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ABSTRACT

In the layout of LSI chips/ channel routing
is one of the key problems. The so-called "one-
dimensional channel routing" means that only the
terminals on the upper and lower sides of the
channel am specified. But sometimes* we have a
rectangular space with terminals specified on all
four sides. This occurs, for example, when regular
channel meets.

Two specific problems are given in this
paper. One is called the fixed position problem,
and the other the fixed sequence problem. Attempts
ar^ made to extend the merging algorithm to two-
dimensional problem provided that extra tracks are
available at the two ends of a channel.

The algorithm were coded in PASCAL and imple
mented on VAX 11/780 computer.
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AN APPROACH TO TWO-DIMENSIONAL CHANNEL ROUTING

Y. K. CHEN

1_. Introduction

In the layout of LSI chips,channel routing is one of
the key problems. Two rows of cells are placed on two sides
of a channel. Along the channel, every terminal of cells has
a rertain number, and terminals with the same number must be
connected by a net. Usually there are horizontal output
leads which go sidewards from the channel.

So-railed "one-dimensional channel routing" means that
«h» positions of the terminals on the upper and lower sides
of'the channel are specified while the position of the hor
izontal output leads are arbitrary (Fig.Ka)).

Generally* in a LSI chip there are several channels in
the routing area as shown in Fig. Kb). In Fig. Kb) the rout
ing of channels A,B,C, and D are all one-dimensional prob
lems It can be routed individually without considering the
others. However when we consider channel E, all the termi
nals, both on the upper and lower sides, and on the left and
right ends, have already been specified. So the Problem **
no longer one dimensional. It leaves us a two-dimensional
prob lem.

Two kinds of two-dimensional problem will be discussed
in this paper. The following are the two different specifi-
cations:

<1> Th* fixed position problem: both the vertical and hor
izontal output leads are specified in fixed position.
An example is shown in Fig(2).

c?) Thp fixed sequence problem: the vertical output leads
av* sp*<-ified in fixed position while the horizontal
output leads are specified in fixed sequence. An exam-
pip is shown in Fig.(3). Compare the horizontal output
leads in Fig.(2) and Fig.(3), we found that the two are
not in a same position but have the same sequence.
Obviously,the constraint in the fixed sequence problem
is less tight than that in the fixed position problem.

S*v*ral efficient algorithms C13,C23 are available for
one-dimensional channel routing problem. Now attempts are
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made to extend the merging algorithm C23 to two-dimensional
problem. It must be pointed out that when we use this
approach both the height and width of the channel must be
ad jus table.

In this paper we stress emphasis on the approach for
fixed sequence problem. In section 3, two different
approaches for the fixed sequence problem are proposed. In
addition, an effective algorithm for finding the longest
common subsequence of two strings used in section 3 is
introduced in section 4 and section 5 .

2. Approach for the f ixed pqs ition problem

The basic idea of this approach is to transfer the
two-dimensional problem to three one-dimensional problems.
Suppose the example in Fig.2 is the problem to be solved.
This approach includes the following two steps:

(1> First Step:

First, without regard to the fixed position of the
horizontal output leads, we treat the problem just as
an one-dimensional problem with horizontal output leads
in an arbitrary position. The result obtained after
the first step guarantees the vertical output leads
placed at the specified position while the position of
the horizontal outputs are arbitrary ( Fig.4<a)).

(2) Second Step:

Make a permutation to left and right horizontal
output leads respectively. After the permutation both
the left and right output leads obtained from the first
step are permuted to the specified fixed positions.
Such a two layer permutation can be directly realized
by means of a one-dimensional channel routing (
Fig. 4(b) >.

