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Introduction

Over the last several years there have been a number of successful

attempts to construct superlinearly converging algorithms for the

solution of constrained optimization problems. A common starting point

in the construction of these new methods is the use of Newton's method,

in some form, for solving the Kuhn-Tucker first order optimality con

dition equations and inequalities. These methods can be grouped into

two categories: those traceable to R W. Wilson's successive quadratic

programming method (SQP) [14], and those which emanate from the ordinary

Newton method for the solution of equations.

Wilson's method is a form of Newton's method which solves a quadratic

program with equality and inequality constraints at each iteration. For

optimization problems of the form min{f(x) | h(x) = 0}, it yields exactly

the same iterates (x.,X*) as the ordinary Newton method does when applied

to the optimality equations h(x) =0, Vf(x)+ (3h(x)/3x)TX =0; for

optimization problems of the form min {f(x) | g(x) < 0}, it yields

iterates which differ only by a second order term from those constructed

by the extended Newton method, developed by Robinson [12], when applied

to the Kuhn-Tucker optimality equations and inequalities, viz. uJgJ(x) = 0,

Vf(x) + (9g(x)/3x)TX =0, g(x) <0, X>0. It was shown by Robinson [11]

that when ihtialized sufficiently closely to a "strong" Kuhn-Tucker pair

(x,X), the SQP method was quadratically convergent.- SQP was extended to

a quasi-Newton version by Han [4,5,6]. Han also globalized the local

method, i.e., extended its domain of convergence,as well as eliminated

the possibility of convergence to a local maximum instead of to a local

minimum, by using an exact penalty function for step size determination:

a technique subsequently refined and improved upon by Powell [10] and
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Mayne and Polak [8]. The main drawback of successive quadratic programming

is that it is difficult to find reliable quadratic programming codes,

capable of solving non-positive-semidefinite problems, that find a

solution of smallest norm, as required by Robinson's theory [11] for

super!inear convergence.

The extended Newton method was never tried for solving the Kuhn-

Tucker relations of general optimization problems because of a persisting

erroneous belief that it would fail because the relations did not satisfy

the Robinson LI conditions [12] and because it was not clear how it could

be globalized. However, it was considered for problems of the form

min{f(x) : h(x) = 0} by Tapia [13] and by Bertsekas [1]. Furthermore,

Bertsekas was able to globalize Newton's method by using an exact

differentiate penalty function, proposed by DiPillo and Grippo [2], as

a descent function in step size determination. He showed that Newton's

method yields a direction which, asymptotically, approaches the Newton

direction for the DiPillo and Grippo penalty function. For problems

with both equality and inequality constraints, Bertsekas has proposed an

"active set" strategy, as a means of removing the need to solve in

equalities as well as equations. The obvious advantage of the ordinary

Newton method over successive quadratic programming is that it only needs

to solve a linear equation at each iteration.

In the present paper, we show that when a sufficiently good initial

approximation to a "strong" Kuhn-Tucker triplet is available, optimization

problems with both equality and inequality constraints can be solved

without using an active set strategy, by applying Newton's method, or

a quasi-Newton method, only to the equations part of the Kuhn-Tucker

conditions. The resulting local method is super!inearly convergent.
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For problems with inequality constraints only, we show that globally

convergent methods with excellent overall properties can be obtained by

combining quasi-Newton methods with a phase I - phase II method of

feasible directions.

2. Local Methods

Consider the problem

min{f(x) g(x) < 0, h(x) = 0} (1)

where f : ]Rn -*]R, g : IRn •*lR,n and h : IRn -^IR^ are all twice continuously

different!*able. Let x* be a local minimizer for (1) such that the

triplet z* = (x*,u*,X*) satisfies the Kuhn-Tucker first order conditions:

7xL(x,y,X) =0 ; (2a)

h(x) = 0 ; (2b)

vV(x) =0, j€m; (2c)

g(x) < 0 ; (2d)

u > 0 ; (2e)

where L(x,u,X) = f(x) + <y,g(x)> + <X,h(x)> and m = {l,2,...,m}. '

Assumption 1: With J* = {j e m|gJ(x*) = 0}, we assume that

2 T<y, 5L(x*,V*,X*) y) „0 Vye{yl|3h(x*) y, =0. <VgJ{x*))y.> =0 .
oX

Vj€ J*, fly'! =1}. (3)

(ii) that y*J >0 for all j€ J*, and
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(iii) that the vectors Vhk(x*), k€ i, VgJ(x*), je J*, are linearly

independent. H

Now consider the equalities part of the Kuhn-Tucker conditions (2),

viz:

