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ABSTRACT

The Reduced /nstruction Set Computer (RISC) Project investi-
gates an alternative to the general trend toward computers with
increasingly complez instruction sets: With the proper set of
tnstructions and corresponding architecture, one can design a
machine with high throughput. The simplicity of the instruction
set and addressing modes allows most instructions to ezecute in a
single machine cycle, and the simplicity of each instruction
guarantees a short cycle time. /n addition such a machine takes
less time to design.

This paper presents the architecture of RISC I and its scheme
Jor procedure call /return. Overlapping sets of register banks that
cen pass paramelers directly to subroutines are largely responsi-
ble for the ezcellent performance of RISC I, Static and dynamic
comparisons between this new architecture and more traditional
machines are given, along with statistics on the 45,000 transistor
VLSI implementation of RISC I. Although instructions are
simpler, the average length of pragrams was Jound not to exceed
those of more complicated machines by more than a factor of two.
Preliminary benchmarks demonstrate the performance advan-
tages of RISC I; it seems feasible to build a single-chip computer
Jaster than the fastest minicomputers on the market today.

INTRODUCTION

A general trend in computers today is to increase the complexity of archi-
tectures commensurate with the increasing potential of implementation techno-
logies, as exemplified by the complex successors of simpler machines. Com-
pare, for example, the VAX-112 to the PDP-11, the IBM Systern /383 to the Sys-
tem/3, and the Intel iAPX-4324 to the B086. We will call this class of computers
Complex Instruction Set Computers (CISC). Some negative consequences of this
tomplexity are increased design time, increased design errors, and inconsistent
implemeéntations. 5

Investigations of VLS architectures indicated that a major design limitation
is the delay-power penaity of data transfers across chip boundaries and the still

T An earlier version of this peaper, entitled ‘'RIBC [: A Reduced Instruction Set VL8] Comput-
ar,” was presented at the Righth Annual Symposium on Qomputsr Architscturs, Uay 1681,
in Minneapolis, Minnesota. !
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limited amount of resources (devices) available on a single-chip. Even a million
transistors does not go far if a whole computer has to be built from it. & This

raises the question whether the extra hardware needed to implement a CISC is
the best way to use these ‘*scarce’ resources.

The above findings led to the Reduced Instruction Set Computer (RISC) Pro-
ject. The purpose of the project is to explore alternatives to the general trend
toward architectural complexity. The hypothesis is that by reducing the
instruction set one can design a suitable VLSI architecture that uses the scarce
resources more effectively than a CISC. We also expect this approach to reduce
design time, the design errors, and the execution time of individual instructions.

Our initial version of such a computer is called RISC I. To meet our goals of
simplicity and eflective single-chip implementation, we somewhat artificially
placed the following design constraints on the architecture:

Ezecute one instruction per cycle. RISC I instructions should be about as
fast and no more complicated than microinstructions in current machines
such as the PDP-11 or VAX.

All instructions are the same size. This again simplifies implementation.
VWe intentionally postponed attempts to reduce program size.

Only load and store instructions access memory, the rest operate between
registers. This restriction simplifies the design. The lack of complex
addressing modes also makes it easier to restart instructions.

Support High-Level Languages (HLL). The degree of support is explained
below. Our intent is to optimize the performance of RISC I for use with
high-level languages.

RISC I supports 32-bit addresses, 8-,16-, and 32-bit data, and several 32-bit regis-
ters. We intend to examine support for operating systems and floating point cal-
culations in successors to RISC 1.

It would appear that these constraints, imposed by our desire for simplicity
and regularity, would result in a machine with substantially poorer code density,
poorer performance, or both. In spite of these constraints, the resulting archi-
tecture competes favorably with other state-of-the-art microprocessors and
minicomputers. This is due largely to a scheme of register organization we call
overiapped register windows.

SUPPORT FOR HIGH-LEVEL LANGUAGES

Clearly, new architectures should be designed with the needs of high-level
language programming in mind. It should not matter, however, whether a high-
level language system is implemented mostly by hardware or mostly by
software, provided the system hides any lower levels from the programmer. v
Given this framework, the role of the architect is to build a cost-effective system
by deciding what pieces of the system should be in hardware and what pieces in
software.

The selection of languages for consideration in RISC I was influenced by our
environment; we chose 'C' since there is a larger user community and consider-
able local bxpertise. Given the limited humber of transistors that can be
integrated into a single-chip computer, most of the pieces ot a RISC high-level
language system are in software, with hardware support for only the most time-
consuming events.

To determine what constructs are used most frequently and, if possible,
what constructs use the most time in average programs, we first looked at the
frequency of classes of variables in high-level language programs. Data
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collected for Pascal and C are shown in Table 1.

Table 1.

