
THE WAVEFORM RELAXATION METHOD FOR TJME

DOMAIN ANALYSIS OF LARGE SCALE INTEGRATED

CIRCUITS: THEORY AND APPLICATIONS

by

Ekachai Lelarasmee

Memorandum No. UCB/ERL M82/40

19 May 1982

Abstract

The Waveform Relaxation (WR) method is a new decomposition method for

solving a system of mixed implicit algebraic-differential equations over a given

time interval. This method essentially uses an iterative relaxation scheme such

as the Gauss-Seidel relaxation or the Gauss-Jacobi relaxation in whch the ele-

ments of the relaxation are waveforms of unknown variables. The decomposed

system obtained through the relaxation scheme is also a system of mixed hp l i -

cit algebraic-differential equations but is much easier to solve than the original

rystem.

The application of this method in the area of time domain simulation of

integrated circuits is emphasized. Although the WR method has a theoretical

basis, it can be given a simple physical interpretation when applied to the

analysis of integrated circuits. In particular, the convergence condtions of the

method can be given either in terms of the numerical properties of the circuit

equations or in terms of the properties of the circuit components. This method

is shown to be a viable alternative to the conventional techniques for simulating

large scale integrated circuits since sufficient conditions for its convergence are

quite mild and are always satisfied by a large class of practical circuits.

The performance of the WR method when applied to a particular class of cir-

cuits, Le., MOS dyital integrated circuits, are studied and evaluated via a proto-

type simulator called RELAX. The repetivity and directionality of dtgital subcir-

cults as well as the digital nature of the signals are exploited in the simulator t o

increase the speed of computation and to utilize the storage eaciently. Prelim-

inary comparisons between RELAX and the standard circuit simulator SPICE

have shown that RELAX is fast and reliable for simulating MOS digital integrated

circuits.

Acknowledgements

I am deeply grateful to my research advisor, Professor Albsrto L.

Sangiovanni-Vincentelli, who introduced me into the exciting area of computer-

aid design and optimization and has consistently guided me with enthusiasm

throughout the course of my graduate study.

I appreciate the scholarship from the Anandamahidol Foundation (Bangkok,

Thailand) which has given me the financial support in persuing my graduate

study here at U.C. Berkeley. I also appreciate the research grants from Harris

Semiconductor Corporation, IBM Corporation and Joint Services Electronic Pro-

gram contract F4962G-79-C-0178.

I wish to express my sincere thanks to Professor kR Newton, Dr. Albert E.

Ruehli from IBM Research Center and J.P. Spoto from Harris Semiconductor for

many useful and stimulating discussions necessary for the progress of this work

and to the DELIGHT creator William T. Nye for numerous assistances in program-

ming. I also wish to express the pleasure of my association with many friends:

Dr. M.J. Chen, Dr. V.H.L. Cheng, G. DeMicheli, C.L. Gustafson, R.J. Kaye, M. Lowy,

W.T. Nye, D.C. Riley, Dr. V. Visvanathan and the Projectile people of Ridge Pro-

ject.

Finally, I wish to express my special gratitude for the inspiration and caring

provided by my dearest parents: Yothin and Yuwadee.

i

Table of contents

Chapter 1: Introduction ..
Chapter 2 Overview of Simulation Techniques ..

2.1 Standard Simulators ...
2.2 Decomposition ..

2.2.1 Tearing Decomposition ..
2.2.2 Relaxation Decomposition ...

2.2.2.1 Timing Simulation ..
2.2.3 Concluding Remarks ...
The Wavef o m Relaxation Method ...

3.1 Mathematical Formulation ..
3.2 The Assignment-Partitioning Process
3.3 The Relaxation Process ...
3.4 Circuit Examples and Their Physical Interpretations

Chapter 3

Chapter 4: Consistency of the AssignmentQartitioning Process
4.1 Definition of Consistency and Examples
4.2 The Formal Approach for Finding and Checking

a Consistent AP Process ...
Convergence of the WR Method ...
Contraction Theorems in Functional Space
Convergence of the Canonical WR Algorithm
Existence of the Canonical WR Algorithm

Chapter 5

5.1

5.2

5.3

1

4

5

8

10

13

16

21

31

31

32

33

35

41

41

47

56

56

59

64

ii

Chapter 6

6.1

6.2

6.3

6.4

Chapter 7

7.1

7.2

7.3

Chapter B:

8.1

Chapter 9:

WR Algorithms for Simulating Large Scale

Integrated circuits ...
Nodal Circuit Equations and the WR Algorithm
Modified Nodal Equations and the WR Algorithm
Guaranteed Convergence of WR Algorithm for

MOS Circuits ...
WR Algorithm with Adaptive MOS Models
RELAX An Ehperimental MOS Digital Circuit Smulator
Basic Algorithms in RELAX ..
Scheduling Algorithm ...

Latency and Partial Waveform Convergence
Organization of REwu(...

Look-ahead Storage Buffering Scheme
Performance of RELAX ..

71

72

75

n
80

89

89

90

93

99

102

107

Chapter 10: Conclusion ... 114

References ... 116

Appendix A: Proofs of Theorems and Lemmas .. A. 1

Appendix B: The Use of Iteraive Nonlinear Relaxation Methods

in Time Domain Simulation of YOS circuits B.l

.

1

Chapter 1

Introduction

Simulation programs have proven to be effective software tools in evaluat-

ing or verifying the performance of integrated circuits during the design phase.

Circuit simulators such as SPICE [11 and ASTAP [2] have been widely used by cir-

cuit designers to provide accurate electrical analysis of the circuits being

designed. Although these simulators are designed to perform many types of

analysis such as "dc" analysis, small signal (or "ad') analysis and time domain

(or "transient") analysis, the majority of the use of these simulators in present

day circuit design is in the latter area of time domain analysis, the most compli-

cated and expensive type of analysis.

In this dissertation, we shall focus on lime domain or transient circuit

simulation. This type of simulation involves the solution of a system of

differential equations describing the circuit. The most common approach to

solving the circuit equations in time domain analysis consists essentially of the

use of three basic numerical methods: an implicit integration method, the

Newton-Raphson method and the sparse Gaussian Elimination method. We refer

t o this approach as the standard simulation approach. Circuit simulators that

use this standard approach (such as SPICE and ASTAP) are called sfundatd cir-

cuit simulators. The bulk of the storage and computation of the standard simu-

lation approach lies in the process of f o m d a f i n g and solving a system of linear

algebraic equations simultaneously. I t turns out [3] that both the storage and

computer time required by standard circuit simulators grow rapidly as the size

of the circuit, measured in terms of circuit components, increases. Hence, the

cost-effective use of standard circuit simulators for performing transient simu-

lation has been generally limited to circuits having a few hundred devices (e.g.

2

transistors) or less.

As we move into the era of VLSI (Very Large Scale Integrated) circuits, the

demand for simulating larger and larger circuits is continuously growing. It is

clear that to simply extend simulation techniques used by standard simulators

to circuits containing over 10,000 devices is not practical. Eence new algorithms

and simulators must be developed. A survey of these algorithms is given in [4].

These new algorithms include, for example, Block LU factorization, the Tearing

Algorithm for solving linear algebraic equations, the Multilevel Newton-Raphson

algorithm and timing simulation algorithms. A common theme underlying all

these algorithms is the use of large scale system decomposition.

The purpose of this dissertation is t o introduce another decomposition

method for time domain simulation. This method is called the W a v e j m Relaxa-

tion (WR) method. The idea behind the development of this method originated

from a study of the work of Newton [SI who formulated the timing simulation

algorithm in the form of a relaxation technique for solving the nonlinear alge-

braic equations associated with the discretization of the circuit differential

equations. In the WR method, relaxation decomposition is applied at the level of

differential equations whereas, in other previously proposed decomposition

methods, decomposition is applied at the level of (linear or nonlinear) algebraic

equations. Both theoretical and computational aspects of the WR method will be

discussed in detail. In particular, the development of an experimental program

for simulating MOS digital integrated circuits based on the WR method is

described. The program is named RELAX. P r e l i i a r y tests of the program and

its performance comparison with SPICE indicate that the WR method is highly

suitable for analysing this type of large scale integrated circuits.

The organization of this dissertation is as follows. In Chapter 2, we give a

brief review of the standard simulation approach and a comprehensive discus-

3

sion and classification of various decomposition techniques. The rest of this

thesis can be subdivided into two parts. The fist part, consisting of chapters 3,

4 and 5, describes the WR method and its numerical properties in a purely

mathematical context. The second part, consisting of chapters 6 to 9, deals with

the WR method in a circuit simulation context. A brief description of these two

parts is given below.

In Chapter 3, the mathematical description of the WR method together with

the concepts of a decomposed s y s t e m and the ass ignmentpar t i t i on ing p r o c e s s

are given in Chapter 3. In Chapter 4, the efZect of the assignment-partitioning

process of the WR method on the dynamical behaviour of the decomposed sys-

tem is described and the concept of cons i s t ency of the assignment-partitioning

process is presented. A n algorithm based on graph theory to produce a con-

sistent assignment-partitioning process is also described. In Chapter 5, conver-

gence properties of the WR method are fully discussed by using contraction

mappings in functional spaces. Sufficient conditions for convergence of the WR

method are given and convergence of the WR method using an adaptive error

control mechanism is also discussed.

W e begin the second part of this thesis by specializing the WR method to the

analysis of VLSI MOS circuits in Chapter 6. Two WR algorithms are described and

are shown to converge under very mild and realistic assumptions. In Chapter 7 ,

the details of a few important techniques in implementing the WR method in

RELAX are given. The organization of the program is described in Chapter 8 and

its experimental results are given in Chapter 9.

Finally, the proofs of all theorems and lemmas are given in Appendix A and

in Appendix B we explore the use of iterative techniques to improve the numeri-

cal properties of timing simulation algorithms.

4

Chapter 2

Overview of Simulation Techniques

Time domain simulation of a continuous dynamical system. such as an

integrated circuit, traditionally uses three basic (or conventional) numerical

methods.

An implicit integration method which approximates the time derivative

operator with a divided difference operator.

The Newton-Raphson (NR) method for solving a system of nonlinear alge-

braic equations.

The Gaussian Elimiiation (GE) method for finding the solution of a system of

h e a r algebraic equations.

The integration method transforms ordinary differential equations into a

discrete time sequence of algebraic equations. If the difIerentia1 equations are

nonlinear, the discretized algebraic equations are also nonlinear and can be

solved by the NR method. The NR method in turn transforms nonlinear algebraic

equations into a sequence of .linear algebraic equations which is solved by the GE

method. This hierachical organization of numerical methods is shown in Fig. 2.1.

When certain structural and/or numerical properties of a given system of

equations are met, the system can be solved efficiently by using the so called

decomposition techniques. By decomposition, we mean any technique that

allows several subsets of the given equations to be solved individually by using

conventional numerical methods. In our opinion, decomposition is indispensible

in simulating efficiently large scale dynarnical systems such as large scale

integrated circuits. Various decomposition techniques have been proposed in

the circuit simulation literature. A survey of these techniques is given in [4].

5

In this chapter, we will briefly review the direct applications of the conven-

tional numerical methods in what we call sf&d simulators, such as SPICE [l]

and ASTAP [2]. Then we w i l l describe the basic concepts and properties of two

fundamental approaches to achieving system decomposition, which have led to

the development of several simulators such as SPLICE [5] , MOTIS [SI, MACRO [?I.
SLATE [a], DIANA[9], SAMSON [lo] and CLASSIE [ll].

2.1. Standard Simulators.

We define a standard simulator to be a simulator that directly applies the

conventional numerical methods (i.e., an implicit integration method, the Mi

method and the GE method) to the solution of the system of equations describ-

ing the behaviour of the circuit to be simulated. Typically, the circuit equations

can be written in the following form

J (S (f) , d t) , 4 t)) = 0 ; z(0) = 2 0 (2.1)

where z (f) E R" is the vector of the unknown circuit variables, u(t) E $ is the

vector of the independent (or input) variables, zo E $ is the given initial value

of z and f : I?xPxlf+I? is a continuous function. Let It, : i = 0.1 ,..., Nj denote

a sequence of increasing timepoints selected by the simulator with t o = 0 and

f N = T where T is the given simulation time interval.

By applying an implicit integration method, the system of equations (2.1) is

transformed into a discrete time sequence of algebraic equations by replacing

; (t i) with an approximating formula

Hence, the resulting algebraic equations a t time ti can be written as

8

A where z, denotes the computed value of .(ti) and q = ti).

The fact that the approximating formula can be chosen in a variety of ways

gives rise to a number of integration methods with different numerical proper-

ties, Le., order of consistency convergence and stability [12]. The most com-

monly used approximating formulae in the circuit simulation are the Backward

Di..e.renfiafion (BD) formulae of order 1 to 6 [12] and the Trapezoidal fnrmula

[12]. For example, the Arst order BD formula, also known as the Backward Euler

(BE) formula, is given by

and the Trapezoidal formula is given by

(2.4b)

A To advance the timepoint, the timestep 4 = fa - f,,l is normally selected to

ensure that the local h n c a t i o n emoT [12] associated with the approximating

formula is within the prescribed tolerance. The computation of the local trunca-

tion error requires that (2.3) be solved accurately.

The solution of (2.3) is obtained in a standard simulator by directly applying

the NR method. To start the NR iteration, an initial guess q0, called a predictor,

of the solution is obtained through a prediction step that uses the information of

the past trajectories of z. For example, a simple linear extrapolation of the past

trajectories gives the following predictor (also h o w n as the Forward Euler pred-

ictor).

The iteration equation of the NR method is given by

7

6
62

where +zi@-l) denotes the Jacobian matrix of g evaluated a t z:-I and k

denotes the NR iteration count. "he NR iteration is carried out until the conver-

gence is achieved.

The solution of (2.6) is obtained in a standard simulator by directly applying

the GE method. In circuit simulation environments, the coefficient matrix of

(2.6) is usually very sparse, Le., the matrix &- has very few nonzero elements

per row. Hence the GE method is usually implemented in standard simulators by

using sparse matrix techniques [l128]. I t is important to exploit the sparsity of

(2.6) since the computational complexity of the GE method applied to an nxn

full matrix is proportional to n3 whereas the computational complexity of the GE

method using sparse matrix techniques is on the average [l] proportional to

na ; a E [1.2,1.5].

az

Standard circuit sirnulators such as SPlCE [l] and ASTAP [2] have proven to

be reliable and effective when the size of the circuit, measured by the number of

circuit components, is small. As the size of the circuit increases. the primary

storage and computer time used by these simulators increase rapidly [3]

despite the use of sparse matrix techniques. I t has been estimated [131 that the

simulation of a circuit containing 10,000 Metal-Oxide-Semiconductor (MOS)

transistors from t =O to t = lOOOnS, using SPICE on an IBM 370/168 computer,

would take at least 30 hours of computer time. Hence, the cost eflective use of

standard circuit simulators has been limited to circuits which are considered

s m a l l in today VLSI technology.

8

2.2. Decomposition.

Decomposition refers to any technique that subdivides the problem of solv-

ing a system of equations into several subproblems. Each subproblem

corresponds to solving a subset of equations, called a subsystem, for a subset of

the system variables. Decomposition can be applied at any level of equations,

i.e., differential equations, nonlinear algebraic equations and linear algebraic

equations. In effect, the system of equations, no matter at what level it is, is

viewed by a decomposition technique as a composition of several subsystems (of

the same level of equations) with interactions between them. When the system is

decomposed into subsystems, the solution of each subsystem is in general car-

ried out by using the conventional numerical techniques that we have described

earlier in the previous section.

There are two different approaches to achieving system decomposition.

namely the tear ing approach and the relrrzufian approach These two

approaches are characterized by different ways of updating the interactions

between subsystems and by different numerical properties. Tearing is the

approach that aims at exploiting the block structure of the system to achieve

decomposition while maintaining the numerical properties of the numerical

method that is used to solve the system Eence, the computational complexity

of this approach depends critically on the structure of the system. Clearly, this

approach does not provide any gain over conventional numerical techniques

when the system structure is not spafse or when the block structure of the sys-

tem cannot be exploited. On the other hand, relaxation is the approach that

decomposes the system into subsystems so as to reduce the complexity of the

solution of the decomposed system regardless of whether the system structure

is sparse or not, i.e., the decomposed system is always easier to be solved than

the original one. However, the numerical properties of this approach are com-

9

pletely governed by the relaxation scheme, not by the numerical method used

to solve the subsystems. These two approaches will be described in more details

in the next sections.

In describing the structure of a system of equations, it is customary to

introduce the notion of a dependency matrix defined as follows.

Dednition 2.1 The dependency matrix D E t0,lj"" associated with a system of

n equations in n unknown variables is a matrix whose i , j - th element Du is

de h e d by

1
0 otherwise

if the i-th equation involves the j -th variable

The main advantages of using decomposition techniques are:

a) The structural regularity and repetivity of the subsystems, such as those

encountered in large scale integrated circuits, can be exploited.

Additional savings in computing time can be achieved by incorporating

bypassing schemes [3,5,7,8,10] that exploits latency or d o m m y of a sub-

system. These schemes allow a simulator to avoid solving a subsystem when

its solution can be cheaply predicted within a reasonable accuracy.

Decomposition techniques are suitable for computers with parallel or pipe-

line architectures since more than one subsystem can be solved con-

currently.

b)

c)

10

2.2.1. Tearing Decomposition.

Tearing is an approach that exploits the sparsity structure of the depen-

dency matrix of the system to be solved. The particular structures' that are

suitable for the tearing decomposition are

a) the Bordered Block Diagonal (BBD) structure as shown in Fig. 2.2a.

b) the Bordered Block Lower Triangular (BBLT) structure as shown in Fg. 2.2b.

From these two structures, we see that if the variables associated with the

borders of the matrices are known, then the values of the remaining variables

can be easily obtained by solving separately the subsystems associated with the

diagonal blocks. For this reason these variables are called the tearing variables.

However, in the tearing approach, the values of the tearing variables are not

computed (or updated if the algorithm associated with the tearing decomposi-

tion is iterative) from the subset of equations identified by the last diagonal

block of the dependency matrix.' Instead, they are computed from another sub-

set of equations, called a reduced subsystem, which has to be constructed by an

algorithm as we shall see later. The number of equations in the reduced subsys-

tem is equal to the number of the tearing variables.

Tearing decomposition of linear algebraic equations can be implemented in

two difIerent ways, namely the Block LU Factorization [15] and the Tearing &go-

rithm [15].3 To illustrate the basic ideas behind these algorithms, consider the

system of equations shown in Fig. 2.3, i.e.,

A x = b

In showing a matrix structure, all nonzero elements are confined to the shaded areas only. The
ahaded meas, however, may themselves contain some zero elements.

E W e shall see that, in the relaxation a?proach, these variables will be computed from this subset
of eqwtions.

Note that George [I41 has inter;rreted the Tearing Algorithm as a particular form of the Block
Lu Factorization. We ?refer to keep these two algorith~m separated to give a better intuitive fee-
of t h e main ideas of these algorithms.

11

where A E f*" is in BBD form as shown in Fig. 2.3, z = 13 E If is the vector of

the unknorm variables and w is the vector of the tearing variables.

In the Block LU Factorization, the variable v is first eliminated from the

system of equations to obtain the following reduced subsystem from which the

value of the tearing variable w is obtained.

where the meanings of all matrices and vectors are given in Fig. 23. The com-

puted value of w is then used to compute the value of v blockwise.

In the Tearing Algorithm, the solution is obtained by applying the Sherman-

Morrison-Woodbury formula [161

where the meanings of all matrices are also given in Fig. 2.3 (F in the Q u r e is a

nonsingular matrix). Here the solution of the reduced subsystem involves the

process of formulating and inverting the reduced system matrix I + HA^-'G

whose size is equal to the dimension of w . The full details of the implementa-

tions of both tearing decomposition algorithms are given in [151.

