Talking to UNIX in English:
An Overview of an On-line UNIX Consultant*

Robert Wilensky

Division of Computer Science
Department of EECS
University of California, Berkeley
Berkeley, CA. 94720

1. Introduction

UC (UNIX Consultant) is an intelligent natural language interface that allows
naive users to communicate with the UNIX} operating system in ordinary
English. The goal of UC is to provide a natural language help facility that allows
new users to learn operating systems conventions in a relatively painiess way.
UC is not meant to be a substitute for a good operating system command inter-
preter, but rather, an additional tool at the disposal of the new user, to be used
in conjunction with other operating system components.

UC allows the user to engage in natural language dialogues with the operating
system. While there are a number of other natural language interfaces availabie
today, these are mostly used 2s natural language {ront ends to particular data
bases (for exampile, see Hayes & Carbonell 1981, Hendrix 1977, Robinson 1982,
Waltz et al. 1978, and Woods 1870). In contrast, the user uses UC in order to
learn how better to use the UNIX environment in which UC is embedded. UC can
bhandle requests stated in a wide variety of forms, and has a number of features
to enhance its function as a user interface. These include the following:

1) A robust language analyzer, which almost never has a "hard” failure and
which has the ability tc handle most elliptical constructions in context.

2) A context and memory mechanism that determines the focus of attention
and heips with lexical and syntactic disambiguation, and with some aspects
of pronominal reference.

3) Highly extensible knowiedge bases both of facts about UNIX and about the
Englist language.

*This research was sponscored i part by the Office of Neval Research under cantract N0OOO14-
80-C-Q732 and the National Science Foundation under grant MCS79-06543.
+UNIX is trademari of 3eillaborataries

-2-

4) A mechanism for trying to make sense out of ill-formed inputs.

5) An experimental planning component that provides commonsense reason-
ing in creating plans for the user.

8) A goal analysis mechanism, which performs functions related to interpret-
ing the user’s statements as speech acts.

7) A UC Teacher, which enables UC to learn new vocabulary and new facts
about UNIX by being instructed in natural language.

While some of the components of the system are experimental in nature, the
basic features of UC provide a usable device to obtain information about UNIX.
In addition, it is straightforward to extend UC's knowledge base to cover areas of
UNIX with which UC is not currently familiar.

2. UC Exampies

The following examples are illustrative of the breadth of dialogues in which UC
can participate. UC is capable of generating the answers shown below in
response to most forms of the request users might supply. UC can participate in
some dialogues that are considerably more invoived that this one, and which will
be discussed in more detail later on:

Simple Dialogue

User:How do i delete a flle?
(or remove a file)

UC: Typing 'rm fllename’ will rermove the flle with name filename from your
current directory.

User:a directory?

UC: Typing ‘rm -r directoryname’ will recursively delete the directory with
name directoryname and all the flles and directories contained in the direc-
tory.

User:How shouid one edit a 8le?
(or change a file)

UC: Typing ‘ex fllename’ will get you into the ex editor; typing ‘emacs fllename’
will get you into the emacs editor.

User-What is the best way to create a flle? (or the right way or the proper way, or
make a file)

UC: The best way to create a new flle is to use the editor, Le.- ‘ex filename’.

User:a directory?

UC:. Typing '‘mkdir directoryname’ will create a direct:ory with name directo-
ryname in your current directory.

User:Do you know how to read a flle?
(or list a file)

UC: Typing 'pr fllename’ will print the flle with name fllename on your terminal.

User-How can | ind out how full the disk is?
UC: Typing ‘df will teil you how full the disk is.

User-How can | find out who is on the system? (or on Unix or using Unix)
UC: Typing ‘who’ will tell you who is on Unix.

User:How can | compare two flles?
UC: To compare two flles, type 'diff fllel lle2'.

User:How can [get more help?
UC: To get more information on Unix, try typing ‘help’.

User:How.can | sort a file?
UC: Type ‘sort fllel’ to sort the flle with name fllel.

User:How can | find out who has access to my flles?

UC: Typing ‘ls -l filename’ will tell what the protection on the flle named
fllename is. (For more information on the s command type ‘man lx'.)

User:How can | change the write permission on my terminal? (or permission of
or protecticn)
UC: To change the write permission on your terminal, type:
‘mesg ¥’ to allow writing to your terminal,
‘mesg n’ to disallow writing to your terminal.

User:What is a search path?

UC: A search path in Unix is a list of directories in which the operating system
searches for programs to execute.

User-What do you know about Unix? (or What can you teil me about Unix?)
UC: I currently know about the Unix file system.

3. Rationale

The probiem of naive user communication with an operating system provides an
appealing domain for study and application cf a number of Artificial Inteiligence
techniques. The domain is complex enough to provide substantial sub-problems,
but not so unbounded that a useful working system must possess a hopelessiy

-4-

large repetoire of knowledge. The task involves a quite realistic use of natural
language, namely, participating in a purposive dialogue.

In addition, UC provides an application of natural language processing that peo-
ple would actually be willing to use. Sorme common uses for natural language
processing, for example, natural language front ends to data bases, may not
bave this property. Simple requests to a data base management system may be
shorter in natural language than in typical data base accessing formalisms (see
Hayes & Carbonell 1981 for some examples). However, this is less clearly true
for more complex requests. Thus it may be the case that once a user has
learned a somewhat more cryptic query language, he is apt to prefer it over
natural language as it is likely to provide a more precise and less verbose mode
of expression for many of his queries. Also, use of a natural language front end
is probably not conducive to the learning of the underlying formalism.

