

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

EXTENDING INGRES WITH A RULES SYSTEM

by

M. Stonebraltera R. Johnson and S. Rosenberg

Memorandum No. UCB/ERL M81/93

18 December 1981

EXTENDING INGRES WITH A RULES SYSTEM

by

Michael Stonebraker,

Rowland Johnson,

and Steven Rosenberg

Memorandum No. UCB/ERL M81/93

18 December 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

This research was supported by the Navy Electronics Systems Command through
contract N00039-81-C-0569, and by the AppliedMathemtical Research Program
of the Dept. of Energy through contract W-7405-EN6-48.

EXTENDING INGRES WITH A RULES SYSTEM

by

Michael Stonebraker

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

UNIVERSITY OF CALIFORNIA

BERKELEY, CA.

Rowland Johnson

COMPUTATIONS DEPARTMENT

LAWRENCE UVERMORE LABORATORIES

LIVERMORE, CA.

Steven Rosenberg

COMPUTER SCIENCE AND APPLIED MATH DEPARTMENT

LAWRENCE BERKELEY LABORATORIES

BERKELEY, CA.

ABSTRACT

This paper presents the specification and proposed implementation of a

rules system for a relational data base manager. The motivation for this propo

sal is the fact that integrity constraints, protection, triggers, alerters, and views

are ALL examples of special purpose rules systems. We suggest that all five ser

vices can be obtained in one unified way through a single rules system.

-1-

I INTRODUCTION

This paper presents the specification of a rule based facility for INGRES

[ST0N76, ST0N80]. Its basic motivation is the observation that integrity con

straints [ST0N75, HAMM76], alerters [BUNN79], triggers [ESWA76], protection

[GRIF76, ST0N74], and query modification to support views [CHAM75, ST0N75]

are all special purpose rule systems. This paper specifies a mechanism by which

these facilities can be obtained in one unified way. Moreover, many rules not

possible in any of the existing mechanisms can also be formulated.

Rule systems have been known for a long time in the artificial intelligence

(AI) world. Knowledge based systems such as MYCIN [SH0R76] and PROSPECTOR

[DUDA78] are basically rule driven systems. Moreover, AI programming

languages such as KRL [B0BR77] and FRL [R0BE77] have facilities of the flavor

we propose. Our contribution is to apply them in a data base environment in a

simple way which is easy to use and efficient to implement.

We begin with a specification of our paradigm and the language constructs

necessary for it. Then in Section III we indicate several examples of our rules

system which indicates its power and generality. In Section IV we suggest an

implementation of our construct in a relational system. . Lastly, Section V closes

with some conclusions.

II RAISIN

The language by which a data base administrator or user specifies rules is

called RAISIN (Rules from AI Specified for INgres). Its basic structure is a

sequence of ON-TKEN clauses. That is,

ON (condition) THEN (action)

ON (condition) THEN (action)

-2-

For each ON-THEN clause, the condition will specify constraints to be met by an

incoming data manipulation command before the action can be applied. More

over, the condition can depend on data in the data base system. The action will

be a set of operations to be performed on the command as well as other possibly

new operations on the data base.

In this section we specify the allowable conditions and actions in RAISIN. We

begin with the keywords in the language, which are necessarily somewhat

specific to INGRES and QUEL. Other relational systems such as System R

[ASTR76, BLAS79] would require a slightly different syntax.

KEY WORDS

TV: This stands for the collection of tuple variables in the incoming QUEL com

mand. For example, if

EMP (name, salary, manager, age, dept)

is a relation and we specify the command:

RANGE OF E IS EMP

REPLACE E(salary = 1.1 * E.salary)

WHERE E.name = "Stonebraker"

then TV will have the value "E." Languages which do not have an explicit notion of

a tuple variable, for example, SEQUEL [CHAM74], would replace TV by the rela

tion names that the command affects.

LHS: This stands for the collection of column names in the target list of the

QUEL command which appear to the left of the equals sign. In this example

there is only one, salary.

-3-

RKS(name): This stands for the computation to the right of the equals sign in

the target list. The desired one has a left hand side with value "name." In this

case RHS(saiary) has the value "1.1 *E.salary."

RV: The tuple variable which specifies the relation affected by delete and

replace operations. In this case it is E.