Dynamic Parcentage of Operands in C and Pascal T
——— = —— — e — — — |
C Pascal

Ci C2 C3 C4|P1 P2 P3 P4 Ave

Integer Constant | 25 11 29 28|14 18 11 20 | 207
Scalar 37 45 66 B2 | B3 68 48 54 | 55% 11

Array/Structure | 368 43 S5 10123 14 43 25| 25+ 14

TProgram Explanation

€1 PCC - The Portable C Compiler for the VAX '

c2 CIFPLOT - 8 program that plots VLSI mask layouts on a dot plotter
Cc3 NROFF - a text formatting program

C4 SORT - the UNIX sorting program

P1 COMP - A Pascal P-code style compiler

P2 MACRO - The macro expansion phase of the SCALD I design system
P3 PRINT - A prettyprinter for Pascal

P4 DIFF - A program that finds the differences between two files

The most important observation was that integer constants appeared
almost as frequently as arrays or structures. What is not shown is that more
than 80% of the scalars were local variables and more than 90% of the arrays or
structures were global variables.

We also looked at the relative dynamic frequencies of high-level language
statements for the same eight programs; average occurrences over 1% are
shown in Table 2. This information does not tell what statements use the most
time in the execution of typical programs. To answer that question, we have to
look at the code produced by typical versions of each of these statements. A
“typical’ version of each statement was supplied by Wulf as part of his study
into judging the quality of compilers. 8 We used C compilers for the VAX, PDP-11,
and 68000 to determine the average number of instructions and memory refer-
ences per statement. By multiplying the frequency of occurrence of each state-
ment with the corresponding number of machine instructions and memory
references we obtain Table 3, which is ordered by memory references.

The data in Table 3 suggests that the procedure call/return is the most
time-consuming operation in typical high-level language programs. These results
corroborate studies by Lunde? and Wichmann. 10 The statistics on operands
found in Table 1 emphasize the importance of local variables and constants.
RISC supports HLL by enhancing performance of the most time-consuming
features of typical HLL programs, as opposed to making the architecture
“close’ to a particular HLL; thus RISC I attempts to handle local variables, con-
stants, and procedure calls efficiently while leaving less frequent operations to
instruction sequences or subroytines.
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Table 2.
Relative Frequency of Pascal and ¢ statemants,
Pascal
statements! | P1 | P2 | P3 | Pa AVERAGE
assign 39 | 52 [ 35 | 53 45 + B
if 35 | 30 | 38 | 18 29+ 8
call 15 14 | 18 15 151
with 2 0 5 13 5£5
loop 5 5 5 4 5+£0
case 4 0 1 0 1+1
C
statements! | C1 [ C2 | c3 | Cca AVERAGE
assign 22 | 50 [ 25 | 58 38+ 15
if 59 | 31 | 81 | 22 43 + 17
call 6 17 9 18 12+ 5
loop 2 2 3 5 3+1
goto 9 0 1 1 3+4
case 2 - - 0 <l+1

Table 3.
Weighted Relative Frequency of HLL Statements.
(ordered by memory references)

HLL : WEIGHTED WEIGHTED
(# occurrence) (# mach. instr.) (# mem. ref.)

HLL P C P C P C
call/return | 15+1 12+5 | 3143 33+14 | 44+4 45:19
loops 50 3+1 | 42+3 32468 | 33+2 265
assign 45+5 38+15 | 13x2 13+5 | 14+2 158
if 29+7 43+£17 | 11+3 2118 7+2 1315
with 5+5 - 1+0 - 1+£0 -
case 1+1 <1l 1+1 1+1 1+1 1+1
goto - 31 - 0+0 - 0£0

ments are counted once per execution rather than once per loop iteration. For éxample, it
two {f statements and three assignment statements appear in a loop that iterates 5 times,
we would count 26 statements with 15 assignments, 10 if statements, and one loop. The with
!utcment qualifies a record name.

For the call statement we counted passing parameters, saving /restoring general registers,
and saving/restoring the Program counter. The {f and case statements include instructions
to eveluate expressions and to jump. For loop statements we count all the machine instruc-
tons executed during each iteration.



BASIC ARCHITECTURE OF RISC ]

The RISC I architecture has 31 instructions, most of which do simple ALU
and shift operations on registers. As shown in Table 4, they have been grouped
into four categories: arithmetic-logical, memory access, branch, and miscellane-
ous. Instructions, data, addresses, and registers are 32 bits. The execution
time of a RISC I cycle is given by the time it takes to read and add two registers,
and then store the result back into a register. The global register 0, which
always contains zero, allows us to synthesize a variety of operations and
addressing modes.

Table 4.
Assembly Language Definition for RISC

Instruction Operands Comments
ADD Rs,S2,Rd Rd « Rs + S2 integer add
ADDC Rs,S2,Rd Rd « Rs + S2 + carry add with carry
SUB Rs,S2,Rd Rd « Rs - S2 integer subtract
SUBC Rs,S2,Rd Rd « Rs - S2 - carry subtract with carry
SUBR Rs,S2,R4 Rd « S2-Rs integer subtract
SUBCR Rs,S2,Rd Rd « S2 - Rs - carry subtract with carry
AND Rs,S2,Rd Rd « Rs & S2 logical AND
OR Rs,S2,Rd Rd « Rs| 82" logical OR
XOR Rs,S2,Rd Rd « Rs xor S2 logical EXCLUSIVE OR
SLL Rs,S2,Rd Rd « Rs shifted by S2 shift left
SRL Rs,S2,Rd Rd « Rs shifted by S2 shift right logical
SRA Rs,S2,Rd Rd « Rs shifted by S2 shift right arithmetic
LDL (Rx)S2,Rd Rd « M[Rx+8S2] load long
LDSU (Rx)S2,Rd Rd « M[Rx+S2] load short unsigned
LDSS (Rx)S2,Rd Rd « M[Rx+S2] load short signed
LDBU (Rx)S2,Rd Rd « M[Rx+S2] load byte unsigned
LDBS (Rx)S2,Rd Rd « M[Rx+S2] load byte signed
STL Rm, (Rx)S2 M[Rx+S2] « Rm store long
STS Rm,(Rx)S2 M[Rx+S2] « Rm store short
STB Rm,(Rx)S2 M[Rx+S2] « Rm store byte
JMP COND,S2(Rx) | pc « Rx+S2 conditional jump
JMPR COND,Y pcepc+Y conditional relative
CALL Rd,S2(Rx) Rd « pc, next call

