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ABSTRACT

We examine the properties of the Fermi mapping with two driving

terms,

sin s<J) + y sin r<f>

un+l = un +

Vl = ^n + Tr+sTU

/iT7
4ttM

n+1

where r and s are coprime integers, y is the amplitude ratio of the

driving terms, and M is a constant. Linear stability criteria and bif

urcation thresholds are derived and confirmed numerically. Global

stability limits are obtained by generalizing the criterion derived for

the loss of stability of the last KAM surface between two neighboring

island chains to the case of unequal size islands. The analytic esti

mates are compared with the numerical calculations and found to be in

good agreement for y~l. The results show that using two frequencies

gives considerable destruction of local stability and an approximately
p

twofold increase in energy (u ) for the position of the lowest KAM

barrier to stochastic heating.
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1. INTRODUCTION

In this paper we study the effect of two driving frequencies on the

stability properties of the Fermi mapping [1-2]. This two-dimensional

area preserving mapping represents the motion of a light ball colliding

elastically with a fixed and an oscillating wall, as depicted in Fig. 1.

The case of a monochromatic sinusoidal wall velocity has been treated

previously [3-6] and its stability properties are now well known. In

such systems there exists a lowest (in velocity) invariant phase space

curve that separates region of primarily regular motion from regions of

connected stochasticity. A particle initially below such a Kolmogorov-

Arnold-Moser (KAM) curve [7-8] cannot penetrate to higher velocities.

As will be shown, the addition of a second wall frequency

can significantly increase the velocity at which the first adiabatic

barrier appears.

Adiabatic limits can be of practical importance in the cyclotron

heating of plasmas in magnetic mirror devices [9]. The mapping method

has been applied to electron cyclotron resonance heating (ECRH) by

Jaeger et al_. [10] and by Lieberman and Lichtenberg [11]. Ion cyclotron

resonance heating (ICRH) has been similarly modelled by Howard and

Kesner [12]. These treatments require that the particle-field inter

action be sufficiently localized in order to justify an impulsive

mapping model [13]. The theoretical results for ECRH have been verified

experimentally for collisionless plasmas [14].

Recently it has been suggested that ECRH might be enhanced by using

two or more closely-spaced frequencies, with the total RF power held

fixed. Recent experiments by Lazar et a_K [15] seem to substantiate

this hope, although the precise reasons for the (approximately factor of
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two) increase in particle energy are not yet clear. Menyuk and Lee [16]

have studied the effect of introducing a finite bandwidth of the driving

frequency and found that all KAM curves could be effectively destroyed

with a bandwidth equal to the orbital bounce frequency. However, this

technique is difficult to realize experimentally.

Here we model the rather complex ECRH dynamics with the analogous,

but far simpler Fermi model, as has previously been done for single

frequency heating [5]. In order to produce a periodic mapping, we

choose the two frequencies, w and w , in the ratio of some rational

number oj Ad = r/s, where r and s are coprime integers. Taking r and s

large, we can closely approximate any irrational number, or, with r=s+l,

obtain closely spaced frequencies. Corresponding to each frequency we

find sets of island chains which can overlap, thereby destroying non

linear stability and increasing the adiabatic barrier.

In Section 2 we derive the basic mapping equations, and in Section

3 examine the linear stability of the island chains formed in the phase

plane. Bifurcation thresholds follow naturally from the linear stability

conditions. The principal results are contained in Section 4, where

the nonlinear stability criterion [17] is extended to the case of un

equal size islands. Numerical results are presented which substantiate

both the linear and nonlinear stability criteria, and the bifurcation

thresholds. Typically we find about a 50% increase in the adiabatic

barrier velocity, corresponding to a twofold increase in kinetic energy,

in qualitative agreement with experimental results on ECRH [15].

2. MAPPING EQUATIONS

The Fermi-Ulam model [1-2] consists of a light ball bouncing between

a fixed and an oscillating wall, as illustrated in Fig. 1. In the
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simplified model [5], the oscillating wall transfers momentum to the

ball instantaneously, without changing its position. The simplified model

retains the essential features of the exact model [3,4] with the advan

tage of yielding an explicit area-preserving mapping.

Here we consider a momentum transfer having two frequency components

normalized to maintain the sum of the amplitudes squared constant.

(For uncorrelated sources, this gives constant input power.) The momentum

change per collision is then

vn+1 -vn -Vr sin «rtn +Ys sin(u)stn +6). (1)

where V2 + V2 = V2 = constant.

The transit time between collisions with the moving wall is

*n+l _tn =vT^j" » (2)
where Lis the wall separation and

us s

with r and s coprime integers. The phase 6 does not have an appreciable

effect on global stability and will be set equal to zero in what follows.

Defining the phase <J> = it/s and amplitude ratio y = V /V , (1) and

(2) can be written in terms of the scaled velocity u = v/V as

n+1

sin s<J> +y sin nj>
u +

n

/w
(4)

♦n+1 =*n +(r4lun+1 • (5)
where the absolute value has been introduced in (4) to account for nega

tive velocities. In deriving (5) we first symmetrized (2) in r and s

by means of the identity

-3-



0)
r

r
=

0)

_i -
S

. 2u>
' r+s

where

go =
1
2 (<V*«s)

(6)

(7)

and then introduced the parameter

M= Lw/V . (8)

Equations (4) and (5) constitute the desired normalized two-frequency

mapping, fully symmetric in the integers r and s. It is straightforward

to generalize them to include an arbitrary number of frequency components.

In working with this mapping we shall fix L and go while varying r, s

and y. The limits y = 0 and <» yield simple Fermi-sine maps with known

stability properties. It is the region y * 1, for which no nonlinear

stability theory exists, that is of primary interest here. Although one

usually requires r * s in cyclotron heating applications, we are not

limited by this restriction for the Fermi mapping.

Figure 2 shows a series of numerical surfaces of section (u vs. <f>)

for r/s = 3/2 and M = 125, and several values of y. As usual, there are

three distinct regions; a stochastic region at low velocities, an inter

mediate region with islands embedded in a stochastic sea, and a primarily

regular region at higher velocities. Two critical velocities delimit

these three zones: u,, below which all period-one primary fixed points

are unstable, and uB, the adiabatic barrier, which bounds the region

of connected stochasticity. For y = 0 there is a family of s-fold island

chains at u=50, 33.33, 25, etc., with smaller chains of secondary

islands at the harmonics of oj . When y>0 additional island chains

associated with w appear at u= 37.5, 30, etc. A secondary chain of
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five islands associated with w +oj can be clearly seen at u * 41 when

y=1.0. The linear stability limit, u, , is seen to increase slowly with

y, while u„ makes large jumps at particular values of y. When y = l, the

chains of primary islands at u= 50 and 25 have bifurcated from two to

three islands, owing to the increasing influence of the o> driving term

in (1). Theoretical expressions for the dependence of u. and u« on y

will be derived in Sections 3 and 4 and compared with numerical mappings

in Section 4. Bifurcations are discussed briefly in Section 3 and in

more detail in Ref. [20].

3. LINEAR STABILITY AND BIFURCATION OF PERIOD ONE FIXED POINTS

From (4) and (5), the period one (<j>-^ + 2Trk) fixed points common to

both frequencies are given by

uok =1< »k=1.2,3,... (9)

sin s 4>0 +y sin r<j>Q =0 , (10)

where for convenience we have defined

H.ff-&- <">

When y =0 there exists an additional set of fixed points given

by s<j>-• s4> +2irk , which includes the common set (9),

uos=^fL • ks =1'2'3 (12)
s

These fixed points have period P, where P/Q is s/k reduced to lowest terms.

Similarly, when y-»-«>, setting r<j) +r<f> +2irkr yields period r fixed points

at

u eff k =1,2,3,... (13)
or v ' r

Kr
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which also includes (9) as a subset. At intermediate values of y the

r- and s-fold islands at 4>Q =0 and tt are unperturbed,but the other fixed

points move according to (10), which locates the* angular coordinate <j>0

independent of Uq. In general, (10) must be solved numerically for

<t>Q(u»r,s). 4>« = 0, +tt are obvious but not exhaustive solutions. We

now investigate cases for which (10) may be solved analytically.

