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Introduction

Over the last sevefa] years there have been a number of successful
attempts to construct superlinearly converging algorithms for the
solution of constrained optimization problems. A common starting point
in the construction of these new methods is the use of Newton's method,
in some form, for solving the Kuhn-Tucker first order optimality con-
dition equations and inequalities. These methods can be grouped into
two categories: those traceable to R W. Wilson's successive quadratic
programming method (SQP) [14], and those which emanate from the ordinary
Newton method for'the'solution of equations.

Wilson's method is a form of Newton's method which solves a quadratic
program with équality and inequality constraints at each iteration. For
optimization problems of the form min{f(x) | h(x) = 0}, it yields exactly
the same iterates (xi,xi) as the ordinary Newton method does when applied
to the optimality equations h(x) = 0, Vf(x)*—(ah(x)/ax)TA = 0; for
optimization problems of the form min {f(x) | g(x) :=0}, it yields
jterates which differ only by a second order term from those constructed
by the extended Newton method, developed by Robinson [12], when applied
to the Kuhn-Tucker optimality equations and inequalities, viz. ujgj(x) =0,
vf(x) + (ag(x)/ax)Ti =0, g(x) <0, A >0. Itwas shown by Robinson [11]
that when intialized sufficiently closely to a "strong" Kuhn-Tucker pair
(x,A), the SQP method was quadratically convergent.. SQP was extended to
a quasi-Newton version by Han [4,5,6]. Han also globalized the local
method, i.e., extended its domain of convergénce,as well as eliminated
the possibility of convergence to a local maximum insteéd~of to .a local
minimum, by using an exact penalty function for step size determination:

a technique subsequently refined and improved upon by Powell [10] and
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Mayne and Polak [8]. The main drawback of successive quadratic programming
is that it is difficult to find reliable quadratic programming codes,
capable ofusolving nqp-positive-semidefinite problems, that find a
solution of smallest norm, as required by Robinson's theory [1i] for
superlinear convergence.

The extended Newton method was never tried for so1ving'tﬁe Kuhn-
Tucker relations of general optimization problems because of a persisting
erroneous belief that it would fail because the relations did not satisfy
the Robinson LI conditions [12] and because it was not clear how it could
be globalized. However, it was considered for problems of the form
min{f(x) : h(x) = 0} by Tapia [13] and by Bertsekas [1]. Furthermore,
Bertsekas was able to globalize Newton's method by using an exact
differentiable penalty function, proposed by DiPillo and Grippo [2], as
a descent functionAin step size determination. He showed that Newton's
method yie]ds a direction which, asymptotically, approaches the Newton
direction for the DiPillo and Grippo penalty function. For probliems
with both equality and inequality constraints, Bertsekas has proposed an
"active set" strategy, as a means of removing the need to solve in-
equalities as well as equations. The obvious advantage of the ordinary
Newton method over successive quadratic programming is that it only needs
to solve a linear equation at each iteration.

In the present paper, we show that when a sufficiently good initial
approximation to a "strong" Kuhn-Tucker triplet is available, optimization
problems with both equality and inequality constraints can be solved
without using an active set strategy, by applying Newton's method, or
a quasi-Newton method, only to the equations part of the Kuhn-Tucker

conditions. The resulting local method is superlinearly convergent.



For problems with inequality constraints only, we show that globally
convergent methods with excellent overall properties can be obtained by
combining quasi-Newton methods with a phase I - phase II method of

feasible directions.

2. Local Methods

Consider the problem
min{f(x) g(x) < 0, h(x) = 0} (1)

where f : R" >R, g: R"+>R" and h : R" +IR'Q' are all twice continuously
differentiable. ‘Let x* be a local minimizer for (1) such that the

triplet z* = (x*,u*,A\*) satisfies the Kuhn-Tucker first order conditions:

v L(xsus1) = 0 3 (2a)
h(x) =0 ; (2b)
Wel(x) =0, jem; (2¢)
g(x) £ 03 (2d)
w203 (2e)

where L(x,u,A) = f(x) + {u,g(x)> + (A,h(x)) and m={1,2,...,m}.

Assumption 1: With J* A {j € mlg‘](x*) = 0}, we assume that

2 T ]
(y, 9 L(X*’u;’x*) y)>0 Vy € {y'lil’lb%-)— y' =0; (VgJ(X*),Y'> =0 .
aX

vj e ax, Iy'l =1}, : (3)

(i) that w9 > 0 for all j € J*, and



(iii) that the vectors th(x*), k €2, VgJ(x*), j € J*, are linearly’

independent. "

Now consider the eqda]ities part of the Kuhn-Tucker conditions (2),

viz:
v Lxm2) =05 - (4a)
h(x) =0 3 (4b)
JgP9(x) =0 vien. (4c)

We define our local algorithm as a quasi-Newton method applied to (4),

viz., given 21=Q (xi,ui,ki),

z =2, t AZs, (5)

i+1 i

where AziA= (Axi,Aui,AAi) is a solution of the linear system

VXL(x.iﬂl.ia}\.i) + G(Zi)Ax'i + (X )Au + - ah (X )A)\ H (63)
h(xi) +.g—2 (xi)Ax_i =0 ; (6b)
i)+l 2 (x)ax, + midd(x) =0, vienm. (6¢)

—-% (z ), (6a-6¢c) defines the ordinary Newton method

Clearly, when G(zi)
X

for solving (4).
The Jacobian of the system (6) is given by

T T
8(2) i) E)
x(x) 0 0
3(z,6) = ;. (7)
W) g'(x) 0
7 :
u" 2(x) g"(x) 0



It was shown by McCormick [7] that under Assumption 1,
LN
J(z :g;f (z*)) is nonsingular.

n+m+2

We define the norm -1 on R by

1202 = 1x12 + 112 + 0A02, (8)

so that ﬂ(x,Om Oz)Tﬂ Ixl. Then, using induced norms for matrices, we

get
ﬂJ(Z,G1(Z)) = J(2=Gz(z))ﬂ = “GI(Z);' Gz(z)“ (9)

Theorem 1 (Local convergence): Suppose that for all i,

2
Ia(z,) - i’-% (2,)0 < m;l(ﬂ" : (10)

 where J*(z*) = J(z*, —-—{z*)) Then there exists a § > 0 such that if
2y € B(z*,8) then

(i) The sequence {z,} constructed according to (5), (6) is well
defined;

(i1) z; > z* R-linearly in the norm -1 .

(iii) If, in addition,

22, (x5-%;_q)
IG(z,_q) - 2 (2;_)] Tl_zz_1:ﬂ' 1>0asi>= , (1)
T 1=

then z, > z* R-super1inear1y.
(iv) 1If for some k > 0 and i = 0,1,2...,

12

2
3 L
H[G(zi_]) - g;f (zi_])](xi-xi_])ﬂ < kﬂzi-zi_] (12)

then z; > z* R-quadratically.



Proof: Thjs_theorem follows directly from theorems Al and A2 in the

Appendix and (9). : c o : -]

3. Stablilization of the Local Method

In this section we shall restrict ourselves to the important subclass
of problems of the form (1) which have inequality constraints only, viz.

to problems of the form
min{f(x)|g(x) < 0} (13)

Newton's method is particularly attractive for such problems, because,
assumingfﬁataf]eastsomejnequalitiesareagtive,theoptima]ityconditionsfor
a local minimum are quite distinct from those for a local maximum, so
that Newton's method cannot, inadvertently, produce a local maximum
rather than a local minimum.

Obviously, we can use any globally convergent first order method
on problem (13) to obtain an approximation z to z*, a local minimizer
satisfying Assumption 1. The difficulty is in determining whether z is
in the domain of convergence of the Newton method (5), (6). We propose
to do this adaptively, by monitoring whether n s sufficiently "positive",
g(z) sufficiently "negative" and whether Newton's method is giving signs
of at least linear convergence. We shall use the phase I - phase II
algorithm described in [9] for stabilization. This algorithm requires

the following quantities:

v(x) & max g¥(x) , (14)
jem
w(x), & tmax 0,u(x)} . (15)

For € > 0, x er" given,




1) & Gengdx) > ux), - b . (16)
For € >0, 6 >0 and x €R" given,

6e(x) & minGlv(x), + J%er(x) + ) Wogd (21T 2 0, 5 = 1)
u J

(
e (17)
For g > 0, v € (0,1) given,
g4 {0,80,\)80,\)230,...} . (18)
e(x) & max{e € Elo_(x) > e} , | (19)
4 =0 0 =J J
h(x) = [ue(x)Vf (x) .+ jéle(x)(X)ue(x)vg (x)] , (20)

whereik(x), k =0,1,...,m, are the solutions of (17) for ¢ = ¢(x). We

assume that the matrices Gi in the algorithm below will be constructed by
2
one of the quasi-Newton formulas or set equal to a—-lz' (zi). In addition,

oX
we need the following standard hypothesis:

Assumption 2: For all x€ R" such that w(x) >0,0 & co{vgj(x) li e Io(x)},

where co denotes convex hull. "

Algorithm 1:

Parameters: gps K Ku’ K, >0;5 a B, y €(0,1).

g’
Data: Xq eRr", YO = Xy k=0,s=0.
Step 0: Compute Hg eR" by solving
m .. m . .
Mg = arg min{ § u‘]g‘](xo) + ;— llVf(xo) + 3 pJgJ(xo)llz} (21)
u>0 j=1 j=1

and set i = 0.