pc « Rx+S2, CWP-- and change window
CALLR R4,Y Rd « pc, next call relative

pc « pc + Y, CWP-- and change window
RET Rm,S2 pc « Rm+S2, CWP++ return and change window
CALLINT Rd Rd « last pc; next CWP-- disable interrupts
RETINT Rm,S2 pc + Rm+S2; next CWP++: enable interrupts
LDHI R4, Y Rd<31:13>«Y; Rd<12:0>«0 load immediate high
GTLPC Rd Rd + last pe to restart delayed jump
GETPSW Rd Rd + PSW load status word
PUTPSW Rm PSW « Rm set status word

Load and store instructions move data between registers and memory.

Rather than lengthen the general cycle to permit a complete memory access,
these instructions use two CPU cycles. There are eight variations of memory
access instructions to accommodate sign-extended or zero-extended 8-bit, 18-
bit, and 32-bit data. Although there appears to be only the inder plus
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displacemnent addressing mode in data transfer instructions, absolute and regis-
ter indirect addressing can be synthesized using register 0 (See Table 5). '

Table 5.
Synthesizing VAX Addressing Modes.

Addressing VAX RISC equivalent
Register Rs Rs
Immediate #literal S2 (13-bit literal)
Indexed Rx + disp! | Rx + S2 (13-bit displacement)
Absolute @#address | r0 + S2 (r0 = 0)
Reg Indirect | (Rx) Rx+0

Branch instructions include call, return, conditional and unconditional
jump. The conditional instructions are the standard set used originally in the
PDP-11 and found in most 1B-bit microprocessors today. Most of the innovative
features of RISC are found in call, return, and jump; they will be discussed later.

Figure 1 shows the 32-bit format used by register-to-register instructions
and memory access instructions.

| OPCODE<7> | SCC<1$ | DEST<5> | SOURCE1<5> | IMM<1> | SOURCE2<13> |

Figure 1. RISC I basic instruction format.

For register-to-register instructions, DEST selects one of the 32 registers as the
destination of the result of the operation performed on the registers specified
by SOURCE1 and SOURCE2. If IMM = 0, the low order five bits of SOURCEZ2 specify
another register; if IMM = 1, SOURCE2 expresses a sign-extended 13-bit con-
stant. As mentioned above, the frequency of integer constants in HLL programs
suggests architectural support, so immediate operands are available in every
instruction. SCC determines whether the condition codes are set. Memory
access instructions use SOURCE1 to specify the index register and SOURCE2 to
specify the offset. One other format combines the last three fields to form a 18-
bit PC-relative address, and is used primarily by the branch instructions.

The examples in Table 6 show that many of the important VAX instructions
can be synthesized from simple RISC addressing modes and opcodes. Compara-
tive measurements of benchmarks will demonstrate the effectiveness of the
chosen instruction set.
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Table 8. .
Synthesizing VAX Instructions.

Operation VAX RISC equivalent
Reg-Reg Move movl Rm,Rn add r0,Rm,Rn (r0 = 0)
Compare cmpl Rm,Rn sub Rm,Rn,r0,{c}
Compare to 0 tstl Rn sub Rn,r0,r0,§c}

tstl A 1d1 (r0)A,r0.{c}
Clear clrl Rn add r0,r0,Rn
clrt A stl r0,(r0)A
Two's Complement mnegl Rm,Rn sub r0,Rm,Rn
One's Complement mcom! Rm,Rn xor Rm,#-1,Rn
Load Const movl $N.Rm(N < 2!?) | add r0,#N.Rm
movl $N.Rm(N = 2!2) | 1dni #N<31:13>,Rm
add r0,#N<12:0>,Rm
Increment inel Rn add Rn,#1.Rn
Decrement decl Rn sub Rn,#1,Rn
Check index bounds, | index Rm, #0,#U, sub Rm.#U.rgicf;
{Alo:U)]) #1,A.Rn; jmp lequ,OK;
trap if error, movb (Rn),Rp call error;
& read A[Rm] OK: ldbu (Rm)A,Rp
Register Windows

The previously mentioned investigations of the use of high-level languages
suggest that the procedure call is the most time-consuming operation in typical
high-level language programs. Potentially, RISC programs may have even more
calls, because the complex instructions found in CISC's are subroutines in RISC.
Thus, the procedure call must be as fast as possible, perhaps no longer than a
few jumps. Because of the register window scheme, RISC I comes close to this
goal. At the same time, this scheme also reduces data memory traffic.