Combining the results from the above two steps the
final result is obtained < Fig.4(c)). In Fig.4(c) , there
are two and three extra columns which occur at the left and
right end respectively. If the total length is still within
the limit of the routing area the routing realization in
Fig.4(c) is acceptable. When we use merging algorithm, if
we start from a different zone the result may be different.
So by selecting the starting zone at both the first and
second steps, it is possible to obtain a qualified routing
realization in which the width and the length do not exeed
the limit of the routing area.
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3. Approaches for fixed sequence problem

Just as in the fixed position approach the two-
dimensional problem can also be reduced to a one-dimensional
problem. Because the constraint in fixed sequence is less
stringent than that in the fixed position we can accomplish
more in the approach. Suppose the example in Fig. 3 is the
problem to be solved.

3.1 Approach with additional vertical constraint

Let us first introduce a simpler approach. The
fixed sequence problem can be treated equivalently as a
problem with no horizontal outputs. For the sake of
simplicity we will only consider the left output leads.
In Fig.3 the specified sequence of the left output
leads is 4,1,2. It means that net 4 should be laid on a
track above net 1 and net 1 should be laid on a track
above net 2. In Fig. 5(a) we extend two extra columns at
the left end of the channel. And we assign "4" and "1"
to the upper and lower terminals on the one extra
column, and "1" and "2" on the other extra column.' The
purpose of doing so is not only to extend the output
leads leftwards beyond the original end but more impor
tantly to add some additional vertical constraints to
the Vertical Constraint Graph (in Fig. 5(b)). Because
of these additional vertical constraints the specified
sequence of the horizontal outputs is surely
guaranteed. By using this approach we get Fig. 5(a). If
we delete the extra columns in Fig.5(a) the final
result of Fig.3 is obtained (in Fig.5(c)). Obviously,
Fig. 5(c) is equivalent to Fig. 5(a).

3.2 Approach with additional permutation

The approach used in the fixed position problem
can also be used here. But now we only know the
sequence of the horizontal output leads. So between
the two steps used in the fixed position problem there
is another step to be considered. That is to specify
the position of the horizontal output leads. As illus
trated in Fig.6, this approach includes three steps:

(1) First Step: .
It is the same as the firt step in the fixed

position problem (Fig.6(a)).

(2) Second Step:
After the first step two sets of horizontal

outputs with arbitrary position are obtained. One
set goes to left and the other goes to right
(Fig.6(a)). For example, let us discuss the right
side only. From the top to the bottom the number
of these outputs are
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1, 10, 7, 0, 8

These are the numbers assigned to the terminals
placed on the left side of the right channel.
According to the specification, the sequence of
the terminals on the right side are specified as

1, 10,8, 7

In this step we use the following criterion to
specify the position of such terminals. As shown
in Fig.6(b), the result is

1, 10, 8, 7, 0

As shown in reference C33, the lower bound of the

track number is related with dmax and vmax (dmax

means the maximum density, vmax means the maximum
level in V.C.G ). So the basic idea of specifying
the position is to reduce the "dmax" and "vmax" in
the right channel. The criterion accepted in this
step is

(a) Match terminals with the same number in the

same column (i.e. to get straight connection)
as much as possible, because straight connec
tion does not require a track (i.e. not to
increase dmax). In Fig.6(b), 1 and 10 are
matched with the same number. Here we use an

efficient algorithm, as shown in section 4
and 5.

(b) Because there is no vertical constraint

between a nonzero terminal and a zero in a

same column, then we match nonzero terminals

with zero in a same column as much as possi
ble in order not to increase "vmax". In

Fig.6(b), 7 is matched with zero.

(3) Third Step: After the second step the position of
the horizontal output leads has been specified. In
this step the only thing we have to do is to make
the permutation, just as we did in the second step
in the fixe4 position problem (Fig.6(c)).

Combining Fig.6 (a) and Fig.6(c), we get the final
result as shown in Fig. 6(d). Because in the fixed
sequence problem the terminals of the horizontal output
leads have matched in such a way i the extra columns on
both ends of the channel may be less than that in the
fixed position problem.

Computational examples for both fixed position and
fixed sequence are shown in Fig. 7 and Fig.8
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respectively.