TR: The target relation indicated for append commands and optionally for

retrieve commands. If we perform the command:

RETRIEVE INTO TEMP (E.name) WHERE E.age <35

then TR has the value "TEMP".

QUAL: This stands for the qualification of the QUEL command, i.e. everything

after the "WHERE." In the example directly above, QUAL has value "E.age <35."

COMMAND: This stands for the particular command being executed. In the

above example, it has value "RETRIEVE."

USER: This stands for the login name of the user who executed the command.

TIME: This stands for the value of the current time of day clock.

DAY: This stands for the current day of the week.

IN: A keyword for set inclusion. For example "salary IN LHS" will return true for

the first example command but false for the second.

TV->: The -> following a tuple variable indicates that the value desired is the

relation which the tuple variable ranges over. In the above examples "E->" and

"TV->" both have value "EMP."

We can now specify what conditions are allowable in RAISIN. The condition term

-4-

is a (possibly parenthesized) boolean combination of clauses. Each clause is of

the form:

Left-side REL-OPERATOR Right-side

REL-OPERATOR indicates the standard collection of comparison operators {<,
<=, =, >, >=, !=j. In addition IN and -> from the key word list above are added

operators. Moreover, Left-side and Right-side are either constants or keywords
from the above list.

The following indicate acceptable conditions in RAISIN:

ON (TV -> EMP AND COMMAND = REPLACE AND LHS = salary)

ON (TIME <800 OR TIME >1700)

ON (USER = INGRES)

ON (E.salary > 800 IN QUAL)

In addition, RAISIN can have conditions which involve data in the data base.

Hence, clauses can additionally be:

1) a QUEL RANGE statement

2) a QUEL Qualification

The following are are additional acceptable conditions in RAISIN:

ON (COMMAND = APPEND AND RANGE OF T IS TR

AND COUNT (T.tid) >500)

ON (COMMAND = REPLACE AND RANGE OF MIS EMP

AND M.salary >100 AND M.name = "Smith")

-5-

The first condition will apply to an APPEND command for a relation with more

than 500 tuples while the second will apply for any REPLACE command but only
if an employee named Smith exists who earns more than 100. Notice that TR

stands for the target relation of an APPEND command. Hence, it cannot be the

name of a valid relation in the current data base.

In each of the RAISIN examples above, the specified condition is either true

or false. If true, the associated action is performed. We now turn to the legal
actions which can appear in a RAISIN statement

ON (condition) THEN action

Here, "action" is a collection of actions from the following list. They are exe
cuted in order and there is no branching allowed.

1) QUEL command

Any QUEL command using tuple variables which have been previously defined is

a legal action. Moreover, any keyword can appear in such a QUEL statement.

For example, we could declare an action of:

RANGE OF N IS NEW-EMP

APPEND TO JUNK (TV.all) WHERE QUAL

2) SUB string-2 FOR string-1

This action will process the incoming QUEL command and substitute string-2 for
each occurence of string-1. For example, we could change a replace action into
a delete action by:

SUB DELETE FOR REPLACE

Of course, we would require additional modifications to make the resulting

-6-

DELETE statement syntactically legal.

More generally, we allow any keyword to be embedded in string-1 or string-

2. In this case, the keyword takes on a value before the substitution is

attempted. For example, we could change tuple variables by:

SUB E.salary FOR TV.salary

Of course, the INGRES default "all" is allowed and indicates that all column

names are to be substituted. For example we could change the scope of one of

the above commands from EMP to NEW-EMP as follows:

SUBN.allFORTV.all

3) ABORT

This action cancels the command.

4) EXEC

This action executes the command. Ordinarily the command is the last action to

be accomplished and is done by default. If a user wants the command done ear

lier, he can force it by an EXEC. Two EXEC's in a row would cause the command

to be run twice.

5) UNDO

This action undoes all the changes that have been made to the database since

the beginning of the rule. With the inclusion of this action there is the implicit

assumption that transactions are supported.

6) MESSAGE [TO user-idj "message text"

This command returns a message to the person or program which issued the

-7-

command unless the optional clause is included which directs the message to

another user. The MESSAGE action is useful when a command must be aborted

and an error message returned.

7) ANDQUAL (text-string)

This action will perform query modification on the current command.

Specifically it will replace QUAL by QUAL AND text-string. Hence, text-string is
"ANDed" to the qualification. For example, we can restrict somebody to the sub

set of employees under 30 by:

ANDQUAL (E.age < 30)

8) ILLEGAL "message text"

This action inspects the current command to see if it is syntactically valid. If

not, it will perform an "ABORT" and generate a message. Consequently, it has

the following effect:

IF (syntax error) THEN

BEGIN ABORT; MESSAGE "message text"; END

We now turn to illustrating this facility with several examples of commonly

desired features.

Ill EXAMPLES OF RAISIN

We indicate the use of RAISIN to accomplish integrity constraints, protec

tion statements, triggers, alerters, and view support in turn. Then, we conclude

the section with some other miscellaneous applications of our rules system

which seem useful.

-8-

3.1 Integrity Constraints

If employees must make more than 1000, then the following integrity con

straint in INGRES expresses this desire.

RANGE OF E IS EMP

INTEGRITY E.salary > 1000

In RAISIN this rule can be expressed as:

ON (TV -> EMP AND salary IN LHS AND

(COMMAND = REPLACE)

or COMMAND = APPEND)

THEN ANDQUAL (RHS(salary) > 1000)

A more sophisticated example is the constraint that Smith must make more

than 2000. This is expressed in INGRES by

RANGE OF E IS EMP

INTEGRITY E.salary >2000 or E.name != "Smith"

In RAISIN this rule can be expressed as follows:

ON ((TV-> EMP and salary IN LHS AND

COMMAND = REPLACE) or COMMAND = APPEND) AND

name = "Smith" IN QUAL)

THEN ANDQUAL (RHS(salary) >2000)

Finally, consider the case where the average salary must be less than 1800. The

RAISIN rule for this is:

0N(TV-> EMP AND

-9-

((salary IN LKS AND COMMAND =REPLACE) OR

COMMAND = APPEND OR

COMMAND = DELETE)

THEN EXEC

ON (RANGE OF E IS EMP AND

AVG(E.salary) < 1800)

THEN UNDO

MESSAGE "command not done because it would

raise average salary above 1800"

ABORT

3.2 Protection

Suppose Jones is only allowed to update salaries of employees for whom he
is the manager and only between 8 A.M. and 5 P.M. This can be expressed in
INGRES as:

RANGE OF E IS EMP

PERMIT REPLACE of E(salary) to Jones

FROM 800 to 1700 WHERE E.manager = "Jones"

This can also be specified in RAISIN as:

ON (TV -> EMP AND salary IN LKS AND COMMAND = REPLACE AND

USER = Jones AND TIME > 800 AND TIME < 1700)

THEN ANDQUAL (TV.manager = "Jones")

3.3 Triggers

-10-

Whenever one appends a new tuple to the EMP relation, one might wish to

trigger an auxiliary update to the NEWEMP relation. This could be accomplished

as follows:

ON (TR = EMP and COMMAND = APPEND)

THEN EXEC

SUB NEWEMP FOR TR

A second example would be to construct a trigger which would automatically

keep a count of the number of employees in each department. In the case that

the application designer knows that employees are added one at a time, the fol

lowing rule will keep a correct total in the field COUNT in the DEPT relation.

ON (TR = EMP and COMMAND = APPEND)

THEN range of D is DEPT

Replace D(COUNT = D.COUNT + 1) WHERE

D.dname = RHS(dept)

3.4 Alerters

Suppose one wanted a message printed on a user's terminal if he performed

a salary update for any employee. The required RAISIN code is the following:

ON (TV -> EMP and salary IN LHS)

THEN MESSAGE "alarm, you are updating salaries"

As a second example, suppose one wants a message printed out if the average

salary rises above 2000. This alarm could be specified in RAISIN as:

ON (TV -> EMP AND

-11-

((salary IN LHS AND COMMAND = REPLACE) OR

COMMAND = APPEND OR

COMMAND = DELETE))

THEN EXEC

ON (RANGE OF E IS EMP AND

AVG (E.salary) > 2000)

THEN MESSAGE TO accounting "alarm, salaries too high"

3.5 Views

We will do three view examples in this section to illustrate the power of

RAISIN. First we will explore a view which is a restriction of a single relation.

The specifications of YOUNGEMP in QUEL are:

RANGE OF E IS EMP

DEFINE VIEW YOUNGEMP (E.all) WHERE E.age < 32

This same view can be indicated in RAISIN as:

ON (TV -> YOUNGEMP)

THEN RANGE OF E IS EMP

SUB E.all FOR TV.all

ANDQUAL (E.age < 32)

ILLEGAL "bad view mapping for YOUNGEMP"

This collection of action statements specifies the normal INGRES query

modification procedure. Now, if we have a second relation:

DEPT (dname, floor)

-12-

then we can define a second view as follows:

RANGE OF D IS DEPT

DEFINE VIEW EMP-FLOOR (E.all, D.floor)

WHERE E.dept = D.dname

This view is the natural join of EMP and DEPT. The normal query modification

[ST0N75] facility to support this view is expressed in RAISIN as follows:

ON (TV -> DEPT-FLOOR)

THEN RANGE OF E IS EMP

RANGE OF D IS DEPT

SUB E.all FOR TV.all

SUB D.floor FOR E.floor

ANDQUAL (E.dept = D.dname)

ILLEGAL "Your command on EMP-FLOOR

could not be mapped"

There are several classes of updates that cannot be translated unambiguously to

the underlying relations. INGRES currently gives up on these and issues an

error message. One such command is the following:

RANGE OF F IS EMP-FLOOR

REPLACE F (floor = 6, dept = "toy") WHERE F.name = "Mike"

This command cannot be mapped to EMP and DEPT unambiguously unless Mike

is the only employee in the toy department. The problem is that we will have to

move the toy dept and will, as a result, move all other employees in the toy

department. This was not asked for by the user. Let us suppose that we wish

-13-

Mike moved to the toy department and in addition the toy department moved to

the 6th floor.as a result of the above command. This can be expressed in RAISIN

as:

ON (floor IN LHS AND dept IN LHS AND

COMMAND = REPLACE AND TV -> EMP-FLOOR)

THEN RANGE OF E IS EMP

RANGE OF D IS DEPT

SUB E.all FOR TV.all

REPLACE D (floor = RHS(floor) WHERE QUAL AND

E.dept = D.dname AND D.floor = RHS(floor)

REPLACE E (dept = RHS(dept)) WHERE QUAL

AND E.dept = D.dname

ABORT

Notice that fairly general semantics can be specified by a data base administra

tor for ambiguous views.

3.6 Other Applications

It is easy to log the text for each command which is submitted to the data

manager by the following rule:

0N()

THEN RANGE OF L IS LOG

APPEND TO LOG (text =

concat(COMMAND,RV, LHS, RHS, QUAL))

This will come very close to putting the command in proper syntactic order into

-14-

the LOG relation.

It is also possible to accumulate statistics about data base activity by appli

cation of a rule. For example:

ON (COMMAND = replace AND salary IN RHS AND TV->EMP)

THEN RANGE OF S IS STATISTICS

REPLACE S(salcount = S.salcount + 1)

WHERE S.name = "EMP"

IV IMPLEMENTATION CONSIDERATIONS

The action statements can be stored in parsed form in a system relation

since they never need to be used for searching. This situation is analogous to

current INGRES specifications for views, protection and integrity constraints

which are stored in this fashion. If the parse tree exceeds the length of the long

est character string (currently 255 bytes), then INGRES must cut the tree into

255 bytes pieces and store each with a sequence number. If INGRES had a

mechanism for storing arbitrary length character string fields, it would make

storing such parse trees much easier than currently. This appears to be a suit

able use of data base experts [3T0N80a].

The ON condition will need to be stored in encoded form for efficient access.

The structure we expect to use is:

CREATE RULES-REL(
relation = Cll, /*relation pointed to*/
column qual = i2, /*bit vector for which columns

appear in the ON condition*/
command = il, /*bit vector for which commands

appear in the ON condition
time = il, /*flag indicating whether time

appears in the ON condition*/
user = il, /*fiag indicating whether user

is restricted by the ON condition*/

-15-

rule-id = i2, /*id for the rule*/

CREATE RULE-TEXT(
rule-id = i2, /*join field to RULES-REL*/
ON = C255, /*parsed form of ON condition*/
ACTION = C255, /*parsed form of ACTION condition*/
sequence - il, /*sequence number in case parsed form

exceeds 255 bytes*/

It appears that this structure will be at least as efficient as the existing INGRES
structure which stores views, integrity constraints and protection statements in

three different relations. Here, we need only access one relation to find all rules
which apply to any given command.