In contrast, a naive user of a system would probably be willing to converse in
English with a machine, since the alternatives are apt to be worse. Manuals and
an-line belp facilities are only marginally useful. A user usually needs to be
fairly sophisticated in order to issue the right help command. and then these
are successful only a fraction of the tirmne. In the times that they do succeed,
the information returned is apt to be cryptic and confusing.

Consider, for example, the problem of finding the answer to the question "How
can | find out if two files are the same?’ Since the user does not know the name
of the appropriate command, retrieving by command name is not applicable
(This is particularly true in UNIX, where many command names would appear to
be unmotivated). Retrieval by a keyword is possibie using ‘file’, but this is likely
to return too much information, since operating systems generally have many
commands related to flles. In the current release of UNIX, for exampie, issuing
an “apropros file’’ command returns flve screenfuls of command names.

Also, there is no guarantee that the keyword with which the user states his
request is appropriate for the particular operating system, or happens to index
the appropriate information. For our previous example, in UNIX, retrieving by
the keyword ‘same’ will find no associated commands. Nor will retrieval by the
word ‘difference’. However, using the keyword ‘different’ or ‘compare’ returns
the lists "diff diff3" and “cmp"”, respectively.

In such situations, navigating through a maze of information is undesirable, and
the user would probabiy prefer simply to pose the question to a colleague. How-
ever, people knowiedgabie enough to be helpful are not always available and usu-
ally do not have the time to offer. Under such circumstances, typing in the
question in English, exactly as it occurred to the user, becomes an attractive
alternative,

In addition. the domain is “soft” in the sense that a system that did not work all
the time is still likely to be useful. For example, if UC failed to answer a ques-
tion. the user is no worse off than he would be otherwise, and still has the normal
repertoire of options at his disposal. The same is probably not the case if
patural language is intended to be used as the primary means of cornmunica-
tion. For example, a natural language interface to a data base that failed to suc-
cessfuily treat a user query would leave the user without recourse. However, UC
peed only succeed a high enough percentage of time for the user to benefit from
using it. Failure to be heipful in any given query would be no more disasterous

-5-

for the user than would failure of the normal help facilities. Bothk would still
retain some potential value for the user. Thus UC is an Al system that is useful
even as it expands cover to a larger portion of its domain.

Lastly, the problem integrates a number of areas of concern for artificial intelli~
gence. including natural language understanding, natural language production,
planning and problem solving.

4. Problems with Natural Language Interfaces

A natural language interface must deliver a variety of services to the user.
These involve a number of processes that are primarily linguistic in nature. The
system must know enough about the primary linguistic conventions of the par-
ticular natural language in order to interpret the meaning of a user’s request
and to produce a reasonable natural language utterance of its own. A number of
well known problems are associated with these tasks and have received a great
deal of attention in the literature. For example, a natural language under-
stander must be capable of resolving various kinds of ambiguities, determining
the referents of pronouns and other noun phrases, interpreting an abbreviated
utterance in the context of the previous dialogue, and making some sense out of
ill-formed inputs. In addition, the interface will have to be continually extanded,
both to inciude new vocabulary and new facts about the domain of discourse.
The constraints on the design of the interface imposed by the latter feature
bave been less weil studied. Below we describe how these problems are handled
in UC.

A useful natural language interface rmust also incorporate some processes that
mmay be collectively referred to as commonsense reasoning. To demonstrate the
importance of such extra-linguistic mechanisms, consider the following
hypothetical dialogue with a naive interface (NI). We assume here that NI
possesses knowledge about a language’s syntactic and semantic conventions,
but is not otherwise an intelligent system:

User: I'm trying to get some more disk space.
NL: Type ‘'tm *

NI's suggestion, if executed by the user, would destroy all the user’s flles. This
rather disturbing response might be generated by a naive interface because the
respanse fuifills the user's literal request for more disk space. However, the
answer lacks a certain cooperative spirit. A more felicitous answer might be
"Delete all the files you don't need” or "Ask the systems manager for some more
storage.” However, in order to prefer these responses over the above, the inter-
face must be able to infer that the user possesses some goals other than the cne
stated in the request, and that these background goals interact with the request
to constrain the beneficial courses of action. Specificaily, the interface would
have to have realized that users generally like to preserve files they have
already created, and that therefore a conflict exists between this goal and that
of obtaining more space by deleting files. Then a method of reasoning about this
situation would have to be employed.

These considerations fit more properly in the domain of planning and probiem
solving than language processing. However, an interface that was not designed

-8-

wiih thern in mind would run the risk of innocently alienating its clientele. In
the discussion that follows, we shall discuss the application of an experimental
planning mechanism in UC to produce reasonable courses of action.

Actually, even the response shown in the previous example would most likely not
have been generated by an interface as naive as the one we have been suppos-
ing. One further probiem is that the user never explicitly made a request to the
system. Rather, he simply stated something that he was trying to do, trusting
that the interface would take it upon itself to offer some assistance. This is an
instance of an indirect speech act, another aspect of natural language interac-
tion that has received much attention (see for exampie Perrauit, Allen, Coben
1978). However, the class of problems that includes this one also includes some
problems that have received less treatment. For example, consider answering
the foilowing question:

. User: How can | prevent someone from reading by files?

The direct response to this question would be to use a protection command.
However, an additional response in UNIX would be to use an encryption com-
mand, that is, a command which encodes the file so that one needs a key in
order to decode it. The problem with offering the latter suggestion is that it
does not literally fulfill the user’s request. Encryption does not prevent some-
one from reading a file, but merely from understanding it when it is read In
order to decide to inform the user about encryption, then, the interface must
assume that the user misstated his request. Presumably, the user is really
interested in preventing others from learning the contents of his files. Having
made this reinterpretation of the actual utterance, both methods of protection
would be applicable.