Fig 9 is the same example as Fig.8, but the other
approach (with additional vertical constraint) is used.
From Fig. 8 and Fig.9 we can see that there is no extra
row occurring in Fig.8 while no extra column occurred
in Fig.9. We can select one of the two approaches
depending on how many extra rows and columns there are
in the routing area.

4 An. effective algorithm for finding the longest com
mon subsequence of two strings with certain constraints

4.1 The problem we have mentioned in section 3.2
(2)(a) can be summed up as follows:

We have two specified sets ,Set P and Set Q.
In Set P there is no duplicated element except
null. In Set Q there are no null elements but all
the nonnull elements that occur in Set P.
However,the nonnull elements generally do not
appear in the same sequence as in Set P. As shown
in Fig. 10, now we match each element in Set Q with
an element in Set P. But after matching, the
sequence of Set Q must remain the same. All the
elements matched with the same element are called
the common subsequence. The problem is how to get
the longest common subsequence.

In order to match each element in Set Q to an
element in Set P, there are two constraints to be
cons idered:

Constraint 1) end constraint

When Set 0 is matched with Set P no element
in Set Q is allowed to go beyond either end of Set
P. As an example in Fig.lKa), element M can not
be matched in pair; otherwise, element A in Set Q
has to go beyond the right end of Set P.

Constraint(2) internal constraint

when any two elements in Set Q are matched
with Set P all the elements between these two ele
ments in Set Q can find their corresponding spac
ing in Set P. As an example in Fig. 1Kb), if ele
ment C has been matched in pair then element E can
not be matched in pair, oherwise element B can not
find a spacing in Set P.

Fig.lKc) shows the longest common subse
quence obtained by matching Set P and Set Q.
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4.2 The main algorithm

This algorithm includes the following three steps:

(1) First Step: We first delete the elements
which do not satisfy constraint(1).

Check each of the elements in Set Q (also
Set P) respectively by matching that element
with the same in Set P. If any element in Set
Q go beyond either end of Set P then the
checked element does not satisfy con—
straint(l). We just delete the checked ele
ment from both Set Q and Set P, instead put
in a null element "0". "0" is also treated as
null element "0". After all the elements have
been checked, the remaining nonnull elements
satisfy constraint(1). As an example

Set P=<A, 0, C, E, 0, S, 0, F, D, 0, M>

Set G=<C, B, E, F, D, M, A>

By checking in this way, except for A and M,
all the other elements satisfy constraint(1>.
The result obtained is

Set P1=-C0, 0, C, E, 0, B, 0, F, D, 0, 0>
Set 01=<C, B, E, F, D, 0, 0>

(2) Second Step: We disregard to constraint(2)
and find the longest common subsequence

Construct a bipartite graph by connecting
the same elements which are separated in
SetPl and Set Gl , as shown in Fig.12(a).
Count the intersections of each net with the
other nets. According to the number of inter
sections, delete the net with the largest
number of intersections from both SetPl and
SetGl. After the deletion of edges, a null
element "0" is assigned to the vertices which
define the deleted edges. Iterations are made
step by step until there is no intersection
between nets.

Fig. 12 illustrates the above procedure.
First, net A, then net D is deleted.
Finally, the final bipartite graph without
edge intersection is obtained (Fig.12(c)).

If there ave two or more nets to be deleted
and these nets have the same number of inter
section then we will retain net k for which
the condition

left(kp)/left(fcq) = right(kp>/right(kq)
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is satisfied or nearly satisfied.

This is as shown in Fig. 13, where
k is number of the net to be considered,

kp is one terminal of net k in Set PI,
kp is the other terminal of net k in Set Ql,
left(kp) is the distance from the left end

to kp in Set PI, and
right(kp) is the distance from the right end

to kp in Set PI,
left(kq) is the distance from the left end

to kq in Set Ql, and
right(kq) is the distance from the right end

to kq in Set Ql.