The use of tearing decomposition in solving a system of nonlinear algebraic

equations gives rise to an iterative method called the Multilevel Newton-

Raphson (MLNR) method [7] . We briefly describe this method with the help of an

example. Consider the problem of computing the "dc" solution of the circuit in

Fg. 2.4a. Assume that the circuit equations can be written as

(2.7a)

(2.7b)

(2 .7~)

where zl E If is the vector of all internal variables of the &st subcircuit,

12

z2 E I?" is the vector of all internal variables of the second subcircuit including

v2, : r f x R + If describes the equations associated with the first subcircuit.

f 2 : If+'xR + If" describes the equations associated with the second subcir-

cuit. i, : $xR + R and i, : $"xR + R From this set of equations we see that

the output voltage v 1 of the first subcircuit is the tearing variable. The decom-

posed (or torn) circuit is shown in Fig. 2.4b. In the MLNR method, the reduced

subsystem is constructed by treating z1 and z2 as functions of v , , Le., from

(2.7a) and (2.7b)

2 1 = 91(v1) and 2 2 = gz(v1)

and substituting them into (2.7~). Thus the reduced subsystem has the following

form

The reduced subsystem (2.8) is then solved for the tearing variable v1 by using

the Mi method which yields the following iterative equation

where the evaluations of g(v:- ') and q v t - ') are performed by applying

another level of the NR method to (2.7a) and (2.7b). The full details of the imple-

mentation of this method is given in [7]. In circuit terms, the construction of the

reduced subsystem can be interpreted as replacing each subcircuit by an

equivalent (Thevenin or Norton) circuit which is referred to in [7] as the ezact

macromodel. The reduced subsystem is thus equivalent to the interconnection

of these exact macromodels. For example, the reduced circuit associated with

the circuit equation (2.7) is shown in Fig. 2.5.

h1

Examples of circuit simulators that use tearing decomposition are:

13

a) CLASSIE [111, S U E [8] and SAMSON4 [lo]. These simulators implement the

Block LU Factorization in the solution of the linear algebraic equations.

MACRO [i’]. This simulator implements the MLNR method for solving the

nonlinear algebraic equations.

b)

Note that whereas the original system of equations may be sparse, Le.. its

dependency matrix has a small percentage of nonzero elements, the reduced

subsystem may not. Hence the computational advantage of this approach over

the standard approach depends crucially on how small each decomposed sub-

system and the reduced subsystem are. However, the numerical properties of

the tearing approach are the same as those of the standard numerical methods

applied to the system without using decomposition. In fact, for linear algebraic

systems, both the Block LU Factorization and the Tearing Algorithm give the

solution in a finite number of steps since the solution of the reduced subsystem

gives the exact values of the tearing variables. For nonlinear algebraic systems,

the MLhT method still has the same local quadratic rate of convergence as that

of the conventional NR method.

2.2.2. Relaxation Decomposition.

Decomposition of a system into subsystems by relaxation is not restricted

or fixed by the block structure of the dependency matrix of the system. There

is no special procedure for constructing the reduced subsystem in order to

solve for the tearing variables as in the tearing approach. The system of equa-

tions is simply partitioned into subsystems of equations. Within each subsystem,

the variables to be solved for are called i n f e r n a l variables and the other vari-

ables involving in the subsystem are called e z f e d variables. If every

SAMSON also implements a blockwise relaxation technique for solving the nonlinear algebraic
equations. It is an example of usiag decomposition techniques at different levels of equations in the
s ~ m c simulation.

14

subsystem has only one internal variable (or equivalently one equation), the

decompositim is said to be done pointwise. Otherwise, it is said to be done

blockwise.

To solve a subsystem for its internal variables, the values of its external

variables (which are internal variables of other subsystems} are simply guessed

or updated (through an iterative procedure), Le., the subsystem is &coupled or

decomposed. This approach usually requires an iterative procedure for repeat-

edly solving the decomposed subsystems so that the values of the external vari-

ables of each subsystem can be updated by using the information from the

current or previous iterations. Two well known types of relaxation are the

Ghuss-Seidel (CS) [171 relaxation and the Cattss-Jacobi (GJ) [171 relaxation. Fig.

26 gives examples of the use of relaxation decomposition at different levels of

equations where k denotes the iteration count. Fig. 2.7 shows how to associate

relaxation with the conventional numerical methods a t different levels of equa-

tions in the hierachical organization of a time domain simulation.

Unfortunately this approach does not guarantee that the sequence of

iterated solutions will converge to the exact solution of the given system unless

a certain numerical condition on the partitioned system is satisfied. This condi-

tion is called the convergence condi f ion of the relaxation iteration.

As an example, consider the following linear algebraic equations

A z = b (2.10)

where z E If is the vector of the unknown variables, A E pxn and b E R". Let

A = L + D + U (2.11)

where L E If" is a strictlp lower triangular matrix, D E f"" is a diagonal

mat& and U E rf" is a strictly upper triangular matrix.

A strictly (upper or lower) triangular matrix is a triangular matrib w i t h zero diagonal elements.

15

Start ing with an initial guess zo E rr“, the iteration equation of the pointwise

GS relaxation method applied to (2.10) is given by

(L + D)x”+‘ = b - UZ’ (2.12)

from which we obtain

Hence

[& + I - z k] = - (L + 0)-’ u p - z k - 1 1 (2.13)

Therefore the GS relaxation iteration will converge for any given initial guess zo

if and only if all eigenvalues of the matrix (L + D)-’U have magnitudes less than

.

unity.

Now, applying the pointwise GJ relaxation to (2.10). we obtain the following

iteration equation

Dz”’ = b -(L + U)Z’ (2.14)

which leads to the following recursive error equation

Hence, the GJ relaxation iteration will converge for any given initial guess if and

only if all eigenvalues of D-’(L + V) have magnitudes less than unity.

The convergence condition of the relaxation iteration clearly limits the

class of systems to which relaxation can be applied. From practical points of

view, it is also very important to be able to check whether or not relaxation can

be applied before starting the iteration. This implies that we must And a numeri-

cal condition on the elements of the system to guarantee that the convergence

condition is satisfied. For instance, if the matrix A in (2.10) is strictly diagonally

dominant [l?], then the convergence condition of either GS or GJ relaxation

iteration will be satisfied. In circuit simulation, this sufficient condition must be

further interpreted in terms of the properties of circuit elements. If (2.10)

describes the "dc" node equations of a linear resistive circuit, then the condition

that the circuit contains only resistors, i.e., there are no dependent sources, is

sufficient to guarantee the strictly diagonally dominance of A . Obviously, this
c

condition severely limits the type of h e a r circuits to which relaxation can be

applied. Unfortunately weaker convergence conditions (although they exist) are

difficult to characterize or compute. For this reason, relaxation decomposition

has never been used in the "dc" simulation part of a circuit simulator.

The relaxation decomposition has been Arst used in the time domain circuit

simulation by the timing m u l a t o r MOTIS [6] . This approach has later been

modifled and implemented in other mized-mode sim7J.latws such as SPLICE [5] ,

DIANA [9] and SAMSON [lo]. The particular association of relaxation with the

conventional numerical methods used by these simulators has given rise to a

new area of time domain simulation called the timing rimulation.

2.2.2.1. Timing Simulation.

Timing simulation is a time domain circuit simulation which uses a particu-

la r nonlinear relaxation approach for solving the nonlinear equations derived

from the time discretization of the circuit differential equations. This type of

simulation approach was originally introduced [6] for the simulation of MOS digi-

tal circuits. The particular characteristic of timing simulation is that the relax-

ation iteration is not carried out until convergence is achieved. Only one itera-

tion (or sweep) of relaxation is performed and the results are accepted as the

solutions of the nonlinear equations. Thus the timesteps must be kept small to

reduce the inaccuracy of the solutions of the nonlinear equations. However,

since the computational expense of taking one iteration is very small, the com-

17

puter time used in the timing simulation is usually much smaller than that of

the standard simulator. In fact, with the inclusion of the-selective t.race dgo-

Whna or went schedvling algorithm in SPLICE [5] to exploit the latency of digi-

tal subcircuits. the timing simulation approach can be at least two order of mag-

nitude faster than the standard simulation approach. Two critical assumptions

that are responsible for the success of timing simulation are:

1)

2)

There is a grounded capacitors to every node in the circuit.

The subcircuits to be decomposed have unidirectional or almost uslidirec-

tional properties both in the steady state and in the transient situations.

Unfortunately, there are many MOS digital circuits which contain large

floating capacitors and/or trees of pass transistors (see Fig. 2.8). Experiments

with these circuits have indicated that the timesteps have to be kept small in

order to obtain accurate and reliable solutions. This is further complicated by

the fact that there is no reliable technique to determine the appropriate sizes of

these timesteps. The estimation of the local truncation error from the solutions

in order to determine the timestep is no longer reliable since there is no

guarantee that the nonlinear equations are accurately solved at every

t i e p o i n t .

To illustrate the basic steps and numerical properties of timing simulation,

we consider a circuit, such as the one shown in Fig. 2.8. whose node equations

can be written as

c.; + f (v , u) = 0 ; u (0) = v (2.16)

where v (t) E Ii" is the vector of the unknown node voltages, u (t) E d is the vec-

tor of the independent sources, C E If"" is the node capacitance matrix in

which & is the sum of the capacitances of all grounded and floating capacitors

* A grounded ca;racitor is a capacitor in which one of its terminJ3 is connected to a known vol-
tage source, such as an input voltage source or a constsnt voltage souxce, i.e., ground or power sup-
Ply.

18

connected to the i - th node and -Cu, i # j is the total floating capacitance

between the i-th and j - th nodes, and 1 : EfxIE‘+Ef is a Lipschitz continuous

function [25] each component of which represents the sum of currents feeding

the capacitors a t the i-th node. Note that all capacitors are assumed to be

linear and that C is strictly diagonally dominant since there is a grounded capa-

citor to every node.

In timing simulation, the time derivative 6 is discretized by an implicit

integration formula such as the Backward Euler formula in MOTIS and SPLICE or

the Trapezoidal formula in MOTIS-C [27]. For this example, we assume that Axed

t i e s t e p s of size A are used and that the time derivative is discretized by the

Backward Euler formula, i.e.,

Hence, the nonlinear equations obtained through the discretization of (Z16) are

given by

where = z ~ (t ~ + ~) . If (2.17) is solved exactly, then

the sequence of vi will possess all the numerical properties, i.e., consistency and

stability, of the Backward Euler integration method. This is, of course, not the

case in timing simulation. Let

w ~ (f ~ + ~) , vi w v (t i) and

c = L + D + U (2.16)

where L E Ifx” is a strictly lower triangular matrix, D E Efn is a diagonal

matrix and U E gxn is a strictly upper triangular matrix. In timing simulation,

(2.17) can be solved either by GJ relaxation as in MOTIS or by G S relaxation as in

MOTIS-C and SPLICE but only one iteration of relaxation is performed. Applying

one iteration of the pointwise GJ relaxation to (2.17). we obtain the following

equations

19

where vi?: E I? is the guess for the relaxation and, for each component index

j = 1,21...,n,

Similarly, applying one iteration of the pointwise GS relaxation to (2.17), we

obtain the following equations

where ut?: E If is the guess for the relaxation and, for each component index

j = 1,2 ,..., n,

Note that neither (2.19) nor (2.21) are equivalent to (2.17). Hence neither the

sequence of vics nor the sequence of v , ~ necessarily possess the same numerical

properties as the sequence of vi . In other words, the numerical properties of the

Backward Euler integration method are not necessarily preserved through the

one sweep of the relaxation process. Therefore, a complete analysis of the

numerical properties of these combined integrat ionielazafion methods has to

be carried out to characterize them Such an analysis has been done in [la] for

the case when viyp = vFs and vi?," = viff. I t is interesting to note that in this

case, when C is not diagonal, the combined integration-relaxation methods are

not even consistent, i.e., the sequence of vics or vi" does not converge to the

true solution of the original differential equations (2.16) as the stepsize h goes

to zero. This result can be easily shown by examining (2.19) and (2.21) when

Vi+ l cso = viw and vi?: = vi". From (2.19) we obtain

and from (2.21) we obtain

0

We immediately see that the effects of L and CJ which are due to the floating

capacitors completely disappear from (2.23) and partially disappear from (2.24).

In fact (2.23) can be exactly obtained by applying the combined integration-GJ-

relaxation to the following differential equations (with the initial guess

vi?: = uta)

D ; + ~ (u , u) = 0 ; v (0) = v (2.25)

and similarly (2.24) can be exactly obtained by applying the combined

integration-GS-relaxation to the following differential equations (with the initial

guess viso = vi?

(13 + t) 4 + J (V , U) = 0 ; v (0) = v ' (2.26)

That is, these methods are solving dynamical systems which are not the same as

the original system described by (2.16). The circuit interpretations of both

(2.25) and (2.26) for the original circuit of Fig. 2.8 are shown in Fig. 2.9 and Fa.
2.10 respectively. This is a good example to show why these methods work

rather well when there are no floating capacitors or when the floating capaci-

tances are small compared to the grounded capacitances.

Some of the drawbacks of the above methods can be overcome. It can be

easily shown that the use of the Forward Euler formula to generate the initial

guess for the relaxation w i l l at least make the combined integration-relaxation

method consistent with the circuit equations. Also the study carried out in [18]

has hdicated that the use of another type of relaxation based on an idea by

K a h a n [191 results in a class of combined integration-relaxation methods, called

the modified symmetric CaUss-Seidel integration, which has better numerical

21

properties. Another simple way to improve the reliability of timing simulation is

to continue the relaxation iteration until convergence is achieved. This latter

technique is dicussed in more detail in Appendix B.

2.2.3. Concluding Remarks.

We have described and classified various decomposition techniquds that

have been proposed and implemented. Whereas the relaxation approach t o solv-

ing linear and nonlinear algebraic equations has been treated quite extebsively

(see [17] for the linear case and [20] for the nonlinear case), the study of the

relaxation approach a t the difIerential equation level is still open both as a

numerical method and as a new tool for performing time domain simulation. At

this level, each decomposed subsystem is still a system of differential equations

and hence can be solved in the time domain by using conventional numerical

methods, e.g. the Backward Euler formula, the Newton-Raphson method and the

Gaussian Elimination method as shown in Fig. 2.7. The purpose of this disserta-

tion is to provide a complete study of this new decomposition technique which

we call the Waveform Relazdtion (WR) method.

22

system of nonlinear

Merentid equations

integration formula
I

system of nonlinear

algebraic equations

Mi iteration h o p Newt on-Raphson

iteration I system of linear

algebraic equations

Gaussian

Elfmination

I f
V

Solution vector

Rg. 2.1

Hierachical organization of conventional numerical methods

for t ime domain simulation

baring variables
A

+ border

.

9

Rg. 2.2a

Bordered Block Diagonal (BBD) form of a matrix.

b border

tearing variables

+

Rg. 2a
Bordered Block Lower Triangular (BBLT) form of a matrix.

24

8

O

A

C

E

B

D

0

F

f +

6 C

D E

A 1c

~ 0

b

A

G H

Rg. 2.3

Various terms associated with Block LU Factorization and Tearing Algorithm.

Y

Rg. 2.4

a) An interconnection of two analog inverters.

b) Node tearing decomposition of the circuit in Fig. 2 . k .

Ag. 2 5

The reduced circuit of the circuit in

F'g. 2.4a a9 viewed by the tearing variable z11.

a) Relaxation decomposition of Merentia1 equations

b) Relaxation decomposition of nonlinear algebraic equations

c) Relaxation decomposition of linear algebraic equations

Q. 2.6

?

&
.

*
RELAXATION system of nonlinear

iteration dfflere nt id equations

EliminRtion

Implicit numerical

integration lormula .

SoluUon subvector

!mplicit numerical

integration formula

system of linear

algebraic equations

?- RELAXATION

& iteration
.

sparse Gaussian

Elimination

Solution vector

system of nonlinear

algebraic equations

Fq. 2.7

The use of relaxation at various lewis of system d equations.

?-
r

-1

KELAXATION

iteration

2%

floating capacitor

,vi
pass transistor

-
grounded capacitor - - I -

Rg. 2.8

A typical MOS circuit that contains a pass transistor and floating capacitors

29

Rg. 2.0

The circuit interpretation of the application of

the combined integration-GJ-relaxation to the circuit of

Flg. 2.0 (according to equation (2.25)).

FQ. 2.10

The clrcuit interpretation of the application of

the combined integration-GS-relaxation t o the circuit of

Flg, 2.8 (according to equation (2.26)).

31

Chapter 3

The Waveform Relaxation Method

In this chapter we describe the basic mathematical concept of the

Waveform Relaxation (WR) method together with a few circuit examples to

demonstrate the physical interpretation of the decomposition achieved by the

method.

3.1. Mathematical Formulation.

W e consider dynamical systems which can be described by a system of

mixed implicit algebraic-differential equations of the form

(3. la)

(3.lb)

where y (t) E If is the vector of the unknown variables at time t , s (t) E If is the

time derivative of y at time f , u (t) E Ii' is the vector of the input variables at

time f , yo E $ is the given initial value of y, F : I f x € f x d + $ is a continuous

function, and E E F f x p , n < p is a matrix of rank n such that Ey (f) is the state

of the system at time f. .

Note that equation (3.lb) is meant to supply the initial conditions for the

state variables [23] of (3.1a). We shall assume that yo is chosen so as to give

y(0) = yo, i.e., yo also satisfies all the algebraic relations embedded in (3.la).

In circuit simulation, yo is usually obtained from the so called "dc" solution of

the system, i.e., it satisfies

F(jl(O),yc, d o)) = 0 ; i (0) = 0 (3.2)

The general structure of a WR algorithm for analyzing (3.1) over a given

time interval [O.T] consists of two major processes, namely the assigrment-

partitioning process and the TelaxaCion process.

32

3.2. The Assignment-Partitioning Process.

In the assignment-partitioning process, each unknown variable is zssigned

to an equation of (3. la) in which it is involved. Xowever, no two variables can be

assigned to the same equation. Then (3.la) is partitioned into m disjoint' sub-

systems of equations, each of which may have only differential equations or only

algebraic equations or both. Without loss of generality, we can rewrite (3.1)

after being processed by the assignment-partitioning process as follows:

where, for each i = 1,2,...,ml yi ~l$' is the subvector of the unknown variables

assigned to the i - th partitioned subsystem. Fj : ~ ' x I ? { ~ ~ - @ ~ x d + I f ' is a con-

tinuous function, and

It is clear that if the vectors &, i = 1.2, ...,m, are treated as the input vari-

ables of the system described by (3.3a), then the system can be easily solved by

solving m independent subsystems associated with F1, F2, . . . , Fm respectively.

Therefore they are called the decoupling vectors of the subsystems. This gives

rise to the notion of the decomposed system as given in the following definition.

r

1. There are cases in which the algorithm has better convergence properties if the subsystems
are nondisjoint. For such cases, we can consider the nondisjoht subsystems (~ 9 b e a obtained from
partitioning an augmented system of equations with an augmented set of unknown variables.

gccol(rrlb)k$)

Deljnition 3.1 The decomposed system associated with an assignment-

partitioning process applied to (3.1) -consists of m independent subsystems,

called decomposed subsys tems, each of which is described by

(3.44

(3.4b)

where yoi E I? is the subvector of the given initial vector yo, ci E R"'-*{ is the

vector of the decoupling inputs, Fi : I ? x E Q ' x ~ - @ ' x d + 2% is a continuous

function as given by (3.3a), and Ei E eXa, % ' p i is a matrix of rank % such

that E,y, is a state vector of the i-th decomposed subsystem described by (3.4).

m

3.3. The Relaxation Process.

The reiaxation process is an iterative process. For simplicity, we shall con-

sider two most commonly used types of relaxation, namely the Gzuss-SeideZ [17]

(GS) relaxation and the CazLss-Jucobi [l?] (GJ) relaxation. The relaxation process

starts with an initial guess of the waveform solution of the original dynamical

equations (3.3) in order to initialize the approximate waveforms of the decou-

pling vectors. During each iteration, each decomposed subsystem is solved for

its assigned variables in the given t i e interval [0, T] by using the approximate

waveform of its decoupling vector. For the GS relaxation, the waveform solution

obtained by solving one decomposed subsystem is immediately used to update

the approximate waveforms of the decoupling vectors of the other subsystems.

For the GJ relaxation, all waveforms of the decoupling vectors are updated at

the beginning of the next iteration. The relaxation process is carried out

repeatedly until satisfactory convergence is achieved.

Let the superscript index k denote the WR iteration count. Then the gen-

eral structure of a WR algorithm can be formally described as follows:

The WR Algorithm Model 3.1

Step O (Assignment-partitioning process)

Assign the unknown variables to the equations in (3.1) and partition

(3.1) into m subsystems of equations as given by (3.3).

Step 1: (Initialization of the relaxation process)

Set k = 1 and guess an initial waveform (ya(t) : t E [O,T]) such

that y * (~) = y(0) = yo.

Step 2 (Analyzing the decomposed system at the k-th WR iteration)

For each i = 1,2 ,..., m, set

for the G S relaxation, or

for the GJ relaxation, and solve for (yt(t) : t E [O,T]) from

Step 3 (Iteration)

Set k = k + l and go to step 2.

Remarks.

1) A simple guess for (yo(t) ; t E [0 , T I) is y o (t) = y(0) for all t E [0, T].

(3.5a)

(3.5b)

c

2) In the actual implementation, the relaxation iteration will stop when the

difference between the waveforms (yk(f) : t E [O,T]) and

(y*"(t) : t E [o ,T]) , i.e.. IIyk((t) -yk-l(t)lI, is sufficiently small.