VxL(x,u,X) =0 ;

h(x) = 0 ;

uV(x) =0 Vj era

(4a)

(4b)

(4c)

We define our local algorithm as a quasi-Newton method applied to (4),

viz., given zi A(x.-.y.-.x..).

z.+1 = z. + az., (5)

where Az. = (ax.,Ay.,AX..) is a solution of the linear system

V^x.^X.) +G(z.)Ax. +Jjf (x.)Ay. +|I (x.)AX. =0; (6a)
(6b)

(6c)

h(x.)+f (x.)Ax.=0;

yjgj(x.) +yj ^ (x.)Ax. +Ayjgj(x.) =0, Vj €m.
a2lClearly, when G(z.) =•2-j (z.)> (6a-6c) defines the ordinary Newton method

1 9x 1
for solving (4).

The Jacobian of the system (6) is given by

J

J(z,G) =

G(z)

—(x)axw

l

&*

iM

_m
gm(x)
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It was shown by McCormick [7] that under Assumption 1,

32L ".
J(z*, « (z*)) is nonsingular.

3x

We define the norm 0-8 on ]Rn+m+* by

HzO2 = llxll2 + flyO2 + Oxll2, (8)

so that H(x,0 ,00) II = flxB. Then, using induced norms for matrices, we

get

UU.G^?)) - 0(z,G2(z))B = llG^z) - G2(z)l (9)

Theorem 1 (Local convergence): Suppose that for all i,

dX

a2l
where J*(z*) = J(z*, •2-Wz*))." Then there exists a 6 > 0 such that if

ax*

zQ e B(z*,6) then

(i) The sequence {z.} constructed according to (5), (6) is well

defined;

(ii) z. -*• z* R-linearly in the norm II*II .

(iii) If, in addition,

•CfiCz^ ,) -H (z. ,)] i*1]*1"1! I-0as 1-- , (11)II ^ 1 I uz. Z.^ll

then z. -»• z* R-superlinearly.

(iv) If for some k > 0 and i = 0,1,2...,

2

aCG(zi_1) - ^ (z,.,)]!^.,)! <kiz.-z../ (12)
dX

then z. -»• z* R-quadratically.
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Proof: This theorem follows directly from theorems Al and A2 in the

Appendix and (9). n

3. Stabilization of the Local Method

In this section we shall restrict ourselves to the important subclass

of problems of the form (1) which have inequality constraints only, viz.

to problems of the form

min{f(x)|g(x) < 0} (13)

Newton's method is particularly attractive for such problems, because,

assuming that at least some inequalities are active, the optimality conditions for

a local minimum are quite distinct from those for a local maximum, so

that Newton's method cannot, inadvertently, produce a local maximum

rather than a local minimum.

Obviously, we can use any globally convergent first order method

on problem (13) to obtain an approximation z to z*, a local minimizer

satisfying Assumption 1. The difficulty is in determining whether z is

in the domain of convergence of the Newton method (5), (6). We propose

to do this adaptively,. by monitoring whether y is sufficiently "positive",

g.(z) sufficiently "negative" and whether Newton's method is giving signs

of at least linear convergence. We shall use the phase I - phase II

algorithm described in [9] for stabilization. This algorithm requires

the following quantities:

i|i(x) =max gj(x) , (14)

*(x)+- (max 0,i[»(x)} . (15)

For e > 0, x €]Rn given,
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Ie(x) ={j €m|gJ(x) >if/(x)+ - e} . (16)

For e > 0, 6 > 0 and x6Kn given,

6 (x) ^ mjn{T!%>(x)+ +AllyVfM + I yjVgj(x)H2| y >0, Eyj =1}
V jeUx)

(17)

For eQ >0, v e (0,1) given,

A 0

E= {0,e0,ve0,v zQ,...} , (18)

e(x) =max{e € E|6£(x) >e} , (19)

h(x) A-[^(x)Vf°(x).♦ I # rf,x)VgJ(x)] , (20)j€le(x)(x) *W

—kwhere y ^, k =0,1,...,m, are the solutions of (17) for e =e(x). We

assume that the matrices G. in the algorithm below will be constructed by
2

one of the quasi-Newton formulas or set equal to -^-4 (z.). In addition,
ax

we need the following standard hypothesis:

Assumption 2: For all xe ]Rn such that ijj(x) >0,0£co{vgJ'(x) |j eIQ(x)},
where co denotes convex hull. h

Algori thm 1:

Parameters: eQ, Kg, K,Kz >0; a, 6, y e (0,1).