In place of the above formula we would
rather use the following criterion to retain
net k* which maximizes g(k)

gCk)=sqr(leftCfcp)*left(kq>) +
sqr(right(kp)*right(kq))

From the final bipartite graph in Fig. 12(c)
we have

Set P2 =<G,0, 0, 0, B,C,0, E, F, 0, 0>

Set 02 »<3,0, C, 0,E, 0, F>

It must be pointed out that after deleting
.nets in the first and second steps Set Q2
also includes null elements "0". For conveni

ence, in the next two sections we will only
use the symbol "0" uniformly to express the
null elements in Set P2 and Set G2. Nonnull

elements in Set Q2 have the same sequence
with that in Set P2. But not all these non-

null elements can be matched in pairs because
constrain(2> has not yet been considered .

(3) Third Step: We now consider constraint(2) and
find the longest common subsequence from Set
P2 and Set Q2

This step is the key part of the whole
algorithm. An attempt is made to find an
optimum algorithm. Before we introduce the
algorithm in section 5, an example will be
shown first in Fig. 14. Fig 14(a) is the
result from using the simply algorithm by
just matching nets from left to right. Fig
14(b) is the result by using an optimum algo
rithm which yields better result than that in
Fig. 14(a).
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5. The optimum alsori thm for f inding the longest com-
mon subsequence between two sets in wh ich the nonnu 11
gXevents av^ in a same sequence

Let us review this problem as follows: Except for
null elements there is no duplicated element in both
Set P2 and Set Q2. Set Q2 includes null elements and
all the nonnull elements in Set P2. The nonnull ele
ments in Set 02 have the same sequence as that in Set
P2. The problem is how to match Set P2 and Set Q2 to
get the longest common subsequence.

5.1 To make the situation precise, let us first intro
duce several definitions and theorems.

DEFINITIONS

DEF(l) "the matchable point" of an original ele
ment

As shown in Fig.15, choose any element in Set
02 as an original point and match that element
with the same element in Set P2. Check the other
elements whether they can be matched with the same
elements or not. If one can be matched then this
element is called "the matchable point" of the
original element. In Fig. 15, A and F are the
sratchable points of B; CD, and E are not match-
able points of B. If B is the matchable point of A
then the necessary and sufficient condition can be
expressed as:

numb-CA o B>>= numb<A'o B'>

where

A, B belong to Set P2
A'E' belong to Set Q2
numb<A o S> means the number of null

element "0" between A and B

Obviously, if B is the matchable point of A then A
is also the matchable point of B (the reciprocal
property of matchable point).

DEF(2) "the matchable point matrix M"

As shown in Fig.16(b), a square matrix M is
defined such as to express all the information
about the matchable points in Fig.16(a). The
number of column of matrix M is equal to the
number of nonnull elements in set P2 (or Set Q2).
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Let MCi, il = I, which means we use i as the

original point.

Let MCi, j3
1, j is the matchable point of i

the matchable point of i

{1, j is the

0, j is not

From the first row of M in Fig. 16(b) B is the
nearest matchable point of A. We call B the first
matchable point of A, and D the second , E the
third respectively. Obviously, because of the
reciprocal property of the matchable point, matrix
M is symmetric.

LFMMA U)

If B and C am two successive matchable

points of A as shown in Fig. 17(b) and

suppose S is the i th matchable point of A
C is the (i+1) th matchable point of A
D is the first matchable point of B,

then D is also the matchable point of A. In addi
tion either D coincides with C, or D is located at

the right side of C.

CProof1

Because B is the matchable point of A, and D is
the matchable point of B, then we have

numb<A o B> >=» numb-CA'o B'> ;

numb-CB o D> >= numb<B'o D'> ;

numb<A o B>+numb<B o D> >=

numb<A'o B'>+numb<B'o D'> ;

i.e. numb<A o D> >= numb<A'o D'} .

