,

0

dN3( w(xi;hi) < 61, < -N1(x1.), if tb(Xi) > -N3(x1.), (3.7d)
X;)
dgs(xi)f(xi;hi) <85 < N(xg) iF y(x,) <0, (3.7¢)
[Ihill _<_N2(x1.). ‘(3.7f)
If {xi}:."=0 is an infinite sequence constructed by this process, then

-]

any accumulation point ; of {x;}._n satisfies w(;) < 0 and 0 € 3f(x) if
i‘i=0 -

¥(X) < 0, otherwise 0 € co{3f(x) U ap(X)}.

Proof: We note that we can distinguish between two cases: a) “'(xi) >0

for all i, and b) there exists an 1'0 such that w(xi) <0 for all i > i
K
->

0
2) Suppose that ¥(x)> 0 for all i, that x; & x, with K € {0,1,2,3,...},
and that N, (X)N,(x)N5(x) > 0. Then, the process (3.5a,b) reduces to the
one considered in Theorem 2.3, and hence we conclude that w(xi) ¥ -,
But this contradicts the fact that, by continuity of v, 1])(;) >0, and
hence this case is impossible.

b1) Suppose that w(xi) <0 for all i > i and that X; K ;, with lp(;) <0,
and N., (;)Nz(;)N3(;) > 0. Then, because of our assumptions, there exist
ips k'elN+, 'i] > iys such that w(xi+BEhi) <0 for all i > i, i €K.
Similarly, as in the proof of Theorgm 2.3, there exist 1'2, I?elNJ', with

1‘2 > 1'] and I?:'I?, such that Ay 2> Bk for all i > 1’2, i € K. Hence, for

all i €K, 1> 1,
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K, ~
flxg4q) - Flx;) <08 16; < -aBfby(x) < 0. (3.8)

But f(xi) v for 1 > i, and hence (3.8) implies that f(xi) ¥ -, which

0
contradicts our assumption that X; > X. Hence this case is not possible.

b2) Suppose that w(xi)lg 0 for all i > i, and that Xs K X, with p(x) = 0

0
and N](x)Nz(x)N3(x) > 0. Then our assumptions lead us to the conclusion

that there exists an i, > i, and a k €EN' such that

k k0 , k
f(,x1’+8 hy) - f(x;) < o8 dN3(x1.)f(x1"hi) < aB"s,

~N ~

lD(xi+Bkhi) - wlxy) < aBkdg3(xi)w(xi;hi) < or.Bk&]. (3.9b)

(3.9a)

~

and consequently, Ai z.ek. Therefore, (3.8) holds for all i 3_i1,

i € K and the contradiction follows exactly as for case b1). We have
thus shown that if X5 LS Q, then N1(x)N2(x)N3(x) = 0 must hold and hence

the desired conclusion follows from assumption (i) on Ny, N, Nj.

We are now ready to apply this theorem to two phase I - phase II
methods in the class of the ones presented in [P3] for differentiable
optimization. We begin with the simpler one. We shall need the fol-

lowing definitions. Let

w(x), & max{o, v(x)}. (3.10)

let ey >0and v € (0,1) be given and let

k

E= {ele = gv", k en'} U {0}. (3.11)

1

Next, Tet vy > 0 be given and let T :R" +R' be defined by

I'(x)‘-—A= exp(-y¢(x)+). (3.12)
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Finally,

for any € > 0, 6§ > 0, we define

20(x) & (3_9(x) 1f ¥(x) > -

(3.13a)

¢ if 'J)(X) < =€
hi(x) & -Nr(cofa_f(x), 22u(x)}), (3.13b)
h¥(x) & -Nr(3_u(x)) » (3.13¢c)
81(x) & -max{Ir(x)nf(x)12, 101-r(x)n¥(x)12} , (3.13d)
hi(x) & (x)n(x) + (1-r(x))(x) , | (3.13¢)
51'(x) é'max{e € E'leé(x) < =8¢}, ) (3.13f)

We recognize hi(x) as a "steepest descent" direction for y(-) at an
infeasible point, while hZ(x) is a "usable" feasible direction when x
js feasible. The vector he(x) moves from hg(-) to h:(') as x moves from
the infeasible into the feasible region. This type of construction is
the essence of the algorithms presented in [P3] and ensures that the
possible increase in cost is kept in check as the feasible region is

approached.

