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ABSTRACT

This paper describes a set of measurements of the memory
reference patterns of some programs. The technique used to
obtain these measurements is unusually efficient. The data is
presented in graphical form to allow the reader to "see" how the
program uses memory. Constant use of a page and sequential
access of memory are easily observed. An attempt is made to clas
sify the programs based on their referencing behavior. From this
analysis it is hoped that the reader will gain some insights as to the
effectiveness ofvarious memory management policies.

1. Introduction

Performance and memory reference patterns of programs is an issue that

has been studied for many years. Over time, however, the basic assumptions for

the memory management algorithms and the characterization of the programs

run under these algorithms can change. This can be due to technological

advances or to changes in the workload on the computers. This paper shows the

patterns of reference of several programs. Some of the programs are large in

that they consume much time and memory. Other programs are included

because they are used frequently in the environment being considered. From

this study it ishoped that the reader can get a better insight into how large pro

grams may reference memory. Of particular interest are the results that the

influence of data pages far exceeds that of code pages for large programs, and
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that radical changes in program locality tend to be quite infrequent.

The motivation for this work was the desire to understand the impact on

memory management due to the increase in size of applications running on

computers. Examples of these applications are VLSI design aids, image process

ing and symbolic computation. These programs are much too large to study by

simulation: they may run for a day and use many megabytes of memory.

The tracing technique works as follows. Periodically, the operating system

invalidates all page table entries of a user process being traced. The operating

system records the information about each page fault which occurs in an inter

nal buffer. A second user process copies data from the buffer to secondary

storage. After tracing, the faulted page would then be validated or paged in as

appropriate. Provided that the period between invalidations is chosen appropri

ately, the great majority of instructions do not fault and hence the measured

process is executed at nearly full speed. A slow down factor in the program's

execution of about two to four is typical. This speed is vastly better than that is

achieved by conventional simulation. The record on secondary storage gives all

pages touched by the process during the period between invalidations. This

method is somewhat similar to the typical cooperation between a debugger and

the operating system in setting and trapping breakpoints: the processor runs at

full speed until something of interest happens.

To gain insight, a series of studies were performed to detect how real pro

grams use memory. The principle results presented here are strip charts show

ing page reference behavior on one axis and time on the other axis. From these

it is possible to see in visual form how the sampled programs reference memory.

The usefulness of many memory management policies can be evaluated by sim

ply looking at the charts.

The plotting of page references versus time is not new. In Chu and
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Opderbeck's paper [Chu76], strip charts are presented for four programs. Bur-

gevin and Leroudier [Bur76] showed a strip chart for a program. Lau [Lau79]

shows strip charts both before and after restructuring programs. Alanko, Hai-

kala and Kutvonen [Ala80] also present strip charts. These studies used instru

mented simulators, however, and dealt only with much smaller programs exe

cuting for much shorted periods of time than those reported here. The previous

papers were not content to analyze the strip charts alone, but proceeded to pro

cess the data further.

Four basic classifications of access patterns have been identified. Each

typifies the access of a segment of memory during a phase of execution of a pro

gram. An access is called total if nearly every page in its logical address space

is touched frequently. An access is sequential if the pages are used in an

ascending or descending sequence. This kind of program would benefit from

having an operating system pre-fetch pages to be needed soon and pre-release

pages that have been passed. Regular access is characterized by conventional

locality characteristics. Algorithms like working set, LRU and clock are usually

effective. Finally, an access is random if the memory reference sequence is

nearly memoryless (in the statistical sense). Although some synthetic programs

were measured that exhibited a random access pattern, those results are not

reported here because this study focused on real programs.

To be classified as belonging to one of these types, a program must exhibit

the corresponding behavior over a significant portion of memory for a significant

period of time. The scale of significance here is that which would help an operat

ing system in scheduling memory. A sequential scan of a few thousand bytes

taking a few tens of milliseconds is an example of a characteristic well below the

level of significance.

To get a grasp on what are times that are significant to a typical time-



-4-

shared operating system, the departmental research machine was examined.

This is viewed as a lower bound on the minimal resources given to a user. It is

typical to get 3% of the processor during normal working hours. Each active

user's fair share of memory is nearly 200 kilobytes. A page of memory is not

normally paged out sooner than 30 seconds of real time from its last reference.

Hence, about a second of virtual processor time is about the right granularity

for the operating system when handling a non-interactive process. This

corresponds to a working set t of about a million references. These values are

very conservative: the research community in general and the department in

particular have or expect to have in the near future significantly more processor

power and memory to be available to the individual users.