Therefore D is the matchable point of A.
Because C is the next matchable point after B, D
can not be located at the left side of C; other

wise, C can not be the next matchable point.
Therefore either D coincides with C, or D is

located at the right side of C (QED).

According to the location of D, B and C can be
divided into the following two cases:

Cased) : C is also the first matchable point
of B (Fig. 17(a) ).

Case(2) : C is not the matchable point of B
(Fig. 17(b) ).
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Let us introduce some basic intuitive ideas

by means of an example. In Fig. 18(a), Set P2 and
Set 02 avQ the two sets to be matched. Fig.18(b)
is the matrix M of the sets. A is the starting
point. B and C are the first and second matchable
points of A. If B and C belong to Cased), it
means that C is also the first matchable point of
B. Of course, we just match B as the matching
point. Otherwise, if we match C, one matching
point B is missed.

But now, matrix M tells • us that B and C

belong to Case(2). By checking the elements in
matrix M, as shown in Fig. 18(b), we find that
MCA, B3 = l, MCA, C3 = l, and MCB,C3=0. It means that B, C

are the first and second matchable points of A,
but C is not the matchable point of B. It seems to
us that now we have two choices, either B or C can

be matched as the matching point. Fig.18(c) and
Fig. 18(d) show the two different results. In
Fig. 18(d), C is selected as a matching point which
leads to a better result than that in Fig. 18(c).

The reason is that, in this case, C has more

matchable points than that of B. First, we start
from MCB,B3 move right, and check the elements in
row B. We find that B has only one matchable
point F ( MCB,F3 =1>. Then we start from MCCC3, by
checking the same way, we find that C has two
matchable points D and F (MCC, D3=l, MCC, F3 = l). In
addition, D,the first matchable point of C is
nearer to the original point than that of F which
is the first matchable point of B.

The above basic ideas can be summed up as a
theorem.

THEOREMd>

If B and C are two successive matchable points of
A, and if B and C belong to Case(2) as shown in
Fig.19, and

suppose B is the ith matchable point of A
C is the (i+l)th matchable point of A
D is the first matchable point of B
E is the first matchable point of C; then

we have

(1) Any matchable point of B is also the match-
able point of C, it means that the set of match-
able points of B is the subset of that of C.
( only those matchable points which are at the

right side of the original point are included in
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the set)

(2) Either E coincides with D, or E is located

at the left side of D.

CProof1

(1) First, let D be any matchable point of B.
Because D is the matchable point of S and C
is not thus we have

numb<B o D> >= numb<B'o D'> ;

numb<3 o C> < numb<B'o C'> ;

numb<B o D>-numb<B o C> >

numb*B'o D'>-numb<B'o C'> ;

i.e. numb<C o D> > numb-CC'o D'> .

Therefore D is also the matchable point of
C.

(2) Now, let D be the first matchable point of B.
From (1), D is also the matchable point of C.
Because E is the first matchable point of C,
then either E coincides with D, or E is

located at the left side of D. (GED>

5.2 The optimum algorithm

According to Theoremd) we have our optimum
aigorithum as follows:

If an original point has at least two match-
able points, then the matching point can be found
at either of the following two locations:

Location(l) If the first and second matchable

points B and C of an original point A belong to
Cased), as shown in Fig. 20(a), then select B as
the matching point.

Location(2> If B, C, D. . . . J, K, L are the

first,second..(j-1)th, jth, (j+l)th matchable
points of A; and suppose any two successive points
from S to K (i.e. BCCD. ..JK) all belong to
Case(2>, only KL belong to Cased), then select K
as the matching point.

Lemma(l) and Theoremd) am applicable to any
two successive matchable points of an original
point. Because BC,CD. ...JK all belong to Case(2),
according to Theorem(l) we have

the set of matchable points of B is the
subset of matchable points of C,

the set of matchable points of C is the
subset of matchable points of D,
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the set of matchable points of J is the
subset of matchable points of K.