Algorithm 3.1 (Conceptual) .

Parameters: o,B, vE€(0,1), €gs 8> Y> 0.
Data: Xq eRr".

Step 0: Set i = 0.

Step 1: Compute hi = he(xi)(xi)’ Stop if hi = 0. . ,
. s 1

Step 2: If w(xi) > 0, compute the largest stepsize g ', k; € IN' such

that
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K. k.
w(xi+3 ]hi) - w(xi) < -aB 1Hhillz. (3.14a)

R k. .
If w(x].') 5_0, compute the largest step size g 1, 'kie 1N+, such that
k. K '
f(x,+8 'h,) - f(x.)< -a8 'lh.l (3.14b)
i i i’'= i
and )
v(x;+8 'hy) < 0. (3.14¢c)

k.
Step 3: Set Xie] = % + 8 1hi, set i=1i+1and go to step1. =

To bring this algorithm into correspondence with Theorem 3.1, we

define
N (x) & -0l1, 1 (x) (3.15a)
1 e (x)'\"7? .
Nz(x) é=ar~g max{lhl |h € co{ae f(x), 3: v(x)}, (3.15b)
0 0
Ny(x) & el(x), (3.15¢)
and we set
5; &-1h1% for i = 0,1,2,... (3.15d)

Lemma 3.1: For every ¢ >0 and any x €R",
Ih_(x)12 > -g)(x) (3.16)
€ Z "%

Proof: Case 1: Suppose that y(x) < -¢. Then ﬂhe(x)ﬂ2 = -el(x). Hence,
consider

Case 2: y(x) > -e. Consider the function g : [0,1] +1R] defined
by

g(t) & ilth:(x) + (1-t)n‘g(x)u2 - (1-t)2nh‘g(x)nz (3.17)
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Then g(0) = 0, g(1) = Ih'(x)1% > 0 and

2

d

—5 g(t)
dt?

P i \ 2 v 2
Z{Hhe(x) - ha(x)U - ﬂhe(x)ﬂ }

2000](x)1% - 2Anf(x), W(x)0
0, (3.18)

because <h:(x), hﬁ(x)) z_ﬂh:(x)ﬂz, by construction of hZ(x) and hg(x).
Hence g(-) is concave on [0,1] and, since g(0) = 0 and g(1)-> 0, g(t) >0
for all t € [0,1]. Consequently,

I (x)0% > (1-r(0PInY(x)12. (3.19)
Similar reasoning gives that
Ing ()12 > T(x) 20 (x)12 (3.20)

and we are done. R

Corollary 3.1: With §; defined by (3.15d) and N1(xi) defined by (3.15a),

we have &, < -N,(x;) for all i. H

Proposition 3.1: Consider the functions el(-) defined in (3.13d).

(a) For any x €R", if ¢' > ¢" > 0, then el.(x) > egn(x). (b) For any

e >0, el(-) is u.s.c.

Proof: a) Since ¢' > ¢" implies that ae.w(x) ) aenw(x) and

ae.f(x) D ae"f(x), this part is obvious.

b) Since for any ¢ > 0, a;w(-) and aef(-) are both u.s.c., it follows
from the maximum theorem in [B1] that llh:(-)ll2 and llh‘g(~)ll2 are l.s.c.

Hence e;(-) is u.s.c. n
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Lemma 3.2: For every X €R" such that 6(1)(7) #0, sl(x) > 0 and there

exists a p > 0 such that
a1, 1,- A , R
N3(x ) S e (x') >ve (X) = b3(x) > 0 for all x' € B(X,p) (3.21)

Proof: First, because the set valued maps 3f(-) and 3y(-) are u.s.c.,
and e(])(x)'< 0, there must exist an € € E, € > 0, such that 91(?) i -8e.
Hence s](D >-0.- Now,: for the sake of contradiction, supposz that
there is no p > 0 such that (3.21) holds. Then there must exist a

sequence {x;}, x; > X such that

e]ve'(x)(xi) > -8ve (_Y) for all i (3.22)

Since by Lemma 3.2 e\]) ](x)(') is u.s.c., we conclude from (3.22) that

-8ve! (x) < Tim eve] (—)(x ) < eve1(—)(x) (3.23a)

1 . .
But, by Lemma 3.2, B]s] (Y)(Y) > 0,1 (;)(I) and hence (3.22a) implies
that

-6 (%) < 921 0@ (3.23b)

Which contradicts the definition of ¢! (x). u

Theorem 3.2: Let {x _0 be any sequence constructed by Algorithm 3.1.
Then any accumulation point x of {x, },l =0 satisfies w(x) < 0 and

0€ co{af(x) U ap(X)}.

