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ABSTRACT

The principles on which artificial workload model design is
currently based are reviewed, and found wanting for three main
reasons: their resource orientation, with the selecticn of
resources often unrelated to the performance impact of resource
demands; their avoiding to define an accuracy criterion for the
resulting workload model; and their ignoring the dynamics of the
workload to be modeled. An approach to establishing conceptual
foundations for the design of interactive artificial workloads is
described. The approach tries to take the problems found in
current design methods into proper account, and to delimit the
domains of applicability of these methods. In doing so, it also pro-
vides guidance for some of the decisions to be made in workload
model design.

CR Categories and Subject Descriptors: D.4.8 [Operating Systems]: Perfor-
mance - Measurements, modeling and prediction; C.4 |Computer Systems
Organization]: Performance of Systems - measurement technigues, maodeling
technigues.

General Term: Performance.

Additional Key Words and Phrases: artificial workloads, benchmark design, clus-
tering, interactive workloads, performance-oriented workload models, represen-
tativeness, sampling, workload characterization, workload modeling.

1. Introduction

Workload modeling is one of the most fundamental aspects of performance
evaluation. No system evaluation study can avoid confronting the problem of
modeling or at least selecting one or more workloads [FERR72]. This is easily
proved by observing that the performance indices to be evaluated in such a
study are critically dependent on the workload processed by the system
[FERR78]. All performance analysis techniques, i.e., those techniques that can
provide us with the values of a system's performance indices, require one or
more workload models to be built. This is not only the case of analytic and simu-
lation modeling techniques, but also of both types of measurement approaches:
the one in which the system to be measured is driven by an artificial workload,
that is supposed to represent a real (current or future) workload, as well as the
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one which uses a sampie of the system’s natural workload. To realize that this
sample constitutes a workload model, it is sufficient to consider the criteria
according to which it is usually chosen: for instance, the natural workload pro-
cessed on a particular working day between 11 a.m. and 12 noon may be
selected to represent the heavy lcads the system to be measured is processing
late in the morning of most working days.

In this paper, we restrict our attention to those workload models that are to
be used as systerm drivers in measurement experiments. In other terms, we
consider only workload models that are artificial and ezecutable. This category
of models includes benchmarks and scripts [BENW75] [FERR78}, and makes
experiments better reproducible than when they are driven by natural workload
models. Thus, given reproducibility requirements are satisfled by an artificial
model in a much shorter time than by its natural counterpart. With respect to
natural models, artificial models are certainly more expensive to build, poten-
tially less accurate, and more disruptive of a system’'s operation, as they are to
be run on a dedicated system. However, the much greater control of an experi-
ment they provide the experimenter with, their ability to represent non-existent
(e.g.. future) workloads, and their much easier portability have made them
indispensable in several types of measurement studies, for example, in competi-
tive procurement, system sizing, capacity planning, and performance comparis-
ons for marketing purposes.

The subject of artificial workioad design has not received as much attention
in the technical literature as its importance deserves. Artificial workloads have
been built for many years, and are being built now, in large numbers, following
in most cases intuition and common sense rather than systemnatic, scientifically
sound procedures. A relatively <mall number of researchers has ventured into
this risky and difficult field, and proposed design techniques whose use has sub-
stantially increased during the iast decade. Section 2 briefly reviews the philo-
sophical bases of these techniques and presents three fundamental questions
that may be asked about them. Answers to these questions are proposed and
discussed in Sections 3 and 4. The latter section presents new conceptual bases
for the current techniques, focusing on the design of artificial models for
interactive systems. The treatment in Section 4 allows one to delimit the
domain of validity and applicability of the design techniques that have been pro-
posed, and to obtain guidance in making the various decisions one is confronted
with when designing a workload model. These results are summarized in Section
5.

2. Current Design Methods
Most of the systematic desizn methods thal have been proposed follow the
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procedure outlined below when they are to construct an executable model of a
real, measurable workload.

Step 1. The type of the basic components of the workload (and of the model) is
identified. Common component types are the job, the command or
interaction, the transaction, and the job step.

Step 2. The parameters to be used to characterize each component are
chosen. Usually, these parameters represent physical resource
demands, or amounts of resources consumed, by each workload com-
ponent, but in some cases they correspond to logical or even functional
demands. Examples of physical resources are CPU’'s, main memory,
1/0 channels and devices, communication networks, terminals, and
other peripherals. Logical resources are language processors and
other software subsystems {(e.g.. editors, debuggers, file systems,
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database systems). Examples of functional resources are command
classes (compiling, editing, file manipulation, and so on), transaction
classes, and job classes.

