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ABSTRACT

A scheme for maintaining a balanced search tree on O(lgN)
parallel processors is described. O(lgN) search, insert, and delete
operations are allowed to run concurrently, with each operation
executing in O(lgN) timesteps. The scheme is based on pipelined
versions of top-down 2-3-4 tree manipulation algorithms.
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1. Introduction

This paper proposes a scheme for using a linear array of O(lgN) processors
to maintain a balanced tree structure for N items. The scheme allows pipelined
operation so that, while individual operations require O(lgN) time, O(lgN)
operations may be at varying stages of execution at any point in time. Also, the

scheme avoids excessive data movernent between processors.

Similar work on VLS! "dictionary machines” has been reported in recent
years by Bentley and Kung [Ben79], Leiserson [Lei79], and Ottman, Rosenberg,
and Stockmeyer [ott81]. The salient feature of the scheme presented here is
that O(IgN) processors are required. The earlier schemes were based on the

use of O(N) processors organized in tree-like configurations.

2. Architecture

The architecture used here is a linear array of O(lgN) identical processing
elements, each with their own private memory attached. Processor P, has
memory capable of storing a single tree node, and each processor P, 1<i<k,
has twice the amount of memory of its predecessor F;—;. The last processor, P,
must have memory sufficient to hold all of the data which is to be stored in the
machine. Also, to provide for the processing of range queries, the memory of

processor P, must be dual-port for external accessibility.

The processors operate independently, in an MIMD manner. The communi-
cation paths between processors are bidirectional. The resulting machine archi-
tecture, similar to the heapsort machine architecture of Armstrong [Arm78], is

shown in Figure 1.
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Figure 1: Parallel Architecture for Balanced Tree Maintenance.

3. Some Observations

Given the desiderata of parallel operation, minimal data movement, and

balanced operation, the following comments are in order:

1

(2

The data structures of choice are the 2-3 tree [Aho74] or the 2-3-4 tree
[Gui78), since balancing operations are quite simple for these tree types.
More generally, the B+ tree [Com78], a variant of B-trees [Bay72] where
data resides only in leaf nodes, would be perfectly suitable here. The 2-3
tree is a special case of the B+ tree, and the 2-3-4 tree is an extension of
the 2-3 tree where four-nodes are allowed in addition to two-nodes and

three-nodes.

Top-down tree operations [Gui7s, All80] are the only reasonable way to
maintain balance in this scheme, as pipelining would be very difficult if
node splits and merges were allowed to propagate upwards in the tree as a
result of lower splits and merges. Thus, the 2-3-4 tree is the best choice, as
this tree type lends itself to simple top-down insertion and deletion algo-

rithms [Gui78].
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(3) The obvious way to map the problem to the architecture is to store one
level of the tree with each processing element. The processor storing the
leaf nodes will contain the data, and the other processors will simply store
index nodes containing keys and pointers. Figure 2 illustrates a sample 2-

3-4 tree stored in this way.
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Figure 2: Example of 2-3-4 Tree Storage Layout.

(4) When the root of the 2-3-4 tree is full, the height of the tree will have to
grow by one level. Similarly, when the root of the tree and its sons are
nearing the empty point, the height of the tree will have to shrink by one
level. Hence, the tree should be started off on processor P and allowed to
grow upwards towards P, on root-splitting insertions and back down
towards P, on root-removing deletions. Processors above the level of the

actual tree root will store unary nodes (nodes with a single tree pointer).

4. Operations for Tree Maintenance

In this section, the 2-3-4 tree manipulation operations will be described. A
2.3-4 tree is a balanced search tree where two, three, or four keys appear in
each internal (index) node, and all data iterns appear in external (leaf) nodes.

The tree manipulations described here are basically just parallel versions of
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normal 2-3 or B+ tree searching [Bay72. Aho74, Com79] and top-down 2-3-4 tree
insertion and deletion [Gui78, Al180]. Thus, in the interest of brevity and clarity,
the description will be somewhat informal, with actual pointer and key manipu-

lations omitted.