Proof: With N],NZ,N3,51. defined as in (3.15a) - (3.15d), we see that
at any X such that N, (Y)Nz(i')N3(Y) # 0, By Lemma 3.2, there exists a
P > 0 such that b] (x) = b3(Y) = ve! (X) > 0 satisfy (3.7a) and (3.7¢) for

all x' € B(X,p). Since 3 f(x) and 8ef(x) are both u.s.c., it is clear
0
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that a required b2(§) > 0 exists for (3.7b) to hold in B(X,p). Finally,
by Corollary 3.1, we have that 85 5_-N](xi) for all i. Furthermore,
Assumption 3.1 and Lemma 3.2 ensure that Nl(x)Nz(x)N3(x) = 0 implies
that condition (i) of Theorem 3.1 is satisfied. Consequently, the de-

sired result follows directly from Theorem 3.1. n

Our second algorithm has exactly the same structure as Algorithm
3.1 except that h is computed by evaluating a different optimality
function, 62 e(x )(x) It is a direct extension of the most efficient
phase I-phase II method of feasible directions known. ([P3]) We need
the following notation. Given y > 0, for any € >0 and x €R" we define

02(x) & min  GINIZ + maxEq h) - y0,(x), E¢ € 3_F(x);

hEIR
+
<gw, h, &y €3 0(x)}} (3.24a)

and
hz(x) = arg m1n {zﬂhﬂz + max{(gf, h) - v (x), Es €9 f(x),
heR"
+
<g¢, h), gw € aew(x)}}. (3.24b)

It follows by duality that when y _(x) = 0, for all € > 0,
e;(x) = eg(x) and hi(x) = h:(x), Hence, the behavior of the two algo-

rithms can differ only in the infeasibie region. We now define
e?(x) & maxte € J]62(x) < -se} (3.25)

where € and § are as in (3.13f).
Not surprisingly, the conclusions of Lemma 3.1, Propositions 3.1,
Lemma 3.2 and Corollary 3.1 remain valid when ez(x), hg(x) and eg(x)

are substituted for e](x), hl(x) and el(x) in the appropriate definitions.
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Consequently, we may state, without proof the following

Theorem 3.3: Suppose that Algorithm 3.1 is modified so that
- 12 . o .
hy = qﬁ(xi)(xi) in Step 1. If {x;};_, is an infinite sequence con-
structed by this modified algorithm then any accumulation point X of
'{xi}?;o satisfies w(Q) <0and 0 € co{ 3f (x) U agw(i)} u
Finally we turn to problems with both inequality and equality

constraints, i.e., problems of.the form
P: min{f(x)lgi(x) <0, i €m; h(x) =0, j € 2} (3.26)

where f, gi, i €mand hj, j € 4, from R" into R are all locally
Lipschitz continuous. In the differentiable case, i.e. when f, gi

and hj, iem jesr are all continuously differentiable, there are

two major approaches, based on exact penalty functions, for solving (3.26).
The first is due to Mayne and Polak ([M3]). It replaces the problem P with

ol

c? be1ow, c>90

1

Pe

: min{f(x)-c § h(x)|g'(x) <0, iem hi(x) <0, jeEy
jer
(3.27)
and, under mild assumptions, computes a finite c which makes Pl and P
“locally equivalent" in the vicinity of Kuhn-Tucker points of P for all
c > c. The second approach, see e.g. [C5, P14], replaces P with Pi

below, ¢ > 0,

Pg :min  f_(x) (3.28a)
x€R"
where
f.(x) & F(x) + clmax g'(x), + max[nI(x)|] (3.28b)
‘ iem T jer

Again, it can be shown that, under mild assumptions, P and Pg are
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"Tocally equivalent" for c sufficiently large, in the vicinity of
feasible Kuhn-Tucker points of P (see [P14]). .
In the nondifferentiable case both approaches tend to break down
when equality constraints are present because stationary points of Pg
which are feasible for P cannot be shown to be also stationary for P.
Furthermore, arbitrary feasible points of P may be stationary for pS.
Thus, consider the problem Pg. Suppose, for simplicity, that there are no
inequality constraints in P, and that 2 = 1, i.e., that there is only one

equality constraint. Then (3.26) and (3.28a) become

P :min {f(x)|h(x) = 0} (3.29)
x€ K" '
and
Pﬁ tmin {f(x)+c{ln(x)]} : : (3.30)
xR"

respectively. Suppose that for some ¢ > 0, X R" satisfies the necessary

2 and that h(x) = 0. Then

optimality condition for Pc’

0 € 3f(X) + co{3h(X) U -3h(x)} (3.31)

Now, from (3.31) we would 1ike to conclude that (1.8) holds, i.e., that

either

0 € co{5f(X) U ah(X)} (3.32a)
or

0 € co{af(x) U -3h(X)} (3.32b)

While in the differentiable case (3.32a) or (3.32b) follows directly from

(3.31), a similar conclusion does not hold in general in the nondifferentiable

case, as can be seen from the following example. Let x = (x],xz)T € Rz,

let f(X) = - ‘%‘ x]s

-30-



Tet

" G2+ 632 -5 ifx <1
h{x) =
x| + (x2)% - 5 if x! > 1

(1,2)7. Then % is feasible for P in (3.29) and

and let X
3n(x) = co{(1,4)T,(2,4)T}. It is reasily seen that for all ¢ > 1
(3.31) holds, but neither (3.32a) nor (3.32b).

This example shows that when 3h(X) is not contained in a one

dimensional subspace of F@

and h(X) = 0, then co{ah(X) U -3h(X)}

can be "blown up" by increasing c¢ so that X becomes a stationary point
for fc(-), i.e. arbitrary feasible point of P become stationary points
of Pg. Hence it seems that an exact penalty function method can be
generalized to the nondifferentiable case only when the generalized
gradients of all the equality constraints are each contained in a one
dimensional subspace of R", so that co{ahj(i) v -ahj(ﬁ)} does not

have an interjor point in any multidimensional space. In the presence
of inequality constraints alone, exact penalty methods should work, for

the following reason. Suppose that X satisfies y(X) = 0 and

0 €5f(X) + cop(x) for some ¢ > 0. Then we have that
£ * cogy =0 (3.33)

for some gfe af(?), g‘pe aw(x) and o € [0,1]. Consequently,

1 co =
(]+Ca) m gf + .T"'—C&. g!’} =0 (3-34)
i.e. 0 €co{3(x),ap(x)}. Hence it should be possible to solve P by
exact penalty function methods, provided the following assumption holds:

Assumption 3.2 For all j€ 4, the functions hJ(-) are continuously

differentiable.
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1
c

more attractive, since it permits the use of a broad class of algorithms

For the differentiable case the approach based on P_ is considerably
for solving P. However, this advantage is lost for the nondifferentiable
case. We will therefore consider here the more traditicnal approach
based on Pi. Although it is not possible to precompute a satisfactory
penalty ¢ for Pg, the theory in [P10] on abstract exact penalty

methods shows that such a penalty can be computed adaptively, provided

an appropriate test function can be constructed. We shall exhibit such

a test function for the problems in question.

We now define

n(x) & max|hd(x)] (3.35a)
) |
w(x), A g g'(x), (3.35b)
and
¢(x) A max{n(x),¥(x),} (3.35¢)

Next we establish a number of properties of the problem PE. The first one

is obvious.

Proposition 3.2: Suppose X is a local minimizer for Pg such that
¢(X) = 0. Then X is also a local minimizer for P.

Proposition 3.3: Suppose that Assumption 3.2 holds and that X € R" is

feasible for P,which for some ¢ > 0 satisfies
n M i,a % -
0 € 3f(X) + ¢ .Z] 8g (x), * ¢ .21 3lh(x)] (3.36)
i= j=

Then X satisfies (1.8).
Proof By assumption, there exist: (i) a gf € 3f(x), (ii) £ € 3g'(X)
and a t, €[0,1] for all i € I(x), (iii) t; € [-1,1] for all j € g,

such that
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Eo+c §  t.E +c T tyvhd(R) =o. (3.37)
f ieg(x) T E

By dividing each element of (3.37) by T+c( § t, + Y |ts]) we get (1.8).
i€rx) ' e |
Before we can establish the existence of finite penalities, we must

invoke the following, commonly used hypothesis.

Assumption 3.3: For every x € R" and any tstyseeest, € {-1,1}

0€ 3g .yl 3.38
Sq iélo(x) g (x) +sp jéd(x)tJ vhY(x) (3.38)

where
Ip(x) = (i € mlg'(x) = y(x)}
Jx)Alje &lhj(X)l = ¢(x),
Tty (x) = olx)
I 10 if y(x) < 6(x)

and

T if n(x) = ¢(x)
S, =
T Y0 if n(x) < ¢(x).
We are now ready to establish the existence of exact penalities.

Proposition 3.4: Suppose that X is a local minimizer for P. Then there

exists a ¢ > 0 such that

0€af(R) +c ] 3g'(x), +c I alni(R)] (3.39)
i€I(x) i€ :

for all ¢ > ¢, i.e. X is stationary for P
Proof By Theorem 1.1 and assumption 3.3, there exist
g € 2F(R), A1 2 0, ¢, ;€ ag'(R) N ag (R),, 1 €1,
and A € R, j € 2, such that
Ee* ) Al E .+ Xxj th(?() =0 (3.40)

i€l(g) V1 &
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Therefpre, for all ¢ > 0,

i J .

A A Jre

Ec+c ] —g .+cC I = vWwhi(x)=0 (3.41)
f7 e © vl i€ ©

Obviously, there exists a ¢ > 0 such that, for all ¢ 3_3, satisfying

: J

],\ . A. L .
c c gw,i € 3¢ (X), i€ I(x); and |C| <1, je &,. Hence, for
c >c, (3.39) follows from (3.41) and the fact that 0 € a|h3(§)|, for all
jE€4,and 0 € agi(Q) for all i € I(x). |

The following proposition.is. a direct corollary of Assumption 3.3.

Proposition 3.5: Suppose that X € R" is such that #(X) > 0. Then there

exists a ¢ > 0 such that

0€af(x) +cs 8l (R s vInd (&
(x) + ¢ giélo(x) 3g (x) + ¢ hjéd()?)l (%)

where
ig(x) = {i €mlg'(x) = ¥(X)},
IR) = GG erl MR =n@)1,
T if (X)) = ¢(%)
10 if g (X) < ¢(X)

1if n(R) = o(R)
Sh R .
0 if n(x) < ¢(x)
Proof: By Assumption 3.3 there exists a § > 0 such that for every
g' €ag' (%) with i € I5(R) and every j € J(X),

sgi

i Jro
g +S 7 vih(X)| > 8
€14 (%) hj

JEI(X)
Now, it is clear that proposition 3.5 holds with

c =~% . max{ﬂgfﬂlgf € 3f(x)}.
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We now construct an exact penalty function method which computes
the required penalty parameter c adaptively, making use of the scheme
proposed in [P10]. This scheme uses a test function tc(o) to determine
whether ¢ should be increased or not. As in (2.18) and (2.19), we

define, for ¢ > 0 and any x R",
hc,e(x) A -Nr(aefc(x)) (3.42a)
and (with § > 0),

ec(x) Smaxte € J| n. (x) 2 > ge) (3.42b)

Then for any ¢ > 0, x €R" we define

A 2
ec(x) 2 'uhc,ec(x)(x)" (3.42c)
and
t.(x) & - (x) + L o(x) (3.424)
c c c .
In accordance with [M3], we therefore propose the following con-
ceptual |

Algorithm 3.2:

Parameters: a,8,v € (0,1), €5 > 0, 6 > 0, and a sequence {cj}:;oc R

Cj 1 ©,
Data: xoe R"
Step 0: Set i =0, j =0.
Step 1: If t. (x1.) > 0, set 25 = X and increase j to the first j*
J *
such that t_ ,(x;) <0. Setj=7j.
Step 2: If0€ a?!'c_(xi), stop. Else compute X541 by applying Algorithm 2.1
to fc.(°)’ from Xy using the parameters supplied. Set i = i + 1 and

J
go to Step 1. "
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Theorem 3.4:

(i) If {zj} is finite, with last element zj*, then either the
sequence {xi} is finite and its last element, say Xy satisfies ¢(xk) =0
and (1.8), or it is infinite and any accumulation point'of’{xi}, say -
X, satisfies ¢(;) = 0 and (1.8).

(ii) If {zj} is infinite, then it has no accumulation points.

Proof (i) Suppose that both {xi} and {zj} are finite,{xi} terminating
_at x,. Then for some j = j*, we must have 0 € af_ (x,) and t_. (x,) < O.
k Cix K Cix K/ —

Since e¢_$xk) = 0, it follows that ¢(xk) = 0, and since 0 € afc (xk)

j*
it follows from Proposition 3.3 that

0 & cofaf(R);3g' ()1 € [(R):3[hd(X) .5 € 1

Next, suppose that {x,} is infinite, with x, K%, k cN* and

that {zj} is finite, terminating at j*. Let ij* be such that Xj o= Zgae
j*
Then for all i > ij* we have that
= - 1
tcj*(x1) Ecj*(xi) + o ¢(xi) <0 (3.43)

But as in the proof of Theroem 2.1 we have that € (xi) LS € (;) =0,
1%

c
e
and hence from (3.36) and the continuity of ¢ we get that ¢(X) = O.

Finally, since € (x) =0 implies that 0 € afc
ke .

J J
0 € cofaf(x); ag'(x),, i € I(X); 3|hI(X)|, § €4}

(X), it follows that
*

(ii) Now, suppose that {zj} is infinite and that z, & x for some

J
subsequence indexed by K C Nt Now, cj‘ﬂ ® and {zj}jEK is compact.

Hence {¢(z.)}.-, is bounded and therefore ;L-¢(z.) X, 0. Since
37 3K €5 I jaw

tc (zj) > 0 for all j € K, we must therefore have that
J-1

e (z,) X 0. Now, because of Assumption 3.1, there exist a
41 Y g |

o€ Kand an € > 0, € € E such that for all j > Jg» JEK
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o,
IlNr(aEfcj-](zj))ll > e (3.44)

which shows that €. (zj) > ¢ for all j > jo, Jj € K, which contradicts

J-
the fact that €c (z.) K 0.
s J
Jj-1
To conclude this discussion, we must point that one could also
construct a similar exact penalty function method in which each con-
straint is penalized individually, by setting
Ltm . .
A 1.1
f (x) = f(x) + 121 cg (x), (3.45)

. m+j j .
with g Jg ]hJ |-for j=1,2,...2. Thepenalties ¢’ must then be increased

individually when tki (x) > 0, with
C.
J

t1x) 2o (1) + La'(n, (3.26)

4. Constrained Optimization: Implementable Algorithms

We shall consider only the problem (3.1) and the implementation
of phase I - phase II methods, since the implementation of exact
penalty function methods is essentially the same as in Algorithm 2.2.

We shall consider problem 3.1 in the compact form
min{f(x) |p(x) < 0} (4.1)

with f, ¢ : R" +1R1 locally Lipschitz and semi-smooth. Furthermore,
we shall assume that 0 &€ 3p(x) for all x such that y(x) > 0. We shall

make repeated use of the bisection method described in Section 2

(equs.(2.26)-(2.30)) which can be used (for semi-smooth functions) to
find a £ € asf(x) (or £ € aetp(x)) such that (&,h} _<_Ellh112 whenever
h €R" is such that

F(x-Ah) - £(x) > -arlnt? (4.2a)
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or

w(x-Ah) - ¥(x) > -arlnl?, ’ (4.2b)

with Alhl < eand 0 < a <o < 1.

We now present an implementation of Algorithm 3.1!

Algorithm 4.1 (Implementable)
Data: €j >0, § >0, a, B, v € (0,1), T € (a,1), X, eRr"

Step 0: Set i 0.

Step 1: Set ¢ = €g-

§§gg_gf If w(xi) > -g, go to step 7.

CASE 1: w(xi).< -€,

Step 3: Set j = 0 and compute an hgie aef(xi)‘

Step 4: If ﬂhgﬂz < 8e, set € = ve and go to step 3.
Else, proceed.

Step 5: Set sy = arg max{Bk|Bk < (e/llhgl!), kK EN'}.