In the next section we discuss how these and other problems are addressed by
the design of UC.

5. The Structure of UC

UC runs on a VAX11/780 and 750 and is programmed in FRANZ LISP and in
PEARL. an Al language developed at Berkeley (Deering et al., 1961). Although UC
is itself a new system. it is built out of a number of components. some of which
have been under deveiopment for some time. These components are outlined
briefly in this section.

S.1. Linguistic Knowiedge

The primary natural language processing in UC is done by an extended version
of PHRAN (PHRasal ANalyzer) and PHRED (PHRasal English Diction) (Wilensicy
1981b). PHRAN reads sentences in English and produces representations that
denote their meanings; PHRED takes representations for ideas to be expressed,
and produces natural language utterances that convey these ideas. These pro-
grams represent the very front and back ends of the interface, respectively. In
addition, PHRAN and PHRED are relatively easily extended to process new
linguistic forrns and domains.

-7.

For UC, PHRAN has been extended to handle some forms of ellipsis. A com-
ponent to process ill-formed constructions is under developement but has not
yet been incorporated into UC. A more significant extention to PHRAN is the
addition of a context mechanism. This is essentiaily an activation-based
memory used by UC to keep track of the focus of the discourse (cf. Grosz 1977),
handle some aspects of reference, and help in word disambiguation.

5.2 Goal Analysis

Once the meaning of an utterance has been extracted by PHRAN, it is passed to
the Goal Analyzer. This module performs a form of plan recognition on the
input, so that indirect requests may be interpreted as such. The Goal Analyzer
also attempts to do the sort of “request correction” demonstrated in the exam-
ple given previously. That is, it not only tries to interpret the goal underlying
the acticn, but it may infer that the user wanted something somewhat different
from what was actually requested.

5.3 Plan Formation

Responses are generated in UC by using a plan generation mechanism called
PANDORA (Faletti 1982). PANDORA takes as input the goal produced by the Goal
Analyzer, and tries to create a plan for the user that will achieve this goal. In
doing so, PANDCRA reasons in a manner that will produce commonsense results,
thus preventing the sort of anomalies discussed previcusly. In the majority of
cases, PANDORA will do nothing more complex that look up a stored plan associ-
ated with the goal in memory and return this as the answer. This appears to be
adequate for most simpie requests. Thus even though PANDORA is an experi-
mental system, we can run UC in a useful mode without encountering most of
the compiexities this component was designed to contend with.

5.4 Expression Formation

Once a plan is selected by PANDORA, it is sent to the expression formation com-
ponent to decide which aspects of the response should actually be mentioned.
Currently, this component is quite sketchy, largely because most of our effort
has gone into request understanding rather than answer generation. Ultimately,
the goal is to produce answers that do not contain facts the user is likely to
know, etc. Some of the principles involved in this mechanism are described in
Luria (1982).

Once the answer is formulated, it is sent to PHRED, which attempts to expressit
in English. In addition., some of the facts stored in the UC knowiedge base are
associated with canned pieces of text. If the answer corresponds to such a sim-
ple fact, this text is output rather than using the PHRED generator. Since the
most frequently asked questions are gererally of this form, considerable time
savings is accomplished by bypassing the more compiex generation process.

-8-

55 Representation and Knowledge Base

Facts about UNIX, as well as other pieces of worid knowledge, are represented
declaratively in an associative knowiedge base managed by PEARL (Package for
Efficient Access to Representations in LISP). This is essentially a data base
management package that supports labelled predicate-argument propositions
and allows the implementation of frame-like structures. Having a data base
management package is particularly important for our goal of scaling up, as it
allows us to add and use new facts without creating new code.

PEARL incorporates such standard features as automatic inheritance and vari-
ous demon facilities. In addition, PEARL has a flexible indexing structure which
allows the user to advise it about how to store facts to take advantage of how
they are likely to be used.

The theory of knowiedge representation used in UC is beyond the scope of this
report. We will give enough examples of the representation of individual facts to -
suggest to the reader the basic elements of our scheme. However, we have
liberaily simplified the actual representations used in UC for expositional pur-
poses. Further details of PEARL are available in Deering, Faletti, and Wilensky
(1981, 1982).

As an example, consider the following simplified version of the PEARL represen-
tation of the fact that using the ‘rm’ command is a way to delete a file:

(planfor
(concept
(causation
(antecedent (do (actor 7X)))
(consequent
(state-change

(actor ?F/is-flle)
(state-name exist)
(from T)
(to Nil)))))

(is (use (actor 7X) (command (name rm) (arg ?F)))))

Briefly, planfor is a predicate used to denote that fact that a particular action
can be used to achieve a particular effect. This predicate takes two arguments,
labeled concept and is (Labeled arguments have the same syntax as predicates.
They can be distinguished by their positior in the formula). The semantics of
this predication is that the is argument is a plan for achieving the concept argu-
ment. The arguments are PEARL structures of the same sort. For example, the
concept argument is a causation predicate, denoting that an action causes a
state change. This particular state change describes a flle going from an
existent to non-existent status. Items prefixed with question marks are vari-
ables. These can be constrained to match oniy certain kinds of items by follow-
ing them with a (one argument) predicate name. Thus ?F/is+file constrains (43
to match something that is a file (This form is an abbreviation for something
vhic)h can be only be represented less conveniently in the regular PEARL nota-
tion).

-9-

A question such as "How can I delete a flle?” is analyzed by PHRAN into a form
similar to this, but with the is argument fllled with a symbol indicating an
unspecified value. UC attempts to answer this question by using this form to
fetch from the PEARL knowiedge base. Such a fetch will retrieve the above
representation. The contents of the is argument can then be used for genera-
tion.

