Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

'VSWS: THE VARIABLE-INTERVAL SAMPLED WORKING SET POLICY

by

Domenico Ferrari and Yiu-Yo Yih

Memorandum No. UCB/ERL M82/16
17 March 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

VSWS: The Variable-Interval Sampled Working Set Policy®

Domenico Ferrari and Yiu-Yo Yih°°

Computer Science Division
Department of Electrical Engineering and Computer Sciences
and Electronics Research Laboratory
University of California, Berkeley

Abstract

A local variable-size memory policy called the variable-interval sampled
working set (VSWS) policy is described. The results of trace-driven simulation ex-
periments reported here show that VSWS has a static performance comparable
to those of the working set (WS) and sampled working set (SWS) policies, a
dynamic performance better than those of WS, SWS, and the page fault frequen-
cy (PFF) policy, and similar to that of the damped working set (DWS) policy.
Furthermore, VSWS generally causes substantially less process suspensions than
SWS, and is less expensive to implement than WS or DWS, since it requires the
same hardware support as SWS and PFF. The sampling overhead of VSWS is com-
parable to that of SWS and lower than that of PFF.

Keywords: Damped working set policy, Local replacement policy, Memory
management, Page fault frequency policy, Program behavior, Replacement algo-
rithm, Sampled working set policy, Variable-size policy, Virtual memory, Work-
ing set policy.

° The work reported here was supported in part by the Computer Systems Design Program of the Na-
tional Science Foundation under Grant MCS80-12800.

°% Author's current address: Bell Laboratories, Holmdel, NJ 07733,

B A e T L e Lo 3 VO

PFerrari and Yih -2-

1. Introduction

Among the realizable policies proposed for the management of memory in
a virtual memory system, none has proved substantially and consistently better
than the working set (WS) policy [5][7). This policy assumes that the size and
the membership of the current locality of each running process coincide with
the size and the membership of its current working sef. In a paging environ-
ment, the working set of a process at virtual time ¢ is the set of pages refer-
enced by the process in the interval (¢-T,t), where T is the working set parame-
ter or window size. Not only is the working set of a process to be kept in main
memory in order for the process to be part of the multiprogramming set (i.e., to
be allowed to run), but the loading of a process is made conditional on there be-
ing sufficient room in memory for its working set. Furthermore, lack of space to
accommodate the demands of a process whose working set size is growing will
cause one of the processes in main memory to be deactivated and unloaded.

Thus, the WS policy is a local variable-size replacement algorithm that in-
corporates memory scheduling and swapping policies as well as a policy for the
automatic control of the multiprogramming level. Its being a variable-size poli-
cy, that is, its allowing the resident set size of a process to grow and shrink
dynamically during execution, makes it capable of utilizing memory more
efficiently than any constant-size local policy [9]. The built-in control scheme for
the multiprogramming level prevents thrashing without the addition of external
mechanisms like those required by global replacement policies [6]. The incor-
porated scheduling and swapping policies make the design of a crucial part of
the operating system cleaner and easier to understand: the interactions among
all the policies involved are better known and controlled than when each of these
resource management problems is solved in a separate, ad-hoc fashion.

These advantages are unfortunately accompanied by a few drawbacks, the
most notable of which are the cost of implementation and the inability of the
policy to deal with abrupt inter-locality transitions efficiently.

To implement the WS policy in its pure form, the system should keep track
of the virtual time at which each page in main memory has been last referenced,
and eliminate from the resident set (i.e., return to the free pool the page frames
they occupy) those pages whose virtual time since the last reference becomes
longer than 7. Even with the advent of VLSI processors, these operations, which
should be performed at each reference, are probably too expensive, or time-
consurning, or both, for a practical implementation of the pure WS policy to be
justified, especially if the current trend towards larger memory demands and
smaller page sizes continues. Only one implementation approximating quite
closely the pure WS policy has been reported in the literature [14].

This problemn may be solved by adopting an approximation called the sam-
pled working set (SWS) policy [4][16][17][19]); historically, SWS preceded WS,
which was introduced as an idealization of SWS [7]. The SWS policy evaluates the
working set only at sampling instants which are equidistant in virtual time (note
that virtual time may be measured in memory references or instructions exe-
cuted rather than in seconds). The most commeon choice is to make the duration
I of the sampling interval equal to the window size 7. Each page frame in
memory has a use bit which is turned on by the hardware whenever an informa-
tion item stored in that frame is referenced. At the beginning of a sampling in-
terval, the use bits of all the frames allocated to the running process are reset;

Ferrari and Yih -3-

at the end, only the frames containing pages which have been referenced during
the interval will have their use bit set; these pages are retained in the resident
set of the process throughout the next interval, while the others are expelled
(i.e., their frames are returned to the free frame pool). The resident set size of a
. process can only decrease at the end of an interval and not during each interval;
the faulted pages do not replace any of the pages in the resident set, but are
stored into frames from the free pool.