(a) y « 1. Regarding the y term as a perturbation, the unper

turbed solutions of (10) are

*0 =°. +?• if1---- t(t'^ iff • (14)

a total of 2s+l roots in [-it, it]. Writing

F((j),y) = sin s<f> +ysin r* * F((()0,y) +F'(<J>0,y) (<|>-<J>0) =0

(15)

then gives 4> =<J>Q -Fq/F^, or

y sin r<f>n
4>(v) * *« • (16)

s cos s<1)q+ \ir cos r4>0

A similar application of Newton's method is of course possible in the

limit y-*-».

(b) y = 1. For equal amplitudes (10) transforms to

sin(^)<J> cost^-H =0, (17)

which yields the two families of solutions,

+ 2tt + 4tt

* = 0 , ~r— , ^r— , ... (18)
va * r+s * r+s *

+ ir + 3tt
6. = , , ... • (19)
^b r-s ' r-s '
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There are a total of 1+ Wr+s)] <j> roots, and [ o"(r-s+l)] 4>. roots,

where [ ] denotes the integer part. In addition*there are several

cases where (10) is exactly solvable for all y, namely r<5. We shall

encounter these explicit solutions in the context of linear stability

and bifurcation.

The linear stability theory of fixed points of arbitrary order is

given in Ref. [5]. Here we calculate the stability limits of the primary

period-one fixed points of the two-frequency Fermi mapping. As we shall

see, these limits enable us to dilineate the bifurcations the primary

island chains must make with increasing y as they change from s-fold to

r-fold symmetry.

Writing (4) and (5) in matrix form ,

~Vl •T•*n• ' (20)

with x= (u,<J>), the period-one primary fixed points are given by.

x0 =T*S0 ' (21)

The stability in the neighborhood of xQ is then determined by the

linearized mapping,

AXn+1 - XAxn , (22)

where £ is the Jacobian matrix of T. The motion near xA is stable if and

only if

|Tr£| < 2 . (23)

From (4) and (5) we find

TrJC =2 4irM (cos s<f>0 +y cos r<|>0) . (24)
(p+1) u2/l+y*
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If 0<cos s<f>g+ y cos r<J>0<l+yp, a sufficient stability condition

is Tr£ > -2, or

u0 > u ttM

/l +y7 ({r^J • ««

It should be noted that stable secondary fixed points, or higher period

primary fixed points may exist below u, . Also note that u. has a maximum

at y= p.

For Tr£>2, a sufficient condition for instability is clearly

cos S(J)q + yp cos r<j>Q < 0, (26)

which is to be solved for yand <J>Q simultaneously with (10). Since (26)

is independent of uQ, we see that if u0>u,, a stability threshold

exists when

cos s<|>q +yp cos r<j>0 =0 (27)

sin s4>q +y sin r<j>0 =0 . (10)

These equations admit a simple geometrical interpretation if we

observe that they are of the form F(y,<j>0) = 3F/3cf>0 = 0. As this is just

the condition for a double root of (10), it follows that (10) and (27)

together determine the bifurcations of the common fixed points as the

mapping changes (with increasing y) from s-fold to r-fold symmetry. That
*

is, for fixed r and s, one or more common fixed points <J>q bifurcate at
*

critical values y .

In general there are three types of bifurcation; the pitchfork

bifurcation (P) in which a stable fixed point destablizes and gives

birth to two nearby stable fixed points; the anti-pitchfork bifurcation

(P ) in which an unstable fixed point stablizes and issues forth two
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unstable fixed points; and lastly, the tangent bifurcation (T), in

which a stable-unstable pair of fixed points is created.

Although all this information is in principle contained in (10)

alone, (27) is often useful in practice. For example, (10) yields the

immediate fixed points <J>q =0,tt. Equation (27) gives l+yp =0 for <j>0 =0

and we conclude that this point never bifurcates for u > u . For <t>Q = it,

however, (27) yields (-l)s +y* p(-l)r =0, which has the solution
y* = 1/p, provided that r-s is odd. In particular, if r-s = 1, this is

the only bifurcation, giving birth to two new fixed points, exactly the

required number to change from s-fold to (s+l)-fold symmetry. This

bifurcation is clearly seen in Fig. 2d.