6. PHRAN

PHRAN was originally implemented by Yigal Arens, and applied to the UC domain
by David Chin. In addition to analyzing sentences for UC, PHRAN serves as the
natural language front end for several story understanding systems under
development at Berkeley, and has been tested on a variety of other sentence
sources as well. PHRAN is discussed in Wilensky and Arens (1980) and will oniy
be described briefly here.

One of the primary design goals of PHRAN is that it be easily extended to cope
with new language forms. Applying PHRAN to the domain of requests about UNIX
was therefore as much a test of this design as it is a useful application, as most
of the forms and vocabulary used by UC were new to PHRAN. As of this writing,
the PHRAN component of UC understands requests covering about 35 different
topics, each of which may be asked in many different linguistic realizations. To
extend PHRAN to handle a new vocabulary item now requires only a few minutes
of effort by someone familiar with PHRAN patterns, provided of course that the
representation to be produced is understood. As the section on UC Teacher sug-
gests, part of this process has already been automated to eliminate the need for
trained personnel

At the center of PHRAN is a knowledge base of patterconcept pairs. A phrasal
patterns. is a description of an utterance that may be at many different leveis
of abstraction. For example, it may be a literal string such as “so’s your old
man”; it may be a pattern with some flexibility such as "<nationality> restau-
rant”, or “"<person> <kick> the bucket”: or it may be a very general phrase such
as "<person> <give> <person> <object>".

Associated with each phrasal pattern is a conceptual termplate. A conceptual
template is a piece of meaning representation with possibie references o pieces
of the associated phrasal pattern. Each phrasal pattern-conceptual template
association encodes one piece of knowledge about the semantics of the
language. For example, associated with the phrasal pattern "<nationality> res-
taurant” is the conceptual tempiate denoting a restaurant that serves
<nationality> type food: associated with the phrasal pattern “<personl> <give>
<person2> <object>" is the conceptual tempiate that denotes a transfer of pos-
session by <personl> of <object> o <person2> from <personld. The under-
standing process reads the input text and tries to find the phrasal patterns that
apply to it. As it reads more of the text it may eliminate some possible patterns
and suggest new ones. At some point it may recognize the compietion of cne or
more patterns in the text. [t may then have tc chose among possible conflicting
patterns. Finally, the conceptual template associated with the desired pattern
is used to generate the structure dencting the meaning of the utterance.

The version of PHRAN used in UC takes from 1.5 to 8 seconds to analyze a sen-
tence, with a typical sentence taking about 3.5 seconds of CPU time. This versicn

-10-

of PHRAN contains about 875 basic patterns of varying length and abstraction
About 450 of these patterns are individual words. Of these, about 80 are verbs.
PHRAN knows both the roots of these verbs, as well as all the morphological vari-
ations in which each verb may be found. Of the 220 patterns containing more
than one word, about 90 indicate the way a particular verb is used. This latter
group of patterns can be used by the program, when the need arises, to gen-
erate approximately 800 additional patterns.

8.1. Ellipsis

For UC, PHRAN has been extended by Lisa Rau to include an ellipsis mechanism.
This mechanismn handles both intra-sentential forms, such as "] want to deiete
the small file and the large”, and inter-sentence forms, as in "How do | delete a
file? A directory?”

Ellipsis is handled by first letting the basic PERAN analysis mechanism produce
what it can from the input. This process leaves a history of the patterns used to
arrive at that understanding. If the result of this process is incompiste (e g..
genersily something that is not a sentence where a sentence is expected), then
previously used PHRAN patterns are examined to see if they match the patierns
used to understand the fragment. If so, then the words of the fragment are sub-
stituted for the words of the previous sentence that correspond to the common
pattern. The resulting linguistic unit is then re-analyzed by PHRAN.

7. The Cantext Mechanism

PHRAN's knowiedge is more or less confined to the sentence level. Thus PHRAN
by itself is unable to deal with reference, and cannot disambiguate uniess the
linguistic patterns used require a particular semantic interpretation of the
words. In addition, the same utterance may be interpreted differently in
differsnt contexts, and the mechanism described so far has no facility for
accomplishing this.

To fulflll the need for processing on the discourse level, we have constructed a
single mechanism which addresses many of these probiems, cailed the Contexi
Modei. The Context Model contains a record of knowiedge relevant to the
interpretation of the discourse, with associated leveis of activation. The Model is
manipulated by a set of rules that govern how elements introduced into the Con-
text Model are to influence it and the systemn’s behavior.

PHRAN and the Context Model interact ccntinually. PHRAN passes its limited
interpretation of the input to the Context Mocdel, and it in turn determines the
focus of the conversation and uses it to resolve the meaning of ambiguous
terms, of references, etc., and passes these back to PHRAN.

The Context Modei groups related entries and arrives at a notion of the situation
being discussed. Alternative situations in which a concept may appear can be
ignored, thus enabling the system to direct the spreading of activation. The
Context Model is similar to Grosz's scheme for determining focus of a task
oriented dialog and- using it to rescive references (Grosz. 1980). However,
Grosz’s system relies heavily or the inherent temporal structuring of the tasic,

-11-

whereas we are trying to develop an approach that is independent of the type of
subject matter discussed.

The following UC example illustrates the system'’s ability to shift focus freely
according to the user's input, including the ability to store and recall previous
contexts into focus:

El] User: How do I print a file on the line printer?
2] UC: To print a flle on the line printer
type ‘lpr fllename’.

(intervening commands and questions)

3] User: Has the flle foo been printed yet?

4] UC: The flle foo is in the line printer queue.

5] User: Howcan [cancel it?