The SWS policy is clearly less expensive to implement than the WS policy,
and in general exhibits a performance quite close to that of the latter [15]. Two
inconvenient aspects of SWS are the periodic suspensions of a process’ execu-
tion and the need for the operating system to scan the use bits of all the pages
in the running process’ resident set at every such suspension. It should be not-
ed, however, that this overhead is inconvenient in absolute, not in relative
terms, since there are no use-bit-based local variable-size policies with an over-
head lower than that of SWS.

A variable-size policy which is also much cheaper to implement than WS is
the page fault frequency (PFF) policy [3). PFF eliminates pages from the
resident set by examining the use bits only at the time of a page fault; at that
time, pages are expelled only if the previous page fault occurred more than 7
time units (or references) before. When a page fault occurs at a distance in time
from the previous fault less than or equal to 7, which is the PFF policy parame-
ter, the resident set size is increased by one frame and no page is expelled. In
spite of its inexpensive implementability and of its not requiring in general any
suspensions of process execution besides those due to page faults, the PFF poli-
cy has been found to exhibit more anomalies [8] and to be more sensitive to the
value of the policy parameter [10][11] than WS. It should be noted that, unlike
WS, PFF does not have the inclusion property [13]; in other words, given two
values 7, and T, of the policy parameter, with 7 < 7,, the resident set of a pro-
cess under PFFz with parameter 7, is not guaran%eed %o be included at every vir-
tual time instant in the resident set with parameter 7, Note also that, though it
is a good approximation of the WS policy from a performance viewpoint, SWS
does not exhibit the inclusion property for all values T,> TJ. but only for Tz =
_T..

1

The other major problem with the WS policy is due to the fact that no page
ever drops out of the working set (hence, of the resident set) before 7 virtual
time units have elapsed since it was last referenced. During inter-locality transi-
tions, the rapid succession of page faults causes the resident set of a process to
swell before the pages of the old locality are expelled, and the sudden peaks of
memory demand may produce unnecessary process deactivations and reactiva-
tions, with the corresponding undesirable switching and swapping overheads.

From the dynamic viewpoint, neither SWS nor PFF outperforms WS. Actu-
ally, SWS is slightly worse than WS, due to the additional delay it introduces in el-
iminating unreferenced pages from the resident set; PFF is substantially worse,
since it does not get rid of any unused pages as long as page faults keep occur-
ring at intervals shorter than 7. Unused pages tend to be kept in memory by PFF
also when a smaller-locality phase of execution is entered, where no page faults
are generated for a relatively long time; to reduce the negative effects of this
problem, a second parameter may be introduced, which establishes the max-
imum interval during which a process may run without its use bits being
scanned.

Ferrari and Yih -4-

The desire to improve the performance of the WS policy during abrupt
transitions suggested the introduction of the damped working set (DWS) policy
[18]. DWS can be informally described as an algorithm which reduces by a fixed
factor the window size (hence, the resident set size) whenever the page fauit
rate gets larger than a given threshold. This two-parameter policy has proved to
be effective in reducing the peaks of resident set sizes, but is unfortunately as
expensive to implement as the WS policy.

Ideally, one would like to have a policy characterized by the WS policy's
performance and controllability (i.e., the possibility of finding values for the poli-
cy parameter which will produce near-optimal performance for a large fraction
of the processes executed by an installation), the implementation costs of SWS
(or lower), and the dynamic performance of DWS. This paper presents a new poli-
cy which may be considered a step in the direction of the ideal one we have just
described.

2. The Variable-Interval Sampled Working Set Policy

The memory management policy to be presented in this section is an SWS-
like policy with three parameters, two of which, however, act as bounds and
should be expected to require very infrequent, if any, tuning modifications.
These two parameters, to be denoted by M and L, respectively, are the minimum
and the maximum durations of the sampling interval. The third parameter is the
number @ of page faults after which the use bits are to be scanned.

The VSWS (Variable-Interval Sampled Working Set) policy can be more pre-
cisely described as follows.

1. If the virtual time since the last scanning of the use bits reaches 7, then
suspend the process and scan the use bits.

2. At the @th page fault which occurs after the last scanning of the use
bits, (a) if the virtual time elapsed since that scanning operation is less than #,
then wait until the elapsed virtual time reaches M to suspend the process and
scan the use bits; (b) if the elapsed virtual time is greater than or equal to M,
then scan the use bits while processing the @-th page fault.

Note that, as in SWS, all pages whose use bit is found to be 0 are expelled
from the resident set, and then all use bits are reset.

As mentioned above, the parameter values are to be selected so that most
of the scannings of the use bits of a process will normally be triggered by the oc-
currence of the @-th page fault after the last scan (case (2b)). Like DWS, the
VSWS policy tries to reduce the peak memory demands caused by abrupt inter-
locality transitions under the WS and SWS policies by increasing the sampling
frequency, hence the rate at which unused pages drop out of the resident set,
when the paging rate increases. It is interesting to note that the PFF policy is
based on the opposite philosophy: it only expels unused pages from the resident
set when the virtual time since the last page fault is greater than T, that is, when
the page fault frequency is lower than the threshold corresponding to 1. PFF
tries to adjust the size of the resident set according to the fluctuations of a pro-
cess’ memory demand, assuming that a locality grows and shrinks in size while

Ferrari and Yih -5-

retaining an always active core of essential pages. The model of program
behavior assumed by VSWS is different: according to this model, when a process
references new pages, even with a very low frequency, it is likely to stop re-
ferencing a large fraction of the old pages. Thus, the model underlying VSWS as-
sumes more dynamic and serial referencing patterns than those assumed by the
PFF model. The VSWS model is certainly a more accurate description of abrupt
inter-locality transitions, where most of the faults usually occur in the execution
of many processes [12], and where some of the worst memory scheduling and al-
location problems arise. Note also that, with #/ = 7and @ = 1, VSWS reduces to a
policy very similar (but not identical) to PFF; however, the correct range of #, a
parameter which establishes an upper limit for the sampling frequency, will in
general contain much lower values than those normally considered for .

The implementation of VSWS, like those of SWS and of PFF, only requires a
use bit for each page frame (note that use bits may be simulated in software, in-
troducing a small amount of additional overhead [1]) and a virtual-time interval
timer for each process. Every time a sample is taken, all the use bits of the
frames allotted to the running process are to be examined, as is the case with
SWS. However, the number of process suspensions for use bit scanning purposes
is generally much lower than that which characterizes the SWS policy; if the two
bounds M and L were never invoked, this number would be exactly zero, since all
scannings would take place at page fault times. When page faults are infrequent,
the sampling rate of VSWS is lower than that of PFF; when, on the other hand,
this is not the case, PFF is likely to require a larger amount of memory space for
a given process.

It should also be noted that VSWS exhibits a partial inclusion property
similar to the one which, as mentioned in Section 1, holds for the SWS policy. A
sufficient condition for the resident set produced by VSWS with parameter @, to
include at all virtual time instants the resident set with parameter Qz is tha€ Qg
= 2QI - 1. This result can be proved by observing that the worst case arises
when'the (@, - 1)-th page fault of a sampling interval under VSWS with parameter
QI coincides with the @,-th page fault of a sampling interval under VSWS with
parameter @ lmrnediaiely after this page fault, the resident set of VSWS with
parameter &, contains all the pages referenced since the (2@, - 1)-th most re-
cent page fault, while the resident set with parameter @, contains all the pages
referenced since the @,-th most recent page fault; thus, if the above inequality
is satisfied, the latter resident set will certainly include the former. In this ar-
gument, we have assumed that the two executions (with parameters @, and Qe.
respectively) produce exactly the same page faults. In general, if the aéove ine-
quality is satisfied, the lower value of @ (i.e., Ql) will generate more page faults;
furthermore, due to the inclusion property, all the page faults caused by @, will
be page faults also for parameter @ ’ thus, the (2@, - 1)-th most recent faul‘g will
occur later than the @,-th most recent fault, thereby making the inclusion con-
dition even more easily satisfied. This remark explains why the above condition
is not necessary, but only sufficient. Clearly, the derivation of this result has
been based on the assumption that neither of the two bounds M and L ever
causes any additional process suspension. When this assumption is not satisfied,
the above condition is not even sufficient anymore.

The discussion in this section could be summarized by stating that the
VSWS policy is a variable-size local replacement algorithm which

(a) has about the same performance as WS or SWS;

Ferrari and Yih -6-

(b) has dynamic properties better than those of WS, SWS, and PFF, and
similar to those of DWS;

(c) is less expensive to implement than WS or DWS in their pure forms, hav-
ing about the same cost as SWS and PFF; and

(d) causes many less process suspensