

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

LOWER BOUNDS ON THE SIZE OF DETERMINISTIC PARSERS

by

Esko Ukkonen

Memorandum No. UCB/ERL M81/98

15 October 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Lower bounds on the size of deterministic parsers*

Esko Ukkonen

Department of Computer Science, University of Helsinki

Tukholmankatu 2. SF-00250 Helsinki 25, Finland

and

Computer Science Division - EECS, University of California

Berkeley, California 94720, USA

ABSTRACT

"Worst-case lower bounds on the size of deterministic parsers as a
function of the size of the grammar are studied. It is shown first

that there is no recursive function bounding the succinctness
gained using parsable context-free grammars instead of parsers.
Also is shown that there exists an infinite family of LL(2) gram
mars such that the size of every left or right parser for these
grammars must be ^ 2cm for some c >0, where m is the size of the

grammar. Similarly, it is shown that there exists an infinite family
of LR(0) grammars such that the size of every right parser for
these grammars must be ^ 2cV"\ Hence for all fc^O, the class of
the LR(A:) grammars cannot be parsed using right parsers whose
size is polynomially bounded in the size of the grammar, and for all
A:^2, the class of the LL(A:) grammars cannot be parsed using left
parsers whose size is polynomiallybounded in the size of the gram
mar.

Key Words: size complexity, parsable grammar, left parser,
right parser, LL(fc) parsing, LR(fc) parsing.

CR Categories: 5.25, 5.23, 5.27.

*This work was partially carried outwhen Iwas visiting the Computer Science Division of the
University of California at Berkeley. I amindebted to Professor Michael A. Harrison for pro
viding me with this opportunity. The work was supported bythe Academy of Finland and by
the Finnish Cultural Foundation. Partial support was provided by the National Science Foun
dation Grant MCS 79-15763 (Univ. of California).

The main results of Sections 4 and 5 were reported at the Eighth Colloquium on Automata,
Languagesand Programming [14].

-2-

1. Introduction

In this paper we examine the relationship between the sizes of parsable

context-free grammars and parsers for them. By a parser we mean a deter

ministic pushdown transducer which produces the translation from terminal

strings to parses. Parsers that use mechanisms more powerful than a single

pushdown stack are not considered.

First we study the most general form of the problem: How much larger

must a deterministic left or right parser be than the context-free grammar it

parses? We show that for certain parsable grammars the parsers must always be

enormously larger than the grammars. Specifically, in Section 3 we show that

there cannot be any recursive function bounding the size of a smallest parser as

a function of the size of the grammar it parses. This result is obtained as a

corollary to a result of Valiant [15] that in an infinite class of deterministic

context-free languages the size of a deterministic pushdown automaton for a

language is not recursively bounded by the size of the smallest unambiguous

context-free grammars for the same language.

Although this nonrecursiveness result means that there cannot be anygen

eral purpose algorithm for constructing single-stack parsers for all parsable

grammars, by imposing suitable restrictions on parsability we get classes of

grammars parsable by small parsers. For example, different classes of pre

cedence grammars as well as bounded context grammars (see e.g. [1]) and

strict deterministic grammars [6] have parsers of polynomialsize. Grammars in

these classes must satisfy strong restrictions.

The LL(k) and LR(A:) parsers and grammars [9,13] are more problematic.

The LL(Ar) and lR(k) grammars contain all the context-free grammars that can

be parsed top-down and, respectively, bottom-up using a stack and k symbol

lookahead. In this sense LL(fc) and LR()b) parsers are as powerful as we may

hope. However, the known LL(fc) and LR(fc) parser constructions, as described

e.g. in [1], may produce parsers that are non-polynomially larger than the

-3-

grammars. For the LR(fc) method this size gap was observed in [2]. We will give

an example of such a gap for the LL(A:) parsers when k^2.

Thus we are forced to ask, are such non-polynomial size differences neces

sary or might it be possible to find a parser construction for LL(A;) or LR(A:)

grammars always producing parsers with polynomially bounded size? In some

special cases such an improvement is known: In [3] a family of grammars is

given for which the LR(O) parsers are non-polynomially larger than the produc

tion prefix parsers or simple precedence parsers. This result can be explained

by the observation that the LR(0) parsers are correct prefix parsers (Le., the

string read by the parser is always a prefix of some correct string in the

language), while the production prefix parsers or simple precedence parsers are

not. The correct prefix property radically increases parser size for the gram

mars of [3],

In this paper we show that in the general case such improvements are

impossible because independently of the parsing method used, the non-

polynomial size gaps cannot be totally avoided for the classes of LL(A:) and LR(A:)

grammars. This means that the correct prefix property is not the only reason

for the non-polynomial size of LL(A:) and LR(&) parsers.

To prove our results on I±L(Jfe) grammars we give in Section 4 an infinite

sequence of LL(2) grammars and show that the size of any left or right parser

for such a grammar must be at least an exponential function of the size of the

grammar. This implies that if k&2, grammatical classes LL(A:) and LR(A:) cannot

be parsed using (left or right) parsers of polynomial size. On the other hand,

since an LL(1) grammar is always strong LL(l) and thus has a left parser of poly

nomial size, in the LL(1) case the size difference is only polynomial.

We also analyze a sequence of LR(0) grammars mentioned already by Earley

[2] (and attributed by him to John Reynolds) as an example of a grammar family

for which the UR(k) construction gives non-polynomially large parsers. We show

in Section 5 that aR right parsers for these grammars must be at least of the

-4-

same size as an LR(O) parser. A non-polynomiai difference between the parser

size and grammar size therefore exists for LR(fc), SLR(/c) and LALR(A:) grammars

whenA:S:0.

In the literature, most closely related to this paper is a recent work by Pittl

[11]. He independently gives an example family of LR(l) grammars with no poly

nomial size right parsers but does not consider left parsers. Also a work [4] by

Geller, Hunt, Szymanski and Ullman investigates the size of different pushdown

automata (but not parsers, i.e. pushdown transducers emitting a parse). For

example, they generalized the result from [3] mentioned above by giving a fam

ily of languages such that there is an exponential difference between the size of

a minimal deterministic pushdown automaton (dpda) for a language and the size

of any dpda with the correct prefix property for the same language. They also

gave a family of languages \Nn] such that there is an exponential difference

between the size of a minimal context-free grammar for a language and the size

of any dpda for the same language. It is easily seen that this exponential

difference is not preserved if parsers in our sense are considered. This is

because every LL(A:) or LR(&) grammar for Nn must be exponentially larger than

the minimum size context-free grammar for Nn.

Let us conclude the present introduction by giving our notational conven

tions for strings, context-free grammars and parsers. "We mainly follow the nota

tion of [1] with the exception that the Length of a string s is denoted by lg(s).

Recall that e denotes the empty string and #W the number of elements of a set

W. The reversal of a string s is denoted by sR.

The size of a (context-free) grammar G= (N,Z,P,S) is defined by

\G\ = £ lg(Aa).
A -*aeP

As noted in [5], the norm of Ggiven by ||G|| = \G\ -log2#(iVuS) would be a more

realistic measure. We have, however, that ||G|| < |G|-log2|G| < \ G\2, which

means that the more convenient measure | G\ can be used in this paper because

-5-

we are interested inproving larger thanpolynomial gaps.

If there is in Ga leftmost derivation S =>£a where 77 is the sequence of
productions applied in the derivation, then n is called a Left parse of a in G.
Similarly, if there is a rightmost derivation S =>£ a then tt* is aright parse of
a in G.

2. Parsability and deterniinistic parsers

Our purpose is to prove some lower-bound results which should be valid for

all parsers. We will use deterministic pushdown transducer as the formal parser

model. The analysis will be restricted to left parsers and to right parsers. Obvi

ously, all different deterministic (or non-backtracking) left and right parsers

and parsing methods proposed in the literature can be abstracted as deter

ministic pushdown transducers which translate input strings to left parses or to

right parses. To be precise, this is true only if the parsing method is based on

only one pushdown stack and one left-to-right scan of the string to be parsed.

For example, the parsing method for LR-regular grammars and for some other

analogous classes needs two scans. We leave such parsers out of consideration.

The 'real* parsers which are used for parsing context-free grammars are

usually not represented in the pushdown transducer form. But because they

can be transformed into this form with at most a polynomial increase in the

size, our results on nonpolynomial size gaps between a parser and the grammar

are valid also for them.

Let us next give the formal definitions. Aparser for G is a deterministic

pushdown automaton accepting language L(G) generated by G and giving for

each w in L(G) a parse of w as an output. In general, a deterministic pushdown

automaton with output is called a deterministic pushdozun transducer (dpdt)

and defined as an 8-tupIe T = (Q,?:,r,&,6,q0,Zo,F), where Q denotes states, £

input alphabet, V pushdown alphabet, A output alphabet, 6 transition function (a

partial function) from Qx(Hu\e \)xV to £x]7*xA* satisfying the following

-8-

deterrninism condition: if 6(q,e,t) is defined then 6(q,a,t) is undefined for all

aeS. Furthermore, g0 denotes initial state, Zq initial pushdown element and

FcQ the final states. By deleting all the occurrences of the output alphabet A in

the definition of a dpdt we get definition of a deterministic pushdown automaton

(dpda).

A configuration of T is denoted by (g,x,a,7r) where q€.Q is the current

state, areE* is the unused portion of the input, a€T* is the current content of

the pushdown stack (with the top of the stack to the left), and 7reA* is the output

string emitted to this point. Each pair (q,Z) in QxV is called a mode of T. The

mode of a configuration (q,xtZa,ir) is (q,Z) where Z is the topmost stack sym

bol. The next move relation \— among configurations is defined in the usual

way, that is,

if 6(q,a,Z)=(q',a',n'), then(q,ax,Za,ir) \-(q',x,cL'cL,nn'), and
if 5(g,s,Z)=(g',a\7f), then (q,x,Za,n) |- (q',x,a'a,mT'),

for all x in S*. a in T* and tt in A*.

Let now $ be a symbol not in ZuN. A (deterministic) left parser for gram

mar G=(N£,P.S) is formally defined as a dpdt T=(Q£u\$],V.P,6,qQ,ZQ.F)
such that T accepts by final state and empty stack the language L(G)S and for

each accepted input x$, T outputs a left parse of x in G. Thus G has a derivation

S =S>£ x for some terminal string x if and only if T has a move sequence

(qo.x$,Z0te)\-* (q,e,e,ir) where q is in F. Similarly, a (deterministic) right
parser for grammar G=(N,2,P,S) is a dpdt T which is like a left parser but

outputs a right parse of x for each input x$ where x is in L(G).

A grammar is called left parsable if it has a left parser andrightparsable if

it has a right parser [l]. It follows that a parsable grammar always generates a

deterministix: language, that is, a language recognized by some dpda.

Parsing some parsable grammars G is not possible without using

unbounded lookahead. To announce the next production appearing in the parse,

say i4-»«, every parser for such a grammar G must sometimes scan the input

-7-

string an unbounded amount beyond the point where the string produced from

this particular production A-*qbegins (in left parsing) or ends (in right parsing).

Such parsers are inconvenient. Moreover, in the next section we will see that

there cannot be any algorithm that constructs a parser for every parsable

grammar.

These difficulties disappear if we consider grammars that are parsable with

lookahead whose length is always bounded. To state this restricted form of par-

sability more formally, let k^0 be an integer. Grammar G is called left parsable

with Lookahead k, if G has a left parser T such that if an input zS where z^L(G)

leads in T to a computation

(q0,z$,e,e) |—* (q,uv$,y,n) |-(g'.vtf.TrU->&>)) (l)

then the leftmost derivation of z in G is

S =>£xAa =>£ xqol =>L*xy = z

and \y | -|i/1 ^ k. This simply says that at the moment of announcing A-*u, T

has scanned at most k symbols beyond the beginning of the string produced

from A-*o.

Analogously, G is called right parsable with lookahead k, if G has a right

parser T such that if an input zS where zeL(G) leads in T to a computation (1)

then the rightmost derivation of z in G is

S =>s* aAy =s> auy ^>]f xy =z

and \y \—\v | ^ k.

Because the standard LL(ifc) parser construction yields for LL(Ar) grammars

a left parser which works with lookahead k and the standard LR(fc) parser con

struction yields for LR(Jb) grammars a right parser which works with lookahead

Jb (and these parsers can further be transformed into the dpdt form), we have

the following expected characterization:

-8-

Proposition 1. A grammar is LL(k) if and only if it is left parsable with looka-

head k, and a grammar is LR(k) if and only if it is right parsable with lookahead

k. m

The size of a dpdt T is defined by (c.f. [5])

\T\= 2 (3+lg(a)+lg(a)Ug(y)).

Thus the size means the length of a string listing the transition function. As for

grammars, the norm ||7*M = | 7'i'log2#(^uSuruA) is a more realistic measure,

but because again ||7ll ^ | 7*1 -log2| 7*1 ^ | T\2, the more convenient measure | T\

can be used in proving non-polynomial gaps between the sizes of T and G.

Since #Q*z\ T\ and §V^\ T |, the number of different modes satisfies

KQ^)^\T\Z. (2)

To show that | T\ grows faster than polynomially in \G\ it therefore suffices to

prove that #(^xr) is not polynomially bounded in | G\.

A parser or a dpdt T is called moderate if its transition function 6 is such

that whenever <5(g,a,Z) = (q',a,y) then lg(a) ^ 2. Assuming this normal form

makes some proofs simpler. If Ig (a) > 2, by adding new states we may easily

replace this transition step by Ig (a)-l equivalent moderate steps. This makes

the description of the step less than 5 times as long as originally. So we have:

Lemma 2. For each parser T, there is an equivalent moderate parser T' such

that \T'\ <5 I71. •

-9-

3. Parsers with unbounded lookahead

In [15], Valiant shows that the relative succinctness that may be achieved

by describing deterministic context-free languages by unambiguous context-

free grammars rather than by deterministic pushdown automata is not bounded

by any recursive function. What Valiant proved, can be restated as follows:

Proposition 3 [15]. There is an infinite family Q = jQj of unambiguous gram

mars such that each L(Gi) is a deterministic language with the following pro

perty: If F is a function such that, for each i, there is a dpda Di accepting the

language L(Gi) and \Di\^F(\ Gj |), thenF cannot be recursive.

This is proved using an idea (by Hartmanis [7]) of encoding large Turing

machine computations in small context-free grammars. To construct an ele

ment of Q, let M be a. (deterministic) Turing machine that eventually halts when

started on a blank input tape. If x and y are instantaneous descriptions (ID) of T

such that y follows from x by application of the transition function of M, tbe"n we

write y=Nextjt(x). Let xQ be the ID for the starting configuration with blank

input tape and let S, a and b be symbols outside the alphabet describing the

ID's. Let L' be the set of strings of the form

where z„ is a halting ID of M, such that x^^-Next^x^) for all k,

Osfc^(n-l)/ 2. Let L" be the set of strings of the same form under the different

restriction that ar^ =Nexti[(x$h-l) for all k, \<,k<n/2. Finally let L=L'a \jL"b.

Since L'. L" are both recognized by dpda's of size recursive in the size of M,

languages L'a and L"b are also both so recognizable and therefore both gen

erated by unambiguous grammars (say Ga and G&, respectively) of similar size.

Since these languages are disjoint their union L is also generated by an unambi

guous grammar G of size recursive in the size of M. For each M, set Q contains

the grammar G.

-10-

There is only one string x such that xa and xb both are in L. String x

describes the halting computation of M with blank input. Hence

x = jjfctfl • • • $yiPs (3)

where the yo'3/i» ' ' * <Vz are the ID'S in the halting computation. This implies

(see [15] for the details) that L can be recognized by a dpda M\ Let y be the

shortest string such that M' accepts both ya and yb. Then the number of

modes of IT must be &(log|y |)* for some constant k [15: Lemma 4], However,

y-x and thus \y\>z. Then the number of modes of U\ and hence the size of

M\ cannot be recursively bounded in the size of G since z is not so bounded.

This completes the proof of Proposition 3.

By modifying this proof we can show that there is no recursive function

bounding the succinctness gained if parsable grammars are used instead of

parsers for them.

Theorem 4. There is an infinite family R = jQj of (left and right) parsable

grammars with the following property: If F is a function such that for each i,

there is a left or right parser Di for grammar G~ and \Di\ ^ F(| G* |), then F can

not be recursive.

Proof. Clearly, instead of parsers it suffices to consider dpda's Di for languages

L(Gl). The proof proceeds as that of Proposition 3 if we first show that each

grammar G included in the set Q of Proposition 3 can be chosen to be left and

right parsable.

It is not difficult to see how to generate L' and L" by two LL(1) grammars

(c.f. the grammar given in [8, p. 713]). Thus we can find LL(l) grammars, say G'

and G\ for L'a and L"b. We may assume that the sets of nonterminals of these

grammars do not intersect. Let G be the union of G' and G". Grammar G has

productions (S-*S',S-*S"\vP'uP" where S' and S" are the start symbols and P'

and P" are the production sets of G' and G", respectively.

-11-

Grammar G is LL(Ar) when k>\x\ where a: is as in (3). For each Turing

machine M that eventually halts when started on a blank input, set R contains

the grammar G. Then each grammar G in R is both left and right parsable

because G is LL(k) and therefore also LR(A:). This completes our proof since the

size of G is again recursively (even polynomially) bounded in the size of M. n

In the above proof of Theorem 4 we constructed grammars G such that

each G is LL(A:) and thus also LR(fc) for some A:, but k varies with G% of course.

It is easy to see that the length of the lookahead needed to parse grammars in R

is not recursively bounded in the the size of the grammars. On the other hand,

to obtain the result of Theorem 4 we needed no grammars that are outside the

class LL.

4. Left parsability with bounded lookahead

Our results on the size of left parsers for grammars that are left parsable

with bounded lookahead, that is, for LL(fc) grammars, are based on properties of

a sequence of grammars Gh = (Nn£n,PnAo), n=l,2, • • • , where

Pn: A "* Ot+i4+ii?i+i I dt+i-Ai+iCi+i (o^i^n-1)
4» -* bi I e (l-si^n)
Bi •* biCi | e (l-Si^n)
d •* Ci | e (l<i*Sn)

Grammar G>» is of size | Gj» I = 17n+2. In addition:

T-pmina 5. For every k fe 2, each Gnis an LL(k) grammar. •

The proof of the lemma is left to the reader. Also note that G^ is not LL(l) or

LR(1) or strong LL(2) or LALR(2) and that language L(Gn) is finite. The standard

LL(2) parser construction algorithm [l] gives more than 2n LL(2) tables because

the nonterminal An alone occurs in 2n different LL(&) contexts.

We will show that the size of every left parser for G^ must be at least an

exponential function of | G^ |. This will be done by proving the stronger result

-12-

that every right parser for G^ must be at least exponentially larger than G^, and

by noting the following lemma:

T^mma 6. If Gn has a left parser of size t then it has aright parser of size < St.

Proof. The Lemma is true because G^ left-to-right covers itself, that is, there is

a homomorphism h between production sequences of Gn such that the right

parse of a string in L(G„) is a homomorphic image of the left parse of the same

string. Therefore, to get a right parser we must only augment a left parser for

G^ with evaluation of h. A suitable cover homomorphism h on the productions of

h(An -» *><) = (An - b^,
h(An*e) = (An ->e),
h(Bi -> biCi) = (Bi -» biCit Ai-i -» M^),
h(Bi -> e) = (Bi -* e, ^^ -» M^),
h(d -* Ci) = (Q -> cit Ai-i - diAiQ).
h(Q, -> e) = (Q -> e, 4_j - d^Q),

where i = 1,2,...,n. For the remaining productions the value of h equals e.

Let dpdt T be a left parser for G^. Modify T as follows: Whenever

<5(g,a,Z) = (g'.a/y) in 7\ replace 7 by h(y). The resulting dpdt T' is a right

parser for $>. Since always lg(h(y)) <; 2-^(7). it finally follows that

12" I <2-|7T|. •

Theorem 7. 77iere earfste a constant c > 0 sizc/i tfta£, lu/ienn > 10, any moderate

right parser for Gn has size at least 2cm where m = \Gn\.

Proof. The proof is based on the following simple idea. We consider parsing

strings of the form xxxz • • • a^,6<ci in L(Gn) where a^ equals a^ or dj. The right

parse of such a string begins with An -* bt or An -» e depending on whether

Xi = a\ or Xi = at. If the current state g and the topmost stack symbol Z after

-13-

reading a^ can always tell whether a^ = dj or ^ = a,, then the number of

different modes (q,Z) is immediately seen to be exponentially large in | Gn I. and

the Theorem follows. Otherwise the parser must exponentially often consult the

stack below the topmost element. But then it turns out that the information

popped from the stack cannot be ignored because it is needed later in parsing.

To save this information the number of modes should be exponentially large.

We now formalize the above argument. Let T = (QXn^\^i>r,Pn,6fqQ,Zo,F)

be a moderate right parser for GJ,. We will show that §(QxF) >2n/l0 when

n > 10. This proves the Theorem since then \T\ > 2n/20 from (2), which means,

noting that \Gn\ = m is less than 18n, that \T\ > 2m/360.

So we claim that #(£xr) > 2n/10. To derive a contradiction, assume

#(QxT)<2n/l°. (4)

Denote by C1/3 the set of those (state, stack content)-pairs that T reaches after

reading a prefix of length |n/3j of some string in L(Gn)', note that the output of

T must be empty at this moment. More formally, let

£1/3 = fci*2 ' ' ' *ln/3j I *i = a-i or a\ j. Then

Ci/3 = Kg.a) I (go.a:.e,e) p* (g,e.a,e) where a:€£1/3j.

