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ABSTRACT

The Reduced Instruction Set Computer (RISC) Project investi
gates an alternative to the general trend toward computers with
increasingly complex instruction sets: With the proper set of
instructions and corresponding architecture, one can design a
machine with high throughput. The simplicity of the instruction
set and addressing modes allows most instructions to execute in a
single machine cycle, and the simplicity of each instruction
guarantees a short cycle time. In addition such a machine takes
less time to design.

This paper presents the architecture of RISCI and its scheme
for procedure call/return. Overlapping sets of register banks that
can pass parameters directly to subroutines are largely responsi
ble for the excellent performance of RISC I. Static and dynamic
comparisons between this new architecture and more traditional
machines are given, along with statistics on the 45,000 transistor
VLSI implementation of RISC I. Although instructions are
simpler, the average length of programs was found not to exceed
those of more complicated machines by more than afactor of two.
Preliminary benchmarks demonstrate the performance advan
tages of RISC I; it seems feasible to build a single-chip computer
faster than the fastest minicomputers on the market today.

INTRODUCTION

A general trend in computers today is to increase the complexity of archi
tectures commensurate with the increasing potential of implementation techno
logies, as exemplified by the complex successors of simpler machines. Com
pare, for example, the VAX-112 to the PDP-11, the IBM System/383 to the Sys
tem/3, and the Intel iAPX-432* to the 8086. We will call this class of computers
Complex Instruction Set Computers (CISC). Some negative consequences of this
complexity are increased design time, increased design errors, and inconsistent
implementations.5

• il Instigations o' VLSI architectures indicated that amajor design limitation
u the delay-power penalty of data transfers across chip boundaries and the still

TAn terlier version of this paper. entitled -RBC I: AReduced Instruction Set VLSI Comput-
"«JM P"*81*** at the Wtf* Annual Symposium on Cbmpufr ArcMUctur?, U«y mi,
m Minneapolis, Minnesota. *
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limited amount of resources (devices) available on a single-chip. Even a million
transistors does not go far if a whole computer has to be built from it. 8 This
raises the question whether the extra hardware needed to implement a CISC is
the best way to use these "scarce" resources.

The above findings led to the Reduced Instruction Set Computer (RISC) Pro
ject. The purpose of the project is to explore alternatives to the general trend
toward architectural complexity. The hypothesis is that by reducing the
instruction set one can design a suitable VLSI architecture that uses the scarce
resources more effectively than a CISC. We also expect this approach to reduce
design time, the design errors, and the execution time of individual instructions.

Our initial version of such a computer is called RISC I. To meet our goals of
simplicity and effective single-chip implementation, we somewhat artificially
placed the following design constraints on the architecture:

Execute one instruction per cycle. RISC I instructions should be about as
fast and no more complicated than microinstructions in current machines
such as the PDP-11 or VAX.

All instructions are the same size. This again simplifies implementation.
We intentionally postponed attempts to reduce program size.

Only load and store instructions access memory; the rest operate between
registers. This restriction simplifies the design. The lack of complex
addressing modes also makes it easier to restart instructions.

Support High-Level Languages (HLL). The degree of support is explained
below. Our intent is to optimize the performance of RISC I for use with
high-level languages.

RISC I supports 32-bit addresses, 8-, 16-, and 32-bit data, and several 32-bit regis
ters. We intend to examine support for operating systems and floating point cal
culations in successors to RISC I.

It would appear that these constraints, imposed by our desire for simplicity
and regularity, would result in a machine with substantially poorer code density,
poorer performance, or both. In spite of these constraints, the resulting archi
tecture competes favorably with other state-of-the-art microprocessors and
minicomputers. This is due largely to a scheme of register organization we call
overlapped register windows.

SUPPORT FOR HIGH-LEVEL LANGUAGES

Clearly, new architectures should be designed with the needs of high-level
language programming in mind. It should not matter, however, whether a high-
level language system is implemented mostly by hardware or mostly by
software, provided the system hides any lower levels from the programmer. 7
Given this framework, the role of the architect is to build a cost-effective system
by deciding what pieces of the system should be in hardware and what pieces in
software.

The selection of languages for consideration in RISC I was influenced by our
environment; we chose *C since there is a larger user community and consider
able local expertise. Given the limited number of transistors that can be
integrated into a single-chip computer, most of the pieces of a klSC high-level
language system are in software, with hardware support for only the most time-
consuming events.

To determine what constructs are used most frequently and, if possible,
what constructs use the most time in average programs, we first looked at the
frequency of classes of variables in high-level language programs. Data
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coliected for Pascal and C are shown in Table 1.

Table 1.

Dynamic Percentage of Operands in Cand Pascal t

CI C2 C3 C4
Pascal

PI P2 P3 P4 Ave

Integer Constant

Scalar

Array/Structure

25 11 29 28

37 45 66 62

36 43 5 10

14 18 11 20

63 68 46 54

23 14 43 25

20 ±7

55 ± 11

25 ± 14

'Program
CI

C2

C3

C4

PI

P2

P3

P4

Explanation
PCC - The PortableCCompiler for the VAX
CIFPLOT - a program that plots VLSI masklayouts ona dot plotter
NROFF - a text formatting program
SORT - the UNDC sorting program
COHP - A Pascal P-code style compiler
MACRO - The macro expansion phase of the SCALD Idesign system
PRINT - A prettyprinter for Pascal
DIFF - A program that finds the differences between tiro flies

The most important observation was that integer constants appeared
almost as frequently as arrays or structures. What is not shown is that more
than 80% of the scalars were local variables and more than 90% of the arrays or
structures were global variables.

