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ABSTRACT

In the layout of LSI chips, channel routing
is one of the key problems. The so—called "“one-
dimensional channael vouting" means that only £he
tarminals on ths wupper and lower sides of the
channal ara specifiad. But saomefimes, we have a
recztangular space with terminals specified on all
four sides. This accurs, for 2xample, when regular
channel meefs.

Two specific problems are given in ¢this
papar. One is called the fixed position problem.
and the other the fixed sequence problem. Attempts
ar2 made %o extend the merging algorithm to two-
dimensional problem provided thaft extra tracks are
available at the two ends of a channel.

The algorithm were coded in PASCAL and imple-—
mented on VAX 11/720 computer.
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AN APPROACH TO TWO-DIMENSIONAL CHANKNEL ROUTING

Y. K. CHEN

1. Intraductisn
In th2a layout of LSI chips.channel routing 1is aoane of
the key problems. Two rows of ca2lls are placed on ftwo sides
£ a channal. Along the channsl, every terminal of cells has
aptain number, and %ferminals with %the same number must be
onnected by 2 nek. Usually f&here arve harizontal ouftput
aads which go sidewards from the channel.

So-ralled “onz-dimensional channel routing" means fthat
the positions of the tarminals on the upper and lower gsides
ha charnel are specified while the position of the hor-
tal output leads ars arbitrary (Fig. 1¢(a}’.

= I
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Generally, in a LSI chip therz are saveral channels in
the routing ar=2a as shown in Fig. 1(b). In Fig.1(b) the rout-
ing of channals A/ B, G, and D are all ane~-dimensional prob-—
lems. It can be routed individually without considering &he
others. However when w2 consider channel E, all the termi-
nals, both an the wpper and lower sides. and on the left and
righ% ends, have already besen specified. So the problem is
ng lgnger onse dimensional. I% leaves us A4 two-dimensional
oroblem.

Two Yinds of two-dimensional probdlem will be discussed
in &his paper. The following are the two different specifi-
cations:

(1} The fixed position problem: both the wvertical and hor-
izontal output leads are spacified in fixed position.
An syample is shown in Fig(2}.

(2} The #ixed sequenca problem: the vartical output leads
ara2 specified in fixed position while the horizontal
ogutput leads are specified in fixed sequence. An exam—
ple i3 shown in Fig. (3). Compare the horizontal output
leads in Fig. (2) and Fig. (3}, we found that the %two are
not in a same position but have the same sequence.
Obwiously, the constraint in the fixed sequence problem
is less tight than that in the #ixed position problem.

Sevaral efficiant algorithms C11, (2] are available for
one-dimensional chaanel routing problam. Now attempts are
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made €0 exsand fhe merging algorifthm (2] 6o two—-dimensienal
problam. I¢ must b2 pointed out that when we wuse this
approach both %fha h2ight and width of fhe channel must be
ad justable.

In this paper we s%Tess emphasis on the approach for
fixed saquanca praoblem. In saction 3. two different
approaches for the fixed sequence problem are proposed. In
addition, an =affective algorithm +for finding the longest
common subsaquence of fwo strings wsad in section 3 is
introduycad in section 4 and section 3 .

Approach f£ar kthe fixed position problem

Y

The basic idea of this approach 1is to fransfer the
twyn—-dimensional problem ¢&o threse one-dimensional problems.
Supposa th2 axampl= in Fig.2 is the problem fo be salved.
This approach includes the following two steps:

(1Y First Step:

Firsh, without regard £o the fixed posiftion of fthe
horizonktal output leads, we ftreat the problem just as
an ona-dimensional problem with horizontal output leads
in an arbitrary position. The resulf obtained after
the firs% step guarantees the varktical output leads
placad at th2 spacified position while the pasition of
the horizontal oukpuits are arbitrary ( Fig. 4(al).

(2! Second SHa2p:

Make a permutation to left and righf horizontal
vutput leads respsctively. Affer the permutation both
ha laft and right output lesads obtained from the first
tzp are permuted to the specified fixed positions.
h a two layer permutation can be directly realized
by means =of a one-dimensisnal chann2l Trouting (
Fig. 4(bl).

Combining the results #rom the above two steps the
final result is abtainad ( Fig.4(c}). In Fig. 4(c} , thare
are &two and Lhree extra columns which occur at the left and
right end respeciivaly. If the £o0%al length is s¢ill wifthin
the limit of the rowking area %£h2 vrouting realization in
Fig.4(c) is acceptable. When we use merging algorithm, if
we start from a diffarant zone the result may be diffarent.
So by selecting %he starting zone af both fthe f#irst and
second steps, it is possible to obtain a gqualified routing
realizaticn in which the width and the length do not exeed
the liaif of %he roufing araa.
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) achas far £ixad

——

agquencs problem

Just as in the fixed ognsition approach the two-

dimensinonal problem zan also be reduced o a one—-dimensional
praoblam. Bacaucs the constraint in fixed s=2quence is less
stringent ¢han that in the fixad position we can accomplish
more in tha approach. Suppose the example in Fig.2 1is the
problem %o be solved.

3.1

apoproach with additional vertical constraint

Laf us first introduce a simpler approach. The
fixed sajuence problem can be ftrsated gequivalently as a
problew with no horizontal ouktpufs. For %the sake of
simplicity we will only consider fthe 12t output leads.
In Fig.3 the specified sequence of fhe left output
leads is 4.,1,2. I% means that ne2t 4 should be laid on a
#pack aboave nekt 1 and nat 1 should be laid on a track
above net 2. In Fig. 5(a) we axtend two extra columns at
the lath and of the channel. And we assign “4" and “1"
to &he wpper and lower ¢terminals on the one exftra
column, and “1* and "2" on the other extra column. The
purpass 9oFf doing ss is nof only to extend the autput
laads lefbwards beyond the original end but more impovr-—
tantly to add some additional vertical constraints to

the Vartical Constraint Graph (in Fig. 3(db)). Because
08 these additional vertical consfraints fhe specified
sequence aof the horizontal outputs is surely

guaranteed. By wsing this approach we get Fig. S(a). If
wye delete the extra columns in Fig.S(a) the final
rasult of Fig.3 is obktained (in Fig.3(c)). Obviously,
Fig. S(c) is equivalent to Fig.3(al.

approach with additional permutation

The apsroach wsed in the fixed position problem
can alsns bs wusad here. But now we only know the
sequenca of the horizontal outpuf laads. So between
the &uwn steps used in the fixed position prablem there
is another stap £o be comsidered. That is to specify
the paositian of fthe horizontal output leads. As illus-—
trated in Fig. 4, this approach includes thres steps:

(1} First Step:
It is the same as the firt step in the fixed
pesition problem (Fig. &(a}).

(2 ESecond Sfep:
Aftar the first step ftwo sets of horizeontal

outputs with arbitrary posifion are obtained. One
set go=s £o left and the other goes to right
(Fig. &(al). For example, let us discuss the right

side only. From the top %o fthe bottom the number
af these outputs are
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1,16, 7. 0, E

These are %he2 numbers assigned to £he terminals
nlaced on Ethe lett side of the right channel.
According £o the specification: the ssquence of
the tarminals on the right side are specified as

1,106:. 8,7

In this step we use fhe following criterian to
specity the position of such terminals. As shown
in Fig.&(b}): &he result is

1,10.8, 7, C

&s shown in referencs [31, the lowar bound of f£he
track number 1is related with dmax and vmax (dmax
@eans the maximum density, vmax means the maximum
lavel in ¥.C.G ). So the basic idea of specifying
tha position is to reduce the “dmax" and “vmax" in
tha righ®% channel. The criftarion acceptad in this
skap is

(a) Mafch tarminals with the same number in f£he
same column (i.e. £o get straighft connection)
as mush as possible, because straight connec-
tisn does not regquire a track (i.e. not to
increase dmax). In Fig. &b}, i and 10 are

matched with the sam2 number. Here we use an
afficiant aigorithm, as shown in section 4
and 3.

{b) Because there is no vertical constraint

between a nonzero tarminal and a zero in a
same column, then we match nonziero terminals
wikh o270 in a same column as much as possi-
ble in order not €0 increase “wvmax". In
Fig. &(b}, 7 is matched with zero.

(3y Third Step: After the second step the position of
the horizontal output leads has besn specified. In
this step the only thing we have to do is to make
the parmutation, jJjust as we did in the second step
in tha fixed position problem (Fig. &(c)).

Cembining Fig. & (a) and Fig. é(c):, we get the final

rasult as shown in Fig. &{d}. Because in the fixed
saquence problem the terminals of the horizontal output
12ads have mafchad in such a way . the extra columns on

both onds of the channel may be less fthan that in the
£ixed positicon pgroblem.

Computational examples for both fixed position and
Firad saquenca arse shown in Fig.7 and Fig.8
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respectively.

Fig 9 is the same example as Fig.3, but the ofther
approach (with additional vartical constraint) is wused.
From Fig.S and Fig. 9 we can see fhat thare is no extra
row oaccurring in Fig.8 while no extra golumn occurred
in Fig. 9. e can select one of the two approaches
depending on how many exfra rTows and columns ther=2 are
in the routing araa,

£iva algorithm for f£inding tha longest com—
h
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Tha problem we have mentionad in section 3.2
{2)(a) can ba summed wp as follows:

We have ktwo specified s2ts ,Set P and Seft Q.
In Set P &there is no duplicated alement except
null. In Set @& there are no null elements but all
tha nonnull alements that occur in Sat P.
Howevar, the nonnull elements generally do not
appear in the same sequenc2 as in St P. as shown
in Fig. 10, now we match =ach element in Set G with
an elemant in Set P. But after matching, ¢the
saquence of Set G must remain the same. All the
alemants matched with the same slement are called
the common subsequence. The problem is how to get
the longest common subseaquence.

In ordar to match each elemenft in Set G to an
alament in Set P, there are two constraints to be
cansidered:

Constraint(li————- end constraint

When Set Q is matched with Set P no element
in Set @ is allowed to go beyond either end of Set
£. As an example in Fig.ii(a), element M can not
be matched in pair: otherwise, element & in Set G
has to go beyond the right 2nd of Set P.

Constraint(2)=—=——- intarnal constraint

whan any two elements in Set @ are matched
with Set P all the elements between these two ele-—
ments in Set & can find fheir carresponding spac-—
ing in Set P. As an example in Fig.11(b), if ele-
ment C has been matched in pair then alement E can
not be matched in pair, oherwise =2lement B can not
find a spacing in Set P.

Fig.1i(c) shows £&he longest common subse~
quence obtained by maftching Set P and Set G

Novembar 1&, 19381



2.2 The main algarithm
This algorithm includes fthe following three staps:

(1} First Sktep: We Ffirst delete the elements
which do not satisfy constraint(l).

Check =ach of the elements in Set G (also
Sat P} respectively by matching that element
with the same in Set P. I[f any =slement in Set
G go beyond either =and of Set P them the
checiksd element do=s not satisty con-
straint(i}. We jJush delefe the checked ele-
msnt from both Set Q@ and Set P, instead put
in a null alement “0O¢“. "0O" is also freated as
nuil slement "G%. Afftar all the elements have
been chacked, the remaining nonnull elements
satisfy constraint(i). As an example

A0, CLE,C/ B/ O, Fi DO MY

t P=<{
% =4C., B, E, F., O, M, &}

3=

By checking in this way, except for A and M,
all the other elemen%s satisfy consfraint(l).
The rasult obtained is

Sat P1=4{0,0,C.E, B, OQ, F, B, 0, 0)
Sat @1=<C,B,.E.F.D,0,02

(2) Sacond Step: We disregard to constraint(2)
and f#ind the longest common subsequance

Construct a bipartite graph by connecfing
the same elements which are separated in
SetP1 and Set Gi . as shown in Fig. 12(a).
Count &he intersections of each net with the
pther nets. Accarding to the number of inter-—
sections, delete the net with the largest
numbar of intersections from both SetPl and
Set@1. After the deletion of edges, a null
alament “0% is assigned to the vertices which
dafine the deletad =2dges. Iferations are made
step by step until there is no intersection
betwean nefs.

Fig. 12 illustrates +the above procedure.
First, net A&, then net D is delefted.
Finally, the final bipartite graph without
edge inktersection is obtained (Fig.12(c)).

I+ thers are two or mocre nets to be deleted
and thase nets have the same number of inter-—
section then we will retain net k for which
the coandition

laft(kpr/left(kq) = right(kp)/rightikq?
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is satistfied or nearly satisfied.

This is 435 shown in Fig. 13, wherse
¥ i5 number of ftha nat £o be considered,
kp is one ferminal of neft k in Set P1,
kp is fthe other tarminal of net k in S=2t @1,
le®t(kp’s is the distance from the left end
to kp in Sef P1, and
right(kp? is thes distance from the right end
to kp in Sat P1,
latt(kq? is the distance from the lsft end
to kg in Seft G1, and
rightl(kg) is the distance #from the right end
to kq in Set Qi.

In place o+ the above formula we would
rather wuse the following criterion to retain
nef 4% which maximizes g(k)

g(ki=sgr(left(kpli#laftikg)) +

sqri{righf(kpi#right(kql?

From the final bipartite graph in Fig. 12(¢}
we have

Set P2 ={0,0,0,.0,B,.C. 0, E,F, G, 0O}
Safy G2 =4B8,0,C,. 0, E, D F>

It must be pointed out that sfter deleting

.nets in the +first and second steps Set Q2

also includes null slements “0". For conveni-
ance, in fhe next two sections we will only
use fhe symbol “O" uniformly to express ¢the
nuyll alaments in Set P2 and Set G2. Nonnull
elemants in Set Q2 have fthe same sequence
with that in Set P2. But not all these non-
null 21zmants can be matched in pairs because
constrain(2) has not y=2t been considered

Third Step: We now consider constraint(2}) and
find ¢the longest common subsequence from Set
P2 and Sat G2

This step is the key part of the whole
algorithm. An attampt is made ¢to find an
aptimum algorithm. Before we inftroduce ¢the
algovifthm in secfion 35, an example will be
shown first in Fig. 14, Fig 14(a} 1is ¢the
resulft +from wusing the simply algorifthm by
Just matching nets from left ¢o right. Fig
i4(b}) is the result by using an optimum algo-
rithm which yields betfter result than that in
Fig. 14(a}.
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ara in a same ssguancsa

Let us reviaw %this poroblem as fellows: Except #for
null alamenfs &hare i3 no duplicated element in both
Sef P2 and Set G2. Set G2 includes null elements and
all ¢he nonnull s2lements in Se% P2. The nonnull ele-
manks in S=2t G2 have the sams segquence as that in Set
P2. The oproblem is how %o match Set P2 and Set QG2 to
get the longes® common subsequence.

S.1 Ta maks the situatien precise, lef us first intro-
duce saveral definitions and theorems.

DEFINITIONE

CEF(1}Y “the matchable poing” of an original ele-
nent

As shown in Fig.15, choose any s2lement in Set
G2 as an original point and match that element
with the same element in Seft P2. Check the other
2lements whether they can be matchad with the same
alements or not. If one can be matched &hen ¢&his
alament is called “%the matchable point" of the
original 2i2man%t. In Fig. 1S3, A& and F are fthe
ratchable points of B; C,D, and E are not match-
able points of B. If B is the matchable point of A
then the necessary and sufficient condition can be
axpressad as:

nunb{4A o BX>>= nuamb{A‘o B}

where
&, B balong to Set P2
A‘B* belong fto Seft G2
numb<A o B) means the number of null
alemant “O" bstwean A and B

Dbviously, i+ B is the matchable point of A then A
is alse tha matchable point of B (the reciprocal
proparty of matchable point}

EF(2! “the matchable poinft matrix M"

A3 shown in Fig.14(b), a3 sgquare matrix M is
dafined such as &o express all the information
abouft &the matchable poinkts in Fig. 1&(a). The
number of column of matrix M 1is equal to the
number of nonnull elements in set P2 (or Sef G2).
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Let MLi, il = I, which mgans we use i as the -
original paint

1, §y is the matchable point of i
Let MCi, 51 ={
O, j is not the matchable point of i

From the first row of M in Fig.14(b) B 1is the
nearest wmafchable point of A Wa call B the first
matchable point of A, and D the second , E the
third recpecfively. Obviously, because of the
raciprocal praperty of the matchable point, matrix
M is symmetric,

LEMMA (1)

I+ B and € are fwo successive matchable
points of A as shown in Fig.17(b}) and
suppose B is the i th matchable point of A

C is the (i+1) th matchable point of A

B is the first matchable point of B,

then D is also fthe matchable point af A. In addi-
tion either D coincides with C, or D is located at
the right side of C.

CPrcotl

Because B is the matchable point of A, and D 1is

the maftchable point cf B, then we have
nunb€{A o B} >»= numb{A‘ac B’} ;
numb<{B o D} >= numb{B‘ao D'} i
nuab<A o BY+numb<{B o D} >=
nuab{A‘o B'>+numb{B‘o D’} i
i.e. numb<A o D} 2= numbf{A‘c D2}

Tharefora [ is the matchable point of A,
Becausa € is the next matchable point after B, D
can not be located at Lhe laft side of C; other-—
wise, C can not be the next matchable point.

Theraefore aither D coincides with €, or D is
located at the right side of C (GED).

adccording to the location of Db B and C can be
divided into the following two cases:

Casa(i}y : C is also the first matchable point
of B (Fig. 17(a)).
Case(2) : C is not the matchable point of B

(Fig. 17(b) ).
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Lat us infroduce some basic intuitive ideas
by means of an example. In Fig. 18(a), Set P2 and
Sef G2 are fthe fwo sets to be matched. Fig. 18(b)
is &he mafrix M of the sets. A is the starting
paint. B and © are the first and second matchable
paints of A, I+ B and C belong to Case(l}, it
means that C is also the first matchable paint of
B. ©OFf course, we just match B as the matching
point. Oftherwise, if we matech C, one matching
point B is missed.

Bu% now: matrix M f£ells . ys that B and C
balong ¢to Case(2). By checking the elements in
mafirix M/ as shown in Fig.18(b}, we +ind that
€A, Bl=1,MLA, C1=1, and MLB,CI=0. It means that B,C
are the first and second matchable points of A,
but C is noft the matchable point of B. It seems %o
us that now we have two choices, either B or € can
b2 maftched as the maftching point. Fig. 1B(c} and
Fig. 18(d) show fhe fwo different results. In
Fig. 18(d), C is selected as a matching point which
lgads %o a better result than that in Fig. 18(c).

The reason is that, in this case, C has more
matchable points than that of B. First, we start
from MCE, Bl move right, and check the elements in
row B. We +ind fhat B has only one matchable
point F ( MIB,Fl=1). Then we start from MLC,.CI, by
che2cking fhe same way, we find that C has two
watchable points D and F  (MIC,DI=1,MLC,Fl=1}. In
addition, D: the +first matchable point of C is
nearar to the original point than that of F which
is the first matchable point af B.

The abovz basic ideas can be summed up as a
thearem.

THEQREM(1}

I+ B and € ar2 two successive matchable points of
Ar and if B and C belong to Case(2}) as shown in
Fig. 19, and

suppos2 B is fhe ith matchable point of A

C is the (i+1)th matchable point of A

D is the first matchable point af B

E is the first matchable point of C; then
ue have

(1} Any matchable point of B is also the match-
abla point of C, it means that the set of match-
able points of B is the subset of that of C.

( only fthose matchable points which are at the
right <side of the ariginal point ars included in

November 14, 1931



(2 Eifther E coincides with D, or E is located
at the left side of D.

EProo+l

5.2

(1) First, let D be any wmatchable point of B.
Because D is the matchable point of B and C
is not fhus we have

numb<{B o D} >= numb<{B‘o D'} i
numb<{8 o C} < numb<{B‘a C ¥ i
numb{B o DY-numb<{B o CX >
numb<{B 9 D }-numb{Bo C 2>
i.e. numb<{C 2 B¥ > numb{C‘o D'?}
Therafore D is also the matchable point of
C.

(2} Now, let D be the +first matchable point of B.
From (1}, D is also the matchable point of C.
Becaus2 E is the first matchable point of C,
then either E <coincides with D, oar E is
located at the left side of D. (GED?}

The optimum algorithm

Accogding to Theorem{il}) we have our optimum
algorithum as follows:

If an original point has at least two match-
able points, then the matching point can be found
at either of the following two locations:

Loecation(l}=—===—- I+ the first and second matchable
points B and C of an original point A belong to
Casa2(1), as shown in Fig.20(a}):, then select B as
the matching point.

Location(2)====~=- I¢ B.C,D....J K, are the
first, second. . (j=13th, Jth, (4y+1)th matchable
points of A/ and suppose any two successive points
from 3 %fa K (i.e. BC,CD...JK}) all belong to
Cas=2(2), ouly KL belaong to Case(i), then select K
as the mafching point.

Lamma(i}) and Theorem(l: are applicable to any
tuo successive matchable points of an original
point. Becausa BC,CD.....JK all belong to Case(2),
according to Theorem(l} we have

the 32%t of matchable points of B is the
subset of matchable points of C,
the sef of matchable points of C is the
subset of matchable points of Dy

November 1&: 1981



5.3

tha set of matchable poinfts of J is the
subset of matchable poinfs of K.

So sets of matchable points of X (X=B,C, D....J}
are all &the subset of matchable points of K.
Therefore, when we select K as the matching point,
it yields €the bettar resulf than that of the oth-
ars.

[+ we use this algorithm stap by step, we get
the whole algoritha:

at Start from mpl, the starting point, and +find
mo2, th2 matching point from either the laca-
tion(l} or location(2} of mpl;

a2 consider mp2 as tha original point, and +ind

mp3, bthe matching point from either the loca-
tion(l} or location(2) of mp2 i

rapeat fthis procedure step by step until the

and of the set is resached. It gurantees our
getting ¢the largest number of matching
points.

It is easy to sum up the procedure of the oaptimum
algoriyhm by using matrix M
all origin:=starting point:
(Start from starting point.)
ati2 i:=arigin, J:=ovigin;
(Start from MLerigin,originl=I.}

313 repeat j:=j+1
until MLi, §3=1;

(Move right unftil the first matchable point j
is found,where we have MLorigin, ji=1.)

ald i:=y;
(Move downward until resaching &the diagonal

element, where we have MCLi, j1=I. Now i is the
first matchable point of origin.}

MNovember 16, 1981



ais y:i=y+i;

(Move right and attempt to find £the first
matchable point of i and to check the follow-
ing three cases. !

alé  i# (MTi, y+11=0) and (MLarigin, y+11=0}
then goto als;

(In this «case, y+1 1is neither the first
matchable point of i, nor the second match-
able point of origin, Then keep oan moving
right. }

if (MLi, y+11=0) and (MLorigin, y+il=1)
then i:=y+1
goto aldi;

(In this case, j+1 is not the #irst matchable
point of i, but the sacond matchable point of
arigin. [t means fhat i and J+1 belong to
Case(2}), Then keep on checking the second and
the third matchable points of origin, to see
whether they belong to Case(2) or Case(l).}.

i® MLi, y+11=1
then j:=i
select i as the matching poing
(the end of one step)

(In €his case, y+1 is the +first matchable
point of i and also the second matchable
point of origin. It means ¢that i and j+1
balong ¢o Case(l}). Mave back te MCLCi, il=I,
select i as the matching point.)

ai7 origin:=i
gota ala;
(the begining of £he next stap.)

An example is shown in Fig.21,which is the matrix
M of Fig. 14, Fig.21 illustrated how the matching
result, as shown in Fig. 14(b) is obtained.

At first stap, let A be the “origin". Now, B
and C belong to Case(1l). According to the pro-
cadure mentioned above we obtain B as the Ffirst
maftching poinét.

At the saecond step, let B be the “origin".
Now:, CD as well as DE beleng to Case(2}), and EF
belong to Case(l). According to the procedure men-
tioned above we obtain E as the second matching
poing.

By using the same way, we obtain F and & as
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tha third and faurth matching points.

o
&

An =2xample i35 shown in Fig.22. In Fig. 22(a), the
simple algorithm is wsed. In the simple algorithm,
we Jjust select the first matchable point as the

natching poing. In Fig.22¢b), (c? the optimum
algorithm is used starting from E and R respec-—
tivaly.
Table(l}
f= === H t t—- L
H { algorithm!{ sftarting! matching i
H { used i paint { points H
(= = b t H H
iFig. 22(a)! simplea ! E V ENSF.TOV
: { algorithm! WY ¢
fm— = —m—— t - |
{Fig.22(b)! optimum | E t ESSAMON L
H t algorithmi F TV WY :
{Fig.22(c})! optimum | R P E,S/RSNGL,
H H aigorithm% F T, VWY H
{m——— i e ——— { (= H

Table(l} compares the results of Fig. 22, It is
clearly shown that fthe rtesults of the optimum
algarithm is better than that of the simple algo-
rithm. tioreover starting from the different
points the rasults may be different. Therefore by
using ¢this algorithm and starting from the dif-
ferent points we can obftain the longest common
subsequenca.

&, Conclusion

The merging algorithm can be wused to solve the
two-dimensional problem provided that extra tracks are
available at the two onds of a channel.

Three algorithms were proposed. One 1is for the
tixed position problem. Tha ofther fwo are for the
fixed sequence problem. The algorithm were coded in
PASCAL and implemented on VAX 11/780 computer.

REFERENCES
£13 ©. N. Deutsch, C. Persky and D. G. Schwiekert.

“LTX-A System for the Directed Automatic Design of LSI
Circuits" Proc. 13th Design Auto. Con#. 1976, pp. 399-

November 1&, 1981



- 1S -

407.
£21 T. Yoshiwmura and E. S. Kuh “Efficiant Algo-
rithas for Chaunel Routing® UCB/ERL MB0/43, Aug. 1980.
Channel

€31 ¥. K. Chan and M. L. Liv “"Thres—~layer
NMov. 1981.

Routing" UCB/ERL ME81i/84,

November 14, 19281

[



9 10 10

4

e L X

(a)

\

1 1

]

]

A\ I I

G T3INNVHD

[T |\

% CHANNEL A CHANNEL E CHANNEL B %

1




Ol 4 5 | 7 0 7 0 4 9 1010
1 ] ] L ] | ] | f
4 —
0
| — fixed position problem
0
2__..
| | | | | | I | | 1 l | |
2 3 5 3 5 6 6 2 8 9 8 T 9
Fig. 2
o1 4 5 | 7 0 7 O 4 9 1010
) I N S | R T
specified
sequence
4
; : fixed sequence problem
) I I T T T T 1
3 5 3 5 6 2 8 9 8 7 9

specified
sequence

|
> 10

8
7




— ]

-9

T o o ~ F.
- ©
w R ik i P 1 1 O [
i ® °TT AN
- 117 ® - 2 g
= ‘lllla - - gll.ll..lllluH - QD
I I = - g I f-to
11| Tl 2 ° Lo
-} o [ _

I
¢ -~ on~OO® ~=1-1-¢ ¢-—-F%

(a)
(b)
0
HIM
6

—

i |
— |
——
5 3 5
left side
L 4
6._{__.
¢
—1—
¢

4 5 |
11
P b
l:$
!

1 1
1 |
— |
53 5

- ¢ 0N

(c)

Fig. 4



-~--

— e e - - -

(a)

8 right side

O
(9
@

(b)

©
(D

left side @

| ee e - —

) IS )

-~ O
~
— N
—~ O
— ©
—
—
—~ 0
~ 10

¢ — 00 OO OW

(c)

Fig. 5



_ -_— m o~ O _ -°
l* ﬂl..l o .“ - oo~ O .%_ | A.Wllllu ﬂ..ll.
O O I I I & {*- ot |4 ¢---
Y e o) Hllule m M — 5[" lllllll .ll
s T 11T 1 = .
~—~r-® —1--Fo - T 9n~0 o Nﬁ ] _ 4
- — ® - OoOMO ® o *-—
-l .9 ¢—-——-} M- ¢ ———
1 — . " ]
- © a 3 ﬁ
—d—-0 H..IIG ~ ~ A== }—-0 -
--¢ 4-—--lw —4—-9¢ | o-}---
e === fo = -
Sand Lead cadanad - o o - o 4]"'!‘ - -
-~ —@ —}-m & -— —_t—- s mi g
. = T T T 1 “ . o L
A SluinE ph — 0¥ —-wn O = _
O ¢ — N O .-.ll.l*
|

- ¢ O« . <

(d)

Fig. 6




[V
DN OAITOLEERDR=TITTNGT

—

*¥E5%¥¥ example

XEEERE

n

-

n

v W
N - D000

oot 0

(SR O O o R o S W WO TDOOTOWOOIRDOTH O OIONOOO—
- - - - - v e - WM~ MO
Pt 1
4 & ]
s —a
M s 4 -—
& & o é ’ ]
4
—n—u o - -—
[ & [ ] '}
-8 = ..._
- ol L g
—- 4 ] ? ;
- L ] » + ~8
a [ . -8 B
- 9
P & - —i
- & = H §
& Fy : - . —a
DO HOMNMITORE N YVITOINTIIOOWI~NUNOMOIT-TOIWNARDON OO TOmWO
™ - Lal el - N - - [ ] (- — -
# columnh= ©@ # zone= 12 before merging vmax= 4 maximum density= 16
# net= 31 start zone= 4 after merging vmax= 7 number of tracks= 18

Fig. 7



w
NOOOONIIDIODIDW=UNDODSH

—

¥%%¥%¥ example 8 ¥¥¥x¥s

NOOAOOIN AN ANNTOUITNDDOEUONRTEROOTOWOOREOMTOLWEONDO O~
-t R R R R R ] ] - e R e A ] -0~ 0 O v ) - 00N
H Pt T
» & & 4 P
s .
- 4 4 " ]
&—8—8 & -
[ SE ] y | . ] [ -
| 4 & L
& - [ ] -
[ & & a
[ 3 - » ) - ]
- = [ -
[ s = 3 B
& it & - '
= = ] » 2 I-—-—-
& - - . -
OO~ OIMOIO RO AYVEOIWMTIDOODEAANINOCRTOIVNATMELYET OO
™ -t - - (oI AV I oY v ) - (- -~ - N
# column= 60 # zone= 12 before merging vmax= 4 maximum density= 16
# net= 31 start zone= K& after merging wvmax= 7 number of tracke= 16

Fig. 8




¥¥EE%% example 9 ¥E¥¥x¥

OO ® MM —N~ OO T ONONEOOOEOTO0 ST WO ST OO0 @D D0
-4 v vl v et e v i v e >t w4 e () - 0 o) ©n] 0 - ) Lo T AN U AY T ¥ B o8 I
] i 1 i i i 1
a o a — -~ - a - 24
@ » s ) a
2] 4 9
e 18
4 = » L - '] 7]
5 - [ - & >——a (4]
0 - » o
31 : 31
%) & » ') . 26
3 +—u—n & - a
2 9 » & 22
%) [ s = 21
6 » » » 25
a » —r “ = z27
10 » i s = - o 7]
z 4 & " i a
) » -~—u " - - . e
13 3 H H H
DO MO M MO®E— DD v~ YUH O DWT OO 0DDWOID A~ MUOIDMAO-TDHONNDONDOODT OWD '
(@] -t -t v QN . et (<Y ] - () - -4 - )
# column= 60 # zohe= 12 before merging vmax= 10 maximum density= 16
# net= 3t start zone= 11 after merging vmax= 12 number of tracks= 17

Fig. 9



SET P = {A,0,C,E,0,B,0,F,D,0,M}
SET a = {c,B,E,F,D,M,A}
(a)

SUP:AOEEO@OE@OM
SET Q : : BEEPDOM A
(b)
Fig.10

SHP:Aoiso?oifog Aoi%g&
SET Q ® E O A BE..
(a) | (b)

Fig. Il

SETPI 0B$é CADEFOOO

SET Ql A B C'¢EDF .
08\¢c4>0><EFooo'
¢B'C.‘4>EDF

SET P2 OB\¢>C¢4>EFOOO

SET Q2 $ BCOSPEGSEF



left (kp) right (kp)

SET Pl ————¥¢p——

. N‘
SET Ql L 1 i 1 1 1 1 1 1 1 ] 1 1

-

left (kq) right (kq)
Fig.13

ABOOCDEOTFOGLO

A B c oD OEOF ¢
(a)
A B OOCDEUOFOGO

A B CODOE O F )
(b)
Fig. 14

SET P2Z_A OB C O DE OF

/

SET Q2 A B 0O C D E'F
Fig. 15




F

A B CDE

— ] e | e ] == e

B

Q

A

SET P2

L

SETQ2 A B 0 O C D E F

(a)

(b)

Fig. 16

®Ov-® © @

©

..

(b)

TR e Il I el e N
w —{Oj|O1O|H|—
ol —|O|—|1H]|O| —
Ol —|O|H|—]|O]}| —
o —|H|O|O|O| —
gH-H|—|—|"|—]|—
<o OO0 w w
- - W wow
O - OA -l O
OA W O O OF
- - L) L- - O Wi
Q- - O O- -0 O
o- oo fFoo
O - 0O O -O O
- - O @ nBB.._
©o{ (oo [ Of
O - O- - OF
<t- —< < <

(d)



A S %
® © © 0
Fig. 19
& T
® ©
;




A B C D E F G

pé Y

| A
Py

Ol| O

Fig. 21

]
1 70o|loll 0| o

O|I

O|0]|I

A I"||



EOSOOFRMONLOTVWXZO0O0Y

E' S' FrFoOROMNLTVWO X 02ZY

E S FRMNLTVWXZY
CELIg e
sfolxm v v
Flifv]Iyotrororotm 1| 1]1]0]!
RItlrjolI]olt|rfufr]r]t|{ofl
Mt fololTfuvfu]uffrfafrfr]i
NpLjrfojfejxpifaffrfr]rfof
Llojofojrfurjrfziffr]r]r]o]
Tl efrjjrfzymir]jofoft
Vit fefarfa | 0| O] |
Wit frprprprfr ] 1yero
X{tfojufr]ifr|r]|oflojoflzI|o]1
z|1]1|oJof1]|ojo|o|o|o|o|I|!
Yoo oo o]}

Matching points —e E S F,T,V,W,Y

(a)
Fig.22



EOS OOFRMONLOTUVWXZOOY

E' S FF 0o R OM N' L' TVviwox oz Y

E S FRMNULTVWX 2ZY

el o] v oo e e
s Il fptgf vy
Flifr {tolllofloflo | i [i]i]|1]o]
Rit|t ot Tollt |t |t]1]t]rifoft
Mit]r|ojofTsLl 1]l
Npr o il [l ]of
Lir{ovfolv ]ttt ]t]1]o]!
Tiofofe ] ele]r il {o]o]
Vit frjpepr e IsEL |00 !
wlelo oo ool [ ] 1 3ebel
x{tftr v ]t |11 |ojolo|1]o]!
zli1 |1 |loflo]i|o]lolo|oflofof1|:
Yl v oeloe o oo pepe et

matching points——E S, M, N, L, T, V, W, Y

(b) .
Fig.22



E OS OO FRMONLOTVWXZOO0Y

E' S' FFoR OM N U TV wWo x o z'Y

2 P 0 T T T AR OO T
3 [ 5~ et 8 N T T A I O AR
Fit{plIfolojojo|t|tli}jt1{o]l
Rl tjrjolzjol ittty trfo]l
0 2 o e A T T T A Y Y Y O T O
AVIRS I T T o A T I O 2 T A O O O O O Mo B I
L{tf o]t} I}_—l L1 1] 1ol
Ty v Il 1|olo]l
viprfrfrfejrjprprjrjI4jo]oll
"V T O T T A T O Y A —I?Etjﬁt‘l
x| ool fail o] lolololz]of
z|1|l1|o]lol1]olo|lo|lo]joO|lO]I]|!
) 0 N T T T T T A T T A Y I O I I

Matching points—=E,S,R,N,L,T,V,W,Y
(c)
Fig. 22



	Copyright notice 1981
	ERL-81-83