Step 6: If
i f,2
f(x; thj) f(x,) 5_-sjﬂhjﬂ , (4.3a)

set hi = h; and go to step 13.
Else, (i) use the bisection method to compute a Eg € aef(xi) such

that

£ f £,2
(g5, hy) < FIZ, (4.3b)

f ' f f . .
AP {£., h, =3+ )
i+ Nr co{EJ, hJ}, set j =3+ 1 and go to step 4

(i) compute h
Step 7: If w(xi) > 0 go to step 14.
CASE 2: w(xi) € [-¢,0].
Step 8: Set j = 0. Compute £ € 3_f(x;), &) € 3_y(x,) and
f_ f o
h0 = Nr (co{EO, EO}).

Step 9: If thfuz"< Sc, set € = ve and to to step 2.
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Step 10: Set s; = arg max{BkIBk < (e/llhgll), k GIN+}.
Step 11: If

f
w(x.-sjhj) - w(xi) g_-sjaﬂh (4.4a)

£,2
1 i,

set h?+] = h? and go to step 12.
Else, (i) use the bisection method to compute a

w .
gj+] S aew(xi) suc; that

! f f
(gJ.H, hj) 5?”’3‘" . v (4.4b)
(ii) compute hj+] = Nr(co{Ej, £ Ei+1})’ set

J=3+1 and go to step 9.
Step 12: If

f"2’

; ,
f(xi-sjhj) - f(xi) 5_-sjaﬂhj (4.5a)

set hi = -hg and go to step 13.

Else, (i) use the bisection method to compute

f
a €j+] € aef(xi) such that
f 12
(Egqps h3) < GlNSD%, (4.5b)

. f f .f {7
(i1) compute hjsp = Nr(co{Ej, €417 Ej}),
set j =j+ 1 and go to step 9.
Step 13: Compute

A; = arg max{BkIf(xi+Bkhi) - f(Xi)'i

aBkﬂhi“Z; 1p(x1.+Bkh_i) <0, k €N} (4.6)

set Xie] = %5 + Aihi, set i=1+1 and
go to step 1.
CASE 3: w(xi) > 0.
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. f w _ "‘p(xi)
Step 14: Set j = 0. Compute &y € aef(xi), £p € aew(xi), P(xi) = e .

he = Nr co{gg, g, setnd=gd, nl - I'(xi)hg + (1-0(x;))nd.

Step 15: If max{ﬂr(xi)hgﬂz, H(]-r(xi))hgﬂz} < 8e set € = ve and go

to step 14. _
Step 16: Set s; = arg max{BkIBk < {e/llhgll, k €N},

Step 17: If
W(xg-s5h%) = wlx;) < -ssalhfIZ, (4.72)

set hg = -hg and go to step 20.
Else, use the bisection method to compute

a g?+1 € aew(xi) such that

VT r,2 |
Celyr> hD) < SN (4.7b)

and proceed.
Step 18: If j < [F(xi)']] (the integer part of) and
T Ty2 .
f(xi'sjhj) - f(xi) > sjaﬂhjﬂ , use the bisection
method to compute a §§+] € Bef(xi) such that

£ f 2 ~
(Ejy» hy? < TNCI% (4.8)

f

f .
Else set Ej+] = gj.

Step 19: Compute
v 1.6 - £ f
Wjar = Nrleoth, e%,13), By = Nrlcolgyyg. €5, i cf,p)

r f Lo )
hJ+] = P(xi)hj'l"l + (]-F(Xi))h:‘_ﬂ-

Set j =J +1 and go to step 15.

Step 20: Compute

A; = arg max{s"lw(xi*rs"h,.) - wlx;) < -Bka"hi“z; keN}  (4.9)
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set X541 = xi + Aihi.

set i =1+ 1 and go to step 1. R

Theorem 4.1: Suppose that Algorithm 4.1 constructs a sequence'{xi}.
If {xi} is finite, with last element XN (i.e. the a]gor{thm jams at
xN) then w(xN) <0and 0 € co{af(xN) Lla;w(xN)}. If'{xi} is infinite,
then any accumulation point X of {xi} satisfies w(;) < 0,

0 € co{af(x) U a;xp(;)}.

Proof: a) Suppose that {xi} is finite, terminating at Xy Suppose

that either w(xN) > 0 or that w(xN) <0and 0 ¢ co{af(xN) L’33¢(XN)}-

Case 1: Suppose that w(xN) <0and 0 € co{af(xN) U agw(xN)}. Then,

referring to (3.13f), e](xN) > 0 and we can consider two subcases:

Subcase la: The algorithm is cycling between stébs 3 and 6. Inthis case

because of Proposition 2.3, we must have ﬂhgﬂ + 0 as j + « and hence

e\ 0 as j -~ ». Consequently, there exists a Jg such that e g_e'(xN)
for all j 3-j0 and hence (see 3.13b) we must have that

2 f 2 . . . .
thH z_ﬂhe(xN)(xN)ﬂ > Se(xN) for all j > Jp» which is clearly a con-

tradiction.