We also looked at the relative dynamic frequencies of high-level language
statements for the same eight programs; average occurrences over 1% are
shown in Table 2. This information does not tell what statements use the most
time in the execution of typical programs. To answer that question, we have to
look at the code produced by typical versions of each of these statements. A
"typical" version of each statement was supplied by Wulf as part of his study
into judging the quality of compilers. 8We used C compilers for the VAX, PDP-11,
and G8000 to determine the average number of instructions and memory refer
ences per statement. By multiplying the frequency of occurrence of each state
ment with the corresponding number of machine instructions and memory
references we obtain Table 3. which is ordered by memory references.

The data in Table 3 suggests that the procedure call/return is the most
time-consuming operation in typical high-level language programs. These results
corroborate studies by Lunde* and Wichmann. ™The statistics on operands
found in Table i emphasize the importance of local variables and constants.
RISC supports HLL by enhancing performance of the most time-consuming
features of typical HLL programs, as opposed to making the architecture
,,cloBe,, to a particular HLL; thus RISC I attempts to handle local variables, con
stants, and procedure calls efficiently while leaving less frequent operations to
instruction sequences or subroutines.
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statementsT
Pascal

PI P2 |P3 P4

39 52 35 53
35 30 38 16
15 14 18 15
2 0 5 13
5 5 5 4
4 0 1 0

AVERAGE
assign
if

call

with

loop
case

statements^"
assign
if

call

loop
goto
case

CI C2 C3 C4

22 50 25 56
59 31 61 22
6 17 9 16
2 2 3 5
9 0 1 1

2

- - 0

45 ±8

29 ±8
15 ± 1
5±5

5± 0

1 ± 1

AVERAGE

38 ± 15

43 ± 17

12 ±5
3± 1

3±4

<1± 1

Table 3.
Weighted RelaHve Frequency ofHLL Statements.

(ordered by memory references)

statements'

HLL

call/return
loops
assign
if

with

case

goto

HLL

(# occurrence)
P C

15±1

5±0

45±5

29±7
5±5

1±1

12±5
3±1

38il5
43±17

<1±1

3±1

WEIGHTED
(# mach. instr.)

P C

31±3
42±3

13±2

11±3
1±0

1±1

33±14
32±6

13±5

21±8

1±1

0±0

WEIGHTED
(# mem. ref.)

P C

44±4 45±19
33±2 26±5
14±2 15±6
7±2 13±5
1±0

1±1 1±1
0±0

iTeTeco^ — «• <* *̂ tement. Loop state-
two if statements and oJel MrilS^«Z ^ ""* per loop itcrati<»- ** elample. if
we would count 28 Stem^LTtfJS ,8tatemcm8 «W*** maloop that iterates 5times,itatenTeitSL?S^ °li«nmcat'' 10*«*tement,, and one loop. The urUh
^^^nZt^r^i^^l^^T' -^/rertorin, general refers,
to CToJuate Bi-n^tan. .,JT^ cou>»«. ™« V«rf con lUttaeati include InstructionsUoa^^t^SS?;.^^; Pw "»"•»•»»«» - count .fl the a»«hi» in*^
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BASIC ARCHITECTURE OF RISC I

The RISC I architecture has 31 instructions, most of which do simple ALU
and shift operations on registers. As shown in Table 4, they have been grouped
into four categories: arithmetic-logical, memory access, branch, and miscellane
ous. Instructions, data, addresses, and registers are 32 bits. The execution
time of a RISC I cycle is given by the time it takes to read and add two registers,
and then store the result back into a register. The global register 0, which
always contains zero, allows us to synthesize a variety of operations and
addressing modes.

Instruction

ADD

ADDC

SUB
SUBC

SUBR

SUBCR

AND

OR

XOR

SLL

SRL

SRA

LDL

LDSU

LDSS

LDBU

LDBS

STL

STS

STB

JMP
JMPR

CALL

CALLR

RET

CALLINT

RETINT

LDHI

6TLPC
GETPSW
PUTPSW

Table 4.

Assembly Language Definition for RISC

Operands
Rs,S2,Rd
Rs,S2,Rd
Rs.S2,Rd
Rs,S2.Rd
Rs,S2,Rd
Rs,S2,Rd
Rs,S2,Rd
Rs,S2,Rd
Rs,S2,Rd
Rs,S2,Rd
Rs.S2,Rd
Rs,S2,Rd

(Rx)S2,Rd
{Rx)S2,Rd
(Rx)S2,Rd
(Rx)S2,Rd
(Rx)S2,Rd
Rm.(Rx)S2
Rm,(Rx)S2
Rm,(Rx)S2
C0ND,S2(Rx)
COND.Y
Rd.S2(Rx)

Rd,Y

Rm.S2
Rd

Rm,S2

Rd.Y
Rd
Rd
Rm

Comments
Rd 4- RS

Rd «- Rs

Rd ♦- Rs
Rd «- Rs
Rd*- S2

Rd4- S2
Rd 4- Rs
Rd 4- Rs

Rd <- Rs
Rd4-Rs

Rd «- Rs

Rd «- Rs

+ S2

+ S2 + carry
-S2

- S2 - carry
-Rs

- Rs - carry
&S2

|S2'
xor S2

shifted by S2
shifted by S2
shifted by S2

Rd «- M[Rx+S2]
Rd ♦- M[Rx+S2]
Rd - M[Rx+S2]
Rd - M[Rx+S2]
Rd 4. M[Rx+S2]
M[Rx+S2] 4- Rm
M[Rx+S2] 4- Rm
M[Rx+S2] 4- Rm
pc 4- Rx+S2
pc 4- pc + Y
Rd 4- pc, next
pc 4- Rx+S2, CWP-
Rd 4- pc, next
pc 4- pC + Y, CWP-
pc 4- Rm+S2, CWP++
Rd 4- last pc; next CWP-
pc <- Rm+S2; next CWP++:

Rd<31:l3>4-Y; Rd<12:0>-
lid 4- Ust pc
fcdi-i>SW
fSW^Rm

integer add
add with carry
integer subtract
subtract with carry
integer subtract
subtract with carry
logical AND
logical OR
logical EXCLUSIVE OR
shift left

shift right logical
shift right arithmetic

load long
load short unsigned
load short signed
load byte unsigned
load byte signed
store long
store short

store byte

conditional jump
conditional relative
call

and change window
call relative

and change window
return and change window
disable interrupts
enable interrupts

load immediate high
to restart delayed jump
load status word
set status word

Load and store instructions move data between registers and memory.
Rather than lengthen the general cycle to permit a complete memory access,
these instructions use two CPU cycles. There are eight variations of memory
access instructions to accommodate sign-extended or zero-extended 8-bit, 16-
bit, and 32-bit data. Although there appears to be only the index plus



displacement addressing mode in data transfer instructions, absolute and regis
ter indirect addressing can be synthesized using register 0 (See Table 5).

Table 5.

Synthesizing VAX Addressing Modes.

Addressing VAX RISC equivalent
Register
Immediate

Indexed

Absolute

Reg Indirect

Rs

^literal
Rx + displ
©^address
(Rx)

Rs

S2 (13-bit literal)
Rx + S2 (13-bit displacement)
rO + S2 (rO a 0)
Rx+ 0

Branch instructions include call, return, conditional and unconditional
jump. The conditional instructions are the standard set used originally in the
PDP-11 and found in most 16-bit microprocessors today. Most of the innovative
features of RISC are found in call, return, and jump; they will be discussed later.

Figure 1 shows the 32-bit format used by register-to-register instructions
and memory access instructions.

0PC0DE<7> SCC<1> DEST<5> S0URCE1<5> IMM<1> S0URCE2<13>

Figure 1. RISC I basic instruction format.

For register-to-register instructions, DEST selects one of the 32 registers as the
destination of the result of the operation performed on the registers specified
by SOURCEl and S0URCE2. If IMM = 0, the low order five bits of S0URCE2 specify
another register; if IMM = 1, S0URCE2 expresses a sign-extended 13-bit con
stant. As mentioned above, the frequency of integer constants in HLL programs
suggests architectural support, so immediate operands are available in every
instruction. SCC determines whether the condition codes are set. Memory
access instructions use SOURCEl to specify the index register and S0URCE2 to
specify the offset. One other format combines the last three fields to form a 19-
bit PC-relative address, and is used primarily by the branch instructions.

The examples in Table 6 show that many of the important VAX instructions
can be synthesized from simple RISC addressing modes and opcodes. Compara
tive measurements of benchmarks will demonstrate the effectiveness of the
chosen instruction set.



Operation
Reg-Reg Move
Compare
Compare to 0

Clear

Two's Complement
One's Complement
Load Const

Increment
Decrement

Check index bounds,
(A[0:U])
trap if error,
& read A[Rm]

-7

Table 6. .
Synthesizing VAX Instructions.

VAX RISC equivalent

incl

decl

index

movb

Rn

Rn

Rm.#0,#U,
#l,A,Rn;

(Rn),Rp

add

sub

sub

ldl

add

stl

sub

xor

add

ldhi

add

add

sub

sub

jmp
call

OK: ldbu

rO.Rm.Rn (rO s 0)
Rm,Rn,rO,$cj
Rn.rO.rO.fccJ
(r0)A,r0,fcj
rO.rO.Rn
r0.(r0)A
rO.Rm.Rn
Rm,#-l,Rn
r0,#N.Rm
#N<31:13>,Rm
rO,#N<12:0>,Rm
Rn,#l,Rn
Rn.#l,Rn

Rm,#U,rpfcj;
lequ.OK;*
error;

(Rm)A,Rp

Register Windows

The previously mentioned investigations of the use of high-level languages
suggest that the procedure call is the most time-consuming operation in typical
high-level language programs. Potentially, RISC programs may have even more
calls, because the complex instructions found in CISC's are subroutines in RISC
Thus, the procedure call must be as fast as possible, perhaps no longer than a
few jumps. Because of the register window scheme, RISC I comes close to this
goal. At the same time, this scheme also reduces data memory traffic.

Using procedures involves two groups of time-consuming operations: saving
or restoring registers on each call or return, and passing parameters and
results to and from the procedure. As mentioned above, the frequency of local
pCaifr.7nnableUUSi?eS architectu™l support by placing locals in registers,
flaskett and Sites^ proposed that microprocessors keep multiple banks of
registers on the chip to avoid register saving and restoring. A similar scheme
was adopted by RISC 1; each procedure call results in the allocation of a new
window of registers from the large register file for use by that new procedure,
lne return just resets a pointer, restoring the old set. In addition, some of the
registers are not saved or restored on each procedure call. These registers (rO
through r9) are calledglobal registers.
£—
♦This approachis better t*an the normal algorithm. We can think of an index as an un-
w! J^a "^l0 * md" * U* Atwo'8 implement negative number (1X...X) is then alarge unsigned number, so we only need make one unsigned test instead of two signed tests.
S«v f^>i!rr^TldJia;evhan,lled by «*tr«*tag ** lower bound from the indei. and mul-fcple indices are handled by repeating the sequence and including a multiply and an add.
This idea resulted from adiscussion between Bill Joy, Peter Kessler, and Goorge Taylor. Tay
lor coded the examples and found that on the VAX-U/780, the sequence of simple instruc
tions was always faster than the index instruction. This optimization is found in the UNDC C



-8-

eters are usually paSedon th^stact tft?£?*£'• *" °'her ma<*in«. Param-
(frame pointer) tc'point tc^ne beam^toof^0^"8 pr°ced,ure us»6 aregisterthe locals); thus, all referentf^J g .Parameters (and also the end of
memory. Our V^^^Sa^JS^0^ ^ inde"d «*««»•• to
the three parts defined by tLi^reZ^J- °,f ""¥* reSiste™ (10-31) intoset of registers shown in KgcnZ reSpectlVe 0VerlaP- Every Procedure sees the

HIGH R31

R26

R25

LOCAL

R16

LOW
R15

RIO

R9

GLOBAL

RO

Figure 2. Naming within one Virtual RISC IRegister Window.

the cu^e^^^ Peters P-ed from ..above-
through 25 (LOCAL)^aTe used fnloJ , ^ CfUm8 Proced^e. Registers 16
(LOW) are ntorf fi f l0Cal Scalar 9torage. Registers 10 through 15
'•below*the c»rJ?* *«*«"« and parameters passed to the procedure

overlap between subseauen^fai«ff •"? *!!" beoause of the hardware
tion. parameters to registers 1rf i^ ^^V' Thus- ^""out moving informa-
dow Figure 3mLTr.ff^K apP.ear mre6«ters 25-31 of the called win-
cedurXwUh ^alL p7oceturePC0a0h ^ "* CaSe ^ Pr°CedUre ' oalls P'«-
RlSC^nand^ch'an^ Iarge" *" re*ister wtod°w* ^ °* ^ed.
underflow „e h^dled XXo to a.STU**? in mem0ry- Overflow •*»
Because this routme Tan sav? « JSST" r°Utm,e that adjUSts that stack-
overflow/underflow frequency S based ♦£ I T"i ?** °f. reSisters- the
Stack rather than ^nTh*Ybsolut^ deSth fe^ff" ♦"^ ^ "i6^^ °f thedepends on the relative ft~«i.»W~ „> P!S" Kie f^^ness of this scheme
bert and Kessier**Z fiffielt~ T ^ ?nderfl°*s- Studies by Hal-
than IX of the calls WS^u««tS th«t £* 8r baj*?J"*1*" *«1 occur in lessnesting o,'Procedures^fne^
enceXm^wfth0 poStrrsh ^f^ ^ "fl?*8" °°CUrs *ben *• *** *• ™<"-Because regUterSPno™ai.v1^ T^""" that these Variables have addresses.cause registers normally do not have memory addresses, one could let the



Physical Registers

137

132

HIGHA

131

122

LOCALA

121

116

LOWA/HIGHB

115

106

LOCALB

105

100

LOWB/HIGHc

99

90

LOCALc

69

84

LOWc

GLOBAL

Logical Registers

Proc A Proc B Proc C

R31c

R20c

R25c

R16c
R15c
R10c

Figure 3. Usage of Three Overlapped Register Windows.

compiler determine what variables have pointers and put such variables in
memory. This precludes separate compilation and slows access to these vari
ables. RISC I solves that problem by giving addresses to the window registers. If
we reserve a portion of the address space, we can determine, with one com
parison, whether a register address points to a register in the CPU or whether it
joints to a register that has overflowed into memory. Because the only instruc
tions to access memory are load and store, and they take an extra cycle
already, we can add this feature without reducing the performance of the load
and store instructions. This permits the use of straightforward compiler tech
nology and still leaves a large fraction of the variables in registers.
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This addressing technique also solves the "up-level addressing" problem.
Pascal and other languages allow nested procedure declarations thereby creat
ing a class of variables that are neither global variables nor local to a single pro
cedure. Compilers keep track of each procedure environment using static and
dynamic links or displays. Such a compiler for RISC would also associate the
memory address for the window of local variables. These variables would then
be accessed by using the display or dynamic chains to And the corresponding
memory addresses.

Delayed Jump
The normal RISC I instruction cycle is just long enough to execute the fol

lowing sequence of operations: read a register, do an ALU operation, and store
the result back into a register. We increase performance by prefetching the next
instruction during the execution of the current instruction. This introduces
difficulties with branch instructions. Several high-end machines have elaborate
techniques to prefetch the appropriate instruction after the branch, 14 but these
techniques are too complicated for a single-chip RISC. Our solution was to
redefine jumps so that they do not take effect until after the following instruc
tion; we refer to this as the delayed jump.

The delayed jump allows RISC I always to prefetch the next instruction dur
ing the execution of the current instruction. The machine language code is suit
ably arranged so that the desired results are obtained. Because RISC I is always
intended to be programmed in high-level languages, we will not burden the pro
grammer with this complexity; the "burden" will be carried by the programmers
of the compiler, the optimizer, and the debugger.

Table 7 illustrates the delayed branch. Machines with normal jumps would
execute the sequence in Table 7(a) in the order 100, 101, 102, 105, ... .To get
that same effect in RISC I. we would have to insert a NOP (Table 7(b)). The
sequence of instructions for RISC I is now 100, 101, 102, 103. 106 In the
worst case, every jump could take two instructions. The RISC I compiler, how
ever, includes an optimizer that tries to rearrange the sequence of instructions
to do the equivalent operations while making use of the instruction slot where
the NOP appears. As shown in Table 7(c), the optimized RISC I sequence is 100,
101, 102. 105, ... . Because the instruction following a jump is always executed
and the'jump at 101 is not dependent on the add at 102, this sequence is
equivalent to the original program segment inTable 7(a).

Table 7.

Normal and Delayed Jump.

Address (a) Normal Jump (b) Delayed Jump (c) Optimized
Delayed Jump

100 LOAD X.A LOAD X.A LOAD X.A

101 ADD l.A ADD 1.A JUMP 105

102 JUilP 105 iutop 106 Add i.A

103 ADD AJ hop ADD A,B

104 SUB C.B Add A,b SUB CB

105 STORE A.Z sub CB STORE A.Z

106 STORE A.Z
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Architectural Heritage

Architects of new machines are building on the work of others and we
^e Tss', p.imP?rt^nt 1° traCe ^ ««"to«7 of RISC I. Its earhest ancestor iswhU ^i ^" '̂-Manchester MADM - the first machine with index registers -
?964wi^heCDC Eg?"'? SUP-Ply Zera 1S Seym0Ur ^ revived the ?dea inThr^oH • 4°°,-and continued t0 "se it in the CDC-7600 and the Cray 1
yeartSr Li %flZ*Wl ""I!* ta the MANIAC l whioh ™s completed just a™£. k i • M' but *8 adoPta<l the idea from microprogrammed controlunits, where delayed jumps are the norm. programmeo. control

point^luts^arX^hi f feidsU°ed ms*uction *<* computers for floating
setT with sonhi^f^ ,^ 15 yearSl he has combined simple instructionfln»n^ sopMsticated pipelined implementations to create the most oowerful
fna £?„? , eaS?*a ta the worId- While Cray concentrates on^unpressi^ float-mg point rates at impressive costs. RISC 1concentrates on improved oerfor-
manoe at lower cost for integer programs written in HLL's. mpr0vei Perfor-
led htThn^6 Iith ^i"" g0als that Pre«iates RISC is the IBM 801. This project
^p^w n^t'uc^Tse^comr '" "7 by '"***&£%£pushed the state of fho !?, ' °omPllers- a™* operating systems. They^Ad^E^^^rT^ technology and created » extremely
munity was left Io^h-h, „ • """computer. Alas, the architecture com-
^u^ess or failure of!^^t%1£1IaWlt?ChaIe-1 *?** ""We" *Sbeginning to emerae « It win £ "? ,For'unately. accurate information is
and the foi. buT d^rences a^e thai Rllr I"8 ^^^.^^ies between RISC I
and the 801 uses .^SS^g^rt dlU°naI""^ te°hnol0gy
-L-jS^Sfia:«s=sss. Sis=

apparent when we TookTt ™n^» ! ^ t.**™»Uge. of registers become
call/return on the V^-li/7Bo"f„„ realizations; as we shall see. procedure
cache is abnnt.n IZ, "V00- ^"S a software stack enhanced by a hardware
cows of RISC, (tSi:: foT °f magmtUd8 Sl°Wer tha" the °verlapPedyregister win
ter w^a^lcVeme" Te^BBN^ ^JT™?*™ Vs °™lW* regi-
registers on eve?y precede* ££butTdoes^ "^ ,aU°°ateS aneW Set of

X^^^^^r^zs^t^the ^ modeis appear
Rt 1975 precluded bavmg arich instruction set on* aregister file on the chip;
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the architects chose the rich instruction set. The main difference between the
MAC-B and TI 990 is that the Bell architects realized that overlapping the regis
ters could improve the performance of the procedure call and provided instruc
tions to specifically overlap the register windows in memory. It is our under
standing that some C compilers used this feature. This machine was never
implemented with on-chip registers, and the logical successor to this machine,
the BELLMAC-32, has abandoned this approach.

VLSI IMPLEMENTATION

The transition from theoretical architecture to concrete circuits began
began on January 6, 1981. Mask descriptions were completed June 22 and we
received first silicon on October 23. Figure 4 is a photomicrograph of RISC I. We
followed the Mead-Conway design philosophy for NMOS with lambda at 2 microns
and no buried contacts. This first version, RISC I 'Gold* as it is known internally,
implements the complete instruction set and 6 windows with a total of 78 regis
ters. The only piece of the architecture that was not implemented is the map
ping of registers into the memory address space.

We collected statistics on the design and layout of RISC I. 2° Table 8 com
pares these results to VLSI implementations of more complex architectures.
The most visible impact of the reduced instruction set is the reduced control
area: control is only 6 % of RISC I compared to 50 % in others. RISC I is also
more regular. Lattin defined the regularity factor as the total number of
transistors (less those in ROM) divided by the number of individually drawn
transistors. 21 By this measure RISC I is 2 to 5 times more regular than the
Z8000, 68000, or 432. The time from the first discussion of the RISC I architec
ture to the masks was 14 months, less than the development periods of other
machines. This was due in part to the reduced instruction set and in part to the
Berkeley CAD software that was a good match for this style of VLSI design. The
primary interface was Caesar, an excellent color graphics layout editor
developed by Ousterhout. 22
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Table 8.

VLSI Design Metrics for Z8000, MC68000, iAPX-432, and RISC I.

Total Devices
Total minus ROM
Drawn Devices
Regularization factor
Size of chipimils)
(Area in mils)
Size of Control (mil2)
Percent Control

Elapsed Time to
first silicon (months)
Design Effort
(man months)
Layout Effort
(man months)
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EVALUATION

This section wUl discuss the overall performance of RISC I and assess the
contributions of the register window scheme and the delayed branch.

Register Windows.

The results of two benchmarks presented below show that the window regis
ters are effective in reducing the cost of using procedures. "Puzzle" and
quicksort• are two recursive programs that behave quite differently. Quicksort

has a large percentage of procedure calls, while puzzle has such a low density of
calls that it is almost atypical for modern structured programs. Puzzle does
have a large nesting depth. In both cases, the window scheme proves to be
beneficial. Table 9 shows the maximum depth of recursion, the number of regis
ter window overflows and underflows, and the total number of words transferred
between memory and the RISC CPU as a result of the overflows and underflows.
Va5 Fn ZS memory traffic due to saving and restoring registers in the
VAX For this simulation we assumed that half of the registers were saved on an
overflow and half were restored on an underflow. We found that for RISC I an
average of .37 words are transferred to memory per procedure invocation for
the puzzle program and .07 for quicksort. Note that half of the data memory
references in quicksort are the result of the call/return overhead of the VAX.

Table 9.
Memory Traffic Due to Call/Return

Calls + Maximum
Returns Nested
%instrs Depth

RISC I

overflows+

underflows

Data Memory Traffic
RISC I VAX

# words # words
8k 444k

0.8% 28.0%

4k 696k
1.0% 50.0%

puzzle

quicksort

43k

0.7%

111k

8.0%

20

10

124

64

mpa^e.next table compares the average "cost" of aprocedure call/return pair
measured in execution time, number of instructions executed and data memory
manh'in,§ ^t *RISC J Procedure mechanism to that of three trSS
SSnJ'ti?18 iTS °?leCted by l0°king at the Code generated by Ccompilers for these machines for procedure call and return statements, assuming
that two parameters are passed and requiring that three registers be saved

VAX-11
PDP-11
68000

RISC1

Table 10.
Procedure Call/Return Overhead

(including parameter passing)

Execution
Time (usees)

26

22

19

2

Instructions
Executed

5

19

9

6

Data Memory
accesses

19

15

12

0.2

™J£! Wind°W Snh6om! ^ reduces off-chiP memory accesses. In traditionalmachines, generally 30 to 50% of the instructions access data memory with not
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more than 20% of the instructions being register-to-register. ».84 Because RISC I
"en Wg'hlr'tc^ of^^0^"^0^01 aCCeSS mem0r^ °ne A ^»
The sfatfc frequencies ^m£?%2?" r^ If*" t-ra"Sfer- ^ iS not *e case-that less tha* 207 nffh- • ! instructions for nine typical Cprograms show
n? i-h. £.5 .• lbe mstructions are loads and stores whUe more than 507
SuSalZ^^Kf* fe6ister-to-register. RISC Ihas successful changed, theS™ of va"a°les from memory into registers, thus minimizL the slower
a~ nnt nm^m°ry a.C°e!!eS- This ^onstrates that complex addrefsing molesare not necessary to obtain an effective machine. mooes

Delayed Jump

The effectiveness of rearranging the code around jump instructions can be
evaluated by counting the NOP instructions in aprogram SUt^Cres before
KlZ4e0rntedh0a»that ln t^?al ° Pr°gramS ab0Ut 1B% ot the instructfon 'are
thto to^oout ar ThV"mtP ™^li™s- A=""Ple peephole optimizer reduces
about 907 of th»'NnP^ ?p,tlmizer does weU on ^conditional branches (removing
ttZl nr tX LSl\Ut 5°* S° WeU wlth conditional branches (removing onlyabout 20% of the NOP's). Note that these are the static numbers, and the
dynamic numbers can be worse depending on program structure.
t^I^f °P.UmizerJ^sitalP'-oved to replace the NOP by the instruction at the
target of a jump. This technique can be applied to conditional branches if the
opfmizer determines that the target instruction modifies temporary resources
or example, an instruction that only modifies the condition codes In Sort

N0P-sefroVmeS,ailN0tP STK ^ th°Se tDal f0U°W r8tUrn instructions, droppmgbrannh T f statlca»y to 3%. The dynamic effectiveness of the delayed
h^n h T , now,lnolude thc NOP's plus the instructions after conditional
branches that need not be executed for a particular jump condition. The total
Kom^foVl ** tyPe °f tostruoti°n «• ««•"«» program dependent ranging
Overall Performance

anH J™1?^8 versioJns °faRISC ]compiler for 'C\ optimizer, linker, assembler,
and simulator were developed early in the project to predict the code size and
co^T06 ?SC 'u1?6 ^^mputers and microprocessors chosen for this
comparison are described in Table 11.

Year of Introduction
§ of Basic Instructions
# of General Registers
# of Addressing Modes
Address Size(bits)

Basic Clock Frequency
Reg. to Reg. Add (usee)
Modify Index, Branch
if Zero (branch taken)

Table 11.

Characteristics of Six Machines.

Microprocessors
M0S VLS

Minicomputers
Shottky TTL MSI

RISC I

1981

31

32

2

32

68000 Z8002 VAX-11/780 PDP-11/70

7.5MHz
0.4

1.2

1980

61

15

14

24

10MHz
0.4

1.0

1979

110

14

12

16

6MHz

0.7

2.2

1978

248

13

18

32

5MHz
0.4

1.4

1975

65

6

12

16

7.5MHz

0.5

0.8

C/70

1900

40

8

17

20

6.7MHz
?

9

^m^ '̂LhfVC W°,rklng ^ardware for the either the 68000 or RISC I. so we usedsimulators to predict performance. The cycle time for the first RISC Iprototype
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is expected to be 400 nsec: read and add two 32-bit registers, store the result in
a register, and prefetch the next instruction. This estimate is both optimistic
and pessimistic: optimistic in that it is unlikely that students can successfully
build something that fast on their first try, and pessimistic because an experi
enced IC design team could build a much faster machine.

We chose 11 C programs for the performance comparison. The first five
programs are HLL versions of the "EDN" benchamrks. 25 The other C programs
range from toy programs (e.g., towers of Hanoi) to programs from the UNIX
environment that are used every day (e.g., sed, a batch-oriented text editor).

The compilers used are quite similar; the VAX, C/70, Z8002, 68000, and RISC
C compilers are based on the UNIX Portable C Compiler, 28 and the one for the
PDP-11 is based on the Ritchie Ccompiler. Z1 Experiments comparing the Ritchie
and Portable C Compilers for the PDP-11 have shown that the average difference
in the size of generated code is within 1%. S0

Tables 12 and 13 compare the relative performance and code size of these
minicomputers and microprocessors on the eleven C programs.

Table 12.

CBenchmarks: RISC I Program Size
and RISC I Size Ratio

BENCHMARK

RISC I 68000 Z8002 VAX-11/780 11/70 C/70
bvtes Program Size Relative 1to RISC I

E - string search 144 .8 .9 .7 .8 .7
F - bit test 120 1.2 1.5 1.2 1.4 1.0
H - linked list 176 .7 .8 1.2 1.7 .8
K - bit matrix 288 1.1 1.3 1.0 1.3 1.1
I - quicksort 992 .7 1.1 .9 1.1 .9
Ackermann(3,6) 144 — 2.1 .5 .6 .5
puzzle(subscript) 2736 — .5 .5 .6 .6

puzzle(pointer) 2796 .9 .5 .5 .5 .6
recursive qsort 752 — .8 .6 .8 .6
sed(batch editor) 17720 — 1.0 .6 .5 .5
towers Hanoi(l8) 96 — 2.5 .8 1.0 .7

Average±S.D. I .9 ±.2 1.2 ±.6 .8 ±.3 .9 ±.4 .7 ±.2
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Table 13.

C Benchmarks: RISC I Execution Time
and RISC I Performance Ratio

BENCHMARK

RISC I 68000 Z8002 VAX-11/780 11/70 C/70

msecs Number of Times Slower Than RISC I

E - string search .46 2.8 1.6 1.3 0.9 2.2

F - bit test .06 4.8 7.2 4.8 6.2 9.2

H - linked list .10 1.6 2.4 1.2 1.9 2.5

K - bit matrix .43 4.0 5.2 3.0 4.0 9.3

I - quicksort 50.4 4.1 5.2 3.0 3.6 5.8

Ackermann(3,6) 3200 — 2.8 1.6 1.6 —

recursive qsort 800 — 5.9 2.3 3.2 1.3

puzzle(subscript) 4700 — 4.2 2.0 1.6 3.4

puzzle(pointer) 3200 4.2 2.3 1.3 2.0 2.1

sed(batch editor) 5100 —. 4.4 1.1 1.1 2.6

towers Hanoi(18) 6800 — 4.2 1.8 2.3 1.6

Average±S.D. 3.5 ± 1.8 4.1 ± 1.6 2.1 ± 1.1 2.6 ± 1.5 4.0 ± 2.8

A surprising result is that RISC programs are at worst a factor of two larger
than programs for the other machines even though size optimization was virtu
ally ignored. To us the most important figure of merit for a new architecture is
execution time. Table 13 shows that RISC I executes C programs faster than
currently available microprocessors - faster even than most minicomputers.

DISCUSSION

The presentation of the RISC concept has led to many stimulating discus
sions. Listed below are frequently heard comments (in italics) followed by a
short discussion of that comment.

CISC's provide better support of HLL since they include HLL primitives
(CASE, CALL).

CISC architectures support HLL's by narrowing the gap between the semantics
of the assembly language and the semantics of a HLL. Support can also, however,
be measured as the inverse of the "costs" of using typical HLL constructs on a
particular machine. If the architect provides a feature that "looks" like the HLL
construct, but runs slowly, the compiler writer will omit the feature or, worse,
the HLL programmer concerned with performance will avoid the construct. A
recent study shows that CISC's penalize the use ofHLL far more than RISC's. 20

It is more difficult to write a compiler for a RISC than a CISC.
A recent paper by Wulf 30 helps explainwhy this is not true. He says that compil
ing is essentially a large "case analysis." The more ways there are to do some
thing (more instructions and addressing modes), the more cases must be con
sidered. The compiler writer must balance the speed of the compiler with his
desire to get good code. In CISC's there may not be enough time to analyze the
potential usage of all available instructions. This explains Wulfs recommenda
tion that
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p£s7weS"0Uld ^ Pre0UeIy °ne way t0 d° something, or all ways should be

«£*£*. asimple -pU^ev^^^^
RISClis tailored to Cand will not work well with other HLL*

Studies of other HLL's 83.31 indicate t„„♦ f». 77
Uons are the same simDle HU^Z . ^ most frea.uently executed opera-
optimized. Unless HE "iniflc^cUrd ^ *"" WDiCh WSC l»« *•«
expect to see similar results "„ the L^8.^ Way people Pr°6ram, we
types, such as COBOL, we need to fin* *„ lan8uaSes that have unusual data
repeatedly in that environment »nrt SUnpIe °Pera«ons that are used

tual addresses into physical addresses ta 100 ncM,f normaUy translates vir-
asystem with aRISC CPU it would add^nother 100"l"" l° PUt this chiP taMemory is referenced every 400 ns hTRisr i .ueVery memory access.
reduce RISC performance b/20%. BecausT!o%'toWrfm COmbination ™»d
RISC I are to instructions, l more aonhi.H«.7 /°> °l men>ory references in
addresses only when crossing Da*ePho in ' aPPr°aches, such as translating
tion to only 5%. Afinal observationJs th»,ndM7'.?S"hl """ P«*«™«oe reduc-

SS^^HgcT^^^,?-"1 iS f^ l° tDe °-rlaPPed listerter windows if centre!had'not dropped from 50^ *%* 1**° "° r°°m tor ™«£so simple in RISC that microproKrammTnc in "*• Furtnermore. control is
control loop as the limiting tZZXTtemlZn?™0?***™ tWs ^^ales thein microprogrammed machines machine cycle, as is frequently the case

mz is no d^ between overlapped ^^^^ ^ ^̂

^^^^^^^^^.f^ cache would require a
number of ports as the register L^» "** ^^^ the sa™
translation and decoding would Ukelv stretchThll °°m^?,ated virtual addr^s
^ °°mPUCated «* « -ujfhate ern^rieS P^aTof
CONCLUSION

WwE yet PrXe'hlghT^ ,that take «~ *•« to
u^oTKK^^complexity has not reduced^e^Suty °oT £?»SrS^a?
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especially when combined with the register window scheme, emulates more
complex machines. It also appears we can build such asing e-cMp0„££
much sooner and with less effort than traditional architectures. oomPutar
,,„i.J? We ?° t0 Press' we are just testing the RISC I chips. Unfortunately thetaffiTh^T WM Proo,essed improperly, and we believe this account for he
cult terror's8 "" *^"^ °peralional- We have not ^ *™d «V cir-
RlSCTwithrtwoaI?nafn alSf by n° meanS closed- For example. an investigation of a
at Stafford M^h operat:ons Per cycle and dual port main memory has begun
ter n^nn". m "errN °n anew implementation with adenser register file and amore sophisticated timing scheme. 3* Some of the other topics to
rnpnT i^t ^ mCiUd?. the aPPucability of RISCs to other HLL's (e.g.; LISP.
ZL1-r » ' . eflect'veness of an operating system on RISC (e.g.. UNIX), the
architecture of co-processors for RISC (e.g.. graphics, floating point . migrat on
's*;?fe to *HSC (e-6-. a370 emulator written in RISC machine language), and

the implementation of RISC in other technologies (CMOS. TTL, ECL). This list is
e^MHni°PT^e pro1je1ct\we h°Pe to cooperate with industry and academia in
exploring RISCy architectures.
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