The other bound on the resources is for use of a dedicated machine. A dedi

cated machine is common where some of these applications are run. Instead of

3% of the processor, the user gets the whole machine. The 30 second residency

of a page is nearly an invariant since it is determined by secondary storage

access time and operating system overhead. Hence, the r here is more like 30

million references.

The above classification scheme attempts to grasp the essential character

of a program. For example, a program may be viewed as being total even

though a small number of its pages are never used. This criteria in classification

is reasonable due to changing technology of the last few years. Memories are

becoming larger and less costly, while the access time to secondary storage has

been mostly constant. Hence, if some processor or 1/0 time can be saved, it is

worth the waste of a few pages of memory.

All the programs observed are real applications. In some runs, the data

processed by the program is synthetic, but only where the access patterns are

not data dependent. Some programs are large by most standards: they used up



to 36 megabytes of data and could run for a day or more on a dedicated

machine. One is a frequently used program: the parser-code generator, optim

izer and loader for a compiler. The programs were not selected to be typical of

a process mix on a normal time-shared computer.

This paper has three more sections. The next section describes briefly the

hardware, the operating system, and the technique used to capture the data. It

may be skipped by readers not interested in these details. Section 3 provides

the results and an analysis of what they mean. The last section is for the conclu

sions.

2. Technical Details of the Data Collection

This work is part of a project to upgrade a Berkeley version of the UNIX f

Operating System (VMUNDC) [BabBl]. VMUNDC is an extension of Bell Lab's

UNIX/32V. It runs on the Digital Equipment Corporation VAX-11 series comput

ers X' The measurements presented in this paper were done on a dedicated

VAX-11/750.

The measurement project included three parts: kernel modifications, the

development of a user process to move data from buffers in the kernel to secon

dary storage, and the modifications to the programs to be measured. Each of

these will be described in general terms below. The description is intended to

serve as a guide to those who may want to implement this technique on their

own system. All that is really needed to port this technique to another machine

and operating system is paging hardware and sufficient cooperation between the

operating system and the processes. Of course, a plotting device is also

required, but the growing availability of bit addressable hard copy devices,

sometimes called typesetting equipment, means that many sites now have

t UNIX is a trademark of Bell laboratories.
t VAX and PDP are a trademarks of Digital Equipment Corporation



plotters.

There were two principal kernel modifications. The first change was to

extract trace data at the time of a page fault. This data was placed in a circular

buffer in the kernel address space. A second modification was to allow a process

issue a system call that invalidated all of its page table entries.

The second part of the measurement tool was the monitoring process. Its

prime function was to copy the trace data onto permanent storage. It would

periodically read the kernel buffer, block it and write it to tape (or disk). No

processing of the data was performed.

The final component of the tracing package was the program to be moni

tored. The traced program was usually a single process. The program source

was modified, by the insertion of a one line call, to execute a routine to setup

the measurement tool. At a roughly periodic rate in real time, the monitored

process would be interrupted. Software was added, by inclusion of some object

code at load time, to handle this interrupt This software issued the system call

that caused all pages of the process to be invalidated. The first reference to

each program or data page after this would cause a fault. The fault would be

traced, and the page would either be paged in or the page table entry would sim

ply be validated. Normally, only a single fault for a page would occur between

periodic interrupts. After some analysis, the period between interrupts was set

at 100 milliseconds.

In summary, the pages touched by the monitored process in each 100 mil

liseconds period of real time would be recorded.

Several minor operating system specific comments may be helpful for a

reader already familiar with VMUNIX. First, the system call that invalidated the

pages was an extension of the "vadvise" system call. Second, the minimum

period of software generated interrupts was one second. This was modified to



allow interrupts to occur with the granularity of the line frequency (60 Hz on

this machine). Third, a process was allowed to "time stamp" the trace buffer.

This was used to record virtual time in the buffer so as to be able to convert the

trace data to virtual time. Finally, system calls were added to allow the tracing

to be turned on and off.

In any measurement study, overhead is always a problem. The goal is this

work was to allow substantial overhead, but not to let the overhead dominate.

Most processes took about two to four times the execution time they used when

not traced. This could have been substantially lessened by invalidating their

pages every 100 milliseconds of virtual (instead of real) time, or by increasing

the real time between invalidations.