3) In analogy to the classical relaxation methods for solving linear or nonlinear

algebraic equations [17,20]. it is possible to modify a WR algorithm by using

a Telazcrtion panzmefer u E (0,2). With w , the iteration equation (3.5) is

modifled to yield

F(&P i e yi -L: 8 4 ’ 8 u) = 0 (3. sa)

Ei(GZ(0) - ~ i (o) > = 0 (3.6b)

yt = yt-1 + w(cZ - $1) (3.6~)

4) Note the following two important characteristics of the WR Algorithm Model

3.1.

a) The analysis of the original system is decomposed into the indepen-

dent analysis of m subsystems.

b) The relaxation process is carried out on the entire waveforms, i.e.

during each iteration each subsystem is individually analyzed for

the entire given time interval [0, TI.

3.4. Circuit Examples and Their Physical Interpretations.

In this section, we shall use a few specific examples to demonstrate the

applications of the YjX Algorithm Model 3.1 in the analysis of lumped dynamical

circuits and t o give the circuit interpretation of the decompostion. Dif!ferent

formulations of the circuit equations will be used to illustrate the resulting

de compositions.

Example 3.1

Consider the circuit shown in Fig. 3.1. Using Nodal Analysis [23] formulation

with v1 and v2 as the circuit variables, the node equations of the circuit are

(C, + Cs);1 - C$2 + G ~ v , = J ; v m = VI @.?a)

38

(C2 + C3)42 - C341 + G 2 ~ 2 = 0 : VZ(0) = v2 (3.7b)

Let v1 and v 2 be assigned to (3.7a) and (3.7b) respectively and let (3.7) be

partitioned into two subsystems consisting of {(3.?a)j and t(3.7b)j. Applying the

WR Algorithm Model 3.1, the k-th iteration of the corresponding GS-WR algorithm

corresponds to solving

for the first subsystem, and

(Cg + Ca);f - C&f + GZU~ = 0 ; vS(0) = v2 (3.8b)

for the second subsystem. The circuit interpretation of the decomposed circuit

at the k-th iteration, as described by (3.8), is shown in Fig. 3.2. 8

Example 3.2

Consider the circuit shown in Fig. 3.1. Using Modified Nodal Analysis [21]

formulation with vl, v 2 and is as the circuit variables, the circuit equations can

be written as

Let v l , u2 and is be assigned to (3.9a), (3.9b) and (3 .9~) respectively and let

(3.9) be partitioned into two subsystems consisting of j(3.9a)j and

1(3.9b),(3.9c)j. Applying the WR Algorithm Model 3.1, the k-th iteration of the

resulting GJ-WR algorithm corresponds t o solving

for the first subsystem, and

CZCt + G ~ v $ -i$ = 0 ; vh(0) = v, (3. lob)

37

i$ - cs(7?f-' 4 2 ") = 0 (3.10c)

for the second subsystem. The circuit interpretation of the decomposed circuit

at the k-th iteration, as described by (3.10), is shown in Fig. 3.3.

&le 3.3

Consider again the circuit shown in Fig. 3.1. Using a "Sparse Tableau [22]

like" formulation with v l , v,. v3, i,, i, and i, as circuit variables, the circuit

equations can be written as

ClC1 - i 1 = 0 ; (3.1 la)

c&-i, = 0 ; (3. l l b)

c3;3 -i, = 0 (3.1 I C)

us - v i +v2 = 0 (3.11 d)

G 1 ~ 1 + i l + i 3 = J (3.1 le)

G z v , + i 2 - i 3 = 0 (3.11f)

Let vl , vz, is, v3, i,, i 2 be assigned to (3.lla) through (3.11f) respectively

and let the system be partitioned into three subsystems consisting of

~(3.11a),(3.11e)~, 1(3.11b),(3.11f)] and [(3.11c),(3.11d)]. Note that we cannot

assign vl, v2, v 3 to (3.11a). (3.11b). (3.11~) respectively since one of them has to

be assigned to (3.1 Id). Applying the WR Algorithm Model 3.1, the k -th iteration of

the resulting GJ-WR algorithm corresponds to solving

C I C f - i f = o ; vf(0) = v, (3.12a)

Glut + if + i 8 - l = J (3.12b)

for the first subsystem,

~ ~ 6 8 -if = o ;
&ut + if -it-' = o

vg(0) = v, (3.12c)

(3.12d)

for the second subsystem, and

(3.12e)

(3.12f)

for the third subsystem. The circuit interpretation of the decomposed system

at the k-th iteration, as described by (3.12). is shown in Fig. 3.4. R

39

Kg. 3.1

Rg. 3.2

Example 3.1: Circuit interpretation of a GS-WR algorithm

applied to the circuit of Fig. 3.1.

Flg . 3.3

Example 3.2: Circuit interpretation of a GJ-WR algorithm

applied to the circuit of Flg. 3.1.

k
v;

k
vr

k
+ 3 - I.

ng. 3.4

Example 3.3: Circuit interpretation of a GJ-WR aigorithm

applied to the circuit of Fig. 3.1.

41

Chapter 4

Consistency of the

Assignment-Partitioning (AP) Process

In this chapter we introduce the concept of cons is tency of the assignment-

partitioning (M) process and show how an inconsistent AP process can lead to

serious convergence problems for the relaxation process of the WR algorithm.

The formal approach for finding a consistent AP process or verifying its con-

sistency directly from the system equations will be addressed by using tech-

niques based on the graph-theoretic interpretation of the algehaic-dife7entitz . l

dependency d r i x associated with the system equations.

4.1. Definition of Consistency and Examples.

Decomposition of a system of equations into subsystems of equations

through relaxation is specified by the AP process. If the system is purely alge-

braic, Le., it contains only algebraic equations, then the decomposed system as

defined in the previous chapter will also be purely algebraic independent of the

choice of assignment and partitioning. However, in our case the given system

contains dflerential equations. Hence, it is possible that, for some particular

choices of assignment and partitioning, some differential equations of the sys-

tem are converted into algebraic equations in the decomposed system

To show the effect of the AP process on the dynamical behaviour of its asso-

ciated decomposed system, consider the following system of equations

i , + x , + x 2 + u 1 = 0

& + z 2 + z , + u 2 = 0

(4. la)

(4.1 b)

Assume that we want to partition this system into 2 subsystems consisting

of t(4.1a)j and t(4.lb)I. If we choose to assign z1 and z2 to (4.la) and (4.lb)

respectively, then the decomposed system according to Definition 3.1 is given by

i l + Z 1 + ~ l + u l = 0

which is a dynamical system with two state variables z1 and z2 as in the original

system (4.1). On the other hand, if we choose to assign z1 to (4.lb) and z2 to

(4. la), then the decomposed system is given by

which is a purely algebraic system, i.e., it has no state variable.

From the above example, it is clear that different choices of the AP process

can result in decomposed systems with entirely different dynamical behaviours.

Furthermore, it is very important to choose an AP process such that the dynam-

ical behaviour of its associated decomposed system is as close to that of the ori-

ginal system as possible in order to obtain good convergence properties of the

relaxation process. Therefore, by using the concept of state variables [23], we

can classify the AP processes into two categories. namely the consistent AP pro-

cess and the inconsistent AP process.

Definition 4.1 A n AP process is said to be consistent with a given dynamical sys-