Using procedures involves two groups of time-consuming operations: saving
or restoring registers on each call or return, and passing parameters and
results to and from the procedure. As mentioned above, the frequency of local
scalar variables justifies architectural support by placing locals in registers.
Baskett!! and Sites!2 proposed that microprocessors keep multiple banks of
registers on the chip to avoid register saving and restoring. A similar scheme
was adopted by RISC I; each procedure call results in the allocation of a new
‘window' of registers from the large register file for use by that new procedure.
The return just resets a pointer, restoring the old set. In addition, some of the
registers are not saved or restored on each procedure call. These registers (r0
through r9) are called global registers.

+ This approach is better than the normal algorithm. We can think of an index as an un-
kigned integer since 0 = index = U, A two's complement negative number (1X...X) is then a
large unsigned number, 80 we only need make one unsigned test instead of two signed tests.
Non-zero lower bounds are handled by subtracting the lower bound from the index, and mul-
tiple indices are handled by repeating the sequence and including a multiply and en add.
This idea resulted from a discussion between Bill Joy, Peter Kessler, and George Taylor. Tay-
lor coded the examples and found that on the VAX-11/780, the sequence of simple instruc-
tions was alweys faster than the index instruction. This optimization is found in the UNIX C
pptimizer.



Furthermore, the sets of registers used by different procedures are over-
lapped to allow parameters to be passed in registers. In other machines, param-
eters are usually passed on the stack with the calling procedure using a register
(frame pointer) to point to the beginning of the parameters ( and also the end of
the locals); thus, all references to parameters are indexed references to

Higr | R31
R26
R25
LOCAL
R16
Low | RS
R10
R9
GLOBAL
RO

Figure 2. Naming within one Virtual RISC I Register Window.

“below” the current procedure (the called procedure). On each procedure call
@ new set of registers, numbered 10-31, is allocated. The LOW registers of the
“caller” become the HIGH registers of the 'callee” because of the bardware
overlap between subsequent register windows. Thus, without moving informa-
tion, parameters in registers 10-15 appear in registers 25-31 of the called win-
dow. Figure 3 illustrates this approach for the case where procedure 4 calls pro-
cedure B, which calls procedure C

If the nesting depth is sufficiently large, all register windows will be used.
RISC I handles such an overfiow with a separate stack in memory. Overflow and
underflow are handled with a trap to a software routine that adjusts that stack.
Because this routine can . Save or restore several sets of registers, the
bverflow/underflow frequency is based on the local variations in the depth of the
Stack rather than on the absolute depth. The effectiveness of this scheme
depends on the relative frequency of overflows and underflows. Studies by Hal-
bert and Kessler 13 show that with eight register banks overfiow will occur in less
than 1% of the calls. This suggests that programs exhibit locality in the dynamic
nesting of procedures just as they exhibit locality in memory references.

Another problem with variables in registers occurs when we want to refer-

ence them with pojnters. This requires that these variables have addresses.
Because registers normally do not have memory addresses,.one could let the



Physical Registers . Logical Registers
Proc A Proc B Proc C

137 Ra1,
HIGH
132 A R26,
131 R25,
LOCAL,
122 R18,
121 Low,/HIGH, R15, R31y
115 Re5,
LOCAL
106 R184
105 Risg Ra1,
LOW, /HIGH
100 B c R10, R26,
99 R25,
LOCAL,,
90 R16,
89 R15,
LOW
84 ¢ R10,
9 Re, RO, R9,
GLOBAL
0 RO, RO, RO,

Figure 3. Usage of Three Overlapped Register Windows.

compiler determine what variables have pointers and put such variables in
memory. This precludes separate compilation and slows access to these vari-
dbles. RISC I solves that problem by giving addresses to the window registers. If
we reserve a portion of the address space, we can determine, with one com-
parison, whether a register address points to a register in the CPU or whether it
points to a register that has overflowed into memory. Because the only instruc-
tions to access memory are load and store, and they take an extra cycle
already, we can add this feature without reducing the performance of the load
and store instructions. This permits the use of straightforward compiler tech-
nology end still leaves a Jarge fraction of the variables in registers.
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This addressing technique also solves the '‘up-level addressing' problem.
Pascal and other languages allow nested procedure declarations thereby creat-
ing a class of variables that are neither global variables nor local to a single pro-
cedure. Compilers keep track of each procedure environment using static and
dynamic links or displays. Such a compiler for RISC would also associate the
memory address for the window of local variables. These variables would then
be accessed by using the display or dynamic chains to find the corresponding
memory addresses.

Delayed Jump

The normal RISC I instruction cycle is just long enough to execute the fol-
lowing sequence of operations: read a register, do an ALU operation, and store
the resuit back into a register. We increase performance by prefetching the next
instruction during the execution of the current instruction. This introduces
difficuities with branch instructions. Several high-end machines have elaborate
techniques to prefetch the appropriate instruction after the branch, 14 but these
techniques are too complicated for a single-chip RISC. OQOur solution was to
redefine jumps so that they do not take effect until after the following instruc-
tion; we refer to this as the delayed jump.

The delayed jump allows RISC I always to prefetch the next instruction dur-
ing the execution of the current instruction. The machine language code is suit-
ably arranged so that the desired results are obtained. Because RISC 1is always
intended to be programmed in high-level languages, we will not burden the pro-
grammer with this complexity; the "burden” will be carried by the programmers
of the compiler, the optimizer, and the debugger.

Table 7 illustrates the delayed branch. Machines with normal jumps would

execute the sequence in Table 7(a) in the order 100, 101, 102, 105, ... . To get
that same effect in RISC I, we would have to insert a NOP (Table 7(b)). The
sequence of instructions for RISC 1 is now 100, 101, 102, 103, 108, ... . In the

worst case, every jump could take two instructions. The RISC I compiler, how-
ever, includes an optimizer that tries to rearrange the sequence of instructions
to do the equivalent operations while making use of the instruction slot where
the NOP appears. As shown in Table 7(c), the optimized RISC I sequence is 100,
101, 102, 105, ... . Because the instruction following a jump is always executed
and the jump at 101 is not dependent on the add at 102, this sequence is
equivalent to the original program segment in Table 7(a).

Table 7.
Normal and Delayed Jump.

—_—_.—_————————_————'_——=-——'_-‘_._———-—_
Address | (a) Normal Jump | (b) Delayed Jump (c) Optimized
Delayed Jump
100 LOAD XA LOAD XA LOAD XA
101 ADD 1,A ADD 1,A JUMP 105
102 JUMP 105 juMp 108 ADD 1A
{03 ADD AB Nop Abp AB
iod SUB C.B ADD AB SUB C.B
ios STORE AZ SUB C.B STORE AZ
ios STORE A.Z
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Architectural Heritage

Architects of new machines are building on the work of others, and we
believe it is important to trace the genealogy of RISC I. 'Its earliest ancestor is
the 1951 Ferranti-Manchester MADM - the first machine with index registers -
which also used a register to supply zero. 15 Seymour Cray revived the idea in
1964 with the CDC-8400, and continued to use it in the CDC-76800 and the Cray 1,
The delayed jump was first used in the MANIAC 1, which was completed just a
year after the MADM, but we adopted the idea from microprogrammed control
units, where delayed jumps are the norm.

The leading proponent of reduced instruction set computers for floating
point data is Cray. For the last 15 years, he has combined simple instruction
sets with sophisticated pipelined implementations to create the most powerful
floating point engines in the world. While Cray concentrates on impressive float-
ing point rates at impressive costs, RISC I concentrates on improved perfor-
mance at lower cost for integer programs written in HLL's.

A machine with similar goals that predates RISC is the IBM 801. This project,
led by John Cocke and George Radin, began in 1975 by re-examining the rela-
tionship between instruction sets, compilers, and operating systems. They
pushed the state of the art of compiler technology and created an extremely
fast, reduced-instruction-set ECL minicomputer. Alas, the architecture com-
munity was left to widely varying rumors about the technical details 18 as well as
the success or failure of the project. 17 Fortunately, accurate information is
beginning to emerge. 18 It will be interesting to see similarities between RISC I
and the 801, but differences are that RISC I uses traditional compiler technology
and the 801 uses a traditional register set.

In searching the annals of computer architecture we cannot find a clear
reference to overlapped register windows. To our best knowledge, no machine
uses the scheme for fast, multi-port registers in the CPU. Most modern
machines support procedure call by having instructions that manage a portion

ter windows. The reasons registers are faster than caches are the difference in
speed between a small memory and a large memory, the difference in speed
between a deterministic access and a probabilistic access, and the difference in
speed between a non-translated register access and a translated virtual memory
access. Theoretically, hardware can overcome almost any obstacle, but it occa-
sionally stumbles in implementation. The advantages of registers become
apparent when we look at concrete realizations; as we shall see, procedure
call/return on the VAX-11/780, using a software stack enhanced by a hardware
cache, is about an order of magnitude slower than the overlapped register win-
dows of RISC I (Table 10).

There are a few machines which share features of RISC I's overlapped regis-
ter window scheme. The BBN C/70, a recent machine, allocates a new set of

so adding the contents of one register to another results in three memory
accesses. A single register points to the register work space; most of the
machines allow the pointer to overlap work spaces. The latest generation of this
family. the TI 99000, includes on-chip main memory, but the first models appear
to still have slow register access. !9 The machine that comes closest to the over-
lapped register windows is the Bell Labs MAC-8. The state of the NMOS technology
in 1975 precluded having a rich instruction set and a register flle on the chip;
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the architects chose the rich instruction set. The main difference between the
MAC-8 and TI 990 is that the Bell architects realized that overlapping the regis-
ters could improve the performance of the procedure call and provided instruc-
tions to specifically overlap the register windows in memory. It is our under-
standing that some C compilers used this feature. This machine was never
implemented with on-chip registers, and the logical successor to this machine,
the BELLMAC-32, has abandoned this approach.