Another broad class of bifurcations is revealed by setting <J>q =+ j

in (10) and (27). Setting r= s+2m, m=l,2,3,..., (27) is satisfied,

since r and s must be odd in order to be coprime. Equation (10) becomes
*

1+ycos 7rm= 0, which is satisfied by y =1 and m odd. Thus, a pair of
* *

tangent bifurcations occurs at <j>0 =+tt/2 when y =1 for r=s+2, s+6,... .

Again, when r-s=2, these are the only possible bifurcations.

For s<r £5, complete algebraic solutions of (10) and (27) may

be obtained by means of the factorization

sin n(j> = sin<j> P -j (cos <j>) , (28)

where P ,(cos <j>) is a polynomial of degree n-1. Thus, (10) becomes

Ps_.,(cos <j>) + yPr-1(cos 4>) =0. (29)

The critical values of y are then given by the vanishing of the discriminant

of (29), except in a few degenerate cases. The bifurcation angle <t>0

usually follows by inspection or, if necessary, by numerical solution
it *

of (10). The calculated values of <J>0 and y and the bifurcation type

are listed in Table 1. Formal solutions of (29) are given in Ref. [20].
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Additional insight into the structure of the bifurcation may be

gleaned from the averaged Hamiltonian (derived in the next section)

H=1Gu2 + V(<j>) , (30)

where G is a constant and, for a common island chain,

V(<J>) =- ] (1cos S({> +£cos r<f>) (31)
AT?

is the effective potential. At a pitchfork or antipitchfork bifurcation,

V = vu = Y,M =0, while Vm f 0 for a tangent bifurcation. Thus, tan

gent bifurcations arise from inflection points in V(<j>), while pitchfork

bifurcations stem from third order critical points. More exotic bifurca

tions may be produced from potentials having higher order singular

points [19]. A set of calculated level curves and their associated

effective potentials are shown in Fig. 3 for the-case r/s = 3/2. Note the

pitchfork bifurcation at <J> = 180° when y = 2/3, as predicted.

4. NONLINEAR STABILITY AND GLOBAL STOCHASTICITY

4.1 Derivation of Averaged Equations

In order to determine the limit to particle heating from below, it

suffices to find the lowest velocity for which a KAM curve spans the

entire range of phases. This global stochasticity limit has been cal

culated for the single frequency Fermi map [5] and in detail for the

Chirikov-Taylor "standard map" [17,18], which locally approximates the

Fermi map. The destruction of KAM curves may be understood intuitively

as arising from the interaction of neighboring island chains. Each

island possesses a stochastic layer about its separatrix, so that for

sufficiently large island widths these layers overlap, permitting

diffusion over the region of velocity space occupied by the two islands.
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The island width is easily calculated from an approximate Hamiltonian

in which only the dominant resonant term is retained, with all other

terms averaged out. Analytic and numerical calculations show that the

last KAM curve lying between two contiguous islands is destroyed when

the sum of the island half-widths equals approximately two-thirds the

distance between the island centers measured in action space (velocity

in our problem). This criterion has been shown to be quite sharp for

equal-width islands [18] and works reasonably well if the widths are

not too disparate [5]. Escande and Doveil [21] have derived a criterion

valid for two islands with unequal widths, but their method is difficult

to apply owing to the influence of neighboring large islands. We there

fore employ here the simpler "two-thirds rule," which agrees well with

numerical calculations for comparable-sized islands.