Subcase 1b: The algorithm is cycling between steps 2, 7 and 12. Since
by Proposition 2.3, h{ » 0 as j »=, e¥ 0. If y(x,) < 0, then there
exists a j such that w(xN) < -g¢ and hence the algorithm transfers
permanently into the Toop defined by Steps 3 to 6. But we have already
shown that the algorithm cannot jam up in this loop. Hence, suppose
that $(xy) = 0. In this case, there exists a Jg such that e g_e](xN)
for all j > j, and hence, thﬂz 3-“h:](xN)(xN)"2 z.ae'(xN) > 0 and,

again, we have a contradiction.
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Case 2: Suppose that w(xN) > 0. Then, by Assumption 3.2,0 & aw(xN) and
e'(xN) > 0. Now, if j » =, then, by Proposition 2.3, we must have

h‘j.’ + 0 as J » « and hence, by construction in step 19, h_§ +0as j >
Consequently, e ¥ 0 as j + =, so that there exists jo such € < el (xN)
for all j > j,. But then, for all j > j, we must have that

W2 o b 2 £2 _ o f 2
ﬂhjll 3llhe(xN)(xN)ll and llhjll Znhe(xN)(xN)“ . Consequently,

max{lll‘(,xN)h;Ilz, ﬂ(]-r(xN))h‘gnz} > 'GZ:(XN)(XN) > Se(xN) > 8¢, which
contradicts the conclusion that e ¥ 0.

Wevhave thus shown that the algorithm cannot jam up at a point
Xy such that xp(xN) >0 or w(xN) <0and 0 ¢ co{af(xN) U aglb(XN)}.
b) Suppose that the sequence {xi} is infinite and that Xs LS ;c, with
K € 10,1,2,...} and either y(x) > 0 or y(x) < 0 and OF co{3f(x) U 3gp(x)}.
Case 1: y(x,) >0 for i. In this case ¢(;) > 0 and e](;) >0. By
Lemma 3.2, there exists an 10 such that e](xi) > ve'(;) > 0 for all
i> 1'0, i € K. Consequently, since the test value of € in the imple-
mentable algorithm is always greater than or equal to that in the con-
ceptual algorithm, we must have, by Lemma 3.1, that
llh.ill2 > sve' (x) > 0 for all i > ip» T €K. Also, there exists a b < =
such that h].ll < b for all i € K. Consequently, in (4.7a), for all
i€K, i> 1'0 and j = 0,1,2,..., we must have s; > Bel(xi) > sze](;)/b.

J
Hence, by (4.9)

W(x4,0) = w(x;) < -[Bve! (X)/b] 6ave! (%) =-sagPe! (X)Z/b < 0
(4.10)
for all i €K, i > 1'0. However, by continuity, w(xi) K w(;) and hence,
since w(xi) Y , we must have that xp(xi) -+ lp(;Z), But this is contradicted

by (4.10) and hence the theorem is proved for the case where "’(xi) >0

for all 1i.
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Case 2: There exists an 10 such that w(xio) <.0. Then, by construction,
we must have w(xi) <0 for all i > i,. Now suppose that x, L ;,

K € {0,1.2,...}, with y(x) < 0 and 0 & co{af(x) U agp(x)}. Then

e](;) > 0 and there exists an i; > 1'0 such that e'(xi) ive](;) >0

for all i €K, i > i;. Consequently, with b = sup{ﬂhiﬂ|i € K} < =,

we have once more that S5 2 ve'(xi)/b > Bve'(;)/b for all i €K, i > 1’0,
and 1h, 1% > th(xi)(xi)ﬂz > 6e'(x;) > sve(x) for all 1 €K, 1> 14, It
now follows from (4.3a) and (4.5a) that

Flx;41) - Fx,) < -agve! (02D (4.11)

for all i K, i >1i. Now, f(xi) LS f(X) by continuity and f(xi) .
hence f(x;) - f(X). But this is contradicted by (4.11) and hence

we are done.
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