VLS] IMPLEMENTATION

The transition from theoretical architecture to concrete circuits began
began on January 8, 1981. Mask descriptions were completed June 22 and we
received first silicon on October 23. Figure 4 is a photomicrograph of RISC 1. We
followed the Mead-Conway design philosophy for NMOS with lambda at 2 microns
and no buried contacts. This first version, RISC I ‘Gold’ as it is known internally,
implements the complete instruction set and 8 windows with a total of 78 regis-
ters. The only piece of the architecture that was not implemented is the map-
ping of registers into the memory address space.

We collected statistics on the design and layout of RISC 1. 20 Table 8 com-
pares these results to VLSI implementations of more complex architectures.
The most visible impact of the reduced instruction set is the reduced control
area: control is only 6 % of RISC I compared to 50 % in others. RISC I is also
more regular. Lattin defined the regularity factor as the total number of
transistors (less those in ROM) divided by the number of individually drawn
transistors. 2! By this measure RISC ] is 2 to 5 times more regular than the
Z8000, 88000, or 432. The time from the first discussion of the RISC I architec-
ture to the masks was 14 months, less than the development periods of other
machines. This was due in part to the reduced instruction set and in part to the
Berkeley CAD software that was a good match for this style of VLSI design. The
primary interface was Caesar, an excellent color graphics layout editor
developed by Ousterhout. 22



-13-

Table 8.
VLSI Design Metrics for Z8000, MC68000, iAPX-432, and RISC1I.

Zilog Motorola Intel iAPX-432 RISC 1

Z8000 68000 43201 43202 43203
Total Devices 17.5k 68k 110k 49k 80k 44k
Total minus ROM 17.5k 37k 44k 49k 44k 44k
Drawn Devices 3.5k 3.0k 5.6k 9.5k 5.7k 1.8k
Regularization factor 5.0 12.1 7.9 5.2 7.7 25
Size of chip émils) 23Bx251 | 246x281 | 318x323 366x313 3568x326 406x305
(Area in mil®) 2 60k 89k 103k 115k 117k 124k
Size of Control (mil®) 37k 42k 87k 45k 47k 7k
Percent Control 53 % 82 % 85 % 39 % 40 7% 67
Elapsed Time to
first silicon (months) 30 30 33 33 21 19
Design Effort
(man months) 80 100 170 170 130 15
Layout Effort
(man months) 70 70 90 100 50 12
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EVALUATION

This section will discuss the overall performance of RISC I and assess the
contributions of the register window scheme and the delayed branch.

Register Windows.

The results of two benchmarks presented below show that the window regis-
ters are effective in reducing the cost of using procedures. ‘‘Puzzle'' and
* “'quicksort’ are two recursive programs that behave quite differently. Quicksort
has a large percentage of procedure calls, while puzzle has such a low density of
calls that it is almost atypical for modern structured programs. Puzzle does
have a large nesting depth. In both cases, the window scheme proves to be
beneficial. Table 9 shows the maximum depth of recursion, the number of regis-
ter window overflows and underflows, and the total number of words transferred
between memory and the RISC CPU as a resuit of the overflows and underflows.
It also shows the memory traffic due to saving and restoring registers in the
VAX. For this simulation we assumed that half of the registers were saved on an
overflow and half were restored on an underfiow. We found that for RISC I, an
average of .37 words are transferred to memory per procedure invocation for
the puzzle program and .07 for quicksort. Note that half of the data memory
references in quicksort are the result of the call/return overhead of the VAX.

Table 9.
Memory Traffic Due to Call/Return

Calls + Maximum RISC1 Data Memory Traflic

Returns Nested | overflows+ RISC1 VAX
7 instrs Depth underflows | # words # words

43k 20 124 8k 444k
puzzle 0.7% ' 0.82 28.0%
. 111k 10 64 4k 696k
quicksort, 8.0% 1.0% 50.0%

The next table compares the average '
measured in execution time,
accesses, of the RISC ] pr
machines. The data was col
pilers for these machines f
that two parameters are pa

cost” of a procedure call/return pair
number of instructions executed and data memory
ocedure mechanism to that of three traditional
lected by looking at the code generated by C com-
or procedure call and return statements, assuming
ssed and requiring that three registers be saved.

Table 10.
Procedure Call /Return Overhead
(including parameter passing)

The window scheme also reduces o

machines,

Execution Instructions | Data Memory

Time (usecs) Executed accesses
VAX-11 26 5 19
PDP-11 22 19 15
88000 19 S 12
RISC1 2 6 0.2

fI-chip memory accesses. In traditional
generally 30 to 50% of the instructions access data memory with not




more than 207 of the instructions being register-to
arithmetic and logical instructions cannot access
even higher fraction of
The static frequencies
that less than 20% of t
of the instructions are
allocation of variables from memo
off-chip memory accesses.
are not necessary to obtain an effective machine.

Delayed Jump

The effectiveness of rearran
evalualed by counting the NOP i
optimization show that in t
NOP's inserted after jump
this to about 8%. The optimizer does well
about 90% of the NOP's) but not so well wit
about 20% of the NOP's). Note that th
dynamic numbers can be worse dependin

This optimizer was im
target of a jump. This techni
optimizer determines that th
for example, an instruction that o
Lhis removes all NOP's except for those thal fol
NOP's from 12% statically to 3%.
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he instructions are loads a
register-to-

This demonstrates that

-register. 23.24 Because RISC ]

memory, one might expect an

transfer. This is not the case.

nine typical C programs show

nd stores while more than 50%
register. RISC ] has successfully changed the
ry into registers, thus minimizing the slower
complex addressing modes

ging the code around jump instructions can be
nstructions in a program. Static figures before
ypical C programs about 18% of the instructions are
instructions.