We begin by defining slowly changing variables near the s-fold

elliptic fixed points,

us =u-uQS (32)

es = e-eos ,

where 6 = S(j> and

uos = sMeff/ks

60S =a^n , (33)

with n the iteration number of the mapping. For y j* 0 only the fixed

points at 8 =0 and it are unperturbed. Neglecting the perturbation of

the other fixed points, the mapping (4)-(5) in the vicinity of the s-fold

chain may be written in terms of n as

du
s

W

du„ sin 6+y sin (£- ) »
^ ^ I 6(n-m) (34)

/hV n=-<»
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d^ 27TS Meff
dn " " 1 us '

(35)
OS

where (5) has been expanded about u .
OS

Fourier expanding the train of delta functions

I S(n-m) = I e2wUn (36)
m=-oo il=-a>

and averaging (34) over n, we find that the first term survives for

£=+k , while the second term is slowly varying only if £=+ rk_/s,
^ —~ s

which is only true near the common fixed points, not considered here. Thus,

the averaged form of (34) is simply

duc sin 8

/TT7

Equations (35) and (37) are derivable from the averaged Hamiltonian

2tts M -- uc cos 6C
Hs - p6ff -| == , (38)

OS /Tm?

which yields the island amplitude

2-1/4 2uos 1/2^•t1^2)17^^-) • (39)
Similarly, expanding u and 9 about an r-fold chain gives

Ar =̂ T (l+y*)"1'4 (-^) . (40)
Equations (39) and (40) are generally valid only for y«l and y»l,

respectively, when the fixed points are well approximated by (10).

Nevertheless, a useful overlap criterion may be obtained by focusing on

the 9QS =0 (mod 2ir) fixed point, which is unperturbed for all y and

elliptic for u>u,. The widths A and A are valid for these central

islands for arbitrary y.
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The motion near the common fixed points is obtained in the same

manner by keeping the terms in the 6-function satisfying A=ik and

£ = + rk /s, simultaneously:

du _ sin s<t> + y sin nft #-,%
dn" > ? <41'

/l+y*

uo

Integrating these equations then gives the averaged Hamiltonian for the

common fixed points,

i ,

1 cos s<J> +£ cos r<j>) , (43)H - j GU- -
A +u2

where

G
. 2* Meff

2
uo

•
(44)

Calculation of the island width in this case is complicated by the

sequence of bifurcations as y increases from 0 to ». As discussed in

Section 3, this calculation can be carried out explicitly only for the

particular values of r and s listed in Table 1. A width can be

calculated explicitly for the central island at <f>0 = 0,

which is elliptic for all y. For y«l a single separatrix crosses the

u=un line at <J> =+ir/s (mod 2tt), but at larger y there is in general

a complex system of nested separatrices, the outermost of which first

overlaps with the separatrices of neighboring island chains..

In terms of the angle <J> the central island width is given by

A2 - 4 CI sin2 {!*£) +U. sin2 (^) ] . (45)
-./r^G/l+y

Taking r/s=3/2 as an example we find
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A2 = 8y3+18y2 +(l+4y2)3/2-l f (4g)
12 G y2 /l +y2

which varies by only 30% as y varies from 0 to «» and by only 2% in the

range 0 < y < 1.

In general, for r > s,A(y) is either monotonic decreasing or has a

gentle maximum near y = 0.5. In all cases (45) gives

HQ -/£ • (47)A^7 s V ''

Thus, for closely spaced frequencies the variation of A(y) is entirely

negligible, so that we may take

A* A(0) =-|z . (48)
/Gs

In extreme cases one must calculate the angle <f> and use (45); for y= l

one may easily obtain <{> from (18). More information on island widths

may be found in Ref. [20].

4.2 Overlap Criterion

Having outlined a procedure for calculating approximate island widths,

we now turn to the choice of an appropriate overlap criterion for estimating

the loss of global stability with increasing y. A useful rule of thumb

is the "two-thirds rule" [18],

Al +A2>flUorUo2l • (49)

where u-i and u « are tne two resonance positions and A-j and A2 are the

resonance half-widths Ar»A~ or A, as the case may be. In deriving (49)

it is implicitly assumed that the islands are of comparable size, so

that the secondary islands are smaller than the primary islands and the

level curves of one island chain are not significantly distorted by the
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level curves of the other. Thus, in applying (49) to the two-frequency

Fermi mapping, we expect good agreement for y~l but only qualitative

predictions for y«l or y»l. In the latter cases, although (49)

still predicts KAM destruction quite accurately, the precise value of y

at which this occurs is predicted less accurately,y (or y" ) being a

perturbation.