Data: xQ e]Rn, xQ =xQ, k=0, s=0.
Step 0: Compute yQ eJRm by solving

yQ =arg min{ J yJgJ(xQ) +\ Ilvf(xQ) +J yJgJ(xQ)II2} (21)

and set i = 0.
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Step 1: If min vi <-K.Yk or max gJ(x.) >Kvk go to step 3. Else,

compute Az. = (Ax.,Ay.) by solving the linear system of equations

VxL(x.,y.) +G.Ax. +^- (x.)Ayi =0 (22)

l^V^) +\iJ J*1 (x.)Ax. +Ayjgj(x.) =0, Vj em . (23)

Step 2: If IlAzJI <Kzyk, set xi+1 =x. +Ax., y.+1 =yi +Ay1, 1=1+1,
k = k + 1 and go to step 1. Else, set i = 0, k = k + 1 and go to step 3.

Step 3: Compute e(7$), h(xg) according to (18) and (19). •
— k —Step 4: If e(xs) < eQv ,set x =x and go to step 0. Else, if i|>(x )+ >0

compute the largest t € {1,3,8 ,...} such that

^(xs+tsh(xs)) -<Kxs) 1 -atse(xs) , (24)

_ p
if ^(x ) <0, compute largest t € {!,&,$ ,...} such that

^(xs+tsh(3Ts)) <0 (25a)

f(xs+tsh(x)) - f(xs) <-atse(xs), (25b)

set xs+, = x + th(x ), set s =s+ 1 and go to step 3. «

Theorem 2: Suppose that (10) is satisfied for all i and that the

sequence {7 } is bounded, (i) If {7 } is infinite then, (a) every

accumulation point x* of {7 } satisfies g(7 )£0 and the F. John first

order conditions of optimality; (b) let {xe}„ be the subsequence of
S In

{7 } at which a transfer to step 0 takes place (i.e. xQ =7 ), then no

accumulation point of {x }€K satisfies Assumption 1. (ii) If {7} is

finite, then z. •»• z as i -»• », with z = (x,y) a Kuhn-Tucker pair.

Furthermore, if z satisfies Assumption 1, then Theorem 1 gives rate of

convergence, provided its assumptions are satisfied.
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Proof: (i) (a) If {x } is'infinite, then every accumulation point of

{7C} is a feasible F. John point by [9]. Furthermore, e(7 ) •*• 0 as

s-> ~. (i) (b) Suppose that 7S £ 7* with K' cKand that 7*, together
with the corresponding multiplier y* satisfy Assumption 1. We note that

because of Assumption 1, y* is a unique Kuhn-Tucker multiplier for 7*.

Now, let {Uq»s}sGi/i De tne multipliers yQ computed in Step 0 for xQ = x$,

se k'. Then, because y* is unique and the solutions yQ are u.s.c. in
— K'
xe, it follows that yft- _ •*• y* as s •»• ». Consequently, there must exist
S U »5

an s' s K' such that the local algorithm converges super!inearly from

uQ = U0» ,» xQ = x iand satisfies the tests in step 1 and step 2 for all

i>0. Thus we get acontradiction that {7g} is infinite.

(ii) If {z.} is infinite, then, since we must have that k = i + kn,
1 . k +i • k +i

for some kQ, it follows that gJ(x.) <Ky° ,Vj emand \i3. >-K^y °
Vj € m, for all i, so that TTm gJ(x.) < 0, and lim y^ > 0, j€ m. Since

kQ+i ' ~ . "
llAz.B < K y for all i> it follows that"tz.} is Cauchy and hence that

z. + z as i + ». It follows then from (14a,b), that z = (x,y) is a

Kuhn-Tucker pair. The rate of convergence result follows from Theorem 1.
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APPENDIX.

The following results are somewhat stronger than the ones in the open

literature, cf. [3]. Consider the equation

f(x) = 0, (A.l)

where f :]Rn -».]Rn is continuously differenti able. A quasi-Newton method

is defined by the recursion

G(x.)(x._rx.) + f(x.) = 0, i= 1,2,3,... (A.2)

We use the notation

F(x) ^f£(x). (A.3)

Let x* be a solution of (A.l).

Assumption A 1:

(i) F(x*) is non singular,

(ii) There exists an e > 0 such that

IIG(x) - F(x)II < ^ VxeB(x*,e) (A.4)
2IIF(x*)'l

The following result is obvious.

Lemma Al: Let e > 0 be as in Assumption A 1. Then there exist p e (0,e),

M < oo, $ > o, a < 1/23 such that Vx, x' e B(x*,p), FCx) is nonsingular and

IIFUr1!! <3, (A.5)

HF(x) - G(x)II < a , (A.6)

ilf(x') - f(x) + G(x)(x'-x)ll <M lx' - xll2 + IIF(x)-G(x))(x»-x)ll.

(A.7)
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Furthermore, x* is the unique solution to (A.l) in B(x*,p).

*
Lemma A2: Let p, a, $ be as in Lemma Al. Suppose that x e b(x ,p).

Then G(x) is nonsingular and the solution v of

G(x) v + fCx) = 0 (A.8)

satisfies

flvO < 23flf(x)Q . (A.9)

Proof : From (A,5), Ftxl is nonsingular and flF(i()"1II< 3. From tA.6),
DG(x) - F(x)H <a. since a6 < i,we can apply the perturbation Lemma
(see [8a] p. 45) which yields

(i) G(x) is nonsingular

(ii) IlGfx)-1!! <j^ <2$ .
* -1 . *

Since v = -G(x) f(x), the result follows. n

Theorem Al: There exists a 5 >0.such that, if xQ e B(_x*,S), then

(i) the sequence (x..} constructed by (A.2) is well defined and

remains in B(x*,p);

(ii) {x..} converges R-linearly to x* in the norm Ul;

(iii) for i = 1,2,3,... .

flx.+1 - x.II <23[M!lx. - x._/ +0(F(xl_l)-6(x1-l))(x1-xl-l)l]

(A.10)

Proof: Choose ne (2a6,l), and 66 (0,f) such that, Vx e B(x*,6)
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|f(x)| <min(Q=M .iSigk). (A.H)

Now, suppose xQ e B(x*,6). We shall show by induction, that, for i= 0,1,

Dx.+1 -x.II <^(l-njf • (A.13)

First we show that (A.12) and (A.13) hold for i = 0. Since

xQ eB(x*,6) CB(x*,p) we have, from Lemma A2

Ox, - xQ0 <23Bf(x0)II (A.14)

and from (A.11)

and

|Xl -x0D <26^k= (T-n)f. (A.16)

Now suppose that

"xk-xtll<^|6 for k-l.2...,.1 (A.17)

and

l,xk" Yl" i^"^1"^ f for k=1>2'—1 (A.18)
Then, (a)

0x1 - x0o < u. - x^n + iixi_1 - Xi_2ii + .. + flx1 - xQn

<(n1-1+T1i"2+..+l)(l-n) f

<l^n-n)f <f (A.19)

-14-



Bx1 - x*l <Bx^XqD +IIxQ - x*II <| •+•« <p (A.20)

and hence x. € B(x*,p).

From (A.2),

f(x^ = f(x.) - f(xu}) + G(x1)(xrx1_l) (A.21)

and, since x. € B(x*,p), we obtain from(A.7), (A.6) and (A.17) that

af(x.)II <MHx. -x.^ll2 +II(F(x.<_1) -6(x1-l)(xrx1-l)l

<(Mflx.-x.^ll+cOIIx. -x.^II <j^ ||X. .x.^h (A.22)

Hence, from Lemma Al, since x. e B(x*,p)

0x.+1 - xJ < 23lIf(x.)II < nllx. - x.^II (A.23)

From (A.17)

and from (A.18),

Bxi+1 -xJ <nIlx. -x.^II <nr(l-n) f, (A.25)

which proves (A.12) and (A.13). Hence (A.10) holds. Also {x^ is

well defined for all i.

Now, from (A.13), and for j > i

aXj -xJ <(nj'1+nj'2+...+n1)(l-n) £<f^ (l-n)f-n1 f (A.26)
hence {x.} is Cauchy and x. +x"e'!(x*,p), But from Lemma Al, this implies

that x. •* x*. From (A.26), with j-»• °°,Ilx* -x.II £ n1 §• Hence convergence
is R-linear and this completes the proof. n
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Theorem A2: Consider the sequence {x.} satisfying (A,2), with xQ such
that the conclusions of Theorem Al hold.

(x.-x. ,)
(i) If DG(x1a>1) - F(Xi-1) bx;.x]"V ^ 0 as i ^ oo, then x. * x*

R-superlinearly.

(ii) If l!G(x.) - F(x1)(xrx1-l)l <KDx. - x.^I!2

for some K > 0 and for i = 1,2,...

then x1 •* x* R-quadratically.

Proof:

(i) From (A.10)

^1^| <26[Ml.x.-xi.1fl +lF(xM) -Stx^J-j^j^J.o
as i + oo (A#27)

which implies R-superlinear convergence,

(ii) From (A.10),

Bxi+1 " X1D i Y,,xi " Vl"2 for some y>° (A.28)

which implies R-quadratic convergence. h
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