Step 1: If min ug < -Kﬁyk or max'gJ(xi) > K yk go to step 3. Else,
iem j€m J

compute Az’i = (Axi’A“i) by solving the linear system of equations

.
) -
vxL(xi’“i) + GiAxi + —zﬁ(—-(xi)Au1 =0 (22)
u%gj(xi) + %g (x;)ax; + awgo(x,) =0, ¥iem . (23)
k

Step 2: If ﬂAziﬂ fiKiY , set Xipp = X * Axi, igp = W5+ A"i’ i=i+1,
k=k+1and go to step 1. Else, set i =0, k =k + 1 and go to step 3.
Step 3: Compute s(ig), h(ig) according to (18) and (19).

Step 4: If e(ig) f.sovk, set x_ = x_ and go to step 0. Else, if w(xs)+ >0

0 s
compute the largest t, € {],8,62,...} such that

WEAN()) - $(E,) < -at e(X) (24)
if w(i;) 5.0? compute largest t, € {1,3,32,...} such that

¢(§;+tsh(§;)) <0 . (25a)

f('is+tsh(§)) - f(‘fs) < -atse(is), (25b)
set §;+1 = X * tsh(ig), set s =s + 1 and go to step 3. x

Theorem 2: Suppose that (10) is satisfied for all i and that the
sequence {ig} is bounded. (i) If {i;} is infinite then, (a) every
accumulation point x* of {2;} satisfies g(ig) < 0 and the F. John first
order conditions of optimality; (b) let {xs}K be the subsequence of

{7;} at which a transfer to step 0 takes place (i.e. Xg = i;), then no
accumulation point of {xs}seK satisfies Assumption 1. (ii) If {ig} is
finite, then z, > Z as i + =, with z = (X,n) a Kuhn-Tucker pair.
Furthermore, if 2 satisffes Assumption 1, then Theorem 1 gives rate of

 convergence, provided its assumptions are satisfied.
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Proof: (i) (a) If {ig} is"infinite, then every accumulation point of
{E;} js a feasible F. John point by [9]. Furthermore, e(ig) + 0 as

s » o, (i) (b) Suppose that E; X

X* with K' C K and that x*, together
with the corresponding multiplier u* satisfy Assumption 1. We note that
because of Assumption 1, u* is a unique Kuhn-Tucker multip]ier fbr x*.
Now, let {uO’s}SEK* be the multipliers u, computed in Step 0 for x, =X
s € K'. Then, because u* is unique and the solutions Ho,s are u.s.c. in
i;, it follows that Hy s K u* as s - o, Consequently, there must exist
an s' € K' such that the local algorithm convérges superlinearly from

Mg = Mgrgre X = 2;. and satisfies the tests in stép 1 and step 2 for all
i > 0. Thus we get a contradiction that ﬁf } is infinite.

(ii) If {z } is infinite, then, since we must have that k = i + ko,

kgt kot

for some kO’ it follows that g (x ) <Ky ,» ¥ €m and u > =K h

g
Yj €m, for a11 i, so that Tim g (x ) <0, and lim uJ >0, j €m. Since
ﬂAz I <K ,Y ot for all i; it follows that’ fz } is Cauchy and hence that
z; > Zas i + . It follows then from (14a,b), that z = (x,u) is a

Kuhn-Tucker pair. The rate of convergence result follows from Theorem 1.

-}
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APPENDIX.
The following results are somewhat stronger than the ones in ‘the open

literature, cf. [3]. Consider the equation
f(x) = 0, (A.1)

where f : R” - R" is continuously differentiable. A quasi-Newton method

is defined by the recursion
6(x,)(x;_q-x,) + fx,) =0, i=1,2,3,.., (A.2)
We use the notation
A 3f
F(x) £ 55 (x). (A.3)
Let x* be a solution of (A.1).

Assumption A 1:

(i) F(x*) is non singular.

(ii) There exists an ¢ > 0 such that

16(x) = F(x)I < —L—= ¥x € B(x*,¢) (A.4)
21F(x*)" "

The following result is obvious.

Lemma Al: Let ¢ > 0 be as in Assumption A 1. Then there exist p € (0,¢c),

M<eo, B8>0, a <1/28 such that ¥x, x' € B(x*,p), F(x) is nonsingular and
IFx)" M < g (A.5)
IF(x) - G(x)I < a » | (A.6)

IF(x") - f(x) + G(x)(x'-x)I < M Ix' - xﬂ2 + IF(x)-G(x))(x"-x)1.
(A.7)
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Furthermore, x* is the unique solution to (A.1) in B(x*,p). n

Lemma A2: Let p, a, B be as in Lemma Al. Suppose that X € B(x*,p).