8] UC: To remove flles from the line printer queue,

type ‘lprm username’.

In order to reply to the last question, UC must find the referent of ‘it’. The
language used implies that this must be a command, but the command in ques-
tion was issued some time ago. Since then, intervening commands have been
issued, so that the chronologically more recent command is not the proper
referent. The system is able to determine the correct referent because the con- .
text of [1] and [2] bad been stored previously, and recailed upon encountering

7.1 Structure and Manipulation of the Context Model

The Context Mode! i3 in a constant state of flux. Entries representing the state
of the conversaticn and the system'’s related knowledge and intentions are con-
tinually being added. deleted, or are having their activation leveis modifled. Asa
result the same utterance may be interpreted in a different manner at diferent
times. Following are short descriptions of the different elerments of the system.

7.1.1. Entries

The Context Model consists of a collection of entries with associated levels of
activation. These entries represent the system's interpretation of the ongcing
conversation and its knowiedge of related information. The activation level is an
indication of the prominence of the information in the current conversational
context, so that when interested in an entry of a certain type the system will
prefer 2 more highiy activated one among all those that are appropriate. There
are various types of entries, and these are grouped intoc three generai
categories:

1) Assertions - statements of facts known to the system.

2) Objects - objects or events which the system has encountered and that may
be referred to in the future.

-12-

3) Intentions - entries representing information the system intends to
transmit to the user (i.e. output) or other components of an understanding
system (e.g. goal tracker, planner), and entries representing information
the system intends to determine from its knowledge base.

7.1.2 Clusters

The entries in the Context Model are grouped into clusters representing situa-
tions, or associated pieces of knowiedge. If any one member of a cluster is reen-
forced it will cause the rest of the members of the cluster to be reenforced too.
In this manner inputs concerning a certain sifuation will continue reenforcing
the same cluster of entries — those corresponding to that particular situation.
Thus the system arrives at a notion of the topic of the conversation which it uses
to help it choose the appropriate interpretation of further inputs.

7.1.3. Reenforcement

When the parse of a new input is received from PERAN the system inserts an
appropriate entry into the Context Model. If there already exists an entry
matching the one the system is adding then the activation levels of ail entries in
its cluster(s) are increased. The level of activation decays over time without
reenforcement, and when it falls below a given threshold the item is removed.

7.1.4. Stored Clusters

Upon inserting a new item in the Context Model the system retrieves from a
database of clusters all those that are indexed by the pew item. Unification is
done during retrieval and the entries in the additional clusters are also inserted
into the Model, following the same procedure described here except that they
are given a lesser activation. We thus both avoid loops and accommodate the
intuition that the more intermediate steps are needed to associate one piece of
knowledge with ancther the less the mention of one will remind the system of
the other.

The system begins operation with a given indexed database of ciusters, but clus-
ters representing various stages of the conversation are continually added to it.
In principle, this shouid be performed automatically when the system is cued by
the conversation as to the shifting of topic, but currently the system user must
instruct it do so. Upon receiving such an instruction, then, all but the least
activated entries in the Context Model are stored as a cluster indexed by the
most highly activated among them. This enables the system to recall a situation
later whern: presented with a related input.

7.1.5. Operations on Entries in the Context Model

After a new entry is made in the Context Model the process described above
takes place and eventuaily the activation levels stabilize, with some of the items
being deleted, perhaps. Then the system looks over each of the remaining
entries and. if it is activated highly enocugh, performs the operation appropriate

-13-

for its type. The allowed operations consist of the following:

1) Deleting an entry.
2) Adding another entry. .

3) Transmitting a message to ancther component of the system (i.e. output to
the user or data to another program. e.g. PANDORA (Faletti, 1982), for
more processing)

4) As part of the UC system, getting information from the UNIX system
directly (and inserting an entry corresponding to the resuit).

7.2. Exampie

In [1] the user asks a simple question. PHRAN analyzes the question and sends
the Context Model a stream of entries to be inserted. Among them are the fact
that the user asked for a plan for printinga file on the line printer. The system
records these facts in the Context Model Indexed under the entry representing
the user’'s desire to obtain a goal there is a cluster containing entries represent-
ing the system's intent to find a plan for the goal the user has and instructing
the system to tell the user of this plan. This cluster is instantiated here with the
goal being the particular goal expressed in the question. The entry expressing
the system'’'s need for a plan for the user’'s goal leads to the plan in question
being introduced also. This happens because the system happens to already
bave this association stored. When the system looks over the entries in the Con-
text Model and comes to the one concerning the need to find the plan in ques-
tion it will check to see if an entry for such a plan already exists, and in our case
it does. But if no plan were found, the system would insert a new entry into the
Context representing its intent to pass the information about the user’s request
to the pianner, PANDORA (Faletti, 1982). PANDORA will in turn return the plan to
be inserted in the Context Model

When the system finds the plan (issuing the command above) and inserts a new
entry instructing the system to output it to the user. This uitirnately resuits in

generating [2].

The topic shifts and the previous context is stored, indexed by the most highly
activated entries, including the flle name, the mention of the line printer, the
event of printing the fle, and the command issued.

When [3] is asked, this cluster is loaded again into the Context ModeL To deter-
mine the referent of 'it' in [5], the Context Model is examined for highly
activated entries. Since the command to print the file would have just have been
brought back into the Model, it will be more highly activated that other, more
recent request.