Step 3. The values of the parameters selected in Step 2 are measured for each
component of the workload to be modeled. Each component will be
represented by a tuple of values, not all necessarily numerical.

Step 4. Statistical techniques are applied to the tuples of parameter values
measured in Step 3 with the objective of identifying a small representa-
tive subset of the set of tuples. These techniques include sampling and
clustering methods. In some cases, sarmpling is applied to the fre-
quency distributions of the numerical parameter values measured in
Step 3 [SCHW72]. In other cases, to the population of workload com-
ponents in the workload [SHOP70] [WOOD71] or to the joint frequency
distribution of their parameters [SREE74]. Clustering [AGRA78]
[ARTI78] groups together workload components whose locations in the
hyperspace of the cheracterizing parameters are relatively close
according to a suitable definition of distance; a small number of tuples
is then selected from each cluster to represent it in the model. Princi-
pal components analysis [SERAB1] and feature selection techniques
[MAMR77)] have also been applied. In all cases, the model has a much
smaller number of tuples, hence of components, than the workload to
be modeled.

Step 5. Each tuple selected in Step 4 is replaced by a workload component
that is (at least approximately) characterized by the tupie. The set of
all these components constitutes the workload model. The com-
ponents of the model do not have to be chosen from among those of
the workload to be modeled: they may be synthetic programs with
argument values selected so as to make their characterizing parame-
ters equal (or close) to those in the tuple they are intended to
represent.

The general procedure just described has been applied in a variety of ways,
including some that would seem too different from the others to be amenable to
the same conceptual framework. An exarnple of such a design method is the one
which consists of sampling the real job stream of the system to extract the com-
ponents of the model [SHOP70]. Even this method may be seen as following the
above procedure, though in this case Step 2 does nct require any work, as each
job is characterized by itself and not by its parameters, Steps 3 and 4 are per-
formed simultaneously, and Step 5 may also be performed at the same time as 3
and 4 but not alway is [WOOD71]. In some cases, two types of components are
successively used: for example, Haring [FARIB2] clusters termninal sessions
according to the percentages of the various software resources they request,
and then builds a probabilistic model of each class of sessions taking the
requests for each class of soft ware resources as the states of a session. Another
example is provided by Artis [ARTI78], who clusters jobs based on their physical
resource consumptions, then defines mixes in terms of the clusters the jobs in
each mix belong to, and clusters mixes according to their compositions. These
more sophisticated methods clearly follow procedures that are more complex
than the one described above; however, our framework can be used to describe
these methods without changing the basic steps, simply by allowing different
paths through the steps (e.g.. loops) to be followed.

In all cases, the above procedure for designing artificial workloads raises
three major problems that will now be discussed.
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Problem 1  The parameters selected in Step 2 are resource demands at vari-
ous levels of abstraction (at the physical level in most cases, but
sometimes at the logical or even at the functional level). What are
the resources whose demands are to be included in the character-
ization? The usual answer is: those whose consumptions have a
significant impact on performance. No effort, however, is usually
made to determine the identities of these resources. Thus, each
artificial workload that is built is based on an ad-hoc list of
resources, whose necessity and sufficiency is not known, and
which often differs for unexplained reasons from the lists used in
similar installations. For example, some lists include the number
of characters output by each command, some others do not. Is
this number important or not? Whenis it important?

Problem 2 There is no provision for guaranteeing that the model resulting
from the procedure will be acceptably accurate. In fact, since the
accuracy (or representativeness) of a workload model is not even
quantitatively defined, there is no criterion by which it can be
evaluated. And yet, accuracy is the primary virtue of any model.
An inaccurate model is obviously useless.

Problem 3  The statistical techniques used in Step 4 are normally applied to a
population of tuples from which any temporal information has
disappeared. With only a few exceptions [ARTI78] [FERRS1]
[cALZ82], in model design methods component arrival times, com-
ponent sequences, and mix compositions are usually lost. Reduc-
ing workloads from time series to populations of components is
equivalent to neglecting their dynamics, or stating that their
dynamic behavior is unimportant. Our empirical observations
show that this need not be the case. Is an artificial workload pro-
duced by one of the current design methods a good model in spite
of these observations? Should we not discard these methods and
try to devise new ones, which would take the dynamics of the
workload to be modeied into proper account?