Then G(X) is nonsingular and the so]ution'v of

G(X) v + f(x) = 0- (A.8)
satisfies
Ivl < 281#(X)! , (A.9)

Proof : From (A,5), F(X) is nonsingular and IF(X)~ i< 8. From (A.6),
I6(x) - F(%)! <o, Since aB < 1, we can épply the perturbation Lemma

(see [8a] p. 45) which yields

(i) G(X) is nonsingular

(1) 167 < 1> <28
Since v = -G(i)flf(;), the result follows. n
Theorem Al: There exists a 6§ > 0 such that, if Xq € B(x*,§), then

(i) the sequence {xi} constructed by (A.2) is well defined and
remains in B(x*,p);
(i1) {xi} converges R-linearly to x* in the norm I.0;

(iii) for i = 1,2,3,...
Ixjyy = %;0 < 280MIx; = x;_q12 + D(F(x;_;)-6(x,_))(x;-x,_ 0]

(A.10)

Proof: Choose n € (2a8,1), and § € (0,2) such that, ¥x € B(x*,8)
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1(x)8 < min(2=228 A (I-n)o | A 11
(x) §,m1n(482M TR (A.11)

Now, suppose xj € B(x*,8). We shall show by induction, that, for i = 0,1,...

.. n-ZaB' -
ﬂxi+] - xiﬂ T (A.12)
Ixjp = %0 <0 (-n)8 . (A.13)

First we show that (A.12) and (A.13) hold for i = 0. Since

Xy € B(x*,8) CB(x*,p) we have, from Lemma A2
ﬂx] - xoﬂ 5_Zsﬂf(x0)ﬂ (A.14)

and from (A.11)

_ n-2a8 _ n-2a8
ﬂx.l xoﬂ <28 . /M (A.15)
™M

and

Hx] - xoﬂ <28 Lliglg = (lln)'g. (A.16)

Now suppose that

Ixy - xp 1 < T528 for k = 1,2,...,1 (A.17)
and

Ix. - x. 0 << V1-n) £ for k = 1,2,...1 (A.18)

K ] <n n 5 Y .

Then, (a)

Ix; - %ol < Iy = x5 q0 + x5 _q - Xjopl oo+ Xy = x40

i-2

< (702 41) (1) §

J .y yLe.p
<1 (1-n) § <4 | (A.19)
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Ix; - x*[ < Ixgxgl + Ixg = x*l < %"* § < p (A.20)

and hence Xs € B(x*,p).

From (A.2),
f(xi) = f(xi) - f(xi_]) + G(xi)(xi-xi_]) (A.21)
and, since x, € B(x*,p), we obtain from(A.7), (A.6) and (A.17) that
2
- - ¢ -
< (Mixgmx;_qBra)lxg - xg g0 &g Ix; - x; 1 (A.22)
Hence, from Lemma Al, since Xs eB(x*,p)

"xi+1 - xiﬂ S.Zsﬂf(xi)ﬂ < nﬂxi - xi_]ﬂ (A.23)

From (A.17)

- - n-2a8 \
ﬂxi+] xiﬂ f_ﬂxi. xi_]ﬂ‘g 2aM (A.24)

and from (A.18),
Ix;4q = %0 < nlxy = %, 41 <n'(1-n) &, (A.25)

which proves (A.12) and (A.13). Hence (A.10) holds. Also {x;} is
well defined for all 1.
Now, from (A.13), and for j > i

. . i s
Ix; - ;0 < (32 ) (len) < = (1n) =0 8 (A.26)

hence {xi} is Cauchy and X; > X € B(x*,p). But from Lemma Al, this implies
that Xg > x*., From (A.26), with j -+ o,lx* - xiﬂ §,ni g—. Hence convergence

is R-Tlinear and this completes the proof. o
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Theorem A2: Consider the sequence {x;} satisfying (A.2), with Xq such

that the conclusions of Theorem Al hold.

(x;=%5_4)
(1) If 16(x;_y) = F(x, ;) K"“l:lvﬂ +0as i+, then x, > x*
%41

R-superlinearly.

(11) I 16(x;) = Flx;)(xgmx; )0 < K I, = x, 12

fof some K > 0 and for i 1,2,...

then x, -+ x* R-quadratically.

Proof:

(i) From (A.10)

Ix, i+17%5 0 ~(xi'xi~1)"
W | < ZB[M"Xi-Xi_]" + [‘F(Xi_]) - G(Xi_]) W ]-+0
.as8 i+ (A.27)
which implies R-superlinear convergence.
(ii) From (A.10),
ﬂxi+] - xiﬂ f_yﬂxi - xi_]ﬂz for some y > 0 (A.28)
which implies R-quadratic convergence. u
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