7.3. Shortcomings

The system is not currently able to determine on its own that the topic has
changed and that it must store the current context. When it is instructed to, the
current systemn stores essentially a copy of the more highly activated eiements
of the Context Model when creating a new cluster. They are not assumed to have
any particular structure or relations amcng them other than all being highly
activated at the same time. This causes two probiems:

-14-

1) As a resuit it is very difficuit to generalize over such clusters (cf. Lebowitz,
1980). The system may at some point determine a plan for changing the
ownership of a particular file, and store a cluster containing it. If it is faced
with the need tc change the ownership of another flle, however, the system
will not be able to use this information.

2) There is no way to compare two clusters and determine that in fact they are
similar. Thus we may bave many clusters indexed by a certain entry all of
which actually describe essentially the same situation.

8. Goal Analysis

Goal analysis is the process of inferring a user’s plausible goal from an input
statement or request. The UC Goal Analyzer, implemented by James Mayfleid,
works by attempting to apply to the input a set of rules designed explicitly for
this purpose. Each rule consists of an input and an output conceptualization.
Should a rule match an input, the associated output conceptualization is
inferred. This process is iterated on the inferred conceptualization until no
more rules are found to apply. The final product of this process is assurned to
be the user’s intention.

For example, consider the following indirect request and UC response:

User:] want to delete a flle.

UC: Typing ‘rm fllename’ will remove the flle with name fllename from your
current directory.

This response is generated as follows. The Goal Analyzer has a rule that states
that the assertion of a goal means that the user does not know how to achieve
that goal. This ruie is represented in this form:

(Goal-Analysis-Rule
[In-Concept
(goal (planner ?pers) (objective 2obj))]
[Out-Concept
{noct
(state
(know
(actor ?pers)
(fact
(causation (antecedent *unspec®) (consequent 20bj))))))])

The application of this rule to the input produces a conceptualization denoting
that the user does not know how to delete a flle. Iterating the process, the Goal
Analyzer finds a rule applicable to this inference, namely, that an assertion of
pot knowing how to do something means that the user wants to know how to do
that thing. This is represented as:

-15-

(Goal-Analysis-Rule
[In-Concept
(not
(state
(know
g?ct:r ?pers)
ac
(causation
{antecedent *unspec?®)
(out-C (ionsequent 20bi))))N]
ut-Concep
(goal
(planner ?pers)
(objective
(know
(actor ?pers)
(fact
(causation
(antecedent *unspec®)

(consequent ?0bj)))))])

Applied to the inference just produced, this rule instructs UC that user wants to
know how to delete a file. In the next interation, the Goal Analyzer finds no rule
applicable to its latest conclusion, and passes this concliusion along to UC as the
user's intention. It is then straightforward for UC to produce the response
shown above.

The Goal Analyzer has several other rules of this sort. One set of such rules tries
to "correct” a user’s misstatement of his goal. This is done by checking to see if
a stated (or inferred) goal is an instance of a known normal goal. For example,
UC contains the facts that not wanting others to learn the contents of cne's flles
is normal, and that reading is a way of coming to know something. Thus a user’s
statement that he is trying to prevent someone from reading his flles will be
interpreted to mean that he is trying to prevent them from coming to know the
content of his flles. This enables UC to give a broader class of answers, as indi-
cated in the beginning of this report.

The current UC Goal Analyzer has two potential drawbacks:

1) There are probably some inputs that require more elaborate plan-goal
analysis. For example, the statement of a goal that is normally instrumen-
tal to some other goal may entail inferring that goal. This situations might
require the sort of plan analysis that we have postulated in story under-
standing (Wilensky 1982). Eowever, in practice, such cases seem not to
arise in the UC task environment.

2) The Goal Analyzer is not sensitive to ccntext nor does it incorporate a
model of the user. For example, if a sophisticated user says that he wants
to delete the flle ‘foo’, UC shouid not interpret this as 2 request for informa-
tion about how to delete a file in general. Rather, it is more likely that
there is some problem with this particular file. This has not arisen as a
problem in our application where we make some relatively simplistic
assumptions about the user.

-18-

9. Extending UC to Process More Complex Requests

Most requests require more complex processing, however. For these situations,
UC uses a reascning component based on the PANDCORA planning mechanism
(Wilensky 1981a). PANDORA, implemented by Joe Faletti, is based on a model of
planning in which goal detection and goal interactions play a prominent role.
For example, consider the previous example of the indirect request: "1 need
some more disk space.” A literal response to this remark might be “Type ‘rm
*»" which is most likely not what the user had in mind.

The problem with this response, of course, is that it violates an unstated user
goal, namely, that the user wants to preserve what he has already put on the-
disk. An intelligent consult must be able to infer such goals, and reason about
the interactions of such goals with those explicit in the user’s request. In this
example, an implicit goal (preserving a flle) may conflict with the stated goal
(getting some more space), and this possibility must be explored and dealt with.

Although it was originally constructed to be an autonomous planner, PANDORA's
architecture is well suited for this sort of reasoning. PANDORA first tries to
apply a stored plan to a given goal. It then simulates the situation that may
resuit from the current state of the worid using a mechanism called a Projector.
In the above example, the simulation will reveal, among other things, that some
files will get destroyed, as this is a consequence of the ‘'rm’' command.

Another of PANDORA's basic components is called the Goal Detector. This
mechanism determines the goals the planner should have in a given situation.
The goal detector is essentially a collection of demons that respond to changes
in the environment, including the simulated environment created by the projec-
tor. In this example, when the simulated future reveals the possible destruction
of a file, the goal detector will react to this possibility by inferring the goal of

preserving this file.

Since this preservation goal arises from a plan of the user’s, PANDORA also
infers that there may be a goal conflict between this goal and the goal underiy-
ing the user’'s original request. PANDORA makes this inference ty considering a
goal giving rise to a preservation goal as another situation in which to detect a
goal (namely, the goal of resolving the goel conflict). Then a plan for this
"resolve-goal-conflict”’ goal can be sought by successive application of the whole

planning process.