3. The Performance-Oriented Criterion

Before presenting our approach to the problems outlined in Section 2, we
summarize in this section a definition of workioad model accuracy that has been
proposed in the past [FERR72] [FERR78] [FERR79] [FERR81]. This definition will
be useful in providing a solution not only to Problem 2 above, but, because of the
strict interrelationships among the three problems, especially between Prob-
lems 1 and 2, to the others as well.

All definitions of accuracy based on the similarity between the modeled
workload and the workload model are questionable because of our lack of
knowledge about workloads and their interactions with system organizations.
Nobody questions the validity of experiments performed on models of automo-
biles in a wind tunnel, even though these models are much smaller in size than
real automobiles, are built of a different material, and cannot run: as shown by
theoretical and experimental results, aerodynamic resistance is not influenced
by the material or by the presence of a running engine, but only by the shape of
the surface, and the actual resistance of an object can be computed from the
resistance of a smaller object with the same shape. No such theoretical or
experimental results are usually invoked to justify the selection of the features
in terms of which a workload is characterized and reduced to a model (see the
discussion of Problem 1 in Section 2).
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To arrive at a sensible definition of accuracy or representativeness, one has
to begin by asking what is the purpose of building a workload model. If the
objective is the evaluation of a system's performance, then the definition must
be performance-oriented.

Definition. Given a system S and a set of performance indices P, workload
W'is a (perfectly accurate) model of workload W' with respect to S and Pif
Pll = Pl.
where P’ and P’ are the performances with which S processes W' and W',
respectively.

This definition is schematically depicted in Figure 1. The corresponding
definition of accuracy only requires, to be specified, that a metric for the space
of performance indices be defined. Note that set P may include variables with
different physical dimensions, distributions, time series, and other types of
indices that may make defining such a metric a non-straightforward task.

The above definition is not always applicable in practice, but can always
serve as the basis for conceptual experiments. Even more importantly, it pro-
vides an explicit criterion for evaluating selections of workload features by
replacing the vague notion of similarity between the workload and the model
with the quantitatively verifiable closeness of the values of their performance
indices.

Except for certain cases [FERR81], this definition of accuracy does not
directly suggest a method for designing an artificial workload. However, it pro-
vides guidance in performing Step 2 of the procedure outlined in Section 2. All
those, and only those, workioad parameiers that have a noticeable influence on
P at the desired level of abstraction should be selected. This influence, however,
cannot be guessed, but must be determined by experimentation or by sensi-
tivity analyses based on a good model of the system.

4. On the Design of an Artificial Interactive Workload

We begin our discussion of the foundations of interactive workload model
design by making three assumptions.

Assumption 1. The system we deal with is an interactive system whose per-
formance is satisfactorily analyzable by a product-form closed queueing network
model of the type represented in Figure 2. In other words, the values of the per-
formance indices we are interested in can be calculated with acceptable accu-
racy by solving the queueing network in Figure 2, that satisfles the conditions of
the so-called BCMP theorem [BASK75]. Note that the central subsystem in the
figure is an open network of (N-1) stations, and that it may include load-
dependent servers, some of which may have resulted from applying flow-
equivalent approximation techiniques to a more complex, non-product-form
queueing model of the system.

Assumption 2 The behavior of each of the m interactive users of the sys-
tem can be suitably represented by a probabilistic graph like the one depicted
in Figure 3. Each node in the graph represents an interactive command type,
with the exception of node 0, which is the "dormant node'’’. Users who are not
using the systemn reside in node 0. When a terminal session starts, the state of
the user becomes 1 (the “login node”). During the session, other commands are
executed (i.e., other nodes are visited) following the arcs of the graph. At the
beginning of each terminal time period, a user chooses the next command based
on the probabilities appearing in the user behavior graph (e.g., the one in Figure
3). It is clear from this description that the R nodes in the graph, that is, the
command types, are to be modeled as R different classes of customers in the
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network in Figure 2, and that a user may change class only when moving froma .
station in the central subsystem to station 1, i.e., the terminals station. Also, if
all the sequences of commands constituting user sessions are realizations of a
single graph, the queueing network has a single chain. Note that node 0 can be
eliminated by adding the times spent in it to the terminal times of node 1.

Assumption 3. The interactive workload to be modeled and the workload
model to be constructed are stationary. This means that the desired workload
model is not intended to reproduce any particular dynarmic variation in work-
load characteristics, but is rather to exhibit about the same time-invariant dis-
tributions of characteristics as the original workload. Thus, our treatment
addresses only some of the issues related to workload dynamics (see Problem 3
in Section 2), and does not claim to be applicable to cases in which some specific
dynamic aspects of a given workload are to be reproduced by the model.

The workload of the interactive system being considered may be described
as a set of at least partially overlapping sequences of commands issued by ter-
minal users. The basic component of such a workload is the command or
interaction. A current model design method consists of reducing the numbers
of command types that appear in the workload proportionally, so as to preserve
their relative frequencies. Doing so means ignoring the sequentia! links existing
among command types: for instance, in Figure 3, & is never followed directly by
8. and7 is always preceded by ¥ . Under the assumptions made above, how-
ever, the method may be valid if the conditions of the following theorem are
satisfied.

Theorem 1. The equilibrium state probabilities of the queueing network in Fig-
ure 2 are invariant with respect to any change in the user behavior graph which
does not modify the visit ratios of the command types.
Proof. The BCMP theorem [BASK75] shows that the equilibrium probability of
state (v, ya..--yny). where y; = (ng1, nz...mug) and ng is the number of users
of class r in station i, is given by C g, (y) gz2(¥2)-.9: (yn). where Cis a normal-
ization constant and g; () is a function of the n;'s, the wir's (uir is the mean
service time in station i for users of class r), and the eg's, that are the solu-
tions (to within a muitiplicative constant) of the set of equations

ejs = 0, @y Pirjas ( =1..N:s = 1,.R). (1)

-1

r=1.R

Note that e, can be interpreted as the relative arrival rate to user state
(i, ), and that the symbol p;, ;s represents the probability that a user of
class r exiting from station i will require service at station j and move to class
s . Under the assumptions made above, and recalling that number 1 has been
assigned to the terminals station, we have

bijrPrs forj=11i#1
Pirjs =1 Bijr forj# 1,7 =5 (2)
0 for all other cases,

where by, isthe probability that a user being in class 7 and at station i will go
to station j, and p, is the probability of visiting class s coming from classT.

Substituting (2) into equations (1), we obtain

81 = f (Pnéeir bu.r)-

rsl
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e = ewbya. (G =20.N).(s=1.R). @)
i=l
Since changes of class may only occur when entering station 1, the relative
departure rate from user state (1, r) can be written as ey bi1r. and equals
t=2

the relative arrival rate e,.. Hence, from (3) we have

=§ P ey, (s =1..R). @)

e.
From (1), we have that the ratio —- equals the ratio between the number

Js
of visits to user state (i, 7) and the number of visits to user state (5, s) during
a given time interval at the equilibrium. In the particular type of closed network
considered here, the value of e, is proportional to the number of visits (during
a given time interval) to class s (i.e., to node s in the user behavior graph).
e
Equations (4) show that the ratio e—"— equals the ratio between the number of
1s
visits to class r and the number of visits to class s during a given time interval.
Any transformation of the interclass transition probability matrix [prs] that does

e
not modify the class visit ratios will not change any of the e—"— ratios, since the
i

2ir

second set in (3), when the ratios have been determined through set (4),

1s
contains R{(V - 1) equations and R(N - 1) unknowns, and their coeflicients are
independent of the pg's. Since modifying the pg's in this way does not have
any impact on the ny's or the uy's either, the equilibrium state probabilities,
hence all of the performance indices that can be computed from them, remain
unchanged.

A consequence of Theorem 1 is that the performance indices a system
model like the one depicted in Figure 2 allows us to compute remain the same
when the graph in Figure 3 is replaced, for instance, by the one in Figure 4,
where the p*,'s have been calculated from equations (4), with the values of the
visit ratios derived from those of the pp's and the same equations. There are B
independent nonzero probabilities in the graph in Figure 4, but only 7 of the 8
equations (4) are independent {the values that remain unchanged are those of

e
I’ ). thus, the value of one of the unknown

the 7 independent visit ratios, say

1
probabilities p*, is to be arbitrarily chosen. If the graph in Figure 4 had more
arcs, more than one unknown would have to be assigned an arbitrary value.