Other trace collection efforts in this area have used simulators (machine

interpreters) instead of the raw hardware augmented by operating system sup

port [Chu76] [Bur76] [AlaBO] [Lau79]. Simulators typically impose a slowdown

factor of between 20 and 100. The raw data they produce has a much smaller

granularity and a greater volume. The fine detail is not needed for studies that

focus on the operating system.

3. Descriptionof the Programs Measured and Analysis of the Trace Data

More than a dozen programs were traced. The five most interesting of

these are presented below. These programs were selected primarily because

they were either very demanding on the memory of the machine or frequently

used.

Once the trace data was available, a series of data reduction programs were

written. These included simulators ofFIFO, LRU, Belady's MIN algorithm [Bel66],

clustered page-in extensions of the above and sequential detection prepaging

policies. All of the above were found to be unsatisfactory analysis tools because
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of the number of parameters necessary to run a simulation. A cloud of numbers

were generated. They provided very little insight into how a program used

memory.

The method of analysis selected is to present the page reference pattern in

the visual form of a strip chart. Each scan line represents 100 milliseconds of

virtual time. Time runs down the page. The other axis is the page number.

Pages are 1024 bytes in size. Each dot represents one or more references for a

page during a 100 millisecond period. References to the stack are not shown. In

some cases, only a fragment of the chart is presented. The charts are not all at

the same magnification.

In the analysis of the programs, all conclusions are made from knowing the

general application of the program and from examination of the chart. They

have not been verified by examination of the programs. This is an advantage of

this technique: the analysis does not require detailed knowledge of the pro

grams.

Figure 1 represents IMAGE (called exyiq by its author). This is a program

that demonstrates certain features of image processing. It converts a red-

green-blue style image to a y-i-q style image. It is written in C and has 15 pages

of program (as in all the programs examined, the program pages precede data

pages in virtual memory). First of all, notice how little of the address space is

used for the code (less than one percent). Second, the data seems quite well

organized for this type of processing. The working set is small compared to the

total amount of data. What is apparently shown here is a technique commonly

used when processing two (or more) dimensional, non-sparse matrices. The

matrix is subdivided in submatrices by cutting the matrix vertically and hor

izontally. By adjusting the size of the submatrices, a row or a column of the ori

ginal matrix can be completely resident in memory by only loading the subma-



trices needed. Thus a matrix can be processed in either column or row order on

a machine with a physical memory much smaller than the entire matrix. The

author clearly had memory performance in mind when this program was coded.

On the chart, observe that there are sharp changes in the locality of the data,

but not in that of the code. There are six segments of data that exhibit sequen

tial behavior, while the procedure segment is total.

Figures 2 and 3 show a trace of a Fast Fourier Transform (FFT) program.

The first eighty seconds are used to initialize the matrix. During the actual

transform, the initial phases are apparently sequential. However, the period is

so fast that paging is impractical. This is a technology influenced decision: fas

ter paging devices and slower processors would make some of this sequential

access profitable to exploit. At about three minutes into the execution, the

working set drops to a half of all pages. However, there is a transition where all

data pages previously required are nolonger needed and all the unneeded pages

are now needed (eg. all the even pages are no longer needed but the odd num

bered pages are all now needed). The only reasonable way to run this program

is to give it all the memory it wants. The program is (probably) total after the

initialization phase.

Figure 4 is for VAXIMA. This is a VAX extension of MACSYMA running a

demonstration script. This program does symbolic computation (eg. integra

tion, equation solving). It is written primarily in LISP, but has some Cprimitives.

Due to the list structure storage of LISP, there is no distinction between code

and data. It is easy to observe that there is some sequential behavior in the

upper addresses. Also, many pages are in nearly constant use. However, the

outlying points here should dominate performance. Each of them represents a

potential fault for a memory management policy. This figure illustrates a poten

tial problem for the visual analysis technique: small outlying dots tend to be
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ignored. VAXIMA is regular except during garbage collection (seconds 21-25)
when it is total for certain segments.

Figures 5 and 6 are for SEARCH. This is a FORTRAN program that searches

deep space photographic plates for stars and galaxies. It has 42 pages of pro

gram Figure 5 shows the first 40 seconds. The pattern established in the fifth

second continues up through the fourteenth minute shown in Figure 6. The pro

gram runs for about six hours loosely repeating the pattern shown in minutes

fifteen through seventeen. It is doing software paging of a 36megabyte disk file.

Note that, even though a definite low to high address sweep is visible in Figure 7,

virtually all pages are used every few seconds. The horizontal lines apparently

occur when some feature is detected in the picture and must be evaluated. This

is another program that requires that all its pages be in memory for efficiency.

It could also be argued that this program is regular since the periods of total

use of memory are separated by a few seconds. Again, this is a technology

influenced distinction.

This addressing pattern is an artifact of the operating system primitives

provided by VMUNDC. Ideally, the data file would be coupled into the address

space instead of using software paging. If flies were coupled, then this program

would have sequential behavior for one or two segments.

Figures 7, 8 and 9 show three processes of the "C Compiler". The three

processes shown are the only ones that use significant amounts of time. It

should be emphasized that the structure of this compiler is an artifact of its

creation: it was built for the PDP-11 computer which had a very limited address

space.

The lexical analyzer through code generator part of the compiler is CCOM.

Its plot is shown in Figure 7. It uses 70 pages of program. Although there are

sweeps through small sections of memory here, the period is short. It may be
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too short a time period to be useful to an operating system This trace is for a

particularly large compilation of a program that is about 1000 lines long.

Smaller programs benefit even less by optimizations based on this sequentially.

CCOM should be considered total.

The code optimizer is C2. Its plot is shown in Figure 8. It uses 23 pages of

program. Although part of the memory is used sequentially, the period of use is

around a second. This compilation was performed on the same program used

for CCOM. C2 must be viewed as total, but the size of the segment changes.

The VMUNIX loader is LD. Its plot is shown in Figure 9. Note that there are

two phases. This plot is for the loading of the VMUNIX Operating System itself,

and uses more memory and runs longer than a typical use of LD. Although some

sequentiality exists, the program seems mostly total.

Notice how densely the parts of a "C Compile" (CCOM, C2 and LD) use the

address space. Since they are total, for these processes swapping would be

more effective than paging.

4. Conclusions

Prediction of memory usage is not easy. However, all large programs exam

ined, except possibly VAXJMA, were totally dominated by data references. VAX-

IMA is a huge program that has evolved over many years. It is likely that only

large programs with a similar development history willnot be dominated by data

references. Since data references dominated the paging behavior, this implies

that restructuring efforts should focus on data restructuring and not on pro

gram restructuring.

Of the programs measured, only IMAGE and SEARCH (with files coupled into

the address space) would be amenable to a predictive memory management

scheme. IMAGE could be classified as a multi-segment sequential program.
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What is impressive the data restructuring already used by IMAGE and SEARCH.

Both apparently use the division of a matrix into submatrices to reduce the

working set. The other programs basically need all pages in memory to get good

performance.

When analyzing a chart, it is necessary to look at the entire chart and not

only to pick out features. Some features may be too small to be of practical

interest. Performance may be dominated by outlying points.

Changes in program locality (ie. in the distribution of the addresses in the

program counter) were a surprise in that they were infrequent. IMAGE, FFT and

SEARCH seem to have no significant change in program locality. They do have

changes in data locality. VAX1MA appears to change locality only during garbage

collection. LD and C2 exhibit only a small change in locality. CCOM has an initial

phase that lasts for about five seconds, but after this there is no significant

change. The conclusion is that program reference patterns often do not

significantly change through the life of a program. This result is partly due to

the fact that the scale of time and granularity of address measurement used

were those that would correspond to the needs of an operating system. When

shorter time periods and byte addresses are considered, locality probably exists

even in these programs. Another cause of the lack of locality is that the VMUNIX

loader does not attempt to structure the program for efficient use of virtual

memory.

Ideally, a clever and simple policy should be devised that would detect all

the characteristics discussed above and do the proper paging. Failing that, it is

desirable to identify primitives that can be provided by the operating system to

allow a program to hint at its expected behavior. The standard VMUNIX Operat

ing System provided only one such opportunity at the time of this study: a hint

could be given that the behavior would be anomalous and page replacement
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should become random. This was very effectively used by LISP during garbage

collection. An experimental version of VMUNIX now also allows the hint that a

program is about to exhibit sequential behavior.

Based on the data presented here, these are a good choice for primitives.

Programs may be regular (have some locality), random (no locality), sequential

or total (very inefficient to run unless all pages can be memory resident). The

whole program or only a segment of the address space may exhibit the hinted

behavior. Operating systems should be equipped to handle hints from programs

as to their memory reference types. Note that it would be economically feasible

to provide these hints only for highly used programs and for programs with spe

cial performance problems.
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