V CONCLUSIONS

It should be noted that RAISIN is an unappealing language as currently
structured. Obviously, the current INGRES specification for views integrity con
trols and protection is more user friendly than the corresponding RAISIN state

ment. As such RAISIN is only appropriate for a data base administrator or

sophisticated programmer. However, we expect to write front end "sanitizers"

for the rules interface. For example, it it relatively straight forward to preserve
the existing user interface for the specification of views protection and integrity
control. Asimple program could generate the necessary RAISIN statements.

More complex rules could always be expressed in RAISIN providing increased
functionality to the sophisticated data base administrator if needed.

Also, in the current INGRES implementation there are three separate
modules to handle integrity constraints, views and protection. These rule sys
tems are different enough that the modules share virtually no code. Under a

RAISIN implementation there would be one module for rules. It is likely that a
general RAISIN implementation would be no more complex than the current
INGRES query modification procedures.

-16-

As a result we expect to provide increased functionality in the form of a

more powerful rules system without the necessity of any additional software. In

fact, RAISIN might take less code than the current implementation of three spe

cial rules systems. Lastly, such an implementation might well be more efficient

than currently.

REFERENCES

[ASTR76]

[BLAS79]

[B0BR77]

[BUNE79]

[CHAM74]

[CHAM75]

[DUDA78]

[ESWA76]

Astrahan, M. M. et. al., "System R: A Relational Approach to

Database Management," TODS 2, 2, June 1976.

Blasgen, M., et. al., "System R: An Architectural Update," IBM

Research, San Jose, Ca., RJ 3091, September 1979.

Bobrow, D. and Winograd, T., "An Overview of KRL, a Knowledge

Representation Language," Cognitive Science, 1,1 1977

Bunemann, 0. and demons, E., "Efficiently Monitoring Rela

tional Databases," TODS, Sept. 1979.

Chamberlin, D. and Boyce, R., "SEQUEL: A Structured English

Query Language," Proc. 1974 ACM-SIGMOD Conference on

Management of Data, Ann Arbor, Mich., May 1974.

Chamberlin, D.t et. al., "Views, Authorization and Locking in a

Relational Data Base System," Proc. 1975 National Computer

Conference, Anaheim, Ca., May 1975.

Duda, R. et. al., "Development of the Prospector Consultation

System for Mineral Exploration," SRI International, October

1978.

Eswaren, K., "Specifications, Implementations and Interac

tions of a Trigger Subsystem in an Integrated Database Sys

tem," IBM Research, RJ 1820, San Jose, Ca., August 1976.

-17

[GRIF76]

[HAMM76]

[R0BE77]

[SH0R76]

[ST0N74]

[ST0N75]

[ST0N76]

[ST0N80]

[STON80a]

Griffiths, P. and Wade, B., "An Authorization Mechanism for a

Relational Data Base System," TODS, 2, 3, September 1976.

Hammer, M. and McLeod, D., "A Framework for Data Base

Semantic Integrity," Proc. 2nd. International Conference on

Software Engineering, San Francisco, Ca., October 1976.

Roberts, R. and Goldstein, I., "The FRL Manual," MIT, AI

Laboratory, Memo No. 409, Sept 1977.

Shortliffe, E., "Computer Based Medical Consultations:

MYCIN," Elsevier, New York, 1976.

Stonebraker. M. and Wong, E., "Access Control in a Relational

Data Base System by Query Modification," Proc. 1974 ACM

Annual Conference, San Diego, Ca., November 1974.

Stonebraker, M., "Implementation of Integrity Constraints

and Views by Query Modification," Proc. 1975 ACM-SIGMOD

Conference on Management of Data, San Jose, Ca., June 1975.

Stonebraker, M. et. al., "The Design and Implementation of

INGRES," TODS 2, 3, September 1976.

Stonebraker, M., Retrospection on a Data Base System,"

TODS, September, 1980.

Stonebraker, M. and Keller, K., "Embedding Experts and

Hypothetical Data Bases in A Relational data Base System,"

Proc. 1980 ACM-SIGMOD Conference on management of Data,

Santa Monica, Ca., May 1980.

-10-

	Copyright notice 1981
	ERL-81-93