This algorithm makes use of a meta-planning representation for pianning stra-
tegies. The goal of resoiving 2 goal conflict is actually a meta-goal, that is, a goal
whose successful execution will result in a better plan for other goals. This for-
mmiation allows the goal detection mechanism to be used to solve the problem of
goal conflict detection, and the normal planning process to find a resolution to
such a problem. More detail on meta-planning and the associated algorithms is
given in Wilensky 1981a).

In the exampie at hand, the presence of a goal conflict is only a possibility, as
the user may well bave scme flles that he doesn't need. A general strategy in
such situations iz to determine whether the possibility actually exists. This
would lead to the generation of question "Do you have any flles that you do not
peed?” If the user’s response is negative, then the conflict does in fact exist, and
a confiict resolution strategy must be employed.

-17-

A strategy that is applicable to all conflicts based on a shortage of resources is
to try obtaining more of the scarce resource. In the example above, the scarce
resource is disk space. PANDORA would then create a new goal of obtaining
more disk space. Since a stored plan for this goal is to ask the systems
manager for more room, UC can respond with the advise that the user regquest
more room from the systems manager. An implementation of PANDCRA and a
tuller explanation of its role in UC is found in Faletti (1982).

Of course, it is possible to store requesting more room as a plan for the original
goal, and by-pass all this complex reasoning. The problem with such a solution
is that it would preclude the possibility of informing the user that he could
delete a file that he doesn't need. Alternatively, we could make a more complex
canned plan that checks for just this situation. That is, the stored plan would be
to delete a file one doesn't want, and. if this fails, then to request more space.
The problem here is that it would be necessary to include ail possibie interac-
tions in the canned plan. While it may be desirable to include some of these
some of the time, to deal with unanticipated interactions, a more general rea-
soning mechanism is required. For example, if the systems manager is unavail-
able and the user’s desire for the disk space is great enough, deleting a file may
still be a reasonable solution; however, it is unlikely that such a possibility would
be anticipated by the canned plan.

1Q. UC Teacher

One of the primary design goals of the various components of our systemn is that
it be a relatively straighforward task to extend them. Our basic approach is
similar to that used in expert system and other areas of Al. This is to formulate
knowledge in a deciarative data base of some sort so that the straighforward
addition of facts may be accomodated without reprogramming.

The use of highly declarative representations has enabled us to provide another
sort of extensibility for UC. This is the power to extend the system by telling it
in English addition facts about the language and about the UNIX domain. UC can
be extended using natural language through the use of an accompanying UcC
Teacher component, developed by Jim Martin. For example, consider the follow-
ing dialogue, in which a version of UC does not previously know about the words
‘delete’ and ‘'remove’, or about how to accomplish these actions in UNIX:

User:To delete something means to cause it to not exist.
UCT:Entering ‘‘delete’” into PHRAN patterns.

User:You can delete a file by typing rm fllename.
UCT:Adding new cluster to UC memory.

User:To remove a flle means to delete it.
UCT:Entering ‘‘remove’ into PERAN patterns.

User:How do | remove a file?

-18 -

UC: Typing ‘rm fllename’ will delete the file with name fllename.

User:How do | delete a flle?
UC: Typing ‘'rm filename’ will delete the flle with name fllename.

UC Teacher uses definitional information, such as that contained in the first sen-
tence, to create new PHRAN pattern-concept pairs. To do so, UC Teacher
requires some PHRAN patterns that help it analyze sentences containing words
like means, since such sentences are likely to also contain words that have no
previous PHRAN definitions. In addition, UC Teacher needs to makes some
assumptions about the linguistic properties of new items. For exampile, the
PHRAN pattern-concept pair created from the first sentence above is as follows:

([(PERSON) (ROOT DELETE) (THING)]

[P-O-S 'SENTENCE
CD-FORM *(causation
(antecedent (do (actor ?Actor)))
(consequent
(state-change
(actor ?0bject)
(state-name physical-state)
(trom 10)
(to-10))))

ACTOR (VALUE 1 CD-FORM)
OBJECT (VALUE 3 CD-FORM)])

To built this pattern, UC Teacher makes the assumption that the verb will take a
person as a subject and that this person will be the cause or actor of the con-
cept produced. The concept part is taken directly from pattern PHRAN used to
understand the definiens portion of the original sentence. The resuiting pattern
can now be used in conjunction with the rest of PHRAN to parse sentences
involving the work delete.

PHRAN interprets the second sentence as a statement of a plan. UC Teacher
uses a PHRAN definition of verbs liike typing that enables them be followed by a
literal string. UC Teacher assumes certain conventions for this string. For
exampie, it assumes that a word in it that it cannot parse is the name of a UNIX
command, and that the particular word filename refers to a generic file. UC
Teacher can now assert the output of this analysis, which is a quite ordinary
looking fact, intc the PEARL data base that ccntains the rest of the system's
knowiedge. :

The third sentence, which establishes remoue as a synonym for delets, is treated
similarly to the first sentence.

When the questions it the last two sentences of the example are subsequently
asked, UC will be able to analyze them into the appropriate conceptuai content
using the PHRAN patterns just created. Then the system will be able to retrieve
the fact stored in the PEARL knowledge base for use in answering the question.

-19-

Currently, the example shown is as complex a situationg as UC Teachker can han-
dle. In particular, no mechanism exists for creating patterns with optional parts
with more complex syntactic features. Nor is the indexing of either new
pattern-concept pairs or facts about UNIX done in an intelligent manner.

11. Problems with UC

In addition the limitations associated with the various UC components that have
been discussed above, there are a number of more general difficulties. Probably
the most significant problem in UC involves representational issues. That is, how
can the various entities, actions and relationships that constitute the UC domain
best be denoted in a formal language? Of course this problem is central to Al in
general, and UC's domain is rich encugh for all the traditional problems to
apply.

The representation used in UC has continually changed as the system has .
matured. A rather stable body of central concepts has emerged in this process,
although a discussion of these ideas and a comparison to other systems of
representation is beyond the scope of this paper.

A pragmatic problem with UC is efficiency. Currently, it takes about a minute of
real time on a VAX to respond to a request, most of which seems to be spent in
the context mechanism. As this is one of the more experimental components of
the systems, we feel that there is a great deal of room for improvement. The
context mechanism is needed only for more complex requests, thus there may
be some way of avoiding the overhead inherent in its operation when it is not
essential. In addition, some UC components, such as PHRAN, run considerably
faster on the DEC10 than they do the VAX, after machine power is factored out.
This may mean that there is room for improvement on the impiementation level

Lastly, we have not yet road tested UC with real users. Primarily, this is because
we feel that the UC knowledge base is not yet large enough to guarantee 2 high
enough hit ratio to sustain its use. We are confident that requisite extention of
the knowledge base will be relatively straightforward. However, we feel less sure
that the the kinds of questions we have designed UC to answer will be the ones
users will find it useful to ask. We intend to collect as data the questicns UC is
unable to answer in its initial test runs in order to determine subsequemnt
modifications of the system.

References

Arens, Y. 1981. Using Language and Context in the Analysis of Text. In
Praceedings of the Seventh International Joint Conference on Artificial
Intelligence. Vancouver, B. C., August 1981.

Arens, Y. 1982. The Context Model: Language Understanding In Context. In
Procesdings of the Fourth Annual Conference of the Cogrnitive Science
Saciaty. Ann Arbor, Michigan, August 1982,

-20-

Brachman, R., Bobrow, R., Cohen, P. Klovstad, J., Webber, B. L., & Woods, W.
A 1979. Research in natural language understanding. Technical Report
4274, Bolt, Beranek and Newman Inc. :

Burton., Richard R. 1976. Semantic Grammar: An Engineering Technique for
Constructing Natural Language Understanding Systems. BBN Report No.
3453, Dec 1976.

Deering, M., Faletti, J., and Wilensky, R 1981. PEARL: An Efficient
Language for Artificial Intelligence Programming. In the Proceedings of the
Seventh Mmternational Joint Conference on Artificial Intelligence. Van-
couver, British Columbia. August, 1981.

Deering, M., Faletti, J., and VWilensky, R. 1982. The PEARL Users Manual
Berkeley Electronic Research Laboratory Memorandum No.
UCB/ERL/M82/19. March, 1982

Faletti, J. 1982. PANDORA - A Program for Doing Commonsense Planning in
Complex Situations. In Proceedings of the Second Annual National
Artificial Intelligence Conference. Pittsburgh, PA, August 1982.

Grosz, B. J. 1977. The Representation and Use of Focus in a System for
Understanding Dialogs. Proceedings of the Fifth International Joint
Conference on Artificial /ntelligence. Carnegie-Mellon University, Pitts-
burgh, PA.

Hayes, J. K., and Carbonell, J. G. 1981. Multi-Strategy Construction-Specific
Persing for Flexible Data Base Query and Update. In the Proceedings of the
Seventh mternational Joint Conference on Artificial /ntelligence. Van-
couver, British Columbia. August, 1981.

Heid, G. D., Stonebraker, M. R, and Wong, E. 1975. INGRES - A relational
data base system. AFIPS Conference Proceedings vol. 44, NCC.

Hendrix, Gary G. 1977. The Lifer Manual: A Guide to Building Practical
Natural Language Interfaces. SRI International: Al Center Technical Note
138.

Lebowitz, M. 1980. Generalization and Memory in an Integrated Understand-
ing System. Yale University Department of Computer Science Technical
Report 188.

Riesbeck, C. K. 1975. Conceptual analysis. In R C. Schank, Conceptual
Information Processing. American Elsevier Publishing Company. Inc., New
York

Robinson, J. J. 1982, DIAGRAM: A Grammar for Dialogues. Comm. ACH
Volume 25, pp. 27-47.

-21-

Schank, R. C., Lebowitz, M. and Birnbaum, L. 1580. An Integrated Under-
stander. In dmerican Journal of Compulational Linguistics vol. 6 no. 1,
January-March 1980.

Waltz, D. L., Finin, T., Green, F., Conrad, F., Goodman, B., and Eadden, G.
1978. The PLANES system: natural language access to a large data base.
Coordinated Science Lab., University of lllinois, Urbana, Tech. Report T-34.

Wilensky, R. 1981(a). Meta-planning: Representing and using knowiedge
about planning in problem solving and natural language understanding.
Cogmitive Science, Vol. 5, No. 3. 1881,

Wilensky, R. 1981(b). A Knowledge-based Approach to Natural Language
Processing: A Progress Report. In the Proceedings of the Seventh /nterna-
tional Joint Conference sn Artificicl Intelligence. Vancouver, British Column-
bia. August, 1981.

Wilensky, R. 1982 Planning and Understanding. Addison-Wesley. Reading,
Mass. .

Wilensky, R. and Morgan, M. 1881. One Analyzer for Three Languages.
Berkeley Electronic Research Laboratory Memorandum No.
UCB/ERL,/M81/87. September, 1981.

Woods, W. A. 1970. Transition Network Grammars for Natural Language
Analysis. Comamn. ACH, Volume 13, pp. 591-806. :