A simple peephole optimizer reduces

on unconditional branches (removing
h conditional branches (removing only
ese are the stafic numbers, and the
g on program structure.

proved to replace the NOP by the instruction at the
que can be applied to conditional branches if the

e target instruction modifies temporary resources;

nly modifies the

condition codes. In quicksort
low return instructions, dropping
The dynamic eflectiveness of the delayed

branch must now include the NOP's Plus the instructions after conditional

branches that need not be executed
percentages of either type of instruc

from 47 to 22%.

Overall Performance

Prototype versions of a RISC 1 compiler for ‘C’, optimizer, linker,
and simulator were developed early in the project
performance of RISC I. The minicomputers and mic

comparison are described in Table 11.

for a particular jump condition. The total
tion are again program dependent, ranging

assembler,
to predict the code size and
roprocessors chosen for this

Table 11.
Characteristics of Siz Machines.
Microprocessors Mirnicomputers
NMOS VLSI Shottky TTL MSI
RISC 1 688000 | Z8002 | VAX-11/780 | PDP-1 1/70 C/70
Year of Introduction 1981 1980 1979 1978 1975 1980
# of Basic Instructions 31 61 110 248 85 40
# of General Registers 32 15 14 13 8 8
# of Addressing Modes 2 14 12 18 12 17
Address Size(bits) 32 24 18 32 18 20
Besic Clock Frequency | 7.5MHz | 10MHz | 8MHz 5MHz 7.5MHz 6.7MHz
Reg. to Reg. Add (usec) 0.4 0.4 0.7 0.4 0.5 ?
Modity Index, Branch 1.2 1.0 2.2 1.4 0.8 ?
if Zero (branch taken)

We didn't have working hardware for the either the 88000 or RISC I, so we used
simulators to predict performance. The cycle time for the first RISC I prototype
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is expected to be 400 nsec: read and add two 32-bit registers, store the resuilt in
a register, and prefetch the next instruction. This estimate is both optimistic
and ‘pessimistic: optimistic in that it is unlikely that students can successtully
build something that fast on their first try, and pessimistic because an experi-
enced IC design team could build a much faster machine.

We chose 11 C programs for the performance comparison. The first five
programs are HLL versions of the *EDN’* benchamrks. 25 The other C programs
range from toy programs (e.g., towers of Hanoi) to programs from the UNIX
environment that are used every day (e.g., sed, a batch-oriented text editor).

The compilers used are quite similar; the VAX, C/70, Z8002, 88000, and RISC
C compilers are based on the UNIX Portable C Compiler, 28 and the one for the
PDP-11 is based on the Ritchie C compiler. 27 Experiments comparing the Ritchie
and Portable C Compilers for the PDP-11 have shown that the average difference
in the size of generated code is within 1%. 28

Tables 12 and 13 compare the relative performance and code size of these
minicomputers and microprocessors on the eleven C programs.

Table 12.
C Benchmarks: RISC I Program Size
and RISC I Size Ratio
RISC1 | 68000 | 78002 | VAX-11/780 | 11/70 | C/70
BENCHMARK bytes Program Size Relative to RISC 1
E- string search 144 .8 .9 N4 .8 .7
F - bit test 120 1.2 1.5 1.2 1.4 1.0
H - linked list 176 7 .8 1.2 1.7 .8
K - bit matrix 288 1.1 1.3 1.0 1.3 1.1
1 - quicksort 992 .7 1.1 .9 1.1 .9
Ackermann(3,8) 144 - 2.1 5 .8 .5
uzzle(subsecript) 2736 —-- .5 .5 .8 ]
puzzle{pointer) 2796 .9 .5 5 .5 8
recursive gsort 752 —- .8 8 .8 6
sed(batch editor) | 17720 - 1.0 6 .5 5
towers Hanoi(18 96 — 2.5 8 1.0 7
Average+S.D. 9% .2
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Tabie 13.
C Benchmarks: RISC I Ezecution Time
and RISC I Performance Ratio
RISC1 88000 | 28002 | VAX-11/780 | 11/70 | C/70
BENCHMARK |_msecs Number of Times Slower Than RISC I
E - string search .46 2.8 1.8 1.3 0.9 2.2
F - bit test .08 4.8 7.2 4.8 8.2 9.2
H - linked list .10 1.8 2.4 1.2 1.9 2.5
K - bit matrix .43 4.0 5.2 3.0 4.0 9.3
1 - quicksort 50.4 4.1 5.2 3.0 3.8 5.8
Ackermann(3,6) 3200 -- 2.8 1.8 1.8 -—
recursive gsort 800 - 5.9 2.3 3.2 1.3
puzzle(subscript) | 4700 -- 4.2 2.0 1.8 3.4
puzzle(pointer) 3200 4.2 2.3 1.3 2.0 2.1
sed(batch editor) | 5100 — 4.4 1.1 1.1 2.6
towers Hanoi(18 4.2 1.8 2.3 1.6

Averagez+S.D. 26+ 15| 40+2.8

A surprising result is that RISC programs are at worst a factor of two larger
than programs for the other machines even though size optimization was virtu-
ally ignored. To us the most important figure of merit for a new architecture is
execution time. Table 13 shows that RISC I executes C programs faster than
currently available microprocessors - faster even than most minicomputers.