Clearly, for different x the corresponding elements (q,a) of C1/3 must be

different because then the languages accepted starting from state q and stack

content a must differ. Hence

#C1/3^2^3i. (5)

Let c = (g.a) be a fixed element of C1/3 and let L&z= iV|n/3j+i' ' ' Vn I

yi = 04 or a\ J. Consider a move sequence

(g.y.a.e) (- • • • \-(q',e,p,e) (6)

where y is in Z2/3. Sequence (6) is assumed to be maximal, that is, no transition

-14-

is possible from the last configuration of (6). Again note that the output must

still be empty in (6). Let now (r,vtZy,e) be the configuration in sequence (6)

whose stack Zy is of the lowest height; if there are more than one such

configuration in (6), we let (r,v,Zy,e) be the first of them. The mode of this

configuration, (r,Z), is called the bottom of (6) and denoted as bottom(q,yta).

Then sequence (8) can uniquely be written as

(g,T/v,a,e) (- • • • \-(r,v,Zy,e) \- • • • \-(q',e,p,e).

where y'v=y. The sequence starting from (r,v,Zy,e) is uniquely determined by

r, v and Z, since the height of the stack remains at least as high as lg(Zy).

Hence we have 0 = §'y for some /3'. We say that string y1 is the prefix of y that

leads to the bottom. Denote then by i»(r,z) the set of of strings that lead to the

bottom (r,Z)t that is,

hr.Z) =
Ifor some y€Z,2/3, bottom(q,y,a) = (r,Z) and

» I y4 is the prefix of y that leads to the bottom

Lemma B. #£(r.z) < 2n/10.

Proof. To derive a contradiction, assume that ftL^.z)'*- 2n/10. Given y1 in L(T.z)
we may write for some v such that y'v eLz/z and for some x €£1/3

(g0.*y,,u,e,e) |_ . . . U(g,y'v,a,e)
h '• * \-(r,v,Zy,e) (7)
h '• ' h(g'.e.fte).

Here y* is the prefix ofy'v that leads to the bottom. Since lg(a) 2s lg(Zy)t there

must be before configuration (g.y'v.a.e) in (7) a last configuration

(s,w,Y6,e) (8)

such that lg(Y6) =^(Z7). It may happen that (s,w,Y6,e) = (q,y'v.a,e). Here

the assumption that T is moderate is needed because it implies that every stack

-15-

height «S lg(a) must occur in (7). If §L^TtZ) ^ 2*/10 and if we recall (4), we realize

that then there must be two different elements y' and y" of L(T,z) such that the

corresponding modes (s,Y) of (8) are the same for y* and y". Hence for some

suffixes x*, x" of the string x occurring in (7) we get

(s.x'y'.Yd*) h " " h(g.2/'.a.e) h • • • h (r,e,Z6\e) (9)

and

(s,x"y".Y8") h • • • |_(g>y",a,e)h • • • \-(r.e,Z6",e) • (10)

and the height of the stack in (9) is always ^ lg(Y6') = lg(Z6') and in (10) always

^lg(Y6") = lg(Z6"). Hence we may replace xy in (9) by x"y" and still obtain

the same final configuration (r,e,Z6',e). But this is a contradiction, since jf *y"

and therefore a replacement of x'y* by x"y" in (9) should also change the final

configuration of (9) because the languages accepted as well as the parses omit

ted should change. But, as we noted, this did not occur, which completes the

proof of Lemma 8.

The next lemma considers sets U^^ given by

L\t.Z) = 'v
for some y*. y = y'v is in LZ/a, bottom(q,y,a) = (r,Z)
and y* is the prefix of y that leads to the bottom

While L(rtz) was the set of prefixes that lead to bottom (r,Z), L\Ttz) is the set of

suffixes that lead from bottom (r,Z). Suppose that u and v are elements of

L\rz) such that lg(u)-lg(v). Let y' and y" be the prefixes of y'u and y"v that

lead to bottom (r,Z). Then we clearly may choose y'=y". This observation

comes into use after proving the following lemma which gives an lower bound for

the maximum number of elements in L\r^) that have mutually the same length

Lemma 9.1fn> 10, there exists a mode (r,Z) such that L\r,z) contains > 2n/10

elements flowing the same length.

-16-

Proof. We may represent Lz/% as

£2/3 = U V\t.Z)
(r.Z)

where for each (r,Z), D\Ttz) = \uv \ u€.L(rtz),v€L\riz), lg(uv)=\2n/3]\ is a sub

set of L{Ttz)E(r,z)* Noting Lemma 8 we therefore obtain

#^2/3 ^ S W\r.Z) < 2"/10- S #*&..*>•
(r.2) (r.Z)

If the Lemma were not true, then we should have #L\r.z) ^ f2n/3l-2n/1° for all

(r,Z), since the length of all elements in L'(r.z) is ^f2n/3l. But this leads to a

contradiction since now, if n > 10,

#L2/3 <22n/10-f2n/3]-2n/1° =2dn/l0+log^Zn/3]
< 2f2n/3l

which by the definition of Lz/q cannot be true. This proves Lemma 9.

All the above considerations are with respect to a fixed element c = (q,a) of

C1/3. Thus we may conclude from Lemma 9 that for every such c = (g,a), there

exists a mode (rc,Ze) such that UtT Z) contains > 2n/10 elements of the same

length That is, there is a string y* and more than 2n/10 disjoint strings v of

equal length such that y =t/'v is in Lg/s and y1 is the prefix of y that leads to.

bottom(q,y,a) =(rc,Zc). Denote the common length of strings v by IG. Observe

that the moves reading v do not depend on the stack content below Zc.

Thus we have chosen for each c in C1/a a triple (rc,ZG ,/c). Since the number

of different triples is at most 2"/10f 2n/3l <£n/3K it follows from (5) that we

must have (rc,Zc,IB) =(rc.,Zc.,/c.) for some disjoint c =(g,a), c' =(g'.a') in Cuz.

By the construction, then, there are strings x, x' in Ll/Z, x * x', and strings

y, 7/ such that, for more than 2n/10 distinctv, stringsyv anai/v are in L2/3 and

(qo,xyv,e,e) }-* (rG,v,Zca,e) \-* (s,e,/Sa,e), (11)

(q0,x,y'v,e,e) j-* (retv,Zca',e) (-* (s,e,pa',e). (12)

-17-

Since x =xx • • •x[n/ai and x' =x{ • • •arln/3j' are different, xt and a%' must differ

for some i. Then we may assume, by symmetry, that a^ = aj and a^' = dj.

Suppose that the input to be read after (11) or (12) is fyc*. Then the first

output following (11) should be production An -* e and the first output following

(12) should be production An - bt. But because the last configurations of (11)

and (12) can differ only in stack portions a and a', the parser must always pop f?

from the stack to be able to choose between An -» e and An •* fy. However, s or §

must vary with v because the output following An -* e or An •* &< varies with v.

Thus after popping 0 the mode of T must be different for each v. This is not pos

sible because there are > 2n/10 different strings v but by (4), only ^2n/10

different modes. We have a contradiction which completes the proof of Theorem

7. •

The restriction to moderate right parsers can be removed from Theorem 7.

Corollary 10. There is a constant c' > 0 and an integer no such that, when n >

n0, any right parser for G^ has size at least 2Gm where m = \ G^ I.

Proof. If T is a right parser for Gn then, by Lemma 2, we can find a moderate

right parser 7" for Gn such that | 7*1 > | 7" |/5. Then, by Theorem 7, |r| >

2ero/5 = 2l08e(1/5)+c,n ^ 2c'm for some 0 <c' <log2(l/5)/m +c. Such a constant

c' clearly exists when m, that is n, is large enough •

Our main technical result for left parsers follows in a similar way from

Corollary 10 and Lemma 6:

Theorem 11. There is a constant c" > 0 and an integer nQ' such that when n >

n0\ any left parser for Gn has size at least 2c"m where m = | G^ |. •

Noting Lemma 5, this finally gives:

Theorem 12. For each A: > <?, there is an infinite family of LL(k) grammars such

that the size of every left parser for these grammars grows at least

-18-

exponentially in the size of the grammar. •

It is well-known that the strong LL(k) grammars have left parsers with size

polynomial in the size of the grammar. The strong LL(A;) parser construction

(e.g. [l]) gives parsers with parsing tables of size of the order | G\k*1. The pars

ing table has a row for each nonterminal and terminal of G, totaling <\G\ rows,

and a column for each of the A:-symbol lookahead strings, totaling <|G|*

columns.

If the table is interpreted as a dpdt, table entries correspond to transition

function values. The length of each entry is <\G\ since an entry can be at most

as long as the longest right hand side of the productions of G. Then the descrip

tion of a strong LL(&) parser is of length <\G\k+z, a polynomial in | G\. So we

see that it is not possible to extend the result of Theorem 12 to the case Jb^l,

since if a grammar is LL(A:) for k^l, then it is also strong LL(fc).

In addition to the strong LL(fc) grammars we have another subclass of the

LL(A;) grammars having left parsers of polynomial size. It follows from a remark

in [13, p. 230] that if an LL(fc) grammar Ghas no e-productions (productions of

the form A -» e), then Ghas a left parser with size polynomially bounded in |G\.

Theorem 12 does not say anything about the dependence of the lower bound

of parser size on the length k of the lookahead. The only requirement is that

k^2. However, it is plausible that the lower bound should increase with k. As

the minimum effect of k, there should be different states for encoding the

different lookahead strings. The number of such strings grows exponentially in

k.

We have no formal results in this direction. Only an example will be given

where A: has a strong effect on the size of (canonical) LL(fc) and LR(jfe) parsers.

Let grammars Gfc.n = (Nk>n£kiniPktn,An) where k7>2. ns>l, have productions (lfc~2

denotes a string of k -2 l's)

-19-

Pkn: A" ~*A1
A + AQ\ lk~2B | e
A -♦ Oi+i4+i-3t+i | de+li4i+1Q+l (0^i«sn-l)
B -* ty (l^i^n)
Bi -> b^ | e (l^i^n)
Q - Ci | e (l*i*n).

Grammar Gk,n is of size |Q(.in| = 17n+A:+6. Each Gk.n is an LL(A:) grammar.

When k5:3, Gj.>n is not LR(A:') for A:'<A:.

If the standard (canonical) LL(A:) parser construction [l] is applied on Gfc>n,

we obtain a parser with more than 2^-1)n LL(A:)-tables. The canonical LR(ife)

parser construction gives parsers also with more than 2^*~^n LR(A:)-tabies. This

is because merely the nonterminal A occurs in 2^k~^n different LL(A:) and LR(A:)

contexts.

Unfortunately, these parsers are considerably larger than necessary.

Because grammars GJb>n are both strong LL(A:) and SLR(A:), the special parser

constructions for these classes can be applied. The strong LL(A;) parser con

struction gives for Gfcn a parser in which the number of LL(A:) tables is only of

the order n, and the SLR(A:) parser construction gives a parser in which the

number of LR(A:) tables is only of the order n+A:. We also note that the A:-symbol

lookahead is needed only when deciding whether or not the next production to

be announced is A -* e: If the lookahead at this point is not any of the strings

l*-2btl where l^i^n, then the production A -» e should be announced. Other

wise the next action is shifting a terminal. All the other parsing decisions can be

based on at most one symbol lookahead. This means that the number of states

of a dpdt needed to realize the use of the lookahead is only polynomially

bounded in n+A:. We conclude that the minimal left or right parser for Gj.tJ1, is of

polynomial size in n+A:.

-20-

5. Bight parsability with bounded lookahead

The grammars G^ of the previous section are LR(2). Then we immediately

obtain from Corollary 10 the following counterpart of Theorem 12 for right

parsers.

Theorem 13. For each k ^ 2, there is an infinite family of LR(k) grammars

such that the size of every right parser for these grammars grows at least

exponentially in the size of the grammar. •

Grammars Gn are not LR(0) or LR(l). To complete our study of parser size

in the LR(0) and LR(1) cases we use a sequence of right regular grammars

On = (Nn,Zn,Pn.S) where

Pn- S~*Ai (l^i-sn)
A -* *jA (l^i^j^n)
Ai -> OiBi | bi (l^i^n)
Bi -> OjBi | ^ (l£i,j^n)

The size | Qn | = m equals 6n2 + 5n. Earley [2] established grammars ^ as an

example where the size of the standard LR(0) parser grows exponentially with n.

An LR(0) parser for Qn has at least 2°* states for some c > 0. The size of every

LR(A:) as well as SLR(A:) or LALR(A:) parser for Qn is thus ^ 2G>y/™ for some c' > 0.

We will show that the size of any right parser for Qn must be at least of the

order 2 m. First a result analogous to Theorem 7 is given.

Theorem 14. There is a constant c > 0 and aninteger n0 suchthat when n > n0,

any moderate right parser for Qn /ias size atleast 2cN^ where m= \Qn\.

Proof. The idea of the proof resembles to that of the proof of Theorem 7. We

restrict ourselves to considering strings of the form a:^2 • • • Xn^a^bi in L(Qn),

where each*!, • • • ,xn^ is in [alf • • • .a^J, ; is s> 0, and l^i^n-1. The right

-21-

parse of such a string begins with 5< -» 6i or Ai -♦ &< depending on whether or not

d£ occurs in x1 • • • a^-!. Any parser cannot emit this first parse element earlier

than when reading 6*. If after reading the last On the current mode of a parser

can always tell whether or not xx • • •a^ contains 0+ for any l^issn-l, the

number of modes must be at least of the order Z^™ and the Theorem follows.

Otherwise the parser must sometimes consult the stack below the topmost ele

ment. Then the parser should pop the stack portion corresponding to a£. How

ever, the popped information, which depends on j, cannot be ignored since it is

needed later in parsing. Hence the number of modes is again at least of the

order 2^™.

To formalize the above argument, let T = (9,Enuf#J,r,Pn,go.<Z'o.Jr) be a

moderate right parser for Qn. Because of (2) it suffices to show that

#(£xO > 2n/z when n>l. To derive a contradiction, assume

#(QxV)*Zn/2. (13)

Denote by X a maximal subset of [x&z • • • xn^ \ Xi^[alt • • • .a^-^, l^i^n-lj

such that if x and x*, x^x1, are in X then some symbol dj occurs in a: or a:' but

not both in x and x'.

First fix a string x€X. Then xa&bi is in L(Qn) for each j^O, l^isSn. Hence T

has amove sequence (q0,x,e,e) f—* (q,e,a,e), and a subsequent sequence

(g,a£,a,e) [- ' ' ' (-(g/.e.ft-.e) (14)

for each j^O. The bottom of (14) is defined as in the proof of Theorem 7. Then,

since al is a prefix of a£, j <f, there is j0 such that for all j>jo, the bottom of

(14) is the same and is achieved after reading ai° but before reading c^0 .

Denote this particular bottom, which is unique for each a:, by (rx,Zx).

Now, since #jf > 2n/z, set X must contain distinct strings x and x' such that

(tX'Zx) = (r*.Z#). Then, by the construction, there are for each A:^0 move

• - 22 -

sequences

(qQ,xal°ak,e,e) |—* (rx,ak ,Zxa,e) \~* (s,e,0a,e) (15)

(q0,x'al0'ak,e,e) \-* (rx,ak,Zxa',e) |-»(s,e./?a'.e) (18)

Suppose that symbol a* occurs in only one of strings x, x*, say in string x, and

assume that the input to be read after (15) and (16) is 6$.

Then the first output following (15) should be production Bi •+ bi and the

first output following (16) should *be production Ai -* bt. But because the last

configurations of (15) and (16) can differ only in stack portions a and a', the

parser must always pop £ from the stack to be able to to choose between Bi -* bi

and Ai -» 6*. However, s or |J must vary with A: because the output following

Bi •* bi or Ai -» bi varies with A:. Thus after popping /S the mode of T must be

different for each A: =0,1, • • • . This is not possible because by (13), there are

only ^ 2n/s different modes. This contradiction proves the Theorem. •

Using Lemma 2 we again get:

Corollary 15. 77iere is a constant c' >0and an integer n0' such that when n>n^t

any right parser for Qn has size at least 2c,y/™ where m = | Qn \. •

Since each Qn is an LR(0) grammar, the main result of this section follows.

Theorem 16. For each k^Q, there is an infinite family of LR(k)grammars (as

well as SLRflc) and LALR(k) grammars) and a constant c such that the size of

every right parser for these grammars grows at least as 2cV** where m is the

size of the grammar, u

The growth rate 2°^ given in this theorem is the largest we have been able

to derive for parsers of LR(0) and LR(l) grammars. Note, however, that there

are LR(0) grammars for which the standard LR(0) parser construction gives

-23-

parsers with size growing exponentially in m (and not only in vm). An example

of such a family is \Rn\t n=l,2, • • • , where grammar Rn has productions (A0 is

the start symbol)

4-i - l^at-i (l<si<sn)
An -» lA0On

Ai -» OAiOi (l^i^n)
Ai -» OAoOi (teten)
Aq -» a

Each #n is an LR(0) grammar of size 12n+6. Grammars Rn are closely related

to an example of [10] which shows an exponential succinctness between non-

deterministic and deterministic finite automata.

The LR(0) parser construction gives for Rn more than 2n+1 LR(0) tables.

This can be seen by showing that for any nonempty subset of

\[Aq -» l-i4iO0].[ili -» l-A&i]. • • • .[An -» l'-AoOnU

there must be an LR(0) table whose essential items are exactly the items

appearing in the subset.

On the other hand, i?n has a strict deterministic parser or a production

prefix parser with size only linear in | Rn |. Such parsers do not have the correct

prefix property. Thus \Rn\ is an extreme example of a grammar family where

the correct prefix property strongly increases the parser size. The increase is

of the order 2cm where m denotes the size of the grammar. In the literature,

Geller, Graham and Harrison [3] give examples where the increase is 2C™.

6. Conclusion

We have shown first, that the size of a parser cannot be recursively bounded

in the size of the grammar to be parsed. Hence there is no algorithm that con

structs a parser for every parsable context-free grammar.

Using certain example families of LL(A:) and LR(A:) grammars, we have also

-24-

shown that no matter what parsing method is used, the size of a parser cannot

always be polynomially bounded in the size of the grammar although the gram

mar were parsable with lookahead of fixed length. The following table summar

izes these results.

Grammar class A: =0,1 A:^2

lUk)
strong LL(A:)
e -free LL(A:)
LR(A:)
8—free LR(A:)
SLR(A:)
LALR(A:)

poly
poly
poly
gcVJn

2Gm

poly
poly
2Gm

2cVm" pcVnT

pc Vin

gcVm

gcVm

Table 1. Lower bounds on parser size

Each table entry gives a bound for parser size. The bounds for the class

LL(A:) and for its subclasses concern with left parsers, the bounds for the class

LR(A:) and for its subclasses concern with right parsers. The entry 'poly' means

that the -specified class has parsers of polynomial size. The other entries give a

worst-case lower bound for the parser size. Thus 2cVm" in the last entry of the

SLR(A:) row means that for each k^2, there exists a constant c >0 and an infinite

family of SLR(A:) grammars such that the size of every right parser for these

grammars grows at least as 2ey/™ where m is the size of the grammar. All

bounds on the first three rows as well as the last bound on the LR(A:) row are

from Section 4. The remaining results are proved in Section 5.

It is obvious that the grammatical structures essential for our results are

probably useless in context-free grammars that describe real prograrnrning

languages. Purdom [12] even gives evidence that such grammars have LR-type

parsers whose size grows only linearly. To establish this formally it would be

interesting to find grammatical conditions for polynomial size parsability, that

are more precise than those given in Table 1. Another problem for further

research is to improve the lower bounds in Table 1 or to show that they are best

-25-

possible.

Acknowledgment. I am indebted to Seppo Sippu for turning my attention to

the problem considered in this work.

References

[1] Aho,A.V. and J.D.UUman: The Theory of Parsing, Translation, and Compil

ing. Vol. I: Parsing. Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

[2] Earley, J.: An efficient context-free parsing algorithm. PhD. Thesis,

Carnegie-MeUon Univ., Pittsburgh, 1966.

[3] GeUer,M.M., S.LGraham and MAHarrison: Production prefix parsing

(extended abstract). Automata, Languages, and Prograrnming (J.Loeckx,

ed.), Lecture Notes in Computer Science 14, pp. 232-241, Springer-Verlag,

1974.

[4] GeUer.M.M., H.B.Hunt,III, T.G.Szymanski and J.D.UUman: Economy of

description by parsers, DPDA's and PDA's. Theoretical Computer Science 4

(1977). 143-153.

[5] Harrison,M.A.: Introduction to Formal Language Theory. Addison-Wesley,

Reading, Mass., 1978.

[6] Harrison,M.A* and I.M.Havel: On the parsing of deterministic languages.

Journal of the ACM 21 (1974), 525-548.

[7] Hartmanis.J.: Context-free languages and Turing machine computations.

Proc. Symposium Appl. Math., Vol. 19, Am. Math. Soc, Providence, RI, 1967,

pp. 42-51.

[8] Hunt,H.B.,m, T.G.Szymanski and J.D.UUman: On the complexity of LR(A:)

testing. Comm. ACM 18:12 (1975), 707-716.

-26-

[9] Knuth,D.E.: On the translation of languages from left to right. Information

and Control 8 (1965), 607-639.

[10] Meyer,A.R. and MJ.Fisher: Economy of description by automata, grammars

and formal systems. Proc. of the 12th Ann. IEEE Symp. on Switching and

Automata Theory (1971), 188-190.

[11] Pittl,J.: Negative results on the size of deterministic right parsers. Proc.

10th Int. Symp. on Mathematical Foundations of Computer Science.

Springer Lect. Notes in Computer Science, 1981.

[12] PurdomP.: The size of LALR(l) parsers. BIT 14(1974), 326-337.

[13] Rosenkrantz,D.J. and R.E.Stearns: Properties of deterministic top-down

grammars. Information and Control 17 (1970), 226-256.

[14] Ukkonen,E.: On size bounds for deterministic parsers. Proc. 8th Int. CoUo-

quium on Automata, Languages and Programming (Acre). Lect. Notes in

Computer Science, Vol. 115, Springer-Verlag, 1981, pp. 218-228.

[15] VaUant.LG.: A note on the succinctness of descriptions of deterministic

languages. Information and Control 32 (1976), 139-145.

	Copyright notice 1981
	ERL-81-98

