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1. INTRODUCTION.

INTEROPTDYN-SISO is an interactive package for the

design of single-input single-output (SISO) linear feedback

systems. It was developed at the University of California,

Berkeley, by extending, modifying and combining INTRAC

[A1,W1], an extendible interactive language from, CDP [D1] a

SISO classical design package, and a semi-infinite optimiza

tion FORTRAN code OPTDYN [B3] which implements the Gonzaga-

Polak-Trahan algorithm [Gl].The package currently runs on

the DEC VAX 11/780 under the UNIX operating system and

allows the use of HP2648A and TEKTRONIX 4025 black and white

terminals as well as TEKTRONIX 4027 and RAMTEK color termi

nals. Since almost all of the code in the package is in

standard FORTRAN, the package is highly portable.

The package is intended for the design of control sys

tems of the form shown in Fig. 1, i.e., a simple feedback

configuration. The controller may be broken up into two

parts as shown in Fig. 1.

The control system performance specifications must be

given in terms of (i) an envelope on the closed loop step

response, (ii) frequency domain criteria, (iii) upper and

xower bounds on the amplitude of the plant input and its

derivative, resulting from a step input to the control sys

tem, and (iv) upper and lower bounds on design parameter

amplitudes.
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The allowed envelope on the step response shown in

Fig. 2.

The frequency domain specifications are in the form of

a parabola in the s-plane, to the left of which closed loop

poles are to be placed, see Fig. 3, below, and of gain and

phase margins. To ensure that the closed loop poles are in

the region specified, one plots a modified Nyquist diagram

of the return difference evaluated along the parabola in the

s-plane and one makes sure that the origin is not encircled

in the G(s)-plane by encasing the origin in the G(s)-plane

inside a parabolic region defined by the gain and phase mar

gins. To avoid problems caused by "unstable" open loop

poles, the return difference is renormalized (see Sec. 2.3).

Note that when the parabola in the s-plane degenerates to

the jw-axis, the usual Nyquist criterion and gain and phase

margins are obtained.

The plant and the compensators and are assumed to be

linear. They may be characterized either in terms of the

coefficients or in terms of the poles and zeros of their

transfer functions. A state space characterization is also

available and the command CONVERT may be used for transform

ing one description into another. However, the design param

eters can only be the coefficients of the denominator or the

numerator of the compensator transfer functions. The CDP

commands for manipulating system descriptions, refer to the

plant as SYS, the (continuous) feedforward controller as
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CFF, and the (continuous) feedback controller as CFB. We

shall use this notation in referring to the appropriate

parts of the closed loop.control system.

The design problem is reformulated as a semi-infinite

optimization problem with inequality constraints, of the

form

3 k
min)f(z) ! g (z) < 0, j = 1,2,...,m; phi (z,p ) < 0,

k

p € P , k = 1,2,..,1) (1)
k k

The algorithm used in the package for the solution of

this problem is the Gonzaga-Polak-Trahan phase I - phase II

method of feasible directions for semi-infinite problems

(see [G1]). This algorithm has been used successfully in the

design not only of control systems, but also of electronic

circuits [P2], digital filters [L1], and structures [B2,

P1 ]. To display a simple description of the algorithm, type

the command ALGO. To obtain more detailed information on the

operations in each step, type the command ALGO STEPn, where

n stands for step number.

The upper and lower bounds on the design parameters

give rise to the functions g (z). The constraints on the

open loop frequency response, on the step response, on the

plant input and its time derivative give rise to 9 functions

phi (z,t> ). The built in cost functions f(z) are the

integral square error of the closed loop system step

response

-5-



/•tfinal

) [1 - y(z,t)] dt (2)
0 v ;

and, for some cases, the integral of the square of the input

to the plant u(x,t) due to a step input to the system:

(
tfinal

2

u(z,t) dt (3)

2. HOW TO RUN THE PACKAGE

A short description of how the package may be used is

given in this section. The package runs on the VAX 11/780

under the UNIX operating system. The package does not dis

tinguish between upper and lower case letters and the user

may issue commands in either form.

2-1 Start Up

After entering the appropriate UNIX directory, the com

mand d.siso starts the package. The package requests data in

an interactive mode. To leave the package temporarily, one

types CNTRL z. The package is then suspended and one is

brought back to UNIX. The UNIX command fg returns the user

to the package again.

2.2 Control System Definition

The control system is specified by entering the

transfer functions of the plant SYS, and of the compensators
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CFF and CFB by means of CDP [D1] procedures which have been

converted to INTRAC-C commands. The design parameters in CFF

and CFB which are to be adjusted by the optimization program

are identified while entering the transfer functions. (The

need to enter transfer function coefficients either as

numbers or as variable names has necessitated some modifica

tion to the procedures in CDP [D1].)

To assist the user in the selection of compensator

structure, the package includes the commands NYQUIST,

ROOTLOCS and BODE, which request parameters in conversa

tional mode and produce the appropriate plots.

The command ENTER is used to define the transfer func

tions. Following this command the package will ask for the

parameters in a conversational mode. Two dialogues illus

trate how the command operates. The numbers entered in these

dialogues correspond to the example to be considered in the

next section.

Dialogue J_.

This dialogue shows how the command ENTER is used to

define the plant. The user's inputs are in capitals:

ENTER

Form of data, element

CPY SYS

Gain

1
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Time delay

0

Order of numerator and denominator

0 3

Numerator coefficients is ascending order

6.0 8.0 5.0 1.0

Denominator coefficients in ascending order

6.0 8.0 5.0 1.0

A slightly modified dialogue is used to describe a com

pensator with adjustable parameters.

Dialogue 2

ENTER

Form of data, element

CPY CFF

Gain

1 .0

Order of numerator and denominator

2 2

Numerator coefficients in ascending order

Z(1:1) Z(2:1) Z(3:1)

Denominator coefficients in ascending order

0.0 1.0 0.0

#

The transfer function CFB is entered in a similar way.

The feedback compensator is set to unity by default.
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The coefficient values that were entered may be checked

by the command CHEK; they may be altered by the command

MODIFY. The modifications are made conversationally.

^.3. Initialization of the Optimization

Once the system descriptions have been entered the

design problem is converted into the form of the optimiza-.

tion problem (1) and the optimization is initialized by the

command SISOINIT.

The program defines 2n functions g (z) from the ine

qualities: bl(i) i z(i) £ bu(i), i = 1,2,3,...,n, where n is

the dimension of the design vector, bl(i) is the lower

bound on z(i) and bu(i) is the upper bound on z(i). The user

may specify one of the following two constraints in the fre

quency domain: (i) phase and gain margins, which are con

verted into a forbidden parabolic region in the Nyquist

plane from which the ordinary Nyquist locus is to be

excluded, or (ii) a parabolic region in the s-plane in which

the closed loop poles are to be located, which is translated

into a parabolic region in the G(s) plane from which the

modified Nyquist locus is to be excluded. Given that G(s) =

n(s)/d(s), the ordinary Nyquist locus of G(s) is obtained by

plotting [d(s) + n(s)]/d(s) for s = jw, 0 ^ wO < w < wc <

oO, while the modified Nyquist locus is obtained by plotting

[n(s) + d(s)]/(s + a)**k for s on the parabola in the s-

plane, again for wO j< w < wc, with a such -a is inside the

parabolic region and k = degree[n(s) + d(s)]. In both cases,

-9-



(when the zeros of the denominator of the expression are in

the stable region in the s-plane) stability is ensured by

requiring that the origin in the G(s) plane not be encircled

by the locus. The frequency domain constraints give rise to

phi (z,w). In addition, the user may specify constraints on

the step response: overshoot, rise time and rise amplitude,

settling time and settling amplitude, which give rise to the

functions phi (z,t), with k = 2,3,4,5; the user may also

specify upper and lower bounds on the plant input u and its

derivative udot (stored in BUU, BLU, BUUDOT, BLUDOT, respec

tively), which give rise to the functions phi (z,t), k =

6,7. Constraints on u and udot can only be specified when

the corresponding transfer function relating them to the

system input is proper. Finally, the user has a choice of

two cost functions: integral square error or integral square

plant input, both corresponding to a unit step input to the

system, see (2) and (3).

The selection of constraints to be used is achieved by

changing an indicator in the symbol table from 0 to 1. The

appropriate indicators are NYC0N1 , NYC0N2, STPCON, UCON,

UDTCON, for the ordinary Nyquist locus, modified Nyquist

locus, step response, plant input, and derivative of plant

input (for a step input to the closed loop system), respec

tively. The names in the symbol table of the constants a and

k used for defining the modified Nyquist locus are ACONST

and KEXP. The parabola in the s-plane is defined by x =
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RLP1*y**2 + RLPO, while the parabola in the G(s)-plane is

defined by y = P1*x**2 - PO, with x and y corresponding the

the real and imaginary axes, respectively. To select square

integral error cost one sets OBJECT = 1, for square integral

input cost, one sets OBJECT = 2.

When the command SISO is typed in, the program asks for

a description of the specifications in conversational mode,

as shown below and sets all constants and variables to

appropriate values, so the user need not concern himself

with the above described constants in the symbol table at

this stage. The user is assisted by (color) diagrams which

are displayed on the screen. The following responses are

reasonable for the problem defined by the dialogues 1 and 2,

above. The user's responses are in upper case.

Dialogue 3

SISOINIT

COMMENT: define bounds on z

type in bu(1)

#50.

type in bl(1 )

#0.

type in bu(2)

#50.

type in bl(2)

#0.

type in bu(3)
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#50.

type in bl(3)

#0.

COMMENT: define an initial parameter vector Z do you wish to

use the default values z(i) = 1.?

#N0

type in z(1)

#5.

type in z(2)

#5.

type in z(3)

#5.

COMMENT: define the frequency interval [wO,wc] for the con

straints.

do you wish to use the default values wO = 10E-6, wc = 30

?

#YES

COMMENT: define the stability constraints.

do you wish to use constraints on the actual Nyquist

plot?

#YES

do you wish to use the default gain margin of 2.2 and

default phase margin of 45 deg?

YES

do you wish to use constraints on the modified Nyquist

plot?

#N0
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COMMENT: define the time domain constraints.

do you wish io have constraints on the step response?

#YES

please give values for the above diagram

over = ?

#1.1

risamp = ?

#.7

setamp = ?

#.05

trise = ?

#.5

tset = ?

#2.5

tfinal = ?

#5.

do you wish to have amplitude constraints on the control?

#N0

do you wish to have amplitude constraints on udot?

#N0

COMMENT: select a criterion.

if you wish to use integral square error criterion, type

in 1; if you wish to use input energy criterion, type in

2

#1

COMMENT: adjust algorithm parameters.

do you wish to use the default values e = .2, oldstp =
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100. ?

#YES

#

2.4 The Optimization Algorithm

It is difficult to use this package in an intelligent

way without having, at least, an elementary idea of how the

optimization algorithm works and how it is implemented in

the package. For a complete description of the code and

parameters of the Gonzaga-Polak-Trahan algorithm used in

this package see [B3]. In brief, the algorithm has the fol

lowing form:

ALGORITHM:

STEP 0: Initialize the design vector Z, the iteration

counter ITER and algorithm parameters E, OLDSTP,

ALPHA, BETA, DELTA, PUSH (the optimization problem

definition also occurs in this step).

STEP 1: Evaluate the cost and constraint functions.

STEP 2: Determine the E-active constraints and the

corresponding gradients.

STEP 3: Evaluate the E-optimality function THETA and the

corresponding search direction H.

STEP 4: If THETA < -DELTA*E go to Step 6.

STEP 5: Adjust E or Q, as required.

STEP 6: Compute ZNEW by means of the phase 1 - phase II

Armijo stepsize rule.
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STEP 7: Set Z = ZNEW.

END.

In Step 2, the algorithm computes the maximum con

straint violation

PSI(Z) = maxfO; g (Z), j = 1,2,...,m;

k

max phi (Z,p),k=1,2,...,l) (4)
p€P k
k k

It then computes the gradients of those g (Z) and phi (Z,p )

which satisfy

j
g (Z) > PSI(Z) - E, j |l,2,...,m! (5)

k

phi (Z,p ) £ PSI(Z) - E, k (1,2,...,1) (6)

These gradients are then used to construct the quadratic

program which defines THETA, as its value and H (the search

direction) as its argmin. The quadratic program has parame

ters PUSHG (for the g constraints), PUSHF (for the func

tional phi constraints) and SCALE which can be used to

recondition a badly scaled design problem.

The algorithm code is written in FORTRAN. It has a

number of break points in it (e.g. C0PFE11O, QP90) at which

it tests a flag and if the flag is set, computation is

suspended and the program calls INTRAC-C, as if it were a

subroutine. This enables the user to examine the current

results of the computation either by printing out values or

by plotting graphs, modify parameters in the algorithm or
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compensator and carry out whatever diagnostic computation

the user may find to be helpful. To find out where the algo

rithm execution has been suspended, the sophisticated user

types the command WHERE. For a list of all break points use

the command BREAKS. The breaks can be used to modify the

execution of the algorithm. For example, to ensure that the

algorithm stops at C0PFE110 (before the function evalua

tions), the user sets a flag by means of the command

HALT C0PFE110 ALWAYS

To continue execution after a stop, the user issues the com

mand

GO

To re-evaluate all the functions, the user types

GO C0PFE11O

For more complex examples of execution control, use the LIST

command to display the macros STEP2, STEP3, STEP45, ARMIJO

and RUN. These macros largely remove the need for the user

to be knowledgeable as to the locations of the break points

in the FORTRAN code.

The parameters and variables in the FORTRAN code which

the user may need to examine or modify interactively, are

stored in the SYMBOL table. They can be listed by means of

the command SYMBOL and they can be altered by the command

SET. See Section 4 for further details.
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The algorithm can cycle in the loop defined by Steps 2

to 5 and in the stepsize calculation in Step 6. We shall

refer to this cycling as "inner iterations". The algorithm

can be executed in two ways.

(i) One can execute k iterations of the algorithm and

store the results, by means of the command

RUN k STORE

which stores Z, PSI and F in the arrays ZG, PSIG and FG

(where PSI is as defined above and F is the value of f(Z)).

When storage is not desired, but only the values of ITER F

PSI THETA and E are to be displayed, replace STORE with

PRTALL (ITER is the iteration number).

(ii) One can execute the algorithm almost one Step at a

time by means of the commands STEP2, STEP3, STEP45 and

ARMIJO (for Step 6), which allow one to inspect its behavior

in the inner iterations.

The algorithm normally stops at the end of Step 2 so as

to allow one to examine the values of design parameters and

corresponding constraints. The macro RUN, ARMIJO, RARMIJO,

RARMIJOS and some of the other macros for optimization call

the macro SETXBR which detects if any of the algorithm

parameters have been changed and returns execution to the

correct point in the program. For example, initialization

changes Z, E, OLDSTP, and possibly ALPHA, BETA, DELTA and

MU, which results in Step 2 being executed one more time
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before proceeding. However, SETXBR does not detect if any of

the problem parameters have been changed (viz. NYC0N1,

NYC0N2, STPCON, UCON, UDTCON, OBJECT, BL, BU, BLU, BUU, BLU-

DOT, BUUDOT, PO, P1 , RLPO, RLP1, OVER, RISAMP, SETAMP,

TRISE, TSET, TFINAL). Consequently, whenever one of these

parameters is changed, the user should execute the command

STEP2 in order to return to pr'ogram to the correct point of

execution. Otherwise the program may jam.

.2.5, Optimization Execution

After the initialization is completed, the optimization

is executed by the command

RUN ITER STORE

The number ITER specifies the number of iterations to be

executed; the option STORE causes the values of Z, F and PSI

to be stored in the arrays ZG, FG and PSIG, respectively. F

is the value of the cost function; PSI is the value of the

largest constraint violation. During execution, the results

of each iteration are printed as follows:

I F PSI THETA E

where I is the iteration number; THETA and E are internal

variables related to the optimization algorithm. The value E

= 0 indicates that the current design parameters satisfy the

F. John optimality condition for semi-infinite programming

(see [G1]). All constraints are satisfied if PSI is zero.
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In the normal, "time varying" version, the number E is

monotonically reduced during the optimization (a "time

invariant" version can be created by the command RUN ITER

STORE TI). Sometimes the optimization becomes suspended

because the quadratic program which computes the search

direction fails. When this happens a message appears. To

"resuscitate" the program, it is -necessary to decrease E in

order to reduce the number of active gradients. This can be

done by making use of the scratch pad, as follows.

ps EE = E/4

Set E = EE

It is also possible to experience very slow progress in

the computation due to a poor initial design or to poor

problem scaling. In that case, an experienced designer can

execute the algorithm one step at a time using the commands

STEPn, n = 2,3,45, and RARMIJOS, and examine the results of

the computation at the end of each step. The most interest

ing information is obtained at the end of Step 3, where one

can compute the angles between the computed search direction

H and the active gradients by means of the macro PRTANG, and

in the step size calculation in Step 6, where the active

constraints and the difficulties encountered in step size

calculation can be displayed by means of the macro RARMIJOS.

When the angles between the search direction H and the

active gradients are badly unbalanced due to poor problem

scaling, the experienced designer can restore a certain
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amount of balance by modifying the PUSHG and PUSHF factors

for the optimality function THETA. The push factors are in

the symbol table (see [B3]). The macro RARMIJOS displays

graphically the inner iterations in the step size calcula

tion. In particular, when this macro is executed, one gets a

very good idea as to which of the constraints is causing

most of the difficulty as well as to whether the values of

ALPHA or BETA are to.o large. OLDSTP, the first step size

tried in the Armijo subprocedure, is automatically adjusted

in the course of the computation and usually needs to be set

only during the first few iterations. When more than 3 or 4

inner iterations are required for step size calculation, it

may be desirable to reduce the parameters ALPHA and BETA.

OLDSTP should be increased if the inner iterations were

spent in increasing step length and reduced if the inner

iterations were used to reduce the initial step length. Cau

tion: The parameters should not be changed frequently or

unpredictable algorithm behavior may result. If the jamming

in Step 6 is attributable to E being too small, so that a

certain constraint is neglected in the calculation of H, E

can be increased at this point to improve computational

efficiency.

It is not always clear in advance that all the con

straints that are specified in the initialization stage can

actually be met with the given compensator structure. When

the constraints cannot be met, the algorithm will eventually
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jam with PSI > 0. At this point, the designer may decide to

change the compensator or relax some of the design con

straints. As we have mentioned earlier, when a design

parameter is changed, it is necessary to execute the command

STEP2 before any other command such as RUN or RARMIJOS. The

package also includes an interrupt feature, activated by

hitting the interrupt key, which can be used to interrupt

macros such as RUN.

2.5_ Analysis of Results

When the optimization is suspended after the number of

iterations specified in the RUN command, the properties of

the resulting closed loop system may be investigated. The

command

SYMBOL

can be used to find out which of the quantities of interest

are in the main symbol table, while the command

PTABLE

can be used to display the quantities stored in the scratch

pad symbol table (see Section 4). The command

PRINT

can be used to display any value in either symbol table.

First, display PSI: PSI = 0 indicates that all the con

straints are satisfied, PSI > 0 indicates that they are not.

To find out which constraints are not satisfied, first
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display G, to determine if the bounds on the design parame

ters are violated. Next, PHI is a matrix whose rows are the

constraints on the frequency and time domain responses. To

find the values of the parameters p at which the maximum

occurs in each row, use the command

MATMX V1 V2 = MAX(PHI)

to compute the indices of the maximum row values of PHI in

V1 and the corresponding column numbers in V2. Alterna

tively, use graphics. The command

SISOSTEP col iter k; window

displays the step response for iteration number iter in

color col. The variable k should be 1 for the first

display. This gives scales. For the following displays k

should be set to the display number in order to ensure

correct labeling. When window is not specified, the display

will be in window WSTEP, otherwise it will be in whatever

window is named.

Similarly, the commands

SISOU col iter k; window

SISOUDOT col iter k; window

will display the plant input and its derivatives.

The command
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SISOSTAB col iter k

displays the Nyquist or the modified Nyquist curve, which

ever one is used in the problem,t with col, iter and k as

above.

To obtain the final value of the design parameters use

the command

PRINT Z

To obtain intermediate values, use the command

PRINT ZG(:iter)

with iter the desired iteration number. To obtain the final

value of the compensators that are being designed, use the

command CHEK. To obtain the final closed loop transfer

function, use the command RESPONSE which will display this

transfer function and, in addition, if requested, the

response of the final closed loop system to step, ramp, par

abolic and sinusoidal inputs.

.2*6. Summary.

By using eight commands d.siso, ENTER, SISOINIT, RUN,

SISOSTEP, SISOU, SISOUDOT and SISOSTAB, it is possible to

carry out simple control system design exercises. A complete

example is given in the next section. There are additional

commands in the package for more sophisticated displays and

diagnostic computations. A list of all available commands is
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given in the appendices.

3. AN EXAMPLE

We shall now present a complete example to illustrate

how the optimization-based SISO control system design pack

age may be used.

The plant to be controlled has the transfer function

1

G (s) =
SYS 2

(s + 3)(s + 2s + 2)

It is desired to find a PID controller which satisfies step

response specifications of the form given in Fig. 2, with

over =1.1, risamp = 0.7, setamp = 0.05, trise = 0.5, tset =

1.2 and tfinal = 5. It is also required that the phase mar

gin be 45 degrees and the gain margin be at least 2.2.

The PID regulator has the transfer function

2

Z(1) + Z(2)*s + Z(3)*s
G (s) =

s

where Z(1), Z(2) and Z(3) are the components of the design

vector Z; they are constrained to lie between 0 and 50.

To obtain a solution to the design problem the package

is initialized as before with the commands d.siso, ENTER,

and SISOINIT, as shown in the Dialogues 1-3 in Sections 2.2

and 2.3. The command
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RUN 2 STORE

results in the following display on the screen.

1=0.0 F=0.0 PSI=0.0 THETA=0.0 E=0.2

1=2 F=0.248 PSI=0.043 THETA=-0.05 E=0.2
•

Since PSI is positive, the constraints are not satisfied and

the optimization is continued for one more iteration with

the command

RUN 1 STORE

The following results are then obtained

1=3 F=0.27 PSI=0.024 THETA=-0.03 E=0.1

The algorithm is unable to solve the quadratic programming

problem and a message appears. The current design parameters

are

Z = (15-5 19.0 12.9)

The step response (displayed by the SISOSTEP command) has a

slight undershoot. (See Figs. 4a and 4b). To continue the

optimization the parameter E is changed manually by the com

mand

SET E = 0.02

This reduces the number of active constraints and the optim

ization can be continued. After 8 iterations we get

1=7 F=0.267 PSI=0.0 THETA=-0.014 E=0.02
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1=8 F=0.245 PSI=0.0 THETA=5-7e-5 E=0.02

The design vector is

Z = (22.9 19.0 15.9)

The displays produced by the commands SISOSTEP and SISOSTAB

show that all constraints are satisfied.

The standard PID regulator has very high gain at high

frequencies. To reduce the high frequency gain of the regu

lator, the transfer function of the regulator is modified to

2

z1 + z2*s + z3*s
G (s) =
CFF 2

s + 0.1s

using the MODIFY command on the file CFF. With the previous

value of the design vector the overshoot becomes 25$ which

is far too high. Running the optimization algorithm for 11

more iterations gives

1=19 F=0.34 PSI=0.05 THETA=-0.07 E=0.0025

Since PSI is not zero the constraints are not satisfied.

Analysis of the step response (see Fig. 5b) shows that the

overshoot is 15#. The Nyquist curve (see Fig. 5a) also

reaches into the forbidden region. The design vector is

Z = (20.8 12.8 15.7)

No substantial improvement is obtained even if the program

is run for many more iterations. The conclusion is clear
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that the specifications cannot be satisfied with the chosen

configuration. Either one must be satisfied with the design

obtained or else one may try to change the value 0.1 in the

regulator to a smaller value.

4. INTRAC-C

4.J_. Introduction

INTRAC [A1 , W1 ] is an extendible, interpreted, BASIC

like language. It is a small nucleus, written in FORTRAN,

which can be used for converting a set of FORTRAN subrou

tines into an interactive package. These subroutines are

accessed via INTRAC commands. In its nuclear form, INTRAC is

a very simple language: it has neither an arithmetic expres

sion parser (so that only binary arithmetic operations are

allowed), nor subscripted variables. However, it does have

complete logic capability, interrupt capability, an ability

to read both numbers and strings inputted from a terminal,

as well as to produce both alphanumeric and graphical out

put, and an ability to control the execution of a FORTRAN

program. In addition, it has a macro facility which makes it

possible to write programs (macros) (which can call other

macros as subroutines up to 7 layers deep) and hence new

commands in INTRAC itself rather than in FORTRAN. INTRAC has

very nice diagnostic features which make it very easy to

write and debug macros. (The run time diagnostic are

actuated in this package by the ON command (macro) and
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switched off by OFF). INTRAC executes rather slowly, par

ticularly when loops are present (for i = 1 to k) and hence

it is not suitable for coding of optimization algorithms or

cost and constraint functions. However, it is excellent for

writing display macros. (See Appendix B.7 for a summary of

INTRAC statements.) On the other hand, commands and routines

in FORTRAN are much more difficult to write, debug and

implement, but they execute much more rapidly than INTRAC.

INTRAC has been used in a number of other packages as well,

viz. SIMNON, IDPAC, MVDPAC, POLPAC AND SYNPAC, see [A1].

INTRAC-C is an extension of INTRAC for use with the

OPTDYN semi-infinite optimization code. The resulting pack

age is called INTEROPTDYN. To use it for solving a specific

problem, FORTRAN subroutines for function and derivative

calculation must be written, added to the package and the

whole code recompiled.

INTRAC-C includes scratchpad commands for both scalar

and matrix calculations, and elementary commands for color

graphics (see [B1,B3]). The scratch pad commands can be used

in macros which can call other macros as subroutines, but it

does not allow the use of internal variables.

INTEROPTDYN makes use of three symbol tables: one for

the FORTRAN variables and parameters which appear in OPTDYN

and the user supplied FORTRAN subroutines, one for the

scratch pad variables and one for the INTRAC variables. The

contents of the FORTRAN symbol table are displayed by the
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command SYMBOL, those of the scratch pad by the command PTAB

and those of INTRAC by the command WRITE. All INTRAC-C vari

able names must end in ., e.g., x., y.. For a FORTRAN or

scratch pad variable to be used in an INTRAC-C expression,

it must first be transferred to the INTRAC-C symbol table by

means of the TRANS command. When a FORTRAN variable, say

ALPHA, is transfered to the INTRAC-C symbol table by means

of the TRANS command, it becomes ALPHA. in the INTRAC-C

symbol table. The same holds true for variables which are

transfered into the INTRAC symbol table from the scratch pad

symbol table. No special command is necessary for using FOR

TRAN or INTRAC-C variables in scratch pad expressions.

Arithmetic statements in INTRAC-C are preceded by LET, while

those in the scratch pad by PSCAL; matrix expressions in the

scratch pad must be preceded by PMAT. Scratch pad and

INTRAC-C expressions (other than SET) cannot be used to

assign values to FORTRAN variables and scratch pad expres

sions cannot be used to assign values to INTRAC-C variables.

When an attempt to make an illegal assignment is made, an

error message appears. Thus, the FORTRAN and INTRAC vari

ables are protected from accidental alteration in the

scratch pad. The arithmetic capability of INTRAC-C is nor

mally not used in INTEROPTDYN so as to avoid confusion. It

is mostly useful when it is essential to create internal or

logic variables, which is not possible in the scratch pad.

INTEROPTDYN-SISO is an extension of INTEROPTDYN for SISO

control system design which was obtained by (i) augmenting
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the FORTRAN symbol table to include the parameters needed

for control system design specification and (ii) by adding

to INTRAC-C all the commands for SISO control system specif

ication, manipulation, computation and display that are con

tained in CDP [D1] package. The cost and constraint func

tions for control system design are evaluated by FORTRAN

subroutines, some of which were obtained from CDP.

For a complete listing of all the available INTRAC-C

commands, see Appendices A and B; [W1] is an INTRAC language

manual which is summarized in Appendix B.7.

INTEROPTDYN-SISO includes an extensive library of mac

ros which combine the various elementary INTRAC-C commands

into higher level commands. Some of the commands implemented

as macros are discussed below.

4.^2. Macros for optimization

The flow of the optimization execution is controlled by

macros. These can be used to execute one step of the algo

rithm at a time, to run a given number of iterations and

store the results, to perform diagnostic calculations, to

display graphically the behavior of the algorithm as it

cycles in inner iterations, and so forth. A full list of

these macros is given in Appendix C.

4.3.« Macros for graphics

The package contains macros for general purpose graph

ics, e.g., for window selection and for array row or column
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plotting, with zoom capability, and labeling, as well as for

displays that are specific to SISO design, e.g. of Nyquist

plots and step responses. Root locii, Nyquist plots and Bode

plots can also be plotted via elementary commands based on

CDP [D1] graphics. A full list of macros for graphics is

given in Appendix D.

4.4. Macros for matrix calculations.

The scratch pad commands of INTRAC-C allow both scalar

and matrix unitary (e.g. ps x = pwr(y 3)) and binary

expressions (e.g. pmat A = B + C). These expressions can be

used in macros, both to create a still higher level language

which eliminates the need to declaring matrix dimensions and

for creating arrays and other data for graphical displays.

Unfortunately, scratch pad commands do not allow the use of

internal variables in macros, which can become a problem

when several layers of calls to other macros are used in a

macro. To get around this shortcoming we recommend the use

of a special convention: names such as ox, oy oox, ooy, for

"internal" variables and x, y for "global" variables. As has

already been pointed out, the scratch pad has its own symbol

table. It can read all the quantities in the main symbol

table, which contains the results of the computation of the

optimization program and its parameters, but it cannot alter

the entries in the main symbol table. Thus, the main symbol

table is protected from inadvertent alteration in the pro

cess of diagnostic calculations. The SET command must be
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used to transfer values from the scratch pad symbol table to

the main symbol table. A full list of available macros for

matrix calculations is given in Appendix E. Note also that

the raaciros for graphics also make heavy use of scratch pad

commands.
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APPENDIX A: COMMANDS FOR CONTROL SYSTEM

The commands needed for SISO design via interactive
optimization fall into two categories: those for entering
and examining the design problem and those used in optimiza
tion.

For further information on the commands ENTER, CONVERT,
CHEK, MODIFY, ROOTLOCS, NYQUIST, RESPONSE and BODE type in
the command and then ???

A.U INTRAC-C commands for SISO Control System Manipulation.
^I^OBD: cTIsplays the block diagram of the con
trol system to be designed. Be sure to type in
GRINIT to initialize the graphics before using
this command.

ENTER: to be used for entering system and compensator
coefficients. Note: the coefficients to be optim
ized must be entered as z(1:1), z(2:1) z(3:1),••••

CONVERT: to be used for converting system or compensator
from one form to another.

CHEK: to check the data describing system part.

MODIFY: to modify part of system or compensator descrip
tion.

ROOTLOCS: to plot root locus and display pole placement
region.

NYQUIST: to plot Nyquist diagram.

BODE: to plot Bode diagrams.

RESPONSE: to plot step, ramp, parabola and sin responses.

A.2. Macros for Optimization.

SISOINIT:

RUN k STORE:

SISOSTEP c

SISOU c i k:

initializes design parameters and defines
constraints.

will execute k iterations of the optimiza
tion algorithm and store the results.

k: displays step response in color c
corresponding to design parameter values
at iteration i, with k indicating the
number of the graph plotted.

displays plant input in color c
corresponding to design parameter values
at iteration i, with k indicating the
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SISOUDOT c i k:

SISOSTAB c i k:

SISOLBLN c i k;j

STPCNSTR c :

MARGINS:

number of the graph plotted.

displays time derivative of plant input in
color c corresponding to design parameter
values at iteration i, with k indicating
the number of the graph plotted.

displays nyquist or modified Nyquist plot
in color c corresponding to design parame
ter values at iteration i, with k indicat
ing the number of the graph plotted.

labels nyquist plot in color c correspond
ing to frequency point i. When i and j
are given, will label j points beginning
with i th (the frequence range wO to wc is
divided into q points).

will draw the step constraints in step
response diagram in color c. Black will
erase.

will enable you to reset both phase and
gain margins by recomputing and reseting
PO and P1.

PARABOLA c MOD; y: will draw constraint parabola in Nyquist
plain in color c. If y is typed in, it
will recompute the parabola from the new
gain and phase margins. (The option MOD is
needed to make this macro usable in
another macro, as well).
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APPENDIX B: INTRAC-C COMMANDS

B.J_. Commands for control flow

ALGO - Displays program structure and associated break
points

BREAKS - Displays a list of all breakpoints

WHERE - Displays name of breakpoint

HALT - Sets up halt condition at specified breakpoint

GO - Transfers control to optimization program

B.£. Commands for diagnostics

SWITCH ECHO ON/OFF - enables/disables echoing of commands

SWITCH TRACE ON/ OFF - enbales/disables echoes of execution
of commands

VAXDEBUG FILE ON/OFF - enables/disables file handling trace
(off is default condition).

VAXDEBUG FILEDUMP ON - will produce one snapshot dump on
fort.7 of filehandler internal data
(to be used if file handling seems in
error).

B.3. Commands for manipulating variables in the symbol table

PRINT - Displays a variable from the symbol table or the
scratchpad

SET - Changes the value of a single variable in the
symbol table

SETDIM - Changes actual dimensions of a variable in the
symbol table

TRANS - Transfers value of symbol table variable to
INTRAC

CHECK - Checks if a variable has been changed by SET

CLEAR - Clears flag used in CHECK

SYMBOL - Displays symbol table

B.4. Commands for the Scratchpad
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GETDIM - Returns actual array dimension from symbol table

PDIM - Creates a variable in external symbol table
(scratch pad)

PREM - Removes a symbol from the scratch pad
i

PTAB - Displays external symbol table (scratch pad)

PSCAL - Scalar operations in the scratchpad

PMAT - Array operations in the scratchpad

B.5. Miscellaneous Commands

COPY - Copies a macro file

DELETE - Deletes a macro file

ED - Brings in an editor containing most of the UNIX
ex commands for editing macro files.

HELP - Explains usage of the commands

LIST - Lists a macro file on the terminal or deposits it
in the file fort.11.

CSH - This command makes it possible to call the shell
and execute any UNIX command from the package

B.6^ Commands for Graphics

COLOR - Sets color for subsequent graphics output.

CURSOR - Moves cursor to x,y coordinate in preparation for
text output

CURSOREL - Positions cursor a specified number of character
size units away from x,y coordinate.

CURVE - Draws curve specified by an array.

DEFINE - Defines rectangular windows on screen by a user
specified name.

DRAW - Draws vector from previous 'MOVE'ed position to
x,y coordinate

ERASE - Erases the whole screen or just a specified win
dow

GRINIT - Graphics initialization. Must be given before
doing any graphics. The first time this command
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is given, the terminal type is requested.

MOVE - Moves cursor to x,y coordinate in preparation for
a DRAW.

PARCURVE - Draws curve in parametric form.

TEXT - outputs strings or numeric values at the position
of the graphics cursor. A CURSOR or CURSOREL
command must precede a TEXT command.

VECTOR - Draws a vector between specified starting and
ending coordinates.

WINDOW - Enters specified window so that 0.0 to 1.0 coor
dinates appear only in the previously defined
rectangular window.

B.7. Summary of INTRAC Statements

These statements are used in writing macros. For details,
see the INTRAC language manual [W1].

MACRO <macro identifier>[<formal
argument>\<delimiter>\termination marker>]*
Begins a macro definition and creates a macro. The del
imiter is a symbol such as (,*,+,#, etc. The termina
tion marker is a semicolon and is used to separate
groups of optional arguments.

FORMAL {<formal argument>|delimiterjtermination marker>}*
Declares formal arguments in a macro definition and
when creating a macro.(termination marker = ;).

END

ends a macro and ends macro creation mode. Deactivates

suspended macros.

LET (<variable>=(*f<number>!<pad variable>[f+|-
!*!/)<number>!<pad variable>] number>j<pad variable>]
!<identifier>[+<integer>]|<delimiter> !<unassigned
variable>

Assigns (allocates) variables.

DEFAULT {<variable>=(* <argument>
Assigns a variable if it is unassigned or does not
exist previously.

LABEL <label identified

Defines a label.

GOTO <label identified

Makes unconditional jump.
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If <argument> (EQ|NE|GE|LE|GT|LT) <argument> GOTO <label
identifier>

Makes a conditional jump, (argument is an INTAC vari
able) .

FOR <variable> = <number> to <number> [STEP <number>]
Starts a loop.

NEXT <variable>

Ends a loop.

WRITE [(LP)] [<variable>|<string>]
Writes variables and text strings in * 'or displays
currently available variables. (LP) (or (lp)) option
causes the string to be written in the file fort.8 for
later print-out.

READ 1 (<variable> {INTjREAL|NUM|NAME|DELIM|YESNO) }j <ter-
mination marker>)*
Reads values for variables from the terminal, (termina
tion marker = ;).

SUSPEND

Suspends the execution of a macro.

RESUME

Resumes the execution of a macro.

SWITCH (EXEC!ECHO!LOG|TRACE) (0N|0FF|
Modifies switches in INTRAC.

FREE 1 (<global variable>)* | *.*|
Deallocates global variables.

STOP

Causes exit from package.

B.8. Macros for Obtaining Help

HLPEX - Displays the list of macros for execution.

HLPGR - Displays the list of macros for graphics.

HLPPAD - Displays the list of macros for matrix calcula
tions ,
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APPENDIX C: MACROS FOR OPTIMIZATION EXECUTION

The following is a list of macros which are used either
directly or as subroutines for the control of the optimiza
tion flow and information monitoring. They are classified as
either being primary or subroutine in nature.

£.J_. Primary Macros

ARMIJO executes one iteration with Armijo
stepsize calculations display

OFF turns off diagnostic display

ON ' turns on diagnostic display

PRTALL prints f psi e theta

PRTANG prints angles between search direc
tion and active gradients

PRTFPSI prints f and psi

RARMIJO N executes N iterations with Armijo
stepsize calculations display

RARMIJOS N executes N iterations with Armijo
stepsize calculations display and
stores results by means of STORE

RUN N; 0PTI0N1; 0PTI0N2..where N = no. of iterations to per
form, 0PTI0N1 can be STORE, PRTALL,
PRTFPSI, and 0PTI0N2 can be TI

STEP2 executes Step 2 of algorithm

STEP3 executes Step 3 of algorithm

STEP45 executes Steps 4 and 5 of algorithm

STORE stores f psi and z in the arrays fg,
psig and zg

TI turns the algorithm into a time
invariant version

TYPE prints information normally displayed
by ARMIJO graphically

£.£. Subroutine Macros

ANG

BARMIJO
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CHECK

CLR

EPS

EXEC

GR

MESSAGE

NIL

SCAL

SETXBR

SKIP

STANDARD

STARM

START1
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APPENDIX D: MACROS FOR GRAPHICS

In the macros listed below, the following notation and
mnemonics are used:

V denotes a column vector.

H(I:) is the ith row of H.

H(:I) is the ith column of H.

ROW denotes* operation on a row of a matrix.

COL denotes operation on a column of a matrix.

C, C1, C2 are colors.

I J denote the first and last index of array to be plot
ted NS denotes no internal scaling: precomputed scaling
information must be in the form oVMAX oVMIN.

YESNO refers to asterisk on graph: y YES, n NO.

AXES C Plots axes in color C.

BARCOL H(I:) C; I J; TOP BOT.. Computes scale when TOP BOT
are not given and barcharts

BARMIJO Produces bar charts for Armijo step
size calculations when both conven
tional and functional constraints

are to be plotted.

BARG Produces bar charts for Armijo.
step size calculation when only
conventional constraints are to be
plotted.

BARROW H(I:) C; I J; TOP BOT.. Computes scale when TOP BOT
are not given and barcharts.

BARS V C; I J; TOP BOT.. Computes scale when TOP BOT are not
given and barcharts.

BOX Draws box in prespecified color.

GRAPHO I Produces Armijo stepsize informa
tion when STORE is not used.

GRAPHOS I Same as above to be used with
STORE.
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GRAPHPSI YESNO; RUN Plots values in PSIG; PSIT.

LBL V C; K; I J Computes max and min of els in V in
the range I J and writes the ele
ment values K units to left of y-
axis. (Negative K is ok)

LBLCOL H(:I) C; K; I J.. Same as above.

LBLROW H(I:) C; K; I J...Same as above.

LBLMNMX C; K; Labels a graph with min and max
values produced by PRESCALE.

LBLX C N1 N2 D;Y;X,YESNO... Labels x-axis from N1 to N2, in
increments D, Y X are shift parame
ters, n omits first label

LINE CLR LVL; SLP Draws* line in color CLR through
level LVL default SLP = 0. (slope).

LINA ANGLE C Draws horizontal line at angle
value.

LVL V C L; I J; YESNO; INCR.. Computes level L for vector V
and plots it in color C; if yes,
will label line as x-axis with

default incr(ement) = 5-

LVLCOL H(:K) C L; I J; YESNO; INCR... same as above

LVLROW H(K:) C L; I J; YESNO; INCR... same as above

PLTBCOL H(:I) C1 C2; I J; TOP BOT... Same as PLT followed by
BARS

PLTBROW H(I:) C1 C2; I J; TOP BOT... Same as above.

PLTBMXR H C1 C2; I J... Plots and barcharts maximum, by
rows, of matrix H. Scales may be
produced by PRESCALE.

PLTCOL H(:I) C YESNO; I J; TOP BOT... see PLT

PLTMXC H C YESNO; I J; TOP BOT...Same as PLOt for maximum by
columns of matrix H, scales may be
precomputed by PRSECALE.

PLTMXR H C YESNO; I J; TOP BOT... same as PLOT for maximum
by rows of matrix H, scales may be
precomputed by PRESCALE.

PLTROW H(I:) C YESNO; I J; TOP BOT ... see PLT
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PRESCALE H; I J Computes the min and max elements
of a matrix H between the I-th and
J-th columns.

UNIVECT ; N Computes a vector ONE of length N
with 1 as all the elements.

UP;K Opens up K lines for text.

WB Window: bottom third of screen.

WBE Erase WBE.

WC Window: center of screen.

WCE Erase WCE.

WL Window: lower half of screen.

WLE Erase WL.

WM Window:, middle third of screen.

WME

WQ1 Window: bottom quarter of screen.

WQ1E
WQ2
WQ2E

WQ3
WQ3E

WQ4
WQ4E
WT Window: top third of screen.
WTE

WTOPCR Window: small upper right corner.

WU Window: upper half of screen.

WUE
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APPENDIX E: MACROS FOR MATRIX CALCULATIONS

This is a list of macros used for matrix manipulation,
names ending in g are single precision for use in graphics.

ANG C = ANGLE(U V)

COL V = B(:J)

COLCLIP V = B(:I J)

CON C = CON(A)

DET C = DET(A)

EIG V L = EIGEN(A)

EQ C = B

INV C = INV(A)

MAT C = A op B

COMPUTES ANGLE IN DEGREES, COL. VEC
TORS

SET V EQUAL TO JTH COL OF B

CLIP OUT COLUMNS I TO J

COMPUTES CONDITION NUMBER

COMPUTES DETERMINANT

COMPUTES EIGENVECTORS V EIGENVALUES L

SET C EQUAL TO B

COMPUTES INVERSE

WHEREAA, B ARE MATRICES AND op is + -
* A (A stands for multiplication of B
by scalar A)

MATMNG V1 V2 = MAX(Q);I J...Q IS A MATRIX, TO BE TRUNCATED
TO COLUMNS I TO J, V1 IS A VECTOR OF
MIN ELEMENTS TAKEN OVER ROWS, V2 IS A
VECTOR OF CORRESPONDING COLUMN INDI

CATORS

MATMX V1 V2 = MAX(Q);I J...Q IS A MATRIX, TO BE TRUNCATED
TO COLUMNS I TO J, V1 IS A VECTOR OF
MAX ELEMENTS TAKEN OVER ROWS, V2 IS A
VECTOR OF CORRESPONDING COLUMN INDI

CATORS

MN M I = MIN(V)

MNG M I = MIN(V)

MCOL C(:I) = B(:J)

MROW C(I:) = B(J:)

NRM C = NORM(V)

V IS A VECTOR, M ITS MIN ELEMENT, I
THE CORRESPONDING INDEX

V IS A VECTOR, M ITS MIN ELEMENT, I
THE THE CORRESPONDING INDEX

SET ITH COL OF C EQUAL TO JTH COL OF
B

SET ITH ROW OF C EQUAL TO JTH ROW OF
B

COMPUTES NORM OF V

-45-



MX M I = MAX(V)

ROW V = B(J:)

ROWCLIP V = B(I J:)

SP C = <A B>

TRC C = TRACE(A)

TRS C = TRANS(A)

DR C = RAD(A)

RD C = DEG(A)

V IS A VECTOR, M ITS MAX ELEMENT, I
THE CORRESPONDING INDEX

SET V EQUAL TO JTH ROW OF B

CLIP OUT ROWS I TO J

SCALAR PRODUCT

COMPUTES TRACE

COMPUTES TRANSPOSE

CONVERTS DEGREES TO RADIANS

CONVERTS RADIANS TO DEGREES

-46-



control le-r p ian t

iMP GCFF(S,z» u.

GSYS(S)

L.

controller

W*'2'

siso- •controller design

Figure 1.-The system structure allowed by the package



J -

0
trise-

ove r

r mam\j

—I—

tset

Figure 2. - Time domain specifications

? »

I ;r. cramp

t final



\

\

s-plane

•

i

J
/

i

0

GQsJ-plane

0

Figure 3. - Frequency domain specifications



2.ti

1 .0,

6.0

- i. e1

-2 .01

-t

16.0 /

i terat ion

r,_. ..

\ 1 .0 2.0

(b) Step response

(a) Modified Nyquist Plot

Figure 3'. - Results after 1 iterations

50 Iime



2.0

i te-rat ion

3

i .e

0. e

\
0 .0 1 ' -*~X

J /

1 .0

\ / ' (
i

\
. s

1

\
\

-2.0 :
\

(a) Modified Nyquist Plot

2 .tf

i .25

i .0W

.75

.50

.25
I

X.

—i—

1.0
—i—

£0 ?& 4JH Fk0 tjnp

(b) Step response

Figure 4. - Results after 3 iterations



2.0

i teration

1 .0,

0.0
•1- - - - - ;p.-1- - - - - -

0.0 / y l.u

//

\M. '7

-?.0j

(a) Modified Nyquist Plot

.0

y

1 ,25

l .00

.75

.50

/

/l

J0 ?:0

(b) Step response

—l—

30

Figure 4'. - Results after 8 iterations.

—r-

4 0 50 time



2.0

r"=\r-
£.0

i .25

1.00

.75

.50

I

l^-J—r
Ul ?.fi aft

(b) Step response

(a) Modified Nyquist Plot

Figure 5- - Results after 19 iterations.

—i—

4.0 5jFi time


	Copyright notice 1981
	ERL-81-99