tem if any choice' ot the state vector of its associated decomposed system is

also a valid choice of the state vector of the given system. The decomposed sys-

tem associated with a consistent AP process is also said to be consistent with

the given system and a WR algorithm that uses a consistent AP process is called

a consistent WR algorifhm.
~~~~~~ 

1 In general, the choice of state variables of a dynamical system is not unique. 



43 

The following two examples illustrate why consistency of the AP process 

plays an importimt role in the convergence of the relaxation process. 

Example 4.1 Consider a dynarnical system described by 

(4.2a) 

(4.2b) 

This system has one state variable. Suppose that y1 and y2 are assigned to 

(4.2b) and (4.2a) respectively and that the system is partitioned into two subsys- 

tems consisting of l(4.2a)J and l(4.2b)j. Applying the WR Algorithm Model 3.1, 

the k-th iteration of the resulting GS-WR algorithm corresponds to solving 

(4.3a) 

(4.3b) 

Notice that the decomposed system at the k-th iteration, as described by 

(4.3). is purely algebraic. Hence, this AP process is inconsistent with the given 

system. From (4.3). it is easy to derive that the iterated solution of the decorn- 

posed system is given by 

which leads to the following results: 

a) If the initial guess of the relaxation process is yP( t )  = e-d with a > 0, then 

the iterated solution yt(.) or y$(.) will diverge. This result is independent of 

the input u(* ) .  

If the input is u( t )  = e-d with a > 1 and yP( t )  = 0. then the iterated solu- 

tion will diverge. 

b) 

c) If the input is piecewise continuous with at least one discontinuity, e.g. 



44 

t s l  u( t )  = O { 1 t > l  

and y f ( t )  = 0, then the iterated solution will be discontinuous and 

unbounded at the points of discontinuity of the input whereas the exact 

solution of the given system is continuous and bounded within any fhite 

time interval. 

d) If u( t )  = a and y f ( t )  = 0, then the iterated solution y f ( t )  or y $ ( t )  con- 

verges to  g 1 ( t )  = ge( t )  = a whereas the exact solution of the given system 

is yl(t) = y z ( t )  = a ( I - e - ; ) .  m 

Example 4.2 Consider again the same dynamical system described by (4.2). 

This time we assign y1 to (4.2a) and yz to (4.2b). Applying the WR Algorithm 

Model 3.1, the k-th iteration of the resulting GS-WR algorithm corresponds to  

solving 

Notice that this time the decomposed system at the k-th iteration, as 

described by (4.4). has one state variable y1 which is also a state variable of the 

given system. Hence, this AP process is consistent with the given system of 

equations (4.2). In contrast to Example 4.1, we shall show that, for any given 

time interval [O,T],  the iterated solution of (4.4) always converges to the exact 

solution of the given system (4.2) independent of the initial guess yp(.) and the 

input u(.). 

From (4.4) and (4.2). we obtain 

G f - 5 1  = -(&I -y1) ; YP(0) - Yl(0)  = 0 

from which the solution is 



45 

(4.5) 

(4.7) 
A Ek = max le-2t(y:(t) -y l ( t ) ) (  

t E [o.Tl 

Therefore 

1 -Eo 
2k 

1 Ek S -Ek-' S 2 

Hence lmEk  = 0 which implies that the iterated solution ( y f ( t )  ; t E [O.T]) 
k- 

always converges to the exact solution of the given system (4.2) independent of 

the initial guess yf(.) and the input u(.). rn 

The above two examples clearly indicate that an inconsistent AP process 

can lead to serious convergence problems for the relaxation process of the WR 

algorithm and should be avoided. To give an intuitive reason why inconsistent 

AF' processes should be avoided, consider a dynamical system which has n 

states. Suppose that an inconsistent AP process applied to this system produces 

an inconsistent decomposed system having rn states where rn # n. This means 



that the natural response of the decomposed system has rn natural time con- 

stants whereas the natural response of the given system has n natural t i e  con- 

stants. Therefore it is not very likely that the iterated solution obtained from 

the relaxation process which iterates only on the decomposed system w i l l  con- 

verge to  the exact solution of the given system, let alone the fact that i t  might 

not converge at all. For this reason, we shall focus only on consistent WR algo- 

rithms. Note that all the AP processes that we used in the examples of the pre- 

vious chapter are consistent with the circuit equations. We shall also see later 

that, for large scale integrated circuits, there are simple procedures that 

automatically guarantee the consistency of the WR algorithms. Of course, using 

a consistent AP process does not necessary imply that convergence is 

guaranteed. Additional conditions on the consistent decomposed system to 

guarantee convergence of the iterated solution will be discussed in the next 

chapter. 

Having stated that inconsistent AP processes are  undesirable, the next 

problem that we shall address is how to obtain a consistent AP process or.how to 

verify that an AP process is consistent or not. In general, there are two 

approaches to this problem, namely the physical approach and the formal  

approach. The physical approach is based on the physical interpretation and the 

physical structure of the system being considered. For example the state vari- 

ables of a lumped electrical circuit are  usually voltages (or charges) across 

capacitors and currents (or fluxes) through inductors. Hence, given the circuit 

topology, a circuit designer can easily identify the state variables of the circuit. 

This approach uses the fact that the decomposed system also has a physical 

interpretation (as we have demonstrated earlier in the previous chapter). Based 

on the physical interpretation, the state variables of the decomposed system 

are identifled and are used to verify consistency of the AP process. In fact, to 

obtain an AP process, it is customary to first identify the state variables of the 

, 



47 

given system and then choose an A P  process such that these variables are also 

the state variables of the resulting decomposed system. On the other hand, the 

formal approach relies on using an algorithm to identify the state variables of 

the system directly from the system equations without depending on the physi- 

cal interpretation. h'ence it is more general than the physical approach. 

4.2. The Formal Approach for Finding and Checking a 

Consistent AP Process. 

In order to check the consistency criteria formally as specified by 

Definition 4.1, we must be able to identify directly from the system equations a 

set of variables that can form a state vector of the system. However, since we 

are dealing with a system of mixed implicit algebraic-differential equations of 

the most general form, Le., 

we shall not attempt to determine explicitly the state equation form of the sys- 

tem equations. In fact, a global representation of the state equations of the sys- 

tem may not even exist. Therefore, in our approach, we shall identify the state 

vector of the system symbolically from the dependency structure of the system 

equations which is given in the form of an algebraic-diflerential dependency 

matrix. 

Definition 4.2 The algebraic-differential  dependency  mcrfriz of a system of p 

equations in p unknown variables yl, y2, ...,yp is a matrix D E I f x p  whose ij-th 

element is given by 

o j = o  
Du = 1 if the i-th equation involves y j  but not Gj 

Dv = 2 if the i- th equation involves G j  

if the i- th equation does not involve yj or G j  



Definition 4.3 The symbolic s t a t e  v e c t o r  of a given system of equations whose 

algebraic-differentia1 dependency matrix is D is the largest  state vector that a 

system of equations whose algebraic-differential dependency matrix is D can 

have. The dimension of the symbolic state vector is called the symbolic  number 

of s t a t e s  of the given system. 8 

For example. consider a lumped electrical circuit consisting of independent 

sources, capacitors and resistors. I t  is easy to see that the symbolic number of 

states of the circuit is equal to the total number of capacitors minus the total 

number of CE and C loops where CE loops are loops of capacitors and indepen- 

dent sources and C loops are loops of capacitors only. Note that in this case the 

symbolic state vector is also the state vector of the circuit. In most cases, it is 

easy to identify the symbolic state variables of any circuit by simply examining 

the circuit topology and the type of elements in the circuit, e.g. resistors, capa- 

citors and inductors. However, the following example shows that, for any arbi- 

trarily given system of equations, the symbolic state vector may be larger than 

the actual state vector of the system. 

Example 4.3 Consider the following system of equations 

1 .61  + 3.G2 + Y1-'1L1 = 0 

1.0$1+ 2.0;, + y2 -212 = 0 

(4. sa) 

(4.8b) 

Multiplying (4.8b) by 1.5 and subtracting it from (4.8a). we obtain 

which is an algebraic equation. Hence this system has only one state, i.e., either 

y1 or yz. Equation (4.9) is a conditional algebraic equation since it is induced by 

particular values of the coefficients that make the coefficient matrix of j( singu- 

lar. Notice that a slight random perturbation of the coefficients can easily des- 

troy this conditional algebraic relation since a matrix of the same zero-nonzero 



structure as the coefficient matrix of is nonsingular for all values of the 

coefficients except for a set of null measure [26]. The symbolic number of states 

of (4.8) is thus equal to  2 and the symbolic state variables of the given system 

are Yl and YP. 

Assumption 4.1 (Nondegeneracy of the symbolic state vector). 

Given a system of algebraic-differential equations, its state vector is a sym- 

bolic state vector. m 

The nondegeneracy assumption 4.1 makes the problem of finding a state 

vector of a given system tractable. This assumption is rather mild in practice. 

Based on this assumption, we can formulate our problem into a graph problem 

dealing only with the algebraic-differentia1 dependency matrix of the given sys- 

t e m  We first introduce a few definitions derived from the standard definitions in 

graph theory [24]. 

Dellnition 4.4 The weighfed bipartite graph associated with an algebraic- 

differential dependency matrix D E I f x p  of a given system of equations is a 

bipartite graph, denoted by (S, V,B) ,  with the following properties: 

S = V = [1,2 ...., p ] .  S and V are the sets of nodes in the graph. S 

corresponds to the set of indices of the system equations, Le., the row 

indices of D, and V corresponds to the set of indices of the system vari- 

ables, i.e., the column indices of D. 

B = [(s ,u) I s E S ,  v E V, D, it O] represents the set  of all edges joining the 

nodes of S to the nodes of V. 

The weight of an edge ( s , u )  E B ,  denoted by w(s,u).  is equal to D,. rn 



50 

Definition 4.5 A match ing  of a weighted bipartite graph (SI V B ) .  denoted by M ,  

is a set of edges with the property that no two edges have a node in common. If 

IMl = IS1 = I VI where 1 1 denotes the cardinality of a set, Le., the number of 

edges in M is equal to the number of nodes in either S or  V, A! is then said to 

be a comple te  match ing .  m 

From the above dehition, a matching is actually a graph-theoretic 

interpretation of the assignment s t q e  of the AP process. That is, each edge of 

the matching represents the assignment of a system variable to a system equa- 

tion. The weight of the edge indicates whether the assigned variable will be 

treated as a symbolic state variable or not. An example of a system of equa- 

tions, its weighted bipartite graph and some complete matchings of the graph is 

shown in Fig. 4.1 and Fig. 4.2. 

Definition 4.6 The weight of a match ing  M of a weighted bipartite graph 

(S ,V,B)  is equal to w ( s , v ) ,  i.e., it is the sum of the weights of all edges in 

the matching. A complete matching M is said to be a mazimum weighfed com- 

(a.v) E Y 

plete matching of a weighted bipartite graph if its weight is larger or equal to 

the weight of any other complete matching of the graph. m 

For example, consider the systems of equations shown in Fig. 4.1 and Fig. 

4.2. In both cases, it is easy to see that both M 1  and M3 are maximum w-eighted 

complete matchings but Mz is not. In Fig. 4.1, the weight of Hl or MS is 6 

whereas the weight of M I  or M3 in Fig. 4.2 is 5. 

The following lemma gives a graph property of a maximum weighted com- 

plete matching which will be useful in checking whether an AP process is con- 

sistent or not. 



51 

I 

bmma 4.1 Define an alternating cycle with respect to a matching M of a given 

weighted bipartite graph (S ,V,B)  as a set of edges, denoted by L, such that it 

forms a simple cycle (or loop) in the graph and that no two edges of L n a  have a 

node in common, Le., the cycle is formed by alternating edges from M and B 
where denotes the complement of M. Then M is a maximum weighted com- 

plete matching if and only if. for any alternating cycle L with respect to M, 

Le., the total weight of edges in the alternating cycle that belong to Y is larger 

than or equal to the total weight of edges in the cycle that do not belong to M. m 

We now give the following result which states that the symbolic state vector 

of a given system of equations is associated with a maximum weighted complete 

matching of its weighted bipartite graph. 

hmma 4.2 Given a system of p algebraic-differential equations in p unknown 

variables yl, yz, .... yp and its weighted bipartite graph (S, V,B),  let M be a max- 

imum weighted complete matching of the graph. Then the set  of variables 

jyv I (s  , v )  E M and w(s .v )  = 21 is a set  of the symbolic state variables of the sys- 

tem and u - p  is the symbolic number of states where u is the weight of M. If 

the system also satisfies the nondegeneracy assumption 4.1, then the set 

tyv I (s , v )  E M and w ( s , v )  = 21 forms a state vector of the system. m 

For example, in Fig. 4.1, the weight of the maximum weighted complete 

matching M I  or M3 is 6 ,  indicating that the symbolic number of states of this 

system is 6-3 = 3. Hence, provided that the coefficient matrix of is nonsingu- 

lar, the set of the state variables of the system is fy l ,  y2, ys{. In Fig. 4.2, the 

weight of the maximum weighted complete matching .MI or M3 is 5, indicating 

that the symbolic number of states of the system is 5-3 = 2. Hence. provided 

that the coefficient matrix of attains its maximum rank (which is 2). the set of 

state variables of the system is either lyl, y31 or lyl, y21. 



52 

We are now ready to describe an algorithm for finding a consistent Ap pro- 

cess. The basic idea behind this algorithm is to maintain the symbolic state vec- 

tor  of the given system as a symbolic state vector of the decomposed system. 

Hence, the resulting AP process is consistent with the given system if both the 

given system and the decomposed system satisfy the nondegeneracy assump- 

tion 4.1. 

Algorithm 4.1 (Algorithm for Finding a Consistent AP Process) 

Step 1: Find a maximum weighted complete matching M of the weighted bipar- 

tite graph associated with the given system of equations 

Step 2 Select the assignment according to M and the state variables according 

to  Lemma 4.2. 

Step 3: Perform the partitioning of the system equations into subsystems of 

e qua ti ons . 

Remarks 

1) The problem of finding a maximum weighted complete matching is a stan- 

dard problem in combinatorial optimization [24] and there are eflicient 

algorithms for it. 

By assigning the variables according to  the matching M given by Step 1, we 

guarantee that M is also a maximum weighted complete matching of the 

weighted bipartite graph associated with the decomposed sys tem indepen- 

dent of the choice of partitioning of Step 3. m 

2) 



To check if an AP process is consistent or not, first- map the assignment of 

the given AP process into a complete matching of the weighted bipartite graph 

and apply the result of Lemma 4.1. If the matching satisfies (4.10) of the lemma, 

then it is a maximum weighted complete matching and, by L e m a  4.2. we can 

conclude that the Ap process is consistent with the system. 



54 

p ld variable 

zd equation >< z"d variable 

3d equation 3rd variable 

s V 

/ * @  \ 
1" equation ct * 

.-: 

(b) 

MI = 1(1,1), (2,2), (3,3) 

Me = !(1,2), (24, (3,3) 

(4 
MJ = t(1,1), (2,3), (3,2) 

p5g. 4.1 a) The system equations. 

b) The weighted bipartite graph associated with the system. Solid lines 

represent edges with weight=2 and broken Lines represent edges 

with weight= 1. 

c)  Some complete matchmgs of the graph. 



55 

A ld variable 

ZM variable 

0 
& 

N 0  
% 

\ 
1" equation q 

2"' equation <- - - - - 
00c. 

\ 
% 

P equation 3* variable 

S Y 

(b) 

Ml = 1(1,1), (22). (3,3) 

M a  = t(1,2), (24, (3#3) 

(4 
Ms = 1(1,1), (2,3)* (3#2) 

F5g. 4.2 a) The system equations. 

b) The weighted bipartite graph associated with the system. Solid Lines 

represent edges with weight=:! and broken lines represent edges 

with weight= 1. 

c) Some complete matchmgs of the graph. 



58 

Chapter 5 

Convergence of the WR Method 

A WR algorithm applied to a given dynamical system is said to converge if it 

generates a converging sequence of iterated solutions whose limit is the solution 

of the given system with the given initial conditions. In this chapter we give 

sufficient conditions on the decomposed system to guarantee convergence of 

the WR algorithm. The key principle behind them is the well known mathemati- 

cal concept of contrac t ion  property of a map. To be able to  give the convergence 

conditions of the WR algorithm in a simplified form, we shall introduce the 

definition of the canonical WR algor i thm.  Sufficient conditions to  guarantee the 

existence of a canonical WR algorithm will also be given. 

5.1. Contraction Theorems in Functional Space. 

From an abstract viewpoint, the WR method can be considered as a f h e d  

pdn t  algorithm [20] or a method oj ’  success ive  approximations for finding a 

f i z e d p o i n t  [ZO]  of a map in a functional space of waveforms. To illustrate this 

point, we define Y as a space of waveforms within a given time interval [O,T], Le.. 

Y = fy(*) : [O,T]+RPj (5.11 

Next, we defhe a map F: Y+Y such that F(y(.)) is the solution of the decom- 

posed system wi th  the given initial condition and wi th  y(.) as the guess in com- 

puting the decoupling vector of each decomposed subsystem. Then the relaxa- 

tion iteration of a WR algorithm can be rewritten as 

vk(9 = F(Y”-’(.)) 

Clearly, if c(.)  is the exact solution of the given system, we have 



That is, the solution of the given system is a fixed point of the map F and the WR 

algorithm, as described in the form of (5.2), is called a fixed point algorithm. 

The sufficient condition for convergence of a fixed point algorithm is based 

on a well known property of the map F whose fixed point is being sought. This 

property is called the contraction property [20] d e h e d  as follows. 

Definition 5.1 Let Y be a complete normed space [26] (or a Banach space [26]). 

A map F: Y+Y is contractive if there is a constant y E [0,1) such that 

Theorem 5.1 (Contraction Mapping Theorem) 

Let Y be a complete normed space and F :  Y+Y be a contraction map. Then 

= F(G). Furthermore, for any initial F has a unique fixed point y^ E Y satisfying 

guess yo E Y, the sequence tyk E Yjz=l generated by the k e d  point algorithm 

yL: = ’ p(y”1) k = 1,2, ...,= 

converges uniformly to y^ and the rate of convergence is given by 

IIY’ - $11 5 FlbO - $ 1 1  (5.4) 

where y is the contraction constant of F. e 

The Contraction Mapping Theorem [20] is a well known theorem in 

mathematics. Since it is of importance for the proof of the convergence of the 

WR algorithm, we shall review the proof of this theorem in the appendix. This 

theorem w i l l  serve as a fundamental mean for deriving sufficient conditions for 

the convergence of the WR algorithm in terms of the numerical conditions of the 

decomposed system equations as we shall see in the next section. 



50 

In practice, due to rounding or discretization errors in evaluating F, an 

approximate sequence is generated in place of the exact sequence, Le., 

y'+' # F(yk). Furthermore, the map F itself can also be sequentially approxi- 

mated. The next theorem states that if F is contractive, there is an adaptive 

scheme for controlling the errors due to these approximations which will gen- 

erate a sequence of solutions that converges to the k e d  point of F. 

Theorem 5.2 Given that F and Fk ; k = 0.1. ...,= are contraction maps from a 

completed normed space Y to Y with contraction constants y and y k  : k = 0, 

I,....= respectively, let y^ E Y be the unique fixed point of F, Le., F ( C )  = y^, and 

lyk E Y{g=o be a sequence in Y. Define 

A = &) f bk  

and 
k = O , l ,  ...,= 

if 0 9 j 4 k - 1  
if j r k  

Then the following statements hold. 

(5.9) 

(5.10) 

k 
c) If limak = O, Limpkj = o for anyj and lim Eakj  = c < =, 

k +- k -- k+"j=O 

n then l imyk = y .  
k -- 

ComUary5.2 If y k  S?< 1 for a u k  = 0.1 ,..., = and limak = 0 ,  then 
k -- 

n limy* = y. 
k- 

8 



Remark Note that (5.9) and (5.10) have different uses. Whereas (5.9) is used to 

prove the convergence of the approximate sequence, (5.10) may serve as as a 

computable estimate which may be used to terminate the iteration. H 

Careful examination of Theorem 5.2 indicates that cl: denotes the .error due 

to the evaluation of Fk whereas 6, is somewhat related to how accurate Fc 

approximates l? This theorem is of particular importance for the WR method 

since practical implementation of a WR algorithm always entails some numerical 

errors. The most obvious error is the error due to the discretization of the time 

derivative in the integration method and hence can be represented by E ~ .  More- 

over, bk can also be used to represent the errors caused by solving a simplified 

decomposed system. i.e., the equations describing the decomposed system are 

simplified. Theorem 5.2 states that if the conceptual (or ideal) version of a WR 

algorithm satisfies the Contraction Mapping Theorem then convergence of its 

implementable version is still guaranteed if these errors are eventually driven 

down to zero. 

5.2. Convergence of the Canonical WR Algorithm. 

In this section, we shall derive sufficient conditions to guarantee conver- 

gence of a WR dgorithm in terms of the numerical properties of the iterated 

equations. However, to be able to obtain interesting and useful results, i t  is often 

necessary to make certain restrictions on the object that we study. Here we 

require that the iterated equations of a WR algorithm can be transformed into a 

canonical form as defined below. 

Definition 5.2 A canwLical WR algorithm is characterized by the following 

iterated equations. 



;* = I(+, z k - 1 ,  S k - 1 ,  z k - 1 ,  u) (5.1 la) 

21: = g(& z-, 215-1, z k - 1 ,  21) (5.11b) 

where z E €f is the vector of the state variables, z E d,  u E If and t ,  g are 

continuous functions. Note that the time derivative of the non-state variable z 

of the canonical WR algorithm does not appear in (5.11). rn 

I t  should be noted that, when simulating large scale integrated circuits, this 

restriction can always be met as we shall see in the next chapter. Moreover, as 

we shall see later, we do not have to implement a WR algorithm in its canonical 

form, Le., we are not required to find f and g explicitly. However, the canonical 

form is important to  simplify the derivation of sufficient conditions for the con- 

vergence of the WR algorithm. 

Theorem 5.3 (Convergence Theorem of the Canonical WR Algorithms). 

Consider a WR algorithm whose iterated equations can be transformed into 

the following canonical form: 

a) u(.) : [o,T]-.I~ is a piecewise continuous’ function 

b) there exist norms in f x d  and I?, A, 2 0. X2 2 0 and y E [0.1) such that for 

a n y a . b . s . ~ , ~ , ~ E ~ , u , ~ E ~ a n d u . E ~  

Le., (I, g )  is globally Lipschitz continuous with respect to z and globally 

contractive with respect to (2 ,  z ) .  

1 A h c t i o n  ut> : [o, a-Rt is piocswisu continuous if it is continuous everyvhere except a t  a 
Anite m n b e r  of points and at any discontinuity ?oi?t, the function has finite left- and right-hand lim- 
its. 



01 

c) both f and g are continuous with respect to u. 

Then, for any initial guess (zo(t) ,  z o ( t )  ; t E [O,T])  such that both so(*) and 

z o ( . )  are piecewise continuous waveforms and that zo(0) = ZO, the sequence 

j ( G k ( t ) ,  z"( t ) ,  d ( t )  ; t E [O,T])]r=l generated by the WR algorithm converges 

uniformly to (2 (f ), z^ ( t  ), 2 ( t )  ; t E [O, TI) which satisfles 
. 

(5.13a) 

(5.13b) 

rn 

Remark We do not need condition (b) of Theorem 5.3 to hold for the entire 

spaces f x R (  and rf, Le., global Lipschitz and global contractive properties of 

(f, g )  are not necessary. Convergence is still guaranteed as long as the condi- 

tion (b) holds for the subsets of flxd and that contain the sequences 

I ( ;"( t ) ,  z k ( t )  : t E [O.T])]& and f(z"((t) : t E [O,T])j~=o respectively. 

I t  is possible to  justify intuitively the derivation of the convergence condi- 

tions given in Theorem 5.3 if one is familiar with the Contraction Mapping 

Theorem and the Picard-Lindelof Theorem on the existence and uniqueness of 

the solutions of ordinary differrential equations (see [25] page 18). From the 

Contraction Mapping Theorem. the conditions (b) and (c) guarantee that (5.12) 

can be written equivalently as 

5 = f ( Z , u ) ;  Z(O)=z, (5.14-a) 

2 = 9^(z^,u) (5.14b) 

where f and are Lipschitz continuous with respect to z^ and continuous with 

respect to  u. Hence, by the Picard-lindelof Theorem. (5.14) has a unique solu- 

tion (2 ,  .^) for any given initial condition and any given piecewise continuous 

input. Theorem 5.3 simply shows that the canonical WR algorithm is in fact a 

constructive proof of the existence and uniqueness of the solution. 



62 

The next theorem extends the result of the above convergence theorem to 

the case in which the initial conditions of the iterated decomposed system are 

not fixed but vary from one iteration to  another. Such a case can arise when the 

initial conditions of the original system are not given explicitly but have to be 

obtained from another iterative solution of a set of algebraic equations. For 

example, the initial conditions of an electronic circuit may be given implicitly as 

the "dc" solution of the circuit equations. In such case, we may opt to use the 

iterated solution of the algebraic equations as the "iterated' initial conditions 