DISCUSSION

The presentation of the RISC concept has led to many stimulating discus-
sions. Listed below are frequently heard comments (in italics) followed by a
short discussion of that comment.

CISC’s provide better support of HLL since they include HLL primitives
(CASE,CALL).

CISC architectures support HLL's by narrowing the gap between the semantics
of the assembly language and the semantics of a HLL. Support can also, however,
be measured as the inverse of the ‘'costs” of using typical HLL constructs on a
particular machine. If the architect provides a feature that *looks' like the HLL
construct, but runs slowly, the compiler writer will omit the featurc or, worse,
the HLL programmer concerned with performance will avoid the construct. A
recent study shows that CISC's penalize the use of HLL far more than RISC's. 29

It is more difficult to write a compiler for a RISC than a CISC.

A recent paper by Wulf 30 helps explain why this is not true. He says that compil-
ing is essentially a large *case analysis."” The more ways there are to do some-
thing (more instructions and addressing modes), the more cases must be con-
sidered. The compiler writer must balance the speed of the compiler with his
desire to get good code. In CISC's there may not be enough time to analyze the
potential usage of all available instructions. This explains Wulf's recommenda-
tion that
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“There should be Precisely one way to do something, or all ways should be
possible.” .

In RISC we have taken the former approach. There are few choices; for example,
if an operand is in memory, it must first be loaded into a register. Simple case
analysis implies a simple compiler, even if more instructions must be generated
in each case.

RISC I is tailored to Cand will not w;)rk well with other HLL's.

Studies of other HLL's 23,31 indicate that the most frequently executed opera-
tions are the same simple HLL constructs found in C, for which RISC I has been
optimized. Unless a HL], significantly changes the way pPeople program, we
expect to see similar results, In the case of languages that have unusual data
types, such as COBOL, we need to find the simple operations that are used

COBOL does not map efliciently onto the RISC I architecture, we believe the
same philosophy can lead to a RISC that does.

Comparisons of RISC with the VAY are unfair in that the VAX provides a vir-
tual address space; RISC would be much slower if it had virtual memory.

To answer the question “How much slower?" we looked at solutions used by
other microprocessors. National Semiconductor has announced the 18082, a
memory management chip with an address cache that normally translates vir-
tual addresses into physical addresses in 100 ns. 32 If we were to put this chip in

Memory is referenced every 400 ns in RISC I, so such a combination would
reduce RISC performance by 20%. Because 80% to 90% of memory references in
RISC I are to instructions, ! more sophisticated approaches, such as translating
addresses only when crossing a page boundary, might limit performance reduc-
tion to only 5%, A final observation is that even if the addition of virtual memory
doubled the cycle time of NMOS RISC 1, it would still be faster than most
present-day microprocessors.

The good performance is due to the overlapped register windows, the
reduced instruction set has nothing to do with i,

Certainly, a significant portion of the Speed is due to the overlapped register
windows of RISC 1. A key point is that there would have been no room for regis-
ter windows if control had not dropped from 50% to 6%. Furthermore, control is
so simple in RISC that microprogramming in unnecessary; this eliminates the
control loop as the limiting factor of the machine cycle, as is frequently the case

A cache is ineffective if it is too small. An effective data cache would require a

much larger area than our register file, especially if it must provide the same

number of ports as the register file. The more complicated virtual address

translation and decoding would likely stretch the basic CPU cycle time, Finally,

the more complicated cache control would have extended the design phase of
L

CONCLUSION
RISClis a representative of a new style of computers that take less time to
build and yet provide higher performance. While traditional machines ‘“support”

HLL with instructions that look like HLL, constructs, this machine supports the
use of HLL with instructions that HLL compilers can use efficiently. The loss of
complexity has not reduced the functionality of RISC; the chosen subset,
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especially when combined with the register window scheme, emulates more
complex machines. It also appears we can build such a single-chip computer
much sooner and with less effort than traditional architectures.

As we go to press, we are just testing the RISC I chips. Unfortunately, the
polysilicon layer was processed improperly, and we believe this accounts for the

fact that the chips are only partially operational. We have not yet found any cir-
cuit design errors.

This research area is by no means closed. For example, an investigation of a
RISC with two ALU operations per cycle and dual port main memory has begun
at Stanford, 33 and we are working on a new implementation with a denser regis-
ter file and a more sophisticated timing scheme. 34 Some of the other topics to
be investigated include the applicability of RISC's to other HLL's (e.g., LISP,
COBOL, Ada), the effectiveness of an operating system on RISC (e.g., UNIX), the
architecture of co-processors for RISC (e.g.. graphics, floating point), migration
of software to RISC (e.g., a 370 emulator written in RISC machine language), and
the implementation of RISC in other technologies (CMOS, TTL, ECL). This list is
too big for one project; we hope to cooperate with industry and academia in
exploring RISCy architectures.
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