4.1. Searching
The SEARCH operation for the parallel 2.3.4 tree scheme is a simple, pipe-

lined version of normal B+ tree searching [Com79]. Hence, when processor P

receives a "SEARCH(key n, using pointer p)" message, it should do the following:
Case #1 — P, contains an index node (i < k):

Follow the pointer p to the appropriate index node in local memory. Use
the key value n to select the appropriate pointer (p') to follow from here. Send
SEARCH{n,p') to Pis;-

Case #2 — P, contains a data node (i=k)

Given key n and pointer p, see if pointer p points at a data node containing
key n. If so, send the data to the outside world. If not, send out a message indi-

cating that the desired data was not found.

4.2 Insertion

The INSERT operation for the parallel 2-3-4 tree scheme is a pipelined ver-
sion of the top-down node-splitting insert algorithm of Guibas and Sedgewick
[Gui78, All8O, McC82]. When the search encounters a node which is full, the
transformation shown in Figure 3 is applied, ensuring that future node splits will
not cause upwardly-propagating splits. Note that the insertion transformation
results in an increase in the actual tree height when applied at the root node.
The figure depicts the transformation in terms of 2-3-4 trees, with optional
pointers drawn in dotted lines and the search path pointer indicated via a small
black square. Though the figure shows the insertion path as being the leftmost
path, the transformation applies in the obvious way regardless of the path. The

correctness of this transformation is proven in the appendix.

Hence, when processor P; receives an "INSERT(key n, using pointer )"

message, it should do the following:
Case #1 — P, contains an internal index node {1 < k-1):

Follow the pointer p to the appropriate index node in local memory. Use

the key value n to select the appropriate pointer (p') to follow from here. Send



Figure 3: Insertion Transformation.

INSERT TRANSFORM(p' ) to P4y Pis) will apply the insertion transformation if it
is applicable, splitting the next node on the search path for key n, and send
INSERT_TRANSFORM_REPLY(m,np) to F;. This reply will inform P, of the new
splitting key (m) and new offspring pointer (np) resulting from a node split if

one occurred, and F; will insert this information into its current index node.

Now, once again use n to select the appropriate path (p') to follow from
here. (The path may be different if P4, performed a node split in response to
the INSERT_TRANSFORM message.) Send INSERT(n.p') to Pisy
Case #2 — P, contains the last index node (i = k -1):

Follow the pointer p to the appropriate index node in local memory. Use
the key value n to select the appropriate pointer {p') to follow from here. Send
INSERT(n,p') to P,. P will attempt the insertion, sending back either a pointer
to the newly inserted node or a nil pointer in an INSERT_REPLY(np) message. A
nil pointer indicates that the key was a duplicate and no insert took place. If no
error occurred, insert the key and new pointer information into the current
index node.

Case #3 — P, contains a data node (i = k):

If the indicated data item is not already present, install it in a2 new data
node, send P,_, a pointer np to the new node in an INSERT_REPLY(np) message,
and send the outside world an acknowledgement. If the indicated data item is
already present, send P,_, an INSERT_REPLY(nil) message, and send the outside

world an error response.



4 3. Deletion

The delete operation is a modified version of the Guibas and Sedgewick top-
down deletion algorithm [Gui78]. The modification is based on the observation
that old keys may be used to guide searches in B+ trees [Com79], since all
predecessors of a deleted key are predecessors of its successor key, and all suc-
cessors of its successor key are also successors of the deleted key. Thus, it is
not necessary to delete the instances of a data item’s key from the index por-

tion of a 2-3-4 tree when deleting the item.

The basic idea of top-down deletion is that, when a node with the minimum
allowable number of keys is encountered, a transformation that adds keys must
be performed to ensure that deletions cannot propagate upwards [Gui?8, AlIBO,
McC82]. No paper in the literature has described these transformations in
terms of standard 2-3-4 trees or B+ trees in a particularly comprehensible
manner, so they will be described here in some detail. There are three such
transformations, depicted in Figures 4 through 6 for 2-3-4 trees. Note that dele-
tion transformation / can result in a decrease in the tree height when applied at
the root node. While the figures depict the deletion path as being the leftmost
path, the transformations apply in the obvious way regardless of the path. The

correctness of these transformations is proven in the appendix.

Figure 4: Deletion Transformation /.

Hence, when processor P; receives a "DELETE(key n, using pointer p)" mes-
sage, it should do the following:

Case #1 — P, contains an internal index node (i < k-1):

Follow the pointer p to the appropriate index node in local memory. Use
the key value n to select the appropriate pointer (p') to follow from here. Send
DELETE_TRANSFORM(m ,p',p"), where p" is the adjacent path pointer for p' and
m is the splitting key for p' and p", to Py Py will apply a deletion



Figure 5: Deletion Transformation II.

Figure 8: Deletion Transformation Il

transformation if one is applicable, either merging the nodes indicated by p' and
p" or moving one of the offspring of the p” node into the p' node. P,y will then
send DELETE TRANSFORM_REPLY(m' .np) to 7. This reply will inform P; of the
new splitting key (m') resulting from a transformation if one occurred, and the
pointer value np will indicate p or p" if one of these nodes was deleted by the

transformation. P; will use this information to update its current index node.

Now, once again use m to select the appropriate path {(p') to follow from
here. {The path may be different if P,,, did some key and pointer rearranging in
response to the DELETE_TRANSFORM message.) Send DELETE(n,p') to Pisi.

Case #2 -- P, contains the last index node (i = k—-1):

Follow the pointer p to the appropriate index node in local memmory. Use
the key value n to select the appropriate pointer (p') to follow from here. Send
DELETE(n.p') to P.. P will attempt the deletion, sending back a stafus flagina
DELETE_REPLY(status ) message, indicating either success or failure. A failure
indication would mean that the key was a duplicate and no deletion took place.

If no error occurred, delete the appropriate key and pointer information from



the current index node.
Case #3 — P; contains a data node (i =k ):

If the indicated.data itern is already present, delete its data node, send P _,
a DELETE_REPLY(no error) message, and send the outside world an ack-
nowledgement. If the indicated data item is not already present, send F,_; a

DELETE_REPLY(error) message, and send the outside world an error response.

4.4. Range Queries

In order to handle range queries, two additional operations may be pro-
vided: CEILING_SEARCH(n.p) and FLOOR_SEARCH(n.p). The handling of these
requests is identical to that of SEARCE(n,p) for all but processor F. For this
last processor, these operations cause a pointer to the indicated data item to be
returned in place of the data item itself. (The appropriate data item is the one
with the smallest key m such that m = n for the CEILING_SEARCH operation and
the one with the largest key m such that m <n for the FLOOR_SEARCE opera-
tion.) 1f P, keeps sequential data nodes linked together as a sequence set
[Com79], then sequentially executing these two search operations will be
sufficient to provide external access to all of the data items in the range delim-

ited by the two search queries.

5. Some Implementation and Performance Issues

There are several possible schemes for implementing tree transformations.
QOur approach, where transformation messages and replies carry all of the
relevant keys and pointers, minimizes the amount of information that a parent
node needs to store about each of its offspring nodes. With this scheme, a pro-
cessor receiving a transformation request message decides for itself which
transformation to apply, sending a reply notifying the requestor (its parent) of
any new key and pointer information. The overall structure of the code exe-
cuted by index processors P, through Pe.zis sketched out in Figure 7. The code
for index processor Py, is sketched out in Figure 8, and the code for data pro-

cessor P is sketched out in Figure 9.

This proposal allows SEARCE, INSERT, and DELETE operations to occur in
O(igN) time. More specifically, since the mode of operation of the pipeline is a
based on a reguest/reply paradigm, half of the processors in the array can be
processing requests at any given point in time. The reason for this factor of two

is that, until a processor FP; receives its reply from F,,;, the keys and/or



while true do
Receive regMsg from Fi-y;
case MsgType(reqMsg) of
SEARCH:
begin
Perform path selection;
Send SEARCH(n,p') to P41
end.
INSERT:
besi
Perform path selection;
Send INSERT TRANSFORM(p') to P4y :
Receive INSERT_TRANSFORM_REPLY(m.np) from Py
if (np # mil) then
Insert np and m into current index node;

fi,
Send INSERT(n,p') to FPisi

end:

DELETE:

beri
Perform path selection;
Send DELETE_TRANSFORM(m.p'.p") to Pisi
Receive DELETE_TRANSFORM_REPLY(m',np) from Py
Replace old splitting key with m';
if (np # mnil) then

Delete np from current index node;

fi;
Send DELETE(n,p') to Py

end;
INSERT_TRANSFORM:
begin
Perform insertion transformation if applicable;
Send INSERT_TRANSFORM_REPLY(m.np) to Fii
end
DELETE_TRANSFORM:
begin
Perform a deletion transformation if applicable;
Send DELE’I'E_TRANSFORM_REPLY(WL’ np) to Py
end;
esac;

od
Figure 7: Code for Processor F.i=12 ..., k-2

pointers in F; may be incorrect. Thus, the attainable level of concurrency in a k

processor configuration isk/2.

The number of levels required for storing N elements is easily determined
as follows: In the worst case, every node is almost empty, containing only two
pointer fields. In this case, the 2-3-4 tree is purely binary. Thus, the worst case
number of tree levels required (including the data level) isk = [lgN] + 1. With a

processor per level arrangement, this calls for O{lgN) processors, as originally
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while true do
Receive reqMsg from Pz
case MsgType(reqgMsg) of
SEARCH:
begin
Perform path selection;
Send SEARCH(n.p') to F:
end:
INSERT:
begin
Perform path selection;
Send INSERT(n.p') to F;
Receive INSERT_REPLY(np);
if (np # nil) then
Insert np and 7 into the current index node;
fi;
end:
DELETE:
begin
Perform path selection;
Send DELETE(n,p') to Fs:
Receive DELETE_REPLY (status )
if (status = no error) then
Delete p' from the current index node;
fi,
end.
INSERT_TRANSFORM:
begin
Perform transformation if applicable;
Send INSERT_TRA.NSFORM_REPLY(m,np) to P -2
end:
DELETE_TRANSFORM:
begin
Perform transformation if applicable;
Send DELETE_TRANSFORM_REPLY(m' np) to Pe_a
end;
esac;

od;
Figure 8: Code for Processor Fe-;.

stated.

Instead of storing between two and four keys per index node, the number of
keys per node could be allowed to range between d and 2d. This is simply a gen-
eralization of the 2-3-4 tree scheme, a variant of B+ trees [Com79] where 2d
(instead of 2d — 1) is the allowed maximum number of keys. The corresponding
insertion and deletion transformations are fairly obvious. The advantage to
choosing d > 2 is that fewer tree levels are needed for a fixed data set size N,
reducing the number of processors required and reducing the response time per

query. On the other hand, small values of d such as d = 2 offer the best
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while true do
Receive reqMsg from P _1;
case MsgType(reqMsg) of
SEARCH:”
begin
if (data item found) then
Send out data item;
else
Send out error response;
fi.
end;
INSERT:
begin
if (data item not found) then
Insert data item;
Send INSERT_REPLY(np) to Pe-1:
Send out acknowledgement;
else
Send INSERT_REPLY(nil) to Pe_y:
Send out error response;
fi;
end;
DELETE:
begin
if (data item found) then
Delete data item;
Send DELETE_REPLY(no error) to FPe-u
Send out acknowledgement;
else
Send DELETE_REPLY(error) to Pe_1;
Send out error response;
fi
end.
esac;

od:
Figure 9: Code for Processor Fy.

concurrency and throughput rates, as more processors are available to process
portions of queries. Thus, a tradeoff exists, and the best choice for d is

application-dependent.

6. Summary and Future Research

A 2-3-4 tree maintenance scheme using O(lgN) processors has been
described. It requires O(lgN) time for tree operations, but achieves 0(1)
throughput by allowing O(lgN) concurrency on all tree operations. The exten-
sion of this scheme from 2-3-4 trees to the more general B+ tree structure is
trivial. This scheme could be a useful component for index maintenance in a

machine architecture specialized for information storage and retrieval.
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Several avenues seem appropriate for future research along these lines.
First, it would be useful to determine the worst-case memory requirements for
processors in the array based on the possible tree structures allowed by the
top-down algorithms. Second, it would be interesting to see if the level of attain-
able concurrency can be improved from k/ 2 to k. The work of Lehman and Yao
on B-link trees [Leh81] might be applicable here. Finally, it would be interesting
to investigate other classes of search problems for which a linear, pipelined

array of O(lgN) processors might be applicable.
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Appendix: Transformation Correciness Prools

This appendix contains proofs of the correctness of the tree transforma-
tions given in the .body of the paper. It is shown that the both the insertion
transformation and the deletion transformations always produce correct 2-3-4
tree structures. That is, given that they are applied to 2-3-4 trees which were
built using the insertion and deletion algorithms described in the paper, they

never yield incorrect substructures such as one-nodes or flve-nodes.

In the remainder of the appendix, the term “root” refers to the actual root
node, the first non-unary node on a path starting at processor P,. The index of

the processor containing the root will be takentober, lsr <k.

Insertion Transformation

The top-down insertion algorithm described in the paper will suffice to han-
dle all insertions, correctly maintaining the 2-3-4 tree structure, as long as the
tree does not overflow the architecture (meaning that it reaches a height of
k+1). Since the insertion transformation involves splitting a four-node into two
two-nodes, it will maintain the 2-3-4 tree structure correctly as long as the
parent of a four-node it splits is not a four-node as well. Otherwise, a five-node
would be created as a result of the split. Thus, to show correctness, it suffices to

show the following:

Claim.: Suppose the tree segment of Figure 10 exists at the beginning of an
insert operation, with the insertion path as indicated in the figure. Suppose
that node X is stored in processor P;, i =7 and 7 > 1. (If P, contains a
four-node root node and r = 1, no further insertions are possible, as the
architecture is considered to be full.) By the time processor FP; receives its
INSERT(n ,p) message, X will no longer be a four-nede.

Proof: Noting that the insertion transformation has already been applied (if
it was applicable) at the parent node of X when the INSERT(n,p) message
arrives at processor F;, we proceed by induction on i. For the basis, con-
sider the insertion transformation when node X is stored in P,, meaning
that node X is the root node. The transformation applied at Fr., will
already have converted the four-node configuration in P, into a legal
"double-binary" configuration involving P._, and P, increasing the tree
height by one in the process. Hence, by the time P, receives its
INSERT(n.p) message, X will no longer be a four-node.

For the induction step, assume that the claim holds for the first K levels of
the tree, K =7, and consider a node X at level K+1. By the induction
hypothesis, X's parent must be of degree three or less, as the transforma-
tion applied at its own parent will guarantee this. Thus, even if X is a four-
node, the troublesome configuration cannot arise. »
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Figure 10: Unacceptable 2-3-4 Tree Configuration for Insertion.

Deletion Transformations

The top-down deletion algorithm described in the paper will suflice to han-
dle all deletions, correctly maintaining the 2-3-4 tree structure. The only dele-
tion transformation that could possibly produce an incorrect 2-3-4 tree struc-
ture is transformation /. Were this transformation applied to a two-node whose
offspring are two two-nodes, such as node X in Figure 11, a one-node would be
produced. To prove that this cannot happen with the set of deletion transforma-

tions presented in the paper, it suffices to show the following:

Claim: Suppose the tree segment of Figure 11 exists at the beginning of a
delete operation, with the deletion path as indicated in the figure. Suppose
that node X is stored in processor F;, 1 =7. By the time processor FP;
receives its DELETE(n,p) message, X will no longer be a two-node, except
when i = 7. In this latter case, X is the root node, and the tree height will
be reduced by one level.

Proof: Noting that a deletion transformation has already been applied (if
one was applicable) at the parent node of X when the DELETE(n .p) message
arrives at processor P;, we proceed by induction on i. For the basis, con-
sider transformation / when node X is stored in P, meaning that node X is
the root node. This transforrnation applied at Fr will convert X into a unary
node, merging X's two offspring nodes into a single, new, four-node root
node at P,,,, lessening the tree height by one in the process.

For the induction step, assume that the claim holds for the first X levels of
the tree, K =7, and consider a node X at level i = K+1. Assume that the
claim does not hold for this node. Suppose X has parent node XP at level
K. There are only two possible cases to consider:



(1)

(2)
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XP has two sons. By the induction hypothesis, the other son must have
greater than two sons of its own. However, were this true, one of
transformations /7 or /// would have been applied when the algorithm
reached P,_,, and X would then have been transformed into a three-
node before F; received its DELETE(n.p) message. Thus, this case is
impossible.

XP has more than two sons. In this case, one of transformations 7, I/,
or J/I would have been applied when the algorithm reached P;_;, and X
would then have been transformed into either a four-node or a three-
node before P; received its DELETE(n,p) message. Thus, this case is
also impossible.

Since both of these cases have led to contradictions, the claim must be
true. »

Figure 11: Unacceptable 2-3-4 Tree Configuration for Deletion.