for solving the iterated decomposed system, allowing both iterative processes to 

interleave among themselves. W e  will see that, under the same assumptions of 

Theorem 5.3, the sequence of iterated solutions is guaranteed to converge to the 

correct solution if the sequence of the "iterated" initial conditions converges to 

the correct initial conditions of the original system. 

Theorem 5.4 Consider the canonical WR algorithm as given in Theorem 5.3 with 

the exception that the initial conditions of the iterated equations are given by 

zk(0) = 28 with l imzt =ZO. 
k -- 

Then, under the same assumptions of Theorem 5.3, the sequence 

t ( 2 k ( t ) ,  z k ( t ) ,  z k ( t )  : t E [O,T])jc=l generated by the canonical WR algorithm 

converges uniformly to the solution of (5.13). rn 

So far, the WR algorithm that we have described can be considered as being 

stationary in the sense that the iteration process is performed with the same 

set of equations. We now briefly describe non-stutionury WR algorithms in which 

the equations describing the system at each iteration can change from one 

iteration to another. Obviously, nons tationary WR algorithms are meaningful 

only if they can be interpreted as approximations of a stationary one. The follow- 

ing theorem tells us how to construct a nonstationary WR algorithm from a con- 



63 

vergent stationary one without losing the convergence property. 

Theorem 5.5 (Convergence of Non-stationary WR Algorithms) 

Let (Z^(t), Z ( t )  : f E [O.T]) be the solution of (5.13) in which f ,  g and u 

satisfy all the assumptions of Theorem 5.3. Let t ( z k ( t ) ,  ~ " ( t )  : t E [O,T])jr=l be 

the sequence of iterated solutions satisfying the following non-stationary WR 

algorithm: 

2 k  = f k ( = k , = k - l ,  G k - 1  2k- l  , u )  : z"(0) = 2 0  (5.15a) 

zk = g k ( z k ,  z k - 1 ,  j k - 1  I Zk-1, u) (5.15b) 

where 2' E rf, zk E R', zo E fl, u E If, f : I f x f x I f x d x R '  + ff and 

gk : R"xR"xRndx€f + d. Assume that 

a) for each k, there exist constants Xlk 2 0, X 2, S O and yk E [O,I)  such that 

forall  a , b , s , ~ , ~ , ~ ~ R n ,  u , v " ~ d  a n d u E I f w h e r e  al lnormsare 

the same as in Theorem 5.3. 

Then, for any initial guess (zo(t) ,  z o ( t )  : t E [O.T])  such that both io(.) and 

z o ( - )  are piecewise continuous waveforms and that zo(0) = 20, the sequence 

l(sk(t), z k ( t ) ,  z k ( t )  : t E [O,T])j;=, generated by the non-stationary WR algo- 

m 
rithm converges uniformly to (2 ( t ) ,  Z^(t), Z ( t )  : t E [O,T]). 

. 



64 

Corollary 5.5 The result of Theorem 5.5 still holds when the initial condition of 

(5.15) is given by ~ ~ ( 0 )  = x $ ,  provided that limz$ = xo. 8 
k +- 

We conclude this section with the remark that we have presented the WR 

method in this and the previous chapter in a mathematical framework which is 

quite general. However, since we made no assumption about the structure of 

the system equations, we had to make certain theoretical restrictions ( such as 

the consistency requirement and the existence of a canonical representation ) 

in order to be able to derive the convergence conditions of the WR method. This 

makes it difficult to  interpret them in terms of physical properties. Moreover, 

there are many different ways to  formulate the circuit differential equations 

such as Nodal Analysis formulation [23], Modified Nodal Analysis formulation [21] 

and Tableau formulation [22]. Each formulation differs from the other by the 

choice of the circuit variables. It is quite possible that the WR algorithms 

derived from different formulations of the circuit equations have different con- 

vergent properties. In the next chapter, we shall specialize the method to a par- 

ticular formulation and a particular class of circuits. There we will see that the 

theoretical restrictions given in this chapter are automatically satisfied. 

5.3. Existence of the Canonical WR Algorithm. 

The convergence theorems presented in the previous section all require the 

existence of a canonical form of the WR algorithm eventhough the algorithm is 

actually implemented in its original form. In this section, we shall show that the 

consistency of a WR algorithm plays an important role in determining the 

existence of the canonical form of the algorithm We first give a few examples to 

illustrate the basic assumptions and basic steps in transforming a WR algorithm 

into its canonical form as defined in Definition 5.2. 



65 

hrample 5.1 Consider the WR algorithm used in Example 3.1, as decribed by 

(3.8). Notice that this algorithm is consistent with the original circuit equations 

(3.7). To transform it into a canonical WR algorithm, first rewrite (3.8a) as fol- 

tows: 

Then, substitute it into (3.8b) to obtain 

The canonical form of the algorithm is thus given by (5.16). 

-pie 5.2 Consider the following system of equations: 

(5.17a) 

(5.17b) 

(5.1%) 

Let y1, y2 and y 3  be assigned to (5.17a). (5.17b) and (5.172) respectively and let 

(5.17) be partitioned into 3 subsystems consisting of {(5.17a)]. 1(5.17b)] and 

t(5.17c)j. Then the k-th iteration of the resulting GJ-WR algorithm is described 

by 

$f = f I ( Y t #  $!-?u) : Y W )  = Y l(0) (5.1 sa) 

38 = f 2 ( Y ? - 1 *  y8-l) (5. lab) 

245 = f S ( Y f - ' I  y5-V (5. lee) 

I t  is easy to see that the given system of equations (5.17) has only one state 

despite the fact that there are two variables with time derivative. Hence, this 

WR algorithm is consistent with the given system equations. However, it is not in 



66 

canonical form because the non-state variable y2 appears in (5.17a) with a time 

derivative. To transform (5.18) into a canonical form. we have to dderentiate 

(5.18b) and (5.18~). By differentiating the two equations, (5.18) can be written as 

(5.19b) 

(5.19~) 

which is a canonical WR algorithm. Notice that the system of equations (5.19) of 

the canonical WR algorithm has 3 state variables as opposed to only one state 

variable in the original system This is because additional states variables yz and 

y3 are created by the differentiation. The initial values of yt and yg for (5.19) 

are given by the iterated equations (5.18b) and (5.18~) of the original WR algo- 

rithm, i.e., 

(5.20b) 

( 5 . 2 0 ~ )  

So we have a canonical WR algorithm in which the initial values of some of 

the state variables will change from one iteration to another unless the initial 

guesses yj(0) and y:(O) are equal to their exact initial values. That is, if 

y! (0) = and y! (0) = ya(0). then 

Y W  = YZ(0) and y$(O) = y3(0) for any k (5.21) 

Now suppose that (5.19) satisfies the assumptions of the convergence 

theorem 5.3, which is equivalent to  saying that 



67 

7 

af 2 
0 -(Y1* Y3) aY 3 

is also uniformly contractive, 
0 af  3 

-(!/I* YZ) 
, aY2 

0 is uniformly contractive. 

This automatically implies that its principal minor 

which is sd ic ien t  to  guarantee that the sequences of yB(0) and yg(0) as gen- 

erated by (5.20) will converge to y2(0) and y3(0) respectively. Therefore. by 

Theorem 5.4, the conditions for convergence of the canonical WR algorithm do 

not depend on whether the initial values of yg and y$ are given by (5.20) or 

(5.21). rn 

Example 5.3 Consider the following system of equations 

(5.22a) 

(5.22b) 

(5.22~) 

(5.22d) 

Let yl, y2, y3 and y4 be assigned to (5.22a). (5.22b), (5 .22~)  and (5.22d) respec- 

tively and let (5.22) be partitioned into 4 subsystems consisting of t(5.22a)j, 

l(5.22b)j. t(5.22c)j and t(5.22d)j. The k-th iteration of the resulting GJ-WR algo- 

rithm is then given by 

(5.23a) 

(523b) 



68 

(5.234 

(5.23d) 

Note that this WR algorithm is consistent with the given system equations (5.22) 

but is not in canonical form because the non-state variable y4 appears in (5.22a) 

with a time derivative. To transform (5.23) into a canonical form, we 

Ueren t i a t e  (5.23b). (5.23~) and (5.23d) to get 

Let 

Ys = 6 2  and Ye = $3 

Then (5.23) can be tranformed into the following canonical form 

Just like the previous example, the system equations of the canonical WR 

algorithm has more state variables than that of the original WR algorithm The 

initial values of yg y$ and for (5.24) are given by the iterated equations 

(5.23d), (5.23b) and (5.23~) of the original WR algorithm respectively, i.e.. 



69 

(5.2%) 

(9.25b) 

Once zgain. by the arguments similar to those of the previous example, we 

can conclude that if (5.24) satisfies al l  the assumptions of Theorem 5.3 then the 

canonical WR algorithm will converge to the correct solution even if the initial 

values of some of its state variables vary from one iteration to another. m 

Esrample 5.4 Consider the WR algorithm described in example 4.1 of the previ- 

ous chapter, Le.. 

IC-1 Y!i = "-Y1 

Y? = Yt 

(5.26a) 

(5.26b) 

Notice that this algorithm is not a consistent WR algorithm. I t  is also not in 

canonical form because the non-state variable y l  appears in (5.26a) with a time 

derivative. However, if we differentiate (5.26b) we will create a time derivative of 

yz which is also a non-state variable and the process of differentiating will loop 

indefinitely. Hence the canonical form of the N'R algorithm does not exist. m 

From these examples, we see that consistency is essential in ensuring the 

existence of a canonical form of a WR algorithm. We then formalize this result in 

the following lemma. 



hmma 5.1 Consider a WR algorithm with the following assumptions. 

a canonical form as defined in Dehition 5.2. 8 

For each decomposed subsystem described by (3.4)’ there e k s t  smooth2 

N 

functions f and zi and a nonsingular matrix E IIp‘”’‘ such that (3.4) 

can be written as 

(5.27a) 

(5.2’7b) 

(5.2%) 

where zi E p, z, E e-, i.e., each decomposed subsystem has a state- 

equation representation. 

Both the given system and its associated decomposed system satisfy the 

nondegeneracy assumption 4.1. 

The WR algorithm is consistent, i.e., its .W process corresponds to  a max- 

imum weighted complete matching (defined in Definition 4.6) of the 

weighted bipartite graph associated with the given system. 

Then there exists a transformation which transforms the WR algorithm into 

E By smooth we mean that the functions are 7 times continuously CTerenthble, where 7 is as 
h g e  as required by the transformation indentBed by t 3 e  constructional proof of the lemma 



71 

Chapter 6 

WR AIgorithrns for Simulating 

Large Scale Integrated Circuits 

In this chapter we shall apply the WR Method to analyse an important class 

of dynamical systems: MOS integrated circuits. In fact, this was the original 

motivation behind the development of the WR method. A typical large scale digi- 

tal circuit is usually an interconnection of several basic subcircuits called 

"gates". Hence decomposition techniques can be applied to the analysis of this 

class of circuits in the most natural way. We will propose two WR algorithms for 

analyzing MOS digital integrated circuits and show that, under very mild 

assumptions usually satisfied by practical circuits, the proposed algorithms con- 

verge. Although both GS and GJ relaxations can be used in these algorithms, the 

GS relaxation is preferred since it requires only one copy of the iterated solution 

as opposed to two copies required by the GJ relaxation. Also its speed of conver- 

gence is faster, especially for MOS circuits where unidirectional models are used 

MOS devices (for example see [5 ,6 ] ) ,  provided that the equations are properly 

ordered (see [30] for a discussion of this aspect). For the sake of simplicity, 

both algorithms use the simplest guessing scheme and an assignment- 

partitioning (Ap) process in which each partitioned subsystem is a single equa- 

tion. The generalization of both algorithms to allow more than one equation per 

subsystem is straightforward and will not be discussed. 

W o  basic assumptions are made to derive our algorithms: 

(i) Each element in the circuit and its interconnections can be modelled by 

lumped (linear or nonlinear) voltage controlled capacitors, conductors and 

current sources. 



72 

(ii) Every (internal or external) node in the circuit has a ( h e a r  or nonlinear) 

capacitor, called a grounded c a p a d o r ,  to either ground o r  dc supply vol- 

tage rails. 

Note that, for MOS large scale integrated circuits, these assumptions are 

usually satisfled. 

6.1. Nodal C i rcu i t  Equations and the WR Algorithm. 

For the Arst WR algorithm, we use the node voltages as the circuit variables. 

Let the circuit to  be simulated has n unknown node voltages. Using Nodal 

Analysis formulation [23], the circuit equations can be written as foUows. 

c ( v , u ) 4  + g(v, lL)  = 0 ; v ( 0 )  = v (6.1) 

where u E F f  is the vector of all unknown node voltages, V E I? is the given ini- 

tial values of v ,  u ~ r r '  is the vector of all inputs and their f i s t  order time 

derivatives, g : g x R f - l f  is a continuous function each component of which 

represents the net sum of currents charging the capacitor at each node due to 

the conductors and the controlled current sources, C :  l fxrr '+Efx" is a sym-  

metric diagonally dominant matrix-value function in which -c;i(v, u) ; i # j is 

the total floating capacitance between nodes i and j ,  and G ( v ,  u) is the sum of 

the capacitances of all capacitors connected to node i. 

Algorithm 6.1 (WR algorifhm f o r  solving (6.1) f r o m  t = 0 to t = T. ) 

Comment: a superscript denotes the WR iteration count and a subscript denotes 

the component index of a vector. 

Step 1: Set k = 1 andvo(t)  = Vfor all t E [O,T].  

Step 2 For each i = 1,2 ,... ,n, solve for lvf(t) ; t E [O,?']! from 



with the initial condition vt (0 )  = K .  

Step 3 Set k = k+l and go to  step 2. 

Remarks: 

1) Equation (6.2) is actually a single differential equation in one unknom vari- 

able vi”. The variables vtA1, . . . , v2-l are known from the previous itera- 

tion and ut, . . . , have already been computed. 

2) In most practical circuits, the circuit equations (6.1) are usually very 

sparse, Le., only a few variables are actually involved in each equation. This 

fact can be exploited in the implementation of the algorithm on a com- 

puter. 

3) With regard to the theoretical concepts presented in the previous three 

chapters, we can say that the AP process used in Algorithm 6.1 assigns vi to 

the i- th equation of (6.1) and partitions (6.1) into n subsystem each of 

which has only one equation. Since it is clear that lvi, i = 1.2, ..., n] form a 

state vector of both (6.1) and (6.2). therefore the AP process is automati- 

tally consistent with the given circuit. 

Example 6.1 

Consider the circuit shown in Fig. 6.1. For simplicity we assume that all 

capacitors are linear. Using the node voltages v l ,  v z  and va as variables, the cir- 

cuit equations are: 



74 

Applying Algorithm 6. I, the k -th WR iteration corresponds to solving the follow- 

ing equations. 

The circuit interpretation of the iterated equations (6.4) is shown in FQ. 6.2. 

If we consider that the original circuit in Fig. 6.1. consists of 3 subcircuits 

si, s2 and sa, then the decomposed subcircuits sI, s2 and F3 (shown in Fig. 6.2) 

are actually si, s2 and s g  together with additional components to approximate 

their loadings. Hence we can describe the WR algorithm for simulating this cir- 

cuit in circuit terms as follows. 

N N  

Step 1: Set k = 0 and make an initial guess of v J ( t ) ,  v $ ( t )  ; t E [O,T]. 

Step 2 Repeat 

Set k = k + l .  

Analyse sl for its output waveform v : ( . )  by approximating the load- 

ing effect due to s ~ .  

Analyse s2 for its output waveform vg( . )  by using u t ( . )  as its input 

and approximating the loading effect due to sg. 

Analyse sg for its output waveform vf(.) by using ut (.) as its input. 

Until the difference between l (v: ( t ) ,  v $ ( t ) .  v t ( f )  ; t E[O.T]J and 

@f-'(t>, vi- '  ( t ) ,  115-1 ( t )  ; t E [o, T]{ is sufficiently s m d .  



75 

6.2. Modified Nodal Equations and the WR Algorithm. 

The second WR algorithm that we are about to describe is intended for MOS 

circuits containing pass transistors (or transmission gates) such as the circuit 

in Fig. 6.1. Here, we use the unknown node voltages and the drain currents of 

pass transistors as the circuit variables. Let the circuit to be simulated has n 

unknown node voltages and 1 pass transistors. Using the Modified Nodal Analysis 

formulation [Zl]. the circuit equations can be written as follows: 

c(v, u ) 4  + F ( Z , V ,  u )  = 0 ; v ( 0 )  = v 
z - g ( v , u )  = O 

(6.5a) 

(6.5b) 

where C, v ,  u and V are as defined in (6.1). z E R' is the vector of the drain 

currents of the pass transistors, g : @xf+d is a continuous function (each 

component of which describes the drain current of each pass transistor in terms 

of its terminal node voltages) and : dxI?xIi'+l? is a continuous function 

(each component of which represents the net current charging the capacitor at 

each node due to the pass transistors, the other conductive elements and the 

cont r olle d current sourc es) . 

Algorithm 6.2. (WR algorithm for  sotVing (6.5) f r o m  t =O t o  t = T) 

Comment: a superscript denotes the WR iteration count and a subscript denotes 

the component index of a vector. 

Step 1: Set k = 1, z o ( t )  = 0 andvo(t)  = Vfor all t E [O,T]. 

Step 2: a) For each i = 1.2. .... n. solve for ($ ( t )  : t E [0, TI) from 

(6.6a) 



with the initial condition vt (0 )  = &. 

b) Compute z k ( ( f )  ; t E [O,T] from 

Zb = g ( v ” , u )  

Step 3 Set k = k + l  and go to step 2. 

(6.6b) 

U 

Remarks: 

1) Just like (6.1), Equation (6.5) is also very sparse. 

2) Equations (6.6a) and (6.6b) can actually be solved together as will be 

demonstrated in the following example. 

3) By the same arguments as those for Algorithm 6.1, we can conclude that 

Algcrithm 6.2 is also consistent with (6.5). U 

Example 6.2 

Once again we consider the circuit of Fig. 6.1. This time we formulate the 

circuit equations as follows: 

Applying Algorithm 6.2. the k-th WR iteration corresponds to solving the follow- 

ing equations. 

( . I +  C Z  + ~ 3 ) ; :  - i l ( v : )  + ~ 1 )  + z’-’ - ~ 1 G l  - ~ 3 6 . 2  = O (6.8a) 

zk - i s ( V $ ,  212, u t )  = 0 (6.8b) 

(c4 + c s  + c6);k - ce;t-l - i3(vf ,  u2, v t )  - c4C2 = o ( 6 . 8 ~ )  

(ca + c7)4g - c& [  -i4(v$) + i3(vg, v t )  = o (6.8d) 

The circuit interpretation of the equation (6.8) is shown in Fig. 6.3. Note the 

difTerence between the decompositions induced by Algorithm 6.1 ( Fig. 6.2 ) and 



C 

R 

Algorithm 6.2 ( Fig. 6.3 ). From Fig. 6.3 we see that (6.8b) and (6 .8~)  can be 

solved together since they belong to the same subcircuit. m 

6.3. Guaranteed Convergence of WR Algorithms for MOS 

circuits 

In this section, we interpret the sufficient conditions for convergence of WR 

algorithms, as given by Theorem 5.3, in terms of the properties of the elements 

of the circuit and show that they are very mild in practice. 

Theorem 6.1 Assume that 

a) The charge-voltage characteristic of each capacitor, or the volt-ampere 

characteristic of each conductor, or the drain current characteristic of 

each MOS device is Lipschitz continuous with respect to its controlling vari- 

ables, 

b) C- > 0 and C,, C where 

C- E R is the minimum value of all grounded capacitances at any permis- 

sible values of voltages, and 

C,, E R is the maximum value of all floating capacitances between any two 

nodes at any permissible values of voltages, 

The current through any controlled conductor ( e.g. the drain current of an 

MOS device ) is uniformly bounded throughout the relaxation process. 

Then, for any MOS circuit with any given set of initial conditions, and any 

given piecewise continuous input u(.), either Algorithm 6.1 or 6.2 generates a 

converging sequence of iterated solutions whose limit satisfies the circuit equa- 

tions and the given initial conditions. m 

c) 



78 

Note that the first assumption implies that for any capacitor, conductor or 

MOS device, its incremetal (or small signal) characteristic, i.e., capacitance, 

conductance or  transconductance, at any permissible dc operating point must 

be uniformly bounded. The second assumption states that the value of any 

grounded capacitor must be bounded away from zero and the value of any float- 

ing capacitor must not be arbitrarily large. The third assumption implies that 

during the relaxation iteration, the current through any conductor or MOS dev- 

ice does not grow arbitrarily large. These three assumptions are very mild in 

practice and hence either Algorithm 6.1 or Algorithm 6.2 is guaranteed to con- 

verge for any MOS integrated circuit of practical interest, The rate of conver- 

gence is linear, a typical property of any relaxation method. 

I t  should be pointed out that the convergence of WR algorithms can be esta- 

blished by Theorem 6.1 for integrated circuits implemented by other type of 

devices (such as bipolar transistors) as long as the circuit equations can be writ- 

ten in the form of the equation (6.1) or (6.5) and the assumptions of Theorem 6.1 

on the branch equations are satisfied. Note also that the strong assumption of 

Theorem 5.3 regarding the global contractivity of f in (5.12) with respect to 2 is 

automatically satisfied because C(., a )  is strictly diagonally dominant. Moreover, 

the contractivity of g in (5.12) with respect to z is irrelevant for Algorithm 4.1 

since its canonical form does not involve algebraic equations. For Algorithm 6.2, 

it is also irrelevant since g does not depend on z .  

In both algorithms, the initial guesses are chosen, for convenience, to be 

constant waveforms. From Theorem 5.3 we know that other choices of initial 

guesses will not destroy the guaranteed convergence of both algorithms if they 

are piecewise continuous waveforms. Hence, for MOS digital integrated circuits, 

a logic simulation could be used to generate the initial guesses for these two 

algorithms. It is also possible to show that, under the same assumpkions of 

Theorem 5.3, the corresponding GJ relaxation versions of Algorithm 6.1 and 6.2 



. . .  

are guaranteed to converge. Moreover, a relaxation parameter w can be intro- 

duced into these GJ-WR or GS-WR algorithms (as described in section 3.3) 

without destroying their guaranteed convergence, provided that w E (0, 2). 

As a first example, the ring oscillator shown in Fig. 6.4 is used to illustrate 

the convergence of Algorithm 6.1. The circuit interpretation of the relaxation 

process is shown in FQ. 8.5. The resulting waveforms at different iterations of 

the algorithm are shown in Fig. 6.6a through 6.6d Note that since the oscillator 

is highly non-unidirectional due to the feedback from v 3  to the input of the NOR 

gate, the convergence of the iterated solution is achieved with the number of 

iterations being proportional to the number of oscillating cycles of interest. 

The nexc example, shown in Fig. &?a, illustrate the convergence property of 

a WR algorithm when being applied to a bipolar analog integrated circuit. Once 

again, we purposedly choose as our example the circuit in which there is a feed- 

back from the output to the input of the circuit. This is to show that the KR 

method is always guaranteed to  converge regardless of whether the circuit 

possesses any kind of feedback In this example, the' initial guess of the 

waveforms v:(.) and vfb(.)  are 

where KOc and V,,, are the "dc" solutions of the circuit. The resulting 

waveforms at different iterations of the decomposed circuit (Eg. 6.7b) are 

shown in Fig. 6.8. From this figure, we observe that, although the iterated solu- 

tion is guaranteed to converge to the exact solution, the convergence to the 

steady state portion of the exact solution is quite slow whereas the convergence 

to the transient portion of the exact solution is achieved in two iterations. This is 

due to the fact that the effect of capacitors in the circuit becomes negligible 

when the circuit almost reaches its steady state condition. Since the decom- 

posed circuit in this case is an open loop operational amplifier, its steady state 



value is highly sensitive to the input voitages. Tnerefore, the convergence of the 

iterated solution of the decomposed circuit t o  the exact solution at steady state 

condition is very slow. Fortunately, this is not the case for digital circuits 

because digital circuits are usually in saturation at steady state conditions. 

Hence their steady state values are not sensitive to small changes in the input 

voltages. Furthermore, as we have pointed out earlier, a logic simulation [29] 

can be used to provide a good initial guess for the WR iteration, especially for 

digital circuits with logic feedback between subcircuits to  be decomposed. For 

these reasons, we choose to implement the WR method for simulating digital cir- 

cuits as a first practical application of the WR method in circuit simulation. 

6.4. WR Algorithm with Adaptive MOS Models. 

I t  is well known [3] that the computational cost of evaluating the MOS model 

equations can be quite expensive when the model equations contain complicated 

mathematical expressions. For this reason, many simulators trade off the speed 

of simulation with the accuracy of simulation by providing the user w i t h  various 

models of different accuracy. The simplest device model is probably the so 

called table 1 o o k - q  model [13] which is simply a piecewise linear function on 

uniformly subdivided intervals. Unfortunately these simulators are non-iterative, 

Le., different simulations of the same circuit with different MOS models are com- 

pletely independent simulations. In other words, the result of simulating a cir- 

cuit using one type of MOS model cannot be exploited when the circuit is to be 

resimulated using another type of MOS model. Hence, the use of highly ccmpli- 

cated model in the simulation of large circuits is frequently avoided due to its 

cost. In contrast, due to the iterative nature of the WR Method, we can take 

advantage of various existing models to increase the speed of simulation of cir- 

cuits that use complicated models. The basic idea is to use the simple models in 



81 

the fist few iterations and switch to  more complicated models later when more 

accuracy is needed. This adaptive use of di9erent models in the simulation actu- 

ally corresponds to the concept of the non-stationary WR algorithm described in 

the previous chapter. 

For the sake of simplicity, we shall assume that all capacitors in the circuit 

are linear and that there are only N models for describing the drain-source 

characteristic of an MOS device. Let these models be ordered in terms of their 

computational complexities. By using Nodal Analysis formulation, the circuit 

equations of a circuit containing 7~ unknown node voltages can be written as 

c4 + g'(v.7L) = 0 : u(0 )  = Y (6.9) 

where C E R"xn is the capacitance matrix, v E I? is the vector of the unknown 

node voltages, ZL E R' is the input vector and q f  : R " x f  -+ If is the function 

associated with the j - th  MOS model. Let 

c = L + D + U  (6.10) 

where L is a strictly lower triangular matrix, D is a diagonal matrix and I/ is a 

strictly upper triangular matrix. Let qk: fxfxrr'+f be a vector valued 

function whose i-th component is defined as 

(6.11) 

Let cj : j = 12, ...,I? be a predefined' sequence of positive numbers in 

which c j  specifies the simulation accuracy associated with the j - th  MOS model. 

Then a WR algorithm that uses these models adaptively can have the following 

form. 

We assume that these simulation accuracy parameters are given either directly by the user or 
automatically by the simulator. For exam?le, if the user w m t s  to use only the first model, he can 
speci'y c t  = 0. 



Algorithm 6.3 (WR Algorithm with Adaptive MOS Models) 

Step 1: Set k = 1, j = 1 and v * ( t )  = V for all t E [O,T]. 

Step 2 Solve for v k ( t )  : t E [o,T] from 

Step 3 ( Accuracy test ) 

m a  IIvk(t) - uk-'(f)ll g and j < N ), then set j = j + 1. 
If (L E l0.q 

Step 4: Set k = k + 1 and go to step 2. 

Assuming that cj > 0 for dl j, then it is intuitively clear that this algorithm 

will converge to  the solution of the circuit with the most accurate model; This is 

because when the algorithm stays with any model, it will tend t o  converge to the 

solution associated with that model and hence will pass the accuracy test in a 

Gnite number of iterations. 



Q. 6.1 

A n  MOS dynamic shift register . 

+5 

-1 

k 
vi 

pig. 8.2 

The relaxation decomposition o€ the circuit in Fig. 6.1 

at  the k -th iteration of Algorithm 6.1 



+5 

k- i  
t 

Rg. 6.3 

The relaxation decomposition of the circuit in Fig. 6.1 

at the k-th iteration of Algorithm 6.2 



+S +s +5 

Flg. 6.4 

A n  MOS ring oscillator 

+5  +5 +s 

Rg. 6.5 

The relaxation decomposition of the circuit in Fig. 6.4 

at the k-th iteration of Algorithm 6.1 



6.8 
i iteration / I  

i .. 
I 

i I 
1 

t 
1 , , , 1 I I 1 . . 

3. 0 . 8  1 .e 2.0 

, 

6 .e 1 

Rg. 6.6 

Waveforms a t  various iterations of Algorithm 6.1 applied to  the circuit 

in Fig. 6.4, assuming that ut(.) = 0 



10 VOLT 

-10 VOLT 

Fig. 6.7a 

A simplified bipolar transistor operational amplifier 

- 
-10 V O L T  

Fig. 6.7b 

A relaxation decomposition of the circuit in Fig. 6.7a 



Flg. 6.8 

Waveforms at various iterations of the solution of the circuit in Fig. 6.7b 



89 . 

Chapter 7 

RELAX: An 

MOS Digital 

Experimental 

Circuit Simulator 

In this chapter, we describe the basic numerical techniques used in E L A X :  

an experimental circuit simulator which implements a WR algorithm and is spe- 

cially designed to simulate MOS digital circuits. In particular, a few important 

techniques to improve the convergence property and the execution speed of 

simulation will be described, namely the scheduling algorithm and techniques to 

exploit the l a t e n c y  and the partial w a v e f o r n  convergence.  

7.1. Basic Algorithms in RELAX 

RELAX implements a modified version of the WR Algorithm 6.1, as described 

in the previous chapter. These modifications are described as follows. 

1) Rather than having strictly one equation per each decomposed system, 

RELAX allows each partitioned subsystem to have more than one equation 

so that each subsystem corresponds to a physical digital subcircuit, e.2. 

NOR, NAND, FLIP-FLOP etc. In fact, the choice of the decomposition is dic- 

tated by its input language, i.e.. the user specifies his dqital circuit as an 

interconnection of several subcircuits. 

2) Each decomposed subcircuit is solved by using conventional simulation 

techniques as described in Chapter 2. The Backward Euler integration 

method with variable timesteps is used to discretize the differential equa- 

tions associated with the subcircuit and the Newton-Raphson method is 



3) 

used to solve the nonlinear algebraic equations resulting from the discreti- 

zation. Since the number of unknown variable associated with a suboircuit 

is usually small, the linear equation solver used by the Newton-Raphson 

method is implemented by using the standard full matrix techniques rather 

than using the sparse matrix techniques. Note that in WLAX each mbcir- 

cuit is analyzed independently from t = 0 to t = T using its own timestep 

sequence controlled by the integration method, whereas in a standard cir- 

cuit simulator the entire circuit is analyzed from t = 0 to t = T using only 

one common timestep sequence. In RELAX, the timestep sequence of one 

subcircuit is usually different from the others but contains, in general, a 

smaller number of timesteps than that used in a standard circuit simulator 

for analyzing the same circuit. 

The first iteration of RELAX is essentially the first iteration of Algorithm 6.2. 

But after that RELAX switches back to use Algorithm 6.1 for the rest of the 

relaxation iteration. That is, in the first Tl?i iteration of RELAX, the drain 

currents of the pass transisters do not contribute any loading effect on the 

subcircuits to which they are connected. This is done because, in the first 

iteration when all initial guesses are constant waveforms, a pass transistor 

can be driven continuously into its conductive region and may adversely 

effect the speed of convergence if its current is treated as a load of the 

other subcircuit. Hence, strictly speaking, the first iteration in RELAX is 

used to generate a good initial guess for the actual WR algorithm. 

7.2. Scheduling Algorithm. 

The order according to which each subcircuit is processed is determined in 

RELAX prior to  starting the WR iteration by a subroutine called the "scheduler". 

Although it has been shown in Theorem 6.1 that scheduling is not necessary to 



guarantee convergence of the iteration, it does have an impact on the speed of 

convergence. Assume that the circuit consists of unidirectional subcircuits with 

no feedback path. If the subcircuits are processed according to the flow of sip 

naLs in the circuit, the Wii algorithm used in RELAX will converge in just two 

iterations (actually the second iteration is needed only to verify that the conver- 

gence has been obtained). For MOS digital circuits which contain almost uni- 

directional subcircuits, it is intuitive that the convergence of the WR algorithm 

will be achieved more rapidly if the subcircuits are processed according to the 

flow of signals in the circuit. The scheduler traces the flow of signals through 

the circuit and orders the processing of subcircuits accordingly. To be able to 

trace the flow of signals, the scheduler requires the user to  specify the flow of 

signals through each subcircuit by partitioning the terminals of the subcircuit 

into the input and the ouwt terminals. In general, a designer can easily 

specify what the flow of the signals is intended to be even in a subcircuit which is 

not unidirectional such as a transmission gate or a subcircuit containing floating 

capacitors between its input and output terminals. For example, the input cir- 

cuit description of the circuit shown in Fig. 6.1 could be described as shown in 

Fq. 7.1. Note that the analysis algorithm in RELAX will indeed take into account 

the bidirectional effects correctly. To describe the algorithm used by the 

scheduler, we need the following deflnition. 

Definition 7.1 A subcircuit s2 is said to  be a funout of a subcircuit s1 if an input 

terminal of s2 is connected to  an output terminal of sl, Le., an output of s 1  is fed 

as an input to  sz. 
\ 

Before stating the scheduling algorithm, we point out that all real input sig- 

nals to the circuit are considered by the scheduler to be contained in a special 

subcircuit called the "sowce" subcircuit which is essentially a subcircuit with 

only output terminals. The algorithm traces the flow of signals from the source 



subcircuit through the circuit by using the fanout information of each subcir- 

cuit. When there is a logic feedback loop, the loop is temporary opened. The 

details of the algorithm is as follows. 

Schehling algorithm. 

Comment: X is an ordered set of subcircuits. At  the completion of the algo- 

rithm, X contains all the subcircuits and the order in which each 

subcircuit is placed in X is the order in which it is processed by 

RELAX X is called the scheduling table. 

Start: Set X = [source subcircuitj and Y = tfanouts of the source subcircuit]. 

LOOP: Set 2 = p, Le., clear the temporary set 2. 

For each subcircuit s in Y 

Begin 

If ( all inputs of s come from the outputs of subcircuits in X ) then 

Begin 

Delete s from Y and add it to X. 

Include in 2 the fanouts of s which are not already in X, Y or 2. 

End 

End 

If ( 2 is not empty ) then include 2 in Y and go to LOOP. 

Else if ( Y is empty ) then stop 

Else Begin ( comment: there's a feedback loop ) 

Select a subcircuit s from Y. 

Delete s from Y and add it t o  X. 

Inblude in Y the fanouts of s which are not already in X or Y. 

Go to LOOP. 

End" rn 



93 

For example, the set X produced by the scheduler applied to the circuit of 

Fig. 7.2 is source, til, s5, s4, s2. sg 1 and the set X produced by the scheduler 

applied to the circuit of Fig. 7.3 is f source, s2, sg, slj. Note that this schrt3duliig 

process is carried out only cnce before starting the WR iteration. 

7.3. Latency and Partial Waveform Convergence. 

In addition to the modifications described in Section 7.1, RELAX incor- 

porates two important techniques to  speed up the process of analyzing a subcir- 

cuit. The key idea is to bypass the analysis of a subcircuit for certain time 

intervals without losing accuracy by exploiting the information obtained from 

previous timepoints and/or from previous iterations. Similar techniques have 

been used in other simulators. For example, SPICE uses a bypass technique [3] 

in its Newton-Raphson iteration. When a subvector of the vector of the unknown 

variables does not change its value significantly in the previous two NR itera- 

tions, the part of the Jacobian matrix associated with the subvector is not 

recomputed. SPLICE, on the other hand, uses an event scheduling technique [5] 

by which a subcircuit is not scheduled to be analyzed at  an analysis timepoint if 

it is found to be inactive at that timepoint. 

The two techniques used in RELAX are discussed by showing their applica- 

tions to  the analysis of the subcircuit s1 of the circuit shown in Fig. 7.4a which is 

a schematic diagram of the circuit in Fig. 6.1. We denote the output voltages of 

s1 and s2 at  the k-th WR iteration by vf and respectively. 

The Arst technique is based on the latency of s 1  and is similar to the tech- 

nique described in [”]. According to Section 7.1, s1  is analyzed in the fist itera- 

tion with no loading effect from s2. After it has been analyzed for a few 

timepoints. its output voltage v [  is found to be (almost) constant with time, Le., 

6!(0.01) a 0 (see Fig. 7.4b). Since the input u1 of s1 is also constant during the 



94 

interval [O.Ol. 1.91. v f  will also remain constant throughout the interval EO.01, 

1.91. The subcircuit s1 is then said to be "latent" in the flrst iteration during the 

interval [0.01, 1.91 and its analysis during this interval is bypassed. From Fig. 

7.4b, s1 is latent again in the interval [2.15, 31. Note that, according to Section 

7.1, the check for the latency of s after the first iteration will include u2 and v2 

as well as u l  since they can effect the value of v l .  For most digital circuits, the 

latency intervals of a subcircuit usually cover a large portion of the entire simu- 

lation time interval [O.T] and hence the implementation of this technique can 

provide a considerable saving of computing time as shown in Table 7.1. 

The second technique is a unique feature of the WR algorithm. It is based 

on the partial convergence of a waveform during the previous two WR iterations. 

We introduce i t  by using the example of Fig. 7.4 as follows. After the f ist  two 

iterations, we observe that the values of v t  and v :  during the interval [1.7, 3.01 

do not differ significantly (see Fig. 7.4b, 7 . 4 ~  and 7.4e), i.e., the sequence of 

waveforms of vu l  seems to converge in this interval after two iterations. In the 

third iteration, shown in Fig. 7.4d, sl is analyzed from t = 0 to t = 1.8 and 

v?(1.8) is found to be almost the same as u:(l.8). Moreover, during the interval 

c1.8, 33, the value of v# which effects the value of v f  also does not differ 

significantly from the values of vd ( which effects the value of v f ) .  Hence the 

value of v :  during the interval [1.8, 31 should remain the same as v :  and the 

analysis of s1 during this interval in the third iteration will be bypassed. This 

technique can provide a considerable saving of computing time as shown in 

Table 7.1 since the intervals of convergence can cover a large portion of the 

entire simulation time interval [O.?'], especially in the last few iterations. Note 

that the subcircuit need not be latent during the intervals of convergence 

although the overlapping of these intervals with the latency intervals is possible. 



. -  

95 

Comment: Description of the circuit shown in Fig. 6.1. 

sl inverter input = node1 output = node2 

s2 inverter input = node3 output = node4 

s3 transmission-gate input = node5, node2 output = node3 

Comment: Description of the models of MOS transistors. 

Model ENHANCE NMOS tMOS parameters such as threshold 

voltages, transconductance, etc.j 

Model DEPLETION NMOS tMOS parameters] 

Comment: The connectivity of each MOS device is described as 

: MOS-name drain-node gate-node source-node body-nude & 

MOS-model-name width length. 

Comment: Description of transmission gate. 

subcircuit transmission-gate input = source, gate output = drain 

MOSl drain gate source GROUhm ENI-?.?.CE width = lp length = 1p 

ends 

Comment: Description of an inverter. 

subcircuit inverter input = A output = A 
MOSload VDD A A GROUND DEPLETION width = lp length = lp 

MOSdriver A A GROUND GROUND ENHAKE width = 4p length = 1p 

ends 

Rg. 7.1 

Example of an input circuit description for RELAX. 



A 

0 

- 

CARRY 

Fig. 7.2 

A half adder 

TRIGGER 

i 

SUM 
, 

ng. 7.3 . 

A ring oscillator 



97 

4 .  

2 .  

0 .  
8 . 8  1.8 2.8 0 .a 1.0 2.0 3 .e  

( d )  ( e )  

F7.g. 7.4 

A dynamic shift register and the waveforms at various iterations 

of the WR algorithm used in RELAX. 



98 

r iteration # 

t- 
F 
E- . 

Total 

0.832 0.695 0.097 0.016 

3.668 3.063 1.664 1.31 1 

Table 7.1 

Comparison of CPU times used by RELAX for analyzing the circuit of Fig. 7.4a 

with and without the latency and the partial waveform convergence techniques. 

case 1: without the latency and the partial waveform convergence techniques. 

case 2: with only the latency technique. 

case 3: with only the partial waveform convergence technique. 

case 4: with both the latency and the partial waveform convergence techniques. 



99 

Chapter 8 

Organization of RELAX 

RELAX is written in FORTRAN and runs in an interactive mode. The main 

routine of RELAX acts as an interface between the user and the processors (Le., 

subroutines). I t  interprets the input commands and activates the corredpond- 

ing internal processors (-mplemented by subroutine calls). Some typical RELAX 

commands are for 

1) 

2) 

reading the description of the circuit from an external Ne, 

continuing the execution of the YFR iteration, 

3) setting the accuracy of the analysis, 

4) monitoring the waveforms at each iteration and 

5)  leaving the program 

The organization of the main internal processors of RGW is shown in Fig. 

8.1. We now describe the function of each processor. 

The &put circuif processor reads the description of the circuit from the 

specified external file and stores it in a compact form in an internal array. As 

mentioned in the previous chapter, the circuit must be entered as an inkrcon- 

nection of subcircuits whose input and output terminals are clearly specifled. 

The scheduler  then reads the internal array produced by the input circuit pro- 

cessor and generates a f r m d  table for each subcircuit according to Definition 

7.1. Then it executes the scheduling algorithm described in the previous 

chapter to produce a scheduling table that gives the order in which each subcir- 

cuit will  be processed in the WR iteration. Both the input circuit processor and 

the scheduler are actually the preprocessing steps for the WR iteration since 

they are performed only once for the circuit t o  be analyzed. 



100 

The analysis of a subcircuit using the WR iteration is implemented in REUX 

as a twc-phase process: the setup phase performed by the Mermedirrle code 

generator and the analysis phase performed by the subcircuit analyzer. The 

intermediate code generator reads the description of the subcircuit and its 

fanouts (obtained from the input circuit processor and the scheduler) and gen- 

erates an intermediate code. This intermediate code is used by the subcircuit 

analyzer t o  analyze the subcircuit from t = 0 to t = T, where T is the user- 

specifled simulation time interval. The subcircuit analyzer consists of several 

subroutines implementing the Backward Euler integration method, the Newton- 

Raphson method, the linear 

up the analysis discussed in 

equation solver and the two techniques for speeding 

the previous chapter. 

The output and internal voltages of the subcircuit at the sequence of 

t i e p o i n t s  used by the subcircuit analyzer as well as the sequence of timepoints 

are stored in an internat waveform sfcrage which stores the discretized 

waveforms associated with all nodes in the circuit. To analyze a subcircuit at a 

t i epo in t ,  say f the subcircuit analyzer has to know the values of its input vol- 

tages and the voltages associzted with its fanouts a t  time t l .  However, since the 

sequence of timepoints for analyzing one subcircuit may be different from the 

others, t l  may not coincide with any of the timepoints associated with the 

required voltages in the waveform storage. Hence an interpolation has to  be 

performed to obtain the required values when such case arises. In RELAX, the 

subcircuit analyzer obtains the values of the input voltages and the voltages of 

the fanouts of a subcircuit from a utility subroutine, called the interpolator, 

which reads the waveform storage and performs the interpolation (if necessary) 

to get the values at the specifled timepoint. 



101 

In addition, the interpolator reads the waveform storage and performs the 

interpolation (if necessary) to get the values of the output and internal voltages 

of the subcircuit at the specifled timepoint in the previous iteration. The 

differences between these values and the corresponding values in the current 

iteration are also stored in the waveform storage. These differences will be used 

in the next iteration by the routine implementing partial waveform convergence 

technique described in the previous chapter. At  the end of the analysis of the 

subcircuit, the discretized waveforms associated with the subcircuit in the pre- 

vious iteration are no longer needed and the storage occupied by them can be 

reused. 

At  present, RELAX is still in an experimental stage. It can handle MOS digi- 

tal circuits containing NOR gates, NAKD gates, transmission gates, multiplexers 

(or banks of transmission gates whose outputs are connected together), super 

buffers and cross-coupled NOR gates (or flip-fiops). I t  uses the Schichmann- 

Hodges model [9] (or the level 1 MOS model used in SPICEZ) for the MOS device. 

All the computations are performed in double precision and the results are also 

stored in double precision. Although RELAX code is rather small, approximately 

4000 FORTRAX lines, it requires a considerably large amount of storage for the 

waveforms, especially when large circuits are analyzed. For an MOS circuit con- 

taining 1000 nodes with 100 analysis timepoints per node, the waveform storage 

is required to store approximately 3x lOOOxl000 floating point numbers 

(corresponding to 2.4 megabytes if  each number is stored in 64 bits). Further 

enhancements of RELAX are 

1) 

2) 

Capability of handling user-defined subcircuits. 

Provision of more accurate MOS models. The user, if desired, can choose to 

use a simplified MOS model in the first few iterations for a f a s t  analysis and 

switches to a more accurate model in the later iterations. 



102 

8.1. Look-ahead Storage Buffering Scheme 

One of the drawback of RELAX is the fact that it has to store all the 

waveforms a t  the current iteration and reuse them in the next iteration. For 

large circuits which usually require large simulation time intervals, the amount 

of storage required to store the waveforms can be extremely large and m&es it 

infeasible to store all the waveforms in the primary storage of a computer. How- 

ever, as we have mentioned earlier in Chapter 6, the circuit equations of most 

practical circuits are usually sparsa. This means that not all waveforms are 

required in analyzing any particular subcircuit. Furthermore, the order of 

analyzing subcircuits is predetermined and stored in the "scheduling table". 

Therefore, by exploiting these two facts, it is possible to use a slow but large 

storage medium such as a disk to provide additional storage for the waveforms 

without sacrificing much of the execution speed due to its slow access time. 

This is achieved by a technique which we call the Zookdtead s tomge  burering 

scheme' and is described as follows. 

In the look-ahead storage buffering scheme, the amount of primary storage 

allocation for the waveforms is limited. When this storage is not enough to store 

all the waveforms, a secondary storage such as a disk is used to supply the addi- 

tional storage needed. Since the access time of the secondary storage is much 

longer than that of the primary storage, the speed of the analysis of a subcircuit 

will be greatly reduced if the interpolator has to access the secondary storage 

directly in order to get the desired values. The buffering scheme is designed to 

cope with this situation and ensure that all the waveforms associated with the 

analysis of a subcircuit already reside in the primary storage prior to the begin- 

ning of the analysis of the subcircuit. This is achieved by using the following 

algorithm. 

Currently, this scheme has not yet been implemented in RE'A 



103 

Algorithm 8.1 (S impl i f i ed  lookahead storage b u . e r i n g  algorithm ) 

Comment: s denotes the subcircuit currently being analyzed and S denotes the 

set of the waveforms required in the analysis of s. For the sake of 

simplicity, we assume that the storage of the waveforms assoeiated 

with the output and internal voltages of s in the previous iteration is 

reused by the corresponding waveforms in the current iteration We 

also assume that S is in the primary storage. 

LOOP: From the scheduling table, determine the next subcircuit to be analyzed. 
N 

Set S = 

If ( 

Else Begin 

waveforms required in the analysis of the next subcircuit 1. 
is in the primary storage ) then go to WAIT 

N 

Set Y = waveforms in S which are in the secondary storage 1. 
Select a set 2 of the waveforms in the primary storage which are not 

in S or s" such that the amount of storage occupied by 2 is 

larger or equal to that of Y. 

Transfer 2 to the secondary storage. 

Transfer Y to the primary storage occupied by 2. 

Go to WAIT. 

End. 

WAIT: W a i t  until the analysis of s is finished. 

Set s = the next subcircuit and S = s. 
Go to LOOP. H 

Remark: 

We can easily modify the above storage bufIering algorithm to  allow the 

algorithm looks ahead more than one subcircuit. 



104 

Fig. 8.2 illustrates the storage organization proposed by this algorithm and 

the main data associated with the algorithm. Note from the above algorithm 

that the look-ahead storage buffering process can be executed concurrently 

with the process of analyzing the subcircuit s since they do not access the same 

storage locations. Therefore by using this scheme R E M  will be able to analyze 

large circuits without requiring a large amount of primary storage and without 

reducing its speed. 



105 

EXTERNAL FILE 

INPUT CIRCUIT 
PROCESOR 

CIRCUIT DESCRIPTION 
SUBCIRCUIT DESCRIPTIONS 

I 
/ 

I 
I 

SCHEDULER 

FANOUT TABLES 
SCHEDULING TABLE 

I 

I 
I 

I 
I 

4 I 
I 

J /  

MAIN ROUTINE INTZRMEDIATE 

GENERATOR 

INTERMEDIATE CODE 

\ 
\ 

\ 
\ 

\ 

SUBCIRCUIT 
ANALYZER 

WAVEFORM STORAGE 

IXTERPOLATOR 

rSg. 8.1 

Organization of RELAX 



106 

/ Primary s. 

Storage 3 
swap 

Secondary 

Storage 

Table 

A 

Rg. 8.2 

Look-ahead storage buffering scheme 



107 
Chapter 9 

Perf orrnance of RELAX 

In this chapter, we describe the performance of XELAX and compare it with 

a standard circuit simulator: SPICE2. Since RELAX has not yet bee@ fully 

developed and presently can handle very limited types of subcircuits and MOS 

models, the comparison serves only to show that the WR method is very suitable 

for simulating large scale digital integrated circuits. The two simulators use the 

same MOS model, Le., the Schichman-Hodges model (or SPICE2 MOS model level 

= 1) with linear capacitors, so that the accuracy of RELAX can also be verified by 

using the outputs of SPICE as references. For RELAX the specified convergence 

error for its WR iteration is 0.05 Volt. 

The schematic diagrams of the MOS circuits being tested and their output 

waveforms obtained by RELAX and SPICE are shown in Fig. 9.1 through Fig. 9.5. 

For RELAX output waveforms, each rectangular mark denotes the computed 

value at every other two internal timepoints to illustrate the effect of the imple- 

mented latency technique. The two simulators run on a VAX 11/780 using UND(2 

operating system A comparison of the analysis time in CPU seconds spent by 

each simulator is given in Table 9.1. The tabulated CPU time for SPICE is the 

total CPU-seconds spent only by its transient analysis routine, Le., they do not 

include the read-in, set-up and read-out phases. The tabulated CPU time for 

RELAX is the total CPU-seconds spent by the intermediate code generator, the 

subcircuit analyzer and the interpolator of the program as described in the pre- 

vious chapter. The total number of iterations used by RELAX is also tabulated. I t  

is clear from the figures and the table that RELAX can analyze MOS digital cir- 

cuits at least one order of magnitude faster than SPICE while achieving the same 

accuracy. 

e Unix is a trade mark of Bell Laboratory. 



I 

108 

9 2  
0 

D - 
-1 

L 

6 .8 

e .e 1 .e 2 .e 3 .e 

a .0 1.8 2 . 0  3 . 0  

6 .8 

v2 
i 

...... _. ....... "..."..-.i ............................. 
I ; 

I 

! 

. .......................... -...t"".......-.-.. .......... - I 

s 
1 

1 4 1  " ' I ' I i  " ' " ' 1 ' ~  

I 

0.8 1.8 2 .e 3 .8 

6.6 ,  

v; 
4 4 ................................ .i ................................... i ..............................-.. 

1 1 1 1  
Y Y  

I .............................. ? ............................... - 

! 

1 1 1 l 1 1 1 1 i 1 1 1 1 1 ' 1 1 '  

6 .G 1 .o 2 .8  3.8 

t 

ng. 9.1 

A dynamic shift register 



109 

3 9 8 

1 .a 

- 1 . 0  

A I 

1 

i SUM SPICE 
.........._..... ................. 

.................................. 

I .  I I * I . I I i I I *  ' 4 ' " ' i " ' " " ' L  

B 

A 

5 

3 

1 

- 1  

.e 1 

i .  . . . . . . .  , ! , ,  . . . . . . .  I 
8.8 1 .e 2 .e 3 .e 

5 .Q 

1 .a 2 . 8  3 .Q 1.0 2 .a 3.8 8 . 8  0 . 8  

Fig. 9.2 

A one-bit full adder using a pass transistor carry chain 



110 

5 . 8  
SUM2 SPICE i /*--. 

/ - !  '.,, ........_.......__. " ......... * ................................ 4. ................. y--"--... 
\ 
'i 

: /  

.................................. ................................ 1 . o f  i i f  y :..............e............ ,..... -..-. 

Y 

, I  I I I -  I * *  i " " "  ' " i  " " " " '  

Bz i I 

5 me 

-.." ............ "L".""""" ...." ........ 

i ! 
. a  I I *  ' 1 '  " ' 9  ' ~ 9 ' " ' '  " '  

0 ,e 2 .8 1 me 2 m e  3 .e 

3. 

1 .  

F&. 9.3 

A two-bits full adder using two one-bit full adders of Fig. 9.2 



111 

A2 I- 

e .e 1 .e 2 . 8  

6 . 8  

4 -0; ...........................-..... 

0 . 0  1.0  2 .8  

. * - 
16 

Off  - 
t o m  - R o h f  

A=B 

A<E 

A>B 

'I 
i 
! 

...... i 4 8 e I=* ..........._..... " -.......... 4 ............-.--.........*. ...;.............- --.- 

2 ,  

8 .  
e:e 1 .@ 2 .e 3 * e  

6 . 8  

1 * Q  2 . 8  3 . 8  

ng. 9.4 

A two-bits magnitude comparator implemented by a NOR-NOR PLA with no 

minimization of the product terms 



112 

...-....--.-- 

2 .e 3 * e  8 .9 e:e 3.0 

1.0 2 .0  3 .0 

Fig. 9.5 

A two-bits full adder implemented by a NOR-NOR PLA with no 

minimization of t h e  product terms 



113 

1 Fig. $.5 

I 
I 2613 

I 
1334.80 1 

I 
22.30 i 

7 59.86 ; 

I 

Table 9.1 

A comparison of CPU t h e  (in seconds) between R E M  and SPICE2. 

OH't floating capacitorr. The ratio of a noadng cspacitance to a grounded ca?aci=mce is q- 
prorimately 1 to 12. 



114 

Chapter 10 

Conclusion 

We have proposed and studied the Waveform Relaxation (WR) method for 

solving a system of mixed implicit algebraic-differential equations. The key idea 

behind this method is to apply the relaxation decomposition directly to  the 

given system of equations. As a result, each decomposed subsystem is a dyhami- 

ea1 system which can be solved independently by using standard numerical 

methods. In particular, we have discussed the convergence of the method from 

a sound theoretical basis. We have also shown that the WR method is guaranteed 

to converge for a large class of dynamical systems, especially large scale MOS 

integrated circuits. 

We have described the organization and the analysis techniques of a new 

MOS digital circuit simulator RELAX which implements the WR method. In partic- 

ular, we have described a few important techniques which account for consider- 

able improvements in the speed of RELAX and make the program suitable for 

simulating large scale digital integrated circuits. These techniques are: 

1) A scheduling technique which improves the speed of Convergence of the W R  

method. 

The latency and partial waveform convergence techniques which increase 

the speed of the analysis of each subcircuit. 

2) 

3) A Look-ahead storage bufferring scheme which enables RELAX to simulate 

large circuits without using a large amount of primary storage. 

Experimental results have indicated that RELAX can exhibit definite 

improvements over a standard circuit simulator SPICE for simulating MOS digi- 

tal circuits while maintaining the same accuracy. However, RELAX requires a 



number of enhancements before it can become a standard tool for analysing cir- 

cuits. These enhancements include the implementation of the hierachical input 

language decription of the circuit, an interface with a logic simulator in order to 

utilize the information of the logic simulation and the implementation of the 

table look-up models for MOS devices. 

I t  is clear that the WR method is very suitable for implementing on a com- 

puter whose architecture supports parallel and/or pipeline processing since it 

allows different subcircuits to be analysed concurrently on different processors. 

More work needs to be done to explore this aspect. We remark here that both 

GS-WR and GJ-WR methods can be implemented on this type of computer archi- 

tecture. However, the GJ-WR method may be more suitable since it does not 

impose any constraint on the order within which the decomposed subcircuits 

are simulated. 

Another area of simulation techniques that needs to be further investigated 

is the use of an iterative relaxation decomposition a t  the nonlinear equation 

level. So far, only one sweep of nonlinear relaxation has been used in the so 

called "timing simulation" technique which, although may be quite fast, can 

sometime produce inaccurate results. The use of iteration not only will improve 

the accuracy of the method but also can detect and inform the user when non- 

convergence problems arise. 



116 

References 

L.N. Nagel, "SPICE2: A Computer Program to  Simulate Semiconductor C i -  

cuits," University of California, Berkeley, Electronics Research Laboratory, 

Memorandum No. ERL-M520, May 1975. 

W.T. Weeks, kJ. Jimenez. G.W. Mahoney, D. Mehta, H. Qassemzadeh and T.R 

Scott, "Algorithms for ASTAP- A Metwork Analysis Program," IEEE i"rans. on 

Circuit Theory, Vol. CT-20, pp. 628-634, November 1973. 

kR Newton and D.O. Pederson, "Analysis Time, Accuracy and Memory 

Requirement Tradeoffs in SPICE2," IEEE h c .  Infernational Sym..osivm on 

ci?..cuits a& Systems, pp. 6-9, 1978. 

G.D. Hachtel and kL Sangiovanni-Vincentelli, "A Survey of Third-Generation 

Simulation Techniques," Proceedings of the hWE, Vol. 69, No. 10, pp. 1264- 

1280, October 1981. 

A.R Newton, "The Simulation of Large Scale Integrated Circuits," IEEE 

Trans. on &&ts and Systems, Vol. CAS-26, pp. 741-749, September 1979. 

B.R Chawla, H.K. Gummel and P. Kozak, "MOTIS- An MOS Timing Simulator," 

IEEE 'Ifdns. on CiTcuits and Systems, Vol. CAS-22, pp. 901-910. December 

197 5. 

N.B.G. Rabbat, A.L. Sangiovanni-Vincentelli and H.Y. Hsieh. "A Multilevel 

Newton Algorithm w i t h  Macromodelling and Latency for the Analysis of 

Large-Scale Nonlinear Circuits in the Time Domain," IEEE Puns. m C b  

cuiis and Systems,  Vol. CAS-26, pp. 733-741, September 1979. 

P. Yang, I.N. Hajj and T.N. Trick, "SLATE: A Circuit Simulation Program with 

Latency Exploitation and Node Tearing," IEEE Proceed ings  Int. Con.erence 

on Ci7cui.l~ and Computers, New York, October 1980. 



117 

[9] G. k n o u t  and H. De Man. "The Use of Threshold Functions and Baolean- 

Controlled Network Elements for Macromodelling of LSI Circuits," IEEE 

J a m d  of Sol id-s ta te  Cz7cuits, Vol. SC-13, pp. 326-332, June 1978. 

[ 101 K. Sakallah and S.W. Director, " A n  Activity-Directed Circuit Simulation Algo- 

ri thm" IEEE Proceedings Int .  Conference on Circuits and C o m p t e r s ,  New 

York, pp. 1032-1035, October 1980. 

1111 A. Vladimirescu and D.O. Pederson. "A Computer Program for the Slimula- 

tion of Large Scale Integrated Circuits," IEEE R o c .  International Sy7n.o- 

an Circuifs and S y s t e m s ,  Chicago 1981. 

[ 121 C.W. Gear, Numerical Initial W u e  Prob lems  in Ordinary Diflerential Equa- 

tions, Prentice Hall, 1971. 

[ 131 A. R Newton, "The Simulation of Large Scale Integrated Circuits," University 

of CEtlifornia, Berkeley, Electronics Research Laboratory, Memo. No. ERL- 

M?8/52, July 1978. 

[14] J.A George, "On Block Elimination for Sparse Linear Systems," S I N  J. 

Numerical Analysis, Vol. 11, pp. 585-603, 1974. 

[15] kL Sangiovanni-Vincentelli, "On the Decomposition of Large Scale Systems 

of Linear Algebraic Equations," A.oc. of JACC, Denver, 18-20, June 1979. 

[16] J. Sherman and W.J. Morrison, "Adjustment of an Inverse Matrix Correspond- 

ing to Changes in the Elements of a Given Column or  a Given Row of the Ori- 

ginalhfatrix." Amer. Math. Sta t . ,  Vol. 20, pp. 621, 1949. 

E171 RS. Varga. M a t r i z  Itemdiwe hdysis, Prentice Hall, 1962. 

[ 181 G. DeMicheli and A L. Sangiovanni-Vincentellii "Numerical Properties of 

Algorithms for the Timing Analysis of MOS VLSI Circuits," Proceedings 

ECCTD'81 The Hague, August 1981. 



118 

[19] W. Kahan,  Private notes, 19'75. 

[ZO]  J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonl inear  Equations 

in Several V u M b l e s ,  Academic Press, 1970. 

[Zl] C. W. Ho, A. E. Ruehli and P. A. Brennan. 'The Modified Nodal Approach to 

Network Analysis," IEEE Transactions on &cui.ts and S y s t e m ,  Vol. CAS-22, 

pp. 504-509, June 19'75. 

[22] G. D. Hachtel, R K Brayton and F. G. Custavson, "The Sparse Tableau 

Approach to Network Analysis and Design," IEEE i?unsuctions on Circuit 

Theory, V O ~ .  CT-18, pp. 101-113, January 1971. 

[23] C . k  Desoer and E.S. Kuh, Basic circuit Theory, McGraw-€31, 1969. 

[24] E.L. Lawler, Comb.inatorial Qtimi.zation, Holt, Rinehart and Winston, 19'76. 

[25] J. K. Hale, Ordinary f i f e r e n t i d  Equations, McGraw-Hill, 1969. 

[ZS] W. Rudin, fhctional Analysis, McGraw-Hill, 1973. 

[Z?] J.D. Crawford, M.Y. Hsueh, AR Newton and D.O. Pederson, MOTIS-C Wswk 

CALide, Electronics Research Laboratory, University of California, Berkeley, 

June 19'78. 

[26] J.R Bunch and D.J. R0s.e {editors), S@z.rse M a t r i z  Computat ions ,  Academic 

Press. 19'76. 

[29] G.R Case, "The SALOGS Digital Logic Simulator," R o c .  IEEE International 

Symposium o n  Circuits and Sys tems ,  New York, pp. 5-10, May 1975. 

[30] k E. Ruehli, A. L. Sangiovanni-Vincentetli andN. E. G. Rabbat, "Time Analysis 

of Large Scale Circuits Containing One-way Macromodels," IEEE Ipransac- 

fias on Circuiis and S y s t e m s ,  VoL CILS-29, pp. 185-190, March 1982. 

I 



A1 

Appendix A 

Proof of Theorems and Lemmas 

Proof of Lemma 4.1 

Suppose that (4.10) is false. Then, by interchanging the edges between 

LnM and Lnn, we obtain another complete matching whose total webght is 

larger than the weight of M. Hence M is not a maximurn weighted complete 

matching. The converse is trivial. 

Proof of Lemma 4.2 

We prove this lemma by contradiction. Suppose that the symbolic number 

of states of the system is greater than o - p .  Let be the corresponding set of 

the symbolic state variables and be any matching which matches at least all 

the variables in Y to  the system equations. Since the t i e  derivative of a sym- 

bolic state variable must appear in the system equations and M is a maximum 

weighted complete matching, we must have that 

IC, 

151 c P 
N 

i.e., cannot be a complete matching (otherwise, the weight of M will be larger 

than the weight of M). Hence, given the values of the variables in ? and their 

time derivatives, there are some system variables that cannot be solved for. 

Therefore, cannot possibly form a state variable of the system and we obtain a 

contradiction. Hence, the symbolic number of states of the system must equal 

to u - p .  It is then obvious that lyv I ( s , ~ )  E M and w ( s , w )  = Z j  is a set of the 

symbolic state variables of the system and, by the nondegeneracy assumption 

4.1. it is also a set of the state variables. 



A2 

Proof of Theorem 5.1 

This is a well known theorem in mathematics. We repeat its proof here for 

the sake of completeness. First. we show that the sequence converges. Here, we 

have 

This shows that the sequence is a Cauchy sequence [26]. Since Y is a complete 

normed space, the sequence converges to  a limit F E Y. 

Next, we show that y^ is a fixed point and is unique. Taking the limit of equa- 

tion (5.2) as k-+= and using the fact that F is continuous (an obvious conse- 

quence of being a contraction map), we obtain 

That is, y^ is a fixed point of F. Now suppose that there is another Axed point 

y” z G .  Then 

which is a contradiction since 7 < 1. Therefore, the fixed point of F is unique. 

Finally, we show that the rate of convergence of the fixed point algorithm is 

linear. Here, we have that 



A3 

Proof of Theorem 5.2 

a) We have 

b) We have 

Since 1 - 7 k  > 0, the above inequality implies that 

(A1.2) 

c) We shall show that, given any d > 0, there exists an integer kd such that 

IIY"+' -GI1 * 6 for all k 2 kd. 

From (Al. l), we have, for any k > kl, that 

a d  BkOYOIEy0 -a1 5 - f o r a l l k r k l  3 at 5 - 3c 

Hence (A1.3) becomes 



A4 

Since 

Since 

Therefore, (Al .5)  becomes 

l b k + ’ - G I I  s 6 

and the proof is then complete. 

Proof of CoroUary5.2 

Here we have 

for all k 2 k l  (A1.5) 

for all k > kz 

for all k 2 kz 

a 

for anyj 4 k 

for any k. 1 4 -  
1 - Y  

Therefore, Pkj satisfies the condition (c) of Theorem 5.2. Hence 

l irnUk = 0 
k +- 

limyk = y^ if 
k-  

a 



A5 

The following fact is useful for the proof of Theorem 5.3. 

hmma A1 Let 11*11,, 11.11, be norms in 9, 9'' respectively. Then there exists a 

constant p suchthat  

b 
112 II, c for all z E $  and z E d  

Proof We use the fact that all norms in a finite dimensional space are 

equivalent (see [20] page 39). That is, if II.II, and 11.11; are norms in rf, there 

exist constants p1 and & such that, for any z E @, 

Then from (A2.1). there exist p l ,  L such that 

(A2.2) and (A2.3) imply that 

(A2.1) 

(A2.2) 

(A2.3) 

Therefore, the proof is then completed. 



A6 

Proof of Theorem 5.3 

Define 

D k it E [O,T] I t is a discontinuity point of either u(.), Go(.) or zq(,)j 

XxZ = t(z(.), z ( . ) )  : [O,T]-rf(nxR' I ;(e) and . ( a )  are piecewise 

continuous w i t h  possible discontinuity points in D 1 

A 

(M. la) 

z N = Q ( Z Z , ~ , Z , " )  (A3.1 b) 

N ; = f ( E 2 , 5 , z , u )  ; q o )  = zo 

Since f is Lipschitz continuous with respect to 2, by the Picard-hdelof 

Theorem on the existence and uniqueness of the solutions of ordinary 

differential equations (see [25] page 18), the above equations have a unique solu- 

tion (."(e), ;(e)) which belongs to XxZ. Therefore F is well defined. From these 

dellnitions the canonical WR algorithm described by (5.12) can be written as 

(A3.2) 

Let 7 = max(y, O. l ) ,  

be chosen later. Define norms in f x d x f  and x><Z as follows: 

= X1, x2 = Xz and 7 be a positive constant whose value will 

(A3.3) 

(A3.4) 

where the norms in rfxd and f are as given in Theorem 5 .3 .  Since 



A7 

? ( t )  - P ( t )  

Therefore, it can be shown that the space (XXZ, I I . I I )  is closed (hence i t  is a 

Banach space). Next we shall show that F is contractive in (XxZ, I I . I I ) .  Let 

< r̂ + (X' + X2)lIz"yt) -2(t)II  (A3.5) 
7 

Then, from (A3.1) and the condition (b) of Theorem 5.3, we have 

After some algebraic manipulations using (A3.3). 7 and the above inequality, we 

have 

From Lemma A 1, there exists a constant p such that 

From (A3.5) and (A3.6), letting p1 = pj I 

(A3.6) 

n 

A 2  

Y 
and& = p ( x l  + F), we have 

Applying the fundamental results in differential inequalities to (A3.7) (see [25] 

corollary 8.2, pages 30-32). using the fact that zl(0) - z2(0) = 0, we have 



A8 

From (A3.4) we have 

for all I E [om?-] 

Substituting this inequality in (A3.8), we have 

(A3.8) 

Substituting this inequality in (A3.5) and multiplying by e T t ,  we have 

Hence, using (A3.4), the above inequality implies that 

c 

That is 

r c 1  

I 

Since 0.1 5 5 < 1, we can choose r]  = 5 such that 



A9 

t 

which gives 

(A3.10) 

(A3.11) 

Hence, (A3.9) becomes 

Therefore F is contractive. Hence, by the Contraction Mapping Theorem 5.1, it 

has a unique Axed point in XxZ satisfying 

That is 

Furthermore, for any given initial guess (zo(.), zo ( . ) )  E BZ, the sequence 

t(zL(.), z*(.))];=~ generated by the Axed point algorithm (A3.2) converges uni- 

formly to  (2^(.), a ( . ) )  E XxZ. Moreover, since we can choose (zo(.), zo( . ) )  E XxZ 

such that zo( t )  = zo and z o ( t )  = 0 for all t E [O,T], we conclude that the discon- 

tinuity points of (z^(*), 2(.)) belong to the set of discontinuity points of u(.) only. 

i.e., they do not depend on go(-) and .'(a). Hence the proof is then completed. 



A 10 

Proof of Theorem 5.4 

Here we use the same notations as in Theorem 5.3 and its proof. Let 

tz”(t), ~ ” ( t )  : t E [O,T]j;=l be the sequence generated’by the following canoni- 

cal WR algorithm. 

2” = (z”, z k - I 1  P - l l  2 k - l 1  u) ; z”(0) = z$ (A4. la) 

2” = g(z”, zk-1, P - 1 ,  2 - 1 ,  ZL) (A4. lb) 

Let 

Subtracting (A4.1) from (A4.2). we obtain 

FYom (A3.3) and the above inequality, we have 

A 

s (XI + ” 2 ) I p ( t )  -z”(t) l l  (A4.3) 
7 

A 

A2 Let = p(xl + r) . Then from Lemma A. l  and the above inequality, we have 
1 

Y 

Applying the fundamental results in differential inequalities to  (A4.4), using the 

fact that ?(O) - ~ ” ( 0 )  = zo - 2:. we have 

I p ( t )  - z”(t)l\ c e@/]&) - ZgI] (A4.5) 



A 11 

Substituting this inequality in (A4.3), we have 

From (A3.4), (A4.6) and the fact that m2 - 7 < 0, we have 

Hence 

Since lirnzt = zo, therefore 
k -0 

lime* = 0 
k +- 

(A4.6) 

(A4.7) 

Hence, applying Corollary 5.2 with Fk = F \-.e., db = 0), we conc,cide that the 

sequence of ( z k ( . ) , z h ( . ) )  generated by (A4.1) converges uniformly to  the fixed 

point of F which is the solution of (5.13). m 



A 12 

Proof of Theorem 5.5 

We use the same notations as in the proof of Theorem 5.3 with the following 

changes. 

Now, define Fk : XXZ+l&Z; k = 1.2 ,..., m such that 

(5.15). Then, by using the proof similar to the proof of Theorem 5.3, we can show 

that F, Fk, k = 1,2 ,...,= are all contraction maps with contraction constants less 

than 7 where 

1 + -  y c 1  
H 

7 *  2 

Let 

(A5.1) 

Then, by applying Corollary 5.2 with ak = 0, the proof of this Theorem is com- 

pleted when we can show that limbk = 0. Let 
k +- 

That is 

9 = p+yZI*, Z‘f, 2,  u) ; P ( 0 )  =zo (fi.W 
Z” = g L + 1 ( z ^ ” ,  z, f , z^, u) (A5.2 b ) 

Subtracting (5.13) from (A5.2). we have 



A 13 

Hence 

By following similar steps in the proof of Theorem 5.3, we can show that 

(A5.3) 

Applying the fundamental results in differential inequalities to (A5.4), using the 

fact that z^’(O) - z^(O) = 0, we have 

(fi. 5 )  
f 

IIWt) - W l l  5 lLJ e -+*+ ,(TM T 

Substituing (A5.5) into (A5.3), we have 

Since nrntk(t)  = 0 for any t E [O,T], (A5.6). (A5.1) and (A3.4) imply that 
k -0 

lim6* = 0 
k +- 

Hence, the proof is completed. 

(A5.6) 

8 

Proof of corollary 5.5 

The proof of this corollary follows immediately from the proofs of Theorem 

5.4, Theorem 5.5 and Corollary 5.2. rn 



A 14 

Proof of Lemma 5.1 

We shall prove this lemma by specifying the steps required to transform the 

WR algorithm into a canonical form. These steps have been described informally 

in the examples of Chapter 5. In this proof we shall describe these steps in terms 

of their graph representations. In particular, the process of differentiating the 

i- th equation $ times will be represented as the process of adding $ to the 

weight of all edges incident to the i - th  node of S where G = (S ,V,B)  L the 

weighted bipartite graph associated with the system equations. We shall refer to 

this procedure as ADDW($,i, G). 

Dehition A1 Let G = ( S , Y , B )  be a weighted bipartite graph associated with a 

given system of equations as defhed in Definition 4.4, i E S and $ be an integer. 

The following procedure is defhed as ADDW($,i,G). 

For each edge (k, j )  E B 

If k = i, then 

Otherwise, w ( k , j )  = w ( k , j ) .  m 

w ( k , j )  = w ( k , j )  + $ 

Defkition A2 Let G = (S ,V ,B)  be a weighted bipartite graph with IS\ = I VI 
and M be a matching of G. A node j E Y is said to be dominant with respect to M 

if there exists an edge (iJ) E M and 

Le., there is an edge in M that is incident to j E V and its weight is larger than 

or equal to the weight of any other edge incident to j .  

M is said to  be a dominant matching if all nodes in V that are matched by 

M are dominant with respect to M. 



A 15 

Facts 

c)  If M is a maximum weighted complete matching of G, then ADDW will  not 

destroy its r n a x h u r n  weight property. That is, Y is still a maximum 

weighted complete matching of the graph after applying ADDW. 

If M is both complete and dominant, thenM is also a maximum weighted b) 

complete matching.' 8 

For the sake of simplicity, we shall consider the case in which the decompo- 

sition is pointwise. The extension to the genera1 case is straight forward and 

hence will be omitted. Without loss of generality12 we assume that the maximum 

weighted complete matching associated with the consistent AP process of the 

WR algorithm is 

J! = {(lI1), (2.2>, . . . , (p*p)j (A6.1) 

and #at 

l s i s a - p  

a - p  < i s p  Y(i,i)  = (A6.2) 

where u is the weight of M and u -p  is the symbolic number of states of the 

given system 

Using these assumptions and the f i s t  assumption of the lemma, the system 

equations can be equivalently written as 

I s i s u - p  (A6.3a) 

The converse of this fact is true if we are dowed to increase the weights of edges in B by a 
appropriate ADD W processes. The proof of this result is actually the key step in the proof of tlae lem- 
ma. 

This is because we can always renumber 'the equations and the variables to satisfy our arsump 
tions. 



A 16 

\ 

- A  A where yfzt = @ f l j  = 1 ,..., i-l,i+l, ..., p j .  ?/rd = Iy,l j  = 1 ,..., i-l,i+l, ..., p j  and 

1 4 .  i = 1,2, ...,p are smooth functions. Note that the weighted bipartite graph of 

(A6.3) is identical to that of the original system equations. From here on, we use 

(A6.3) as the representation of the system and all differentiation steps that we 

specify are meant to be performed on (A6.3). 

As demonstrated in the examples of Chapter 5, the basic step in the tran- 

formation is to keep on differentiating appropriate equations of (A6.3) until the 

order of time derivative of each variable on the left hand side of (A8.3) is larger 

than or equal to any of its occurrences on the right hand side. This corr$sponds 

to applying appropriate ADDW procedures to the weighted bipartite graph 

G = ( S , V . B )  of (A6.3) so as to make Id (as given by (A6.1)) a dominant matching 

of the resulting graph. After that, the differentiated system is converted into a 

f i s t  order canonical form by introducing additional state variables (see exam- 

ples 5.2 and 5.3). 

Before we give an algorithm for specifying appropriate ADDW procedures to 

make a maximum weighted complete matching a dominant complete matching, 

we need the following definitions. 

A = 11.2 ,..., k 1, Le., it contains the first k nodes of S. S, 

A V,  = 11,2, ..A ), Le., it contains the first k nodes of V.  

A = (sk, 4, ~ h )  where ~k i i(i,j) E ~ l i  E s,, j E %I.  
& is called the subgraph of G induced by (Sk, &). 

~ i ,  

P ( k , j )  is a set o€ all a l t m t i n g  p d h s  in with respect to & from k E Sk 

to j E Sk such that the fvst edge in each path which is incident to k 

must be a non-matching edge. Eence, P ( k , k )  is a set of all alternating 

cycles that contain the edge (k,k). 



A 17 

Algorithm A1 (convert a max weighted complete matching to a dominant one) 

(A6.4) 

if q > O ,  ADDW($,,k,G). 

F o r i  = 1, 2, . , k-1  1 

1 
F o r i  = 1, 2, - , k - 1  1 

m 

W e  shall prove by induction that, after applying Algorithm A1, the .max- 

imum weighted complete matching Id becomes a dominant complete matching. 

First before we apply the algorithm, we have that 

Mi is a dominant complete matching of Gj for all j E [ l ,u-p]  (A6.6) 

Now, assume that the algorithm has been executed a t  k = ,& - 1 and (A6.6) 

is true for all j E [ l , Z  -11. Suppose that, after the algorithm is executed at 

k = g, (A6.6) is no longer true for all j E [ l , z ] .  Then, there must e,fist 

i,j E [ L E ]  ; i # j such that 

W"(j .2)  > y"(i,i) (A6.7) 

L. 

where $ denotes the weight function after completing the algorithm at k = k. 

F'rom (A6.5) of the algorithm, we have 



A. 10 

if j < &  
if j = E  

Case1 (i =E) 
Applying (A6.7) and (A6.9). we have 

?lJ(j.E) + 6Ej > w ( E , E )  

Substituting the value of 6 g j  in the above inequality, we obtain 

where is the maximizer of (A6.5) for b z j .  Let 

L = B uO',E) U(6,Z) 

Then (A6.9) can be written as 

(A6.10) 

But L is an alternating cycle. Hence (A6.10) contradicts the maximum 

weight property of M as given by Lemma 4.1. 

Case2 ( i < E  and j =E) 
Applying (A6.7) and (A6.9). we have 

w ( 2 . i )  > w ( i , i )  + b f i  

or 

This clearly contradicts the maximality of bzi since 



A 19 

Case3 ( i < g  and j < z )  
Applying (A6.7) and (k6.8). we have 

We'd -?&J(i,i) + 6 h j  > bhi 

Let E P ( g , j )  be a maximizer of (A6.5) for 6 ~ ~ .  Since 

B u 0.i) u (i,i) E P ( Z , i )  

(A6.11) 

Therefore (A6.11) contradicts the rnaximality of 6 g i .  

Since we obtain a contradiction in each of these three cases, we conclude 

that (A6.6) has t o  be true for all j E [l,E], given that it is true for all 

j E [l,E-l]. Therefore, by induction, Mp = M is indeed a dominant complete 

matching of G. 

The remaining steps of the construction proof of the lemma are trivial'and 

m has been discussed earlier. Therefore the proof of this lemma is completed. 



The following facts are useful in the proof of Theorem 6.1 

Lemma A2 Define II.[l.. in rc" and fXn as follows: 

A 
~~z~~~ = max 1 %  I where z, is the i-th component of z E R", and 

lSiCn 

11A11.. 4 max CA,, where Aj is the (i , j)- th element of A E WXn. 
1carn J = 1 

Let L and I/ be strictly upper and lower triangular matrices in I P X n  such that 

LZO, UrO'and 

where &, U,j are the (i,j)-th elements of L,  U respectively. Then 

Proof. Let z  ̂ = col( 1,1, ..., 1) E Ez", then from (A7.1) we have 

( f - L - U ) 2  1 0 

(A7.1) 

(A7.2) 

Since L is strictly lower triangular, we have 

(I-L)--l = I + L + L' + * * .  + Ln-1 

Therefore 

(L+ u) - (I-L)-W = [(I-L)-l - I ] ( / - L - U )  

= (L + L2 + * * . + Ln-1)(I-L-U) 

(L+U)Z^ - (f-L)-lUS = (L + L2 + * * + p-1>[(I-L-U>ZI] (A7.3) 

(A7.2), (A7.3) and L r O  imply that 

(L+U)z^ - ( I - . L ) W 2  2 0 (A7.4) 

Since(L+U)rOand(I-L)- 'U = ( I + L  + * . .  +L"- ')UrO,wehave 

~~~~ ~ ~~ 

A vector t QI a matrix A whose elements are all nonnegative is denoted by t r O or A 2 0 reqec-
tively.

A21

Therefore (A7.s

kmma A3 Let f f 2 : D c Iz" + R be two bounded2 Lipschitz continuous func-

tions, then the product function f 1f2 is also bounded Lipschitz continuous in D.

If f 2 is also bounded away from zero, Le., i n f If2(z)l = r2 > 0, then -is also

bounded Lipschitz continuous in D.

f l

o cD 12

Pmof.

constants of fl, f e respectively. Then for any z, y E D

Let f = su I f l(z) 1 , T 2 = s u s I f2(z) I and hl, h2 be the Lipschitz
0 E% Z E

I (1 1 1 2) (4 - (f l f 2) (Y) / = I 1 1 (4 1 2 (4 - I 1 (Y) f 2 (Y) I

= I L r l (4 -J,(Y)Ifdd + [f 2 (4 - f 2 (Y) I J d Y) l

5 I fM - J l (d l I f 2 (z) I + If&) - Idyl l Ifl(y)i

5 h f 2 l l z 'YII + lik 3 I I
= (h J 2 + &.?1)112'Yll

Therefore f

Now, i f f 2 is bounded away from zero, then

2 is Lipschitz continuous in D and is bounded by f 0.

1 1 That is -is Lipschitz continuous in D and is bounded by - Therefore by
f 2 7 2

1 f 1

f 2 1 2
using the previous result, the product f - = -is also a bounded Lipschitz

continuous function in D. m

e If D is a bounded subset of a", then any function which is Lipschitz contirous in D is also
bounded in D.

A22

Proof of Theorem 6.1

D e h e

as follows:

where C, q , are previously d e h e d in Algorithm 6.1 and Algorithm 6.2. Based

on these definitions, Algorithm 6.1 can be tranformed into the following canoni-

cal form

I

And Algorithm 6.2 can be tranformed into the following canonical form

P = T (v * , v k - 1 , 4 k - 1 , & - I , u) ; v"0) = v
2) = g (u k , v)

A23

From L e m a A3 and the assumptions of ’heorem 6. i. we can deduce that
N

a) f , f , g are continuous functions and are Lipschitz continuous with respect

t o v k andv””.

b) 7 is also Lipschitz continuous with respect to 2 , i.e. there is a constant h>O

such that

where 11.11.. denotes the standard max-norm as defined in Lemma A.2.

Applying the result of Lemma A2, we have

From the defhition of C and the assumptions of Theorem 6.1, we have

and

Since, for all u s 0 the function is monotonically increasing with
C & + O

respect to u, therefore (A8.2). (A8.3) and (A8.4) imply that

(A8. 5)

Therefore Algorithm 6.1 satisfies all the conditions of Theorem 5.3 and hence it

converges for any piecewise continuous input u.

A24

For Algorithm 6.2, we d e h e 11.11 in $xd such that for any s E If and z E I?

where X is as given in (A8.1)

X IIs /la + 711" II-

and y is as given in (A8.5). Then

Therefore Algorithm 6.2 also satisfies the conditions of Theorem 5.3 and hence it

converges for any piecewise continuous input u.

B. 1

Appendix B

I

Applications of Iterative Nonlinear Relaxation Methods

in Time Domain Simulation of MOS Circuits

I t has been shown [18] that the use of non-iterative (Le.* only one iteration)

nonlinear relaxation methods in timing simulation of MOS circuits, as imple-

mented in MOTIS [SI, MOTIS-C [27] and DIANA [9]. has deteriorated the numeri-

cal properties (Le.* stability and accuracy) of the integration method used in the

time discretization of the circuit Weren t id equations. Since there are no addi-

tional computational steps to verify that the nonlinear equations are solved

accurately enough at every timepoint, the estimation of the local truncation

error of the integration method is no longer reliable. Hence the timestep control

mechanism based on local truncation errors is no longer valid for timing simula-

tion.

We now discuss the use of conventional iterative nonlinear relaxation

methods in time domain solution. The basic idea is to solve the nonlinear equa-

tions at each timepoint iteratively by a relaxation method until satisfactory con-

vergence is achieved. Hence, the numerical properties of the integration method

are retained and the estimation of the local truncation error can be used as a

factor in determining the sizes of the timesteps comrnensurated with the accu-

racy requirement. The main problem to be addressed here is whether or not the

relaxation iteration w i l l always converge. We will show that, for MOS circuits with

the conventional assumption that there is a grounded capacitor to every node,

there exists a minimum timestep h- which guarantees the convergence of the

relaxation iteration. The size of h- is of course dependent on how the circuit is

decomposed. We then give a simplifted timestep control mechanism which com-

bines the uses of the local truncation error and the relaxation iteration count in

B. 2

determining the sizes of the timesteps.

Consider an MOS circuit whose node equations can be written as

c ; - f (v , u) = 0 ; v (0) = v (E. 1)

where v (t) E rz" is the vector of unknown node voltages, u (t) E R' is the vector

of independent sources, f : $xlf+€? is a Lipschitz continuous function each

component of which represents the sum of currents feeding the capacitors at

each node and C E I?"" is a symmetric strictly diagonally dominant matrix.

Applying the Backward Euler integration method to (B. l), we obtain the following

discrete time sequence of nonlinear equations

where h,+l = ti+l - t i , qtl = ~ (t ~ + ~) , v i ~ v (t i) and ~ ~ + ~ ~ v (t ~ + ~) . For the sake of

simplicity, we consider the pointwise relaxation method only. Let

C = D + L + U (B.3)

where I) E rf" is a diagonal matrix, L E F f x n is a strictly lower triangular

matrix and U E €fXn is a strictly upper triangular matrix.

Applying the iterative nonlinear pointwise Gauss-Jacobi [171 relaxation

method to (B.2), we obtain the following GJ iterative equation

where v,y;-' E f, vi?: E rz", k is the iteration count and, for each component

index j = 1.2, n,

I

I J

i

B. 3

Applying the iterative nonlinear pointwise Gauss-Seidel (GS) [171 relaxation

method to (B.2). we obtain the following GS iterative equation

where vi?:-' E $, vty: E If, k is the iteration count and, for each component

indexj = 1,Z ,..,n,

(8.9)
Fq+l

hi
= vi + -(vi - v+J viy;

We now state the following result which states that these two iterative relaxation

methods will always converge independent of the initial guess provided that the

stepsize b+l is sufficiently small.

Theorem B.l There exists h- such that if & + l s A ~ , , then the sequence of

iterated solutions of either the pointwise GJ iterative equation (B.4) or pointwise

G S iterative equation (B.7) converges to the solution of (B.2)

Proor From (B.4), we have

and La be the Lipschitz constant of f with respect to ll.lla. Then from (B.10),

we have

E. 4

(B. 12)

Y# IID-YL + w w (B. 13)

Therefore, the GJ iterated solutions of (B.4) will converge if7c/(h,+l) c 1.

Similarly, for the pointwise G S iterative equation (B.7). we have

= A - Y & a + l) G P (B. 14)

where LG is the Lipschitz constant of I with respect to I).lls,

(B. 15)

E& 4 /bay; - v a g - l l l ~ (B. 16)

Hence, the G S iterated solutions of (B.7) will converge if 7a(k+1) < 1.

Since C as defined in (B.1) is symmetric and strictly diagonally dominance,

it can be shown (see [l?]) that there exist I l * l l ~ / and Il.llm such that

YCJ 1 and 7- c 1

From (B. 12). choose = h a such that

(B. 17)

which yields

It is then easy to show that

?&+I) ?&GI)

Similarly, for (B. 14). letting

for all < h a

we have that

B. 5

(B. 18)

(B. 19)

(B.20)

(B.21)

The proof is then completed by choosing

We now propose a simple timestep control mechanism for time domain

simulation using an iterative nonlinear relaxation method as shown below. The

basic idea is t o cut the size of the timestep automatically when the relaxation

iteration does not converge .within a prescribed number of iterations.

B.6

Algorithm B.l (Timestep Control Mechanism for Nonlinear Relaxation Method)

Data h, = initial timestep, IV = maximum number of relaxation iterations

after which monotonic decreasing of the iteration error is expected.

Step 0: Set i = 0, t l = hl.

Step 1: Set k = 1 andu?+, = the predicted solution at time ti+l.

Step 2: Apply one iteration of relaxation method to solve the nonlinear equa-

tions at time t i+ , for ut+l.

Step 3: If IIuf+, - utG1 11 I: 6 where 6 is a predetermined relaxation convergence

error

Set vi+, = vf+, and compute 4 + 2 based on the estimation of the

local truncation error (LTE).

If (LTE is too large) then set k+l =

Else set i = i + 1.
Go to Step 1.

!
Else if (k < hi) then set k = k + 1 and go to Step 2.

Else if - ut+-,* 11 < 11ut;i - 11 then set k = k +l and go to Step 2.

Else set h,,, = - '+' and go to Step 1. rn 2

	Chapter 1: Introduction
	Overview of Simulation Techniques
	2.1 Standard Simulators
	2.2 Decomposition
	2.2.1 Tearing Decomposition
	2.2.2 Relaxation Decomposition
	2.2.2.1 Timing Simulation

	2.2.3 Concluding Remarks

	The Wavef om Relaxation Method

	Chapter
	3.1 Mathematical Formulation
	3.2 The Assignment-Partitioning Process
	3.3 The Relaxation Process
	Circuit Examples and Their Physical Interpretations

	Consistency of the AssignmentQartitioning Process
	Definition of Consistency and Examples
	Consistent AP Process
	Convergence of the WR Method

	Chapter
	Contraction Theorems in Functional Space
	Convergence of the Canonical WR Algorithm
	Existence of the Canonical WR Algorithm
	Integrated circuits
	Nodal Circuit Equations and the WR Algorithm
	Modified Nodal Equations and the WR Algorithm
	WR Algorithm with Adaptive MOS Models

	RELAX An Ehperimental MOS Digital Circuit Smulator
	Basic Algorithms in RELAX
	Scheduling Algorithm
	Latency and Partial Waveform Convergence

	Organization of REwu(
	Look-ahead Storage Buffering Scheme

	Performance of RELAX
	Chapter 10: Conclusion
	References