So sets of matchable points of X (X=B,C, D. ...J)
are all the subset of matchable points of K.
Therefore, when we select K as the matching point,
it yields the better result than that of the oth
ers.

If we use this algorithm step by step, we get
the whole algorithm:

al Start from mpl, the starting point, and find
mp2, the matching point from either the loca-
tion(l) or location(2) of mpl;

a2 consider mp2 as the original point, and find
mp3, the matching point from either the loca-
tiond) or iocation(2> of mp2 ;

repeat this procedure step by step until the
end of the set is reached. It gurantees our
getting the largest number of matching
points.

5.3 It is easy to sum up the procedure of the optimum
algoriyhm by using matrix M :

all origin:=starting point;

(Start from starting point. >

a!2 i:=origin, j:=origin;

(Start from MCorigin, origin3=I. )

a!3 repeat j:=j+l
until MCi, j3= 1;

(Move right until the first matchable point j
is found, where we have MCorigin, j3=*l. )

al4 i: =j;

(Move downward until reaching the diagonal
element, where we have MCi,j3=I. Now i is the
first matchable point of origin. >
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alS j:=j+ i;

(Move right and attempt to find the first
matchable point of i and to check the follow
ing three cases.)

al6 i^ (MCi,j+13=Q) and (MCorigin, j+U=0>
then goto alS;

(In this case, j+1 is neither the first
matchable point of i, nor the second match-
able point of origin, Then keep on moving
right. )

if (MCi,j+13=0) and (MCorigin, j+13=l>
then i:=j+l

goto a 15;

(In this case, j+1 is not the first matchable
point of i, but the second matchable point of
origin. It means that i and j+1 belong to
Case(2>, Then keep on checking the second and
the third matchable points of origin, to see
whether they belong to Case(2) or Cased). ).

if MCi,j+13=l
then j:=i

select i as the matching point
(the end of one step)

(In this case, j+1 is the first matchable
point of i and also the second matchable
point of origin. It means that i and j+1
belong to Cased). Move back to MCi,i3 = I,
select i as the matching point.)

al7 orig in:=i
goto al2;
(the begining of the next step.)

An example is shown in Fig. 21, which is the matrix
M of Fig.14. Fig.21 illustrated how the matching
result, as shown in Fig.14(b) is obtained.

At first step, let A be the "origin". Now, B
and C belong to Cased). According to the pro
cedure mentioned above we obtain B as the first

matching point.
At the second step, let B be the "origin".

Now, CD as well as DE belong to Case(2), and EF
belong to Cased). According to the procedure men
tioned above we obtain E as the second matching
point.

By using the same way, we obtain F and G as
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the third and fourth matching points.

An example is shown in Fig. 22. In Fig. 22(a), the
simple algorithm is used. In the simple algorithm,
we just select the first matchable point as the
matching point. In Fig. 22(b), (c) the optimum
algorithm is used starting from E and R respec
tively.

Tabled)

! algorithm, starting!
* used 1 point

match ing
points

Fig.22(a){ simple i E
! algorithm'

E, S, F, T, V,

W, Y

Fig.22(b)! optimum ! E
« algorithm!

E, S, M, N, L,

T, V, W, Y

Fig. 22(c)! optimum ! R
! algorithm!

! E, S, R,N, L,

! T, V, W, Y

Tabled) compares the results of Fig. 22. It is
clearly shown that the results of the optimum
algorithm is better than that of the simple algo
rithm. Moreover starting from the different
points the results may be different. Therefore by
using this algorithm and starting from the dif
ferent points we can obtain the longest common
subsequence.

6. Conclusion

The merging algorithm can be used to solve the
two-dimensional problem provided that extra tracks are
available at the two ends of a channel.

Three algorithms were proposed. One is for the
fixed position problem. The other two are for the
fixed sequence problem. The algorithm were coded in
PASCAL and implemented on VAX 11/780 computer.
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