An important remark is that Theorem 1 does not allow a workload model
built by this method to be implemented in an arbitrary way: the theorem states
that the model will be performance-wise accurate if it simulates the same
pumber of users as in the workload to be modeled, each behaving as described
by the graph in Figure 4, or by any other graph that has the same visit ratios to
be various types of commands as the original workload. Note that the actual
user behavior graph (e.g., the one in Figure 3) does not have to be known, since
the visit ratios can be computed from the relative frequencies of command
types, which are easily measurable. The crucial, hard-to-answer question is
whether the bebaviors of all real users can be satisfactorily described by a sin-
gle graph or require several different graphs. In any case, the model is in
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general no longer accurate if we change the number of users, or subdivide the
command types among the simulated users {(e.g., users 1 and 2 will continue to
execute command type 1, user 3 commands 2 and 4, and so on). Thus, graphs
like those in Figure 5 cannot be performance-wise equivalent tc that in Figure 3.

We shall now discuss the application of clustering techniques to our interac-
tive workload. Each command type in the graph in Figure 3 is characterized by
the distributions of its service times at the various stations (except for FCFS
stations, where all commands must have the same exponential service time dis-
tribution), by the values of its branching probabilities by r. and by the distribu-
tion of its terminal times. These characterizing parameters, that represent
command demands of the system model’s resources, define a multidimensional
space in which each component (i.e., each command type) is represented by a
point. A clustering algorithm will identify clouds of neighboring points, that is,
command types whose resource demands are "similar” enough as to be grouped
into the same class. Since in our closed network this is a class of classes, it will
be called a superclass.

Suppose clustering of the classes in Figure 3 results in the four superc-
lasses (1, 4, 6), (2 7). (3, 8), and (5). The superclass number is reported in
parentheses within each node in the figure. Is a workload model containing
superclass representatives a valid model? How many representatives should
each superclass have? How should the model be implemented? The answers, for
the idealized case in which all the classes in a superclass have identical charac-
terizing parameters, are provided by the following theorem, where by global per-
formance indices we shall mean those indices which represent the performance
of the model under the whole workload, not on a per class basis. Global indices
include the mean throughput rate, the mean response time, the utilizations, the
mean queue lengths, and the mean waiting times in all stations.

Theorem 2. The values of the global performance indices of the queueing net-
work in Figure 2 are invariant with respect to aggregations of classes with identi-
cal demands if each superclass has a visit ratio in the user behavior graph equal
to the sum of the visit ratios of its members, and each non-aggregated class
retains its previous visit ratio.

Proof. Let the R user classes be aggregated into S superclasses with S < R.
The generic state of the network, that was (y. yz..-yy). with
% = (M. Muz...mep), becomes (Y Y'z.-y'n). With 'y =(n'y, n'iz,.M'is)
n'y is the number of users of superclass j at station i, hence it equals the sum
of the numbers of users at station i that belong to the classes in superclass j .
The equilibrium probability of state (y'y ¥'2.--¥'x) is given by

P ya-yn)=Caiy)g(ya)--gn'n). (5)

where, if station i is of type 2 or 4 (a distinct service time distribution with
rational Laplace transform for each class, PS or LCFS queueing discipline
[BASK75]),

g:i (i) =n'! ﬁ L [e:‘, ‘ . (6)

=1 nvil! His

For the same station i in the original network we have

R i
g (w) = n! rﬁ;l ‘n—i.— [% . (7)
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We shall only consider type 2 or 4 stations since expressions (8) and (7) for
the other types are very similar and lead to the same conclusions we are about
to reach.

In order for the global performance indices to be invariant under class
aggregations, we must have

Py yY'aYN) = Y, Py YN A (8)
s=1.5
Z Ny =N g

where, without loss of generality, we have assumed that superclass 1 contains
classes 1, 2,...u,, superclass 2 classes v;+ 1, - Va and so on, and that
vg=0,vs = R.

Z ﬁst(yf)=ﬁ ngi(yi)- (9)

Since

g=1,§ =1 izl g=1,
ng=n'y Y ne=n
k=v,_j+lv, k=v,_y+ly,
a sufficient condition for the validity of (8) is that
gl = 2 gw). =128, (10)
=15
zﬂ-u’"'u

From (7). recognizing that 'y = i (k =vg_y + 1.7,

% 60w = 1] — Zﬁl f;;’:— (11)

5=l Uy

However, recalling the identity

2 QZ! =S (12)
=

we can also write (11) as
"
v »
€ix
Fyy_;+1

N'y! : (13)

T g () = n! - L
521 Ui

Since ny =n'y. 2 sufficient condition for the right-hand side of (13) to coin-
cide with the right-hand side of (6) is that
v

e'y = 2’: ew - (14)

kzvug_g+1
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Thus, if this condition is satisfled, condition (10) is also satisfied, and this
conclusion is in particular valid for i = 1.