We consider three controlled numerical experiments in examining the

effect of two frequencies on stochasticity. In the first, M is held

fixed, while y is varied from 0 to ~. As y is "turned on," the r-fold

islands grow rapidly and interact with s-fold and common islands,

large jumps in the adiabatic barrier uB generally occurring at fairly

small values of y. In the second numerical experiment, we hold y fixed

and vary M. Here (49) will be seen to give accurate predictions of the

jump in the adiabatic barrier. In the third experiment we hold M and

y fixed and vary the frequency ratio r/s.

Of the several possible combinations of overlapping r-fold, s-fold

and common islands, we choose for illustration only two. For overlap

of the ks and k$+l fold chains, using (9), (11), and (48) in (49) gives

M<M*, with

M =fr(^)(2k+1)2 A+74T
(50)

which is equivalent to the single frequency overlap criteria for y«l.

For overlap of an r and as s-fold chain, using (12), (13) (39) and

(40) in (49) yields

* 9_ (r+s,
n 4ir K s '

i+ *m.
kr s

1 ^1 _ sRT

/hV (51)
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However, care must be exercised in using this result for y very small,

as overlap is then determined by neighboring s-chains and their pertur

bation by interspersed r-chains.

The use of the criterion (49) (and its limitations) are best

illustrated by an example. We first fix r/s= 3/2 and M=125, and consi

der the effect of varying y. The mapping for y=0 is shown in Fig. 2(a),

which also shows the locations of the island chains as given by (9), (11)

and (13) for several values of k, kr and k. The k =2-8 islands are

clearly visible, but the kg =9 chain (uQ =11.1) falls beneath the linear

stability limit and has disappeared. Numerically, we find the last KAM

curve at about uB =27, as indicated in the figure, in agreement with the

overlap criterion (50), which predicts that KAM surfaces exist between

the ks=3 and 4 island chains, but not between the k =4 and 5 chains.

As we increase y to 0.1, the adiabatic barrier increases dramatically

to uB =37. This jump is due to the intercession of the k =5 islands at

u =30, whose stochastic layer overlaps those of the k =3 and 4 islands

at u =33.33 and 25. Applying the overlap criterion, we find that the

ks= 3 and k =5 islands overlap for arbitrarily small y, but that over

lap of the k =5 and k =4 islands should not occur until y>0.5. The

underlying reason for this premature overlap is the chain of four

secondary islands at u *28, which may be seen in Fig. 2(b). There is

also a chain of six secondary islands at u* 27, barely visible in

Fig. 2(b). These two secondary chains effectively bridge the gap

between the k =5 and k =4 islands, so that overlap occurs at y *.065.

As y is increased from 0.1 to 0.25, u„ once again suddenly

increases, as the k = 4 islands at u« =37.5 grow and overlap with the
r or

kg =3 islands at uQS =33.33. According to theory this jump should occur
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at y = 0.0025, whereas it does not actually occur until y = 0.15. The

underlying reason for this discrepancy is the great difference in size

of the two islands, the smaller being distorted with no significant

intermediate island chain to mediate the overlap. To complete this

series of r/s = 3/2 cases we include the mapping for y = l. Here the

two-thirds rule successfully predicts that the k = l chain at u =50
o

cannot overlap the kp =4 chain at 37.5. (Note that the common island

chain at uQ =50 has bifurcated at <f> =180° and that the r-fold chain at

uQr =37.5 has undergone a more complex division (trifurcation) into

three islands.) The observed variation of u„ with y is shown in Fig. 4.

The inability of the two-thirds rule to predict the exact value of y

at which two island chains overlap, for small y, is not surprising.

Since y enters the overlap condition in (51) as a perturbation, a

significant change in y corresponds to only a small change in the over

lap criterion itself.

For y*l we expect much better agreement, which is in fact found

numerically. To illustrate this, Fig. 5 presents u« as a function of M

for y = 0 and 1 (Eq. (49) is always solvable for M). To follow a given KAM

curve with changing M, we note that in the absence of overlap, the island

centers, and therefore Ug, are proportional to M. However, the island

width A-/R", so that an overlap must inevitably occur for a given island

chain as M is decreased,with the chain continuing to sink into the

stochastic sea as M decreases further. For y =0 we follow only the

s-fold islands, while for y=1 we must examine all possible combinations

of r-fold, s-fold and common islands. The solid zig-zag curves repre

sent the theoretical formula (49), with the numerical results shown as

individual points. The dashed line indicates the average proportionality
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Ug~i/fT. The agreement between theory and numerical values is seen to

be quite good.

We have also examined a number of other cases, varying the value of

r and s to determine first if the two-thirds rule for overlap holds and

also to investigate the fractional jump in the action as r and s become

larger. Specifically, we take r=s+l and consider s = 1,2,3,4 For

fixed M, this corresponds to taking the two frequencies successively

closer together. Of particular interest here is the case s = l, both

theoretically because of the simplicity of the interspersed island

structure, and practically because a second harmonic may be generated

naturally in a physical system. Because the r-fold islands are inter

spersed halfway between the s-fold chains and reinforce the second

harmonics of the s symmetry, we might expect particularly good agreement

with the two thirds overlap criteria. This is indeed the case as seen

in Fig. 6, which graphs Ug against y for r/s =2/1. The arrow at y=0.39

indicates the predicted overlap of the k =3 and k =2 island chains, in

excellent agreement with the value of y = 0.35 at which the last KAM sur

face between these islands disappears. The smaller jumps in the adiabatic

barrier between these two major chains involve the interaction of secon

dary islands and are therefore not predicted by the first order theory.

Generally the theory predicts whether, for given y, the last KAM

surface between any two island chains is destroyed. To demonstrate this,

we calculate the maximum change in uB over a large range of y, for r=s+l

and fixed M. The results are shown in Fig. 7, which plots the relative

change in uB,

_ub(1)-Ub(0)
11 Q^OT— (52)
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as a function of 1/s, where Ug(l) =Ug(y=l) «Ugmax.

For large s(l/s<0.05) the r-fold and s-fold islands nearly coin

cide near uR, so that we would expect no increase in Ug with increasing

y. However, as Fig. 7 shows, the calculated change decreases at first

with increasing s, but does not fall to zero as expected. This residual

change is apparently due to the mutual destruction of closely spaced

r-fold and s-fold island chains and a small increase in island width due

to the normalization. The oscillations in n at smaller s can be under

stood in terms of the resonance interspersal, the maxima occurring when

the resonances are evenly spaced near the adiabatic barrier. From the

fixed point conditions (12) and (13) the r-fold and s-fold islands are

evenly interspersed where

eff B eff + eff ^ (53)
Kr ks ks +1

Taking r=s+l and k =k +m then gives, for k »1,

ks =\ (2m-l)s, (54)

which implies s»l for moderate m.

If we evaluate u at the adiabatic barrier u =a /2ttM, where

M ff =M/s and ais approximately equal to the increase in ug due to two

frequencies, then (55) becomes

l=a(2m-l)^5 . (55)

The maximum enhancement thus occurs at a set of odd integer values,

m' =2m-l. Conversely, the s and r resonances are centered on top of one

another for even integers m1 =2m, where we expect n to be a minimum, i.e,

- =ot2mw2]yj- . (56)
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From these results and the position of the s and r island chains from

(12) and (13), we expect the last KAM curves to be destroyed at a=1.4

to give the peaks, and at a=l.l to give the minimum. These values of

1/s are shown on Fig. 7 as arrows, which indicate reasonable agreement

with the predictions of (55) and (56).

5. DISCUSSION

The addition of a second driving frequency to the Fermi mapping

produces a considerable enrichment of the phase plane structure. This

can be seen, for example, by comparison of Figs. 2a and 2d. A new set

of islands appear, corresponding to the fixed points of the second

frequency-. The islands associated with the fixed points common to both

frequencies become considerably more involved, with bifurcations chang

ing the island topology. Stochasticity near the separatrices of the

bifurcated islands decreases the area occupied by local KAM curves

(islands). Interactions also occur between the lowest order islands

of one symmetry and higher order islands of the second symmetry, giving

rise to very interesting island structures.

The addition of a second set of islands, with their own stochastic

layers interpersed among the first set of islands, leads to an inter

action which destroys the KAM surfaces between islands at lower driving

amplitude. The two-thirds rule, which was developed to predict when

the last KAM surface between neighboring equal width island chains is

destroyed, is applied to the two-frequency Fermi map with its islands

of unequal width. It is found that the rule works well unless the

islands are very different in size. Comparing the results of Figs. 2a

and 2d it is seen that the last adiabatic barrier increases from the

single-frequency value ug =27, above the k =4 island centered at u=25,
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to uD= 37, above the k„ = 3 island centered at u = 33.3. These results
B s

are in agreement with the two-thirds rule.

Considering the Fermi acceleration model as an analog to electron

cyclotron resonance heating, our results have implications for the heat

ing problem. If the resonances are fairly evenly interspersed near the

adiabatic barrier, then for a given input power it is possible to

increase the energy obtained by stochastic heating by a factor of two,

by employing two heating frequencies rather than one.

We can also relate the requirement for interspersed resonances found

for the Fermi acceleration model to ECRH. From the definition of phase

slip sA<J> in (5) we see that

^Sll =!i. (57)
uos 2"B ' ( '

where ojb =ttu/& is the "bounce frequency" corresponding to two mapping

periods and go is the driving frequency. Substituting M^/u from

(12) into (57) and noting that 6oo =w -w =to /s, we have for interspersed

resonances

6oj = (2m-l)ojg. (58)

This result is consistent with a numerical calculation by Rognlien [22],

which indicates peaks in the ECRH induced heating rate for frequency

separations satisfying (58). A peak in ECRH heating was also found

experimentally to occur when <5oj =u)g [15].

There are additional constraints that must be satisfied in an ECRH

experiment, such as the spatial overlap of the heating zones of the two

frequencies, which do not arise in the present study. The ECRH problem

also has additional degrees of freedom which can lead to quite different
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phenomena, such as Arnold diffusion [23]. These considerations of both

theoretical and practical importance leave considerable scope for future

work on this problem.
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TABLE 1

r/s *0 y* Type

2/1 180° 1/2 P+

3/1 90° 1 T

3/2 180° 2/3 P

4/1 180° 1/4 P+

65.91° 3/5/8 T

4/3 180° 3/4 Pf

5/1 52.24°1
4/5

T

127.76°J T

5/2 180° 2/5 P

55.80° 0.9414 T

5/3 90° 1 T

5/4 180° 4/5 P

(n+l)/n 180° n/(n+l) P or P+

(n+2)/n 90° 1 T



FIGURE CAPTIONS

Fig. 1. The Fermi model. A light ball of velocity u makes elastic

collisions with a fixed wall and an oscillating wall, separated

by the average distance L.

Fig. 2. Surfaces of section for r/s = 3/2, M = 125 and four values of y.

The locations of several common, rfold and sfold island chains

are given in the first plot. The linear stability limit u, and

adiabatic barrier uB are indicated in each case.

Fig. 3. Theoretical level curves and effective potential for r/s = 3/2

and four values of y. Note the pitchfork bifurcation of the

elliptic fixed point at $ = it when y= 2/3, and the corresponding

change in V(<J>).

Fig. 4. Adiabatic barrier as a function of y for r/s =3/2 and M = 125.

The jumps in uB are associated with overlap of the island chains

indicated in the right hand margin.

Fig. 5. Adiabatic barrier as a function of M for y = 0 and 1. The

solid "zig-zag" curves were calculated using the two-thirds

rule, while the circles were obtained by numerically iterating

the mapping 10 times.

Fig. 6. Adiabatic barrier as a function of y for r/s = 2/1 and M = 50.

The agreement between the theory' and the numerical data is

much better in this case, since the jumps occur at larger y.

Fig. 7. Fractional increase in uB as a function of 1/s for M= 500.

According to theory the increase should vanish for s > 100. The

residual change is probably due to the strong interaction of

overlapping r- and sfold island chains.
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