Theorem 2 shows that, under the assumptions made in this section, cluster-
ing techniques can produce accurate models of interactive workloads provided
that the number of users remain unchanged, all simulated users behave accord-
ing to the same probabilistic graph, and the visit ratios of the clusters (or
superclasses) equal the sums of the visit ratios of their members in the original
workload. In the model, one representative per cluster is sufficient. If, for some
reason, the designer wants to include more than one representative per cluster,
the model is still performance-wise accurate if the sum of the visit ratios of
these representatives equals the visit ratio of the cluster. A possible behavior
graph for the simulated users in our example is presented in Figure 8.

Again, no other reduction technique among those we have studied guaran-
tees the accuracy of the method dictated by Theorem 2. For instance, methods
leading to graphs like those in Figure 5 (but with fewer nodes in the clustering
case) generally lead to models whose accuracy is lower than that of the one
described above and cannot be easily predicted.

It is intuitive, and can be formally proved, that, when a workload is
described by a collection of disjoint user behavior graphs, each graph is to be
dealt with (i.e., transformed or reduced) separately if performance-oriented
model accuracy is to be preserved. Fach distinct graph corresponds to a chain
in the queueing network, and neither users nor classes can generally be moved
across chains without modifying the values of the global performance indices.

5. Conclusions

The treatment of artificial workload design methods presented in Section 4
does not claim to provide complete and satisfactory solutions to the three prob-
lems discussed in Section 2. It is only a first attempt at establishing
scientifically sounder foundations for the design of artificial workloads.

As far as Problem 1 is concerned, we may be accused of not solving but
rather transforming it into a queueing model accuracy problern. This is, of
course, true, but it is also true that the problem is more precisely defined in its
new context, and that knowledge about the accuracy of queueing models is grow-
ing. The objection might be raised that building an artificial workload is not
necessary if a good model of the system exists. However, our approach does not
require such a model to be constructed and tested. It simply suggests that the
workload model designer characterize the workload referring to the resources
that would be explicitly represented in a queueing model likely to be sufficiently
accurate for the purposes of the study. Furthermore, even if a good model of the
systern were available, in most evaluation studies measurement, when possible,
is definitely to be preferred to modeling.

Our approach suggests a perforrnance-oriented solution to Problem 2. 1f all
the assumptions made in Section 4 are satisfied, and if all performance indices
of interest are global indices, a workload model resulting from a correct applica-
tion of the currently used statistical techniques is guaranteed to be perfectly
accurate. Techniques like sampling and clustering have been found to be valid
under our assumptions provided they are applied according to the rules dic-
tated by Theorems 1 and 2. An analysis of the effects on workload model accu-

racy of a less than perfect compliance with each assumption remains to be
done, and is clearly one of the most important avenues for further research
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opened by this investigation.

With respect to Problem 3, our approach shows that there are cases in
which one should not worry about reproducing workload dynamics faithfully, as
the system performance indices one is usually interested in do not depend on
the order of execution of commands. This result is intuitive, but our treatment
allows us to understand the assumptions under which it is valid and hence its
limitations. Clearly, the order of execution is important when the effects of par-
ticular dynamic variations of the workload or of some dynamic control policies
(e.g., scheduling algorithms) are to be investigated. In these cases, either the
steady-state assumption is violated or the use of a product-form queueing model
is not justified. It must be remembered that the theorems in Section 4 on which
our conclusions are based apply only to product-form queueing networks. The
influence of the various approximations that can be used to solve a non-
product-form network on the accuracy of a workload model obtained following
the rules of Section 4 certainly deserves to be studied.
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Fig.1. The performance-oriented definition of
workload model.
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Fig.2. A model of the system.



Fig.3. A user behavior graph.



Fig.4. A user behavior graph performance-wise equivalent
to the one in Figure 3.
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Fig.5. User behavior graphs not performance-wise
equivalent to that in Figure 3.
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Fig.6. A user behavior graph obtained from the one in
Figure 3 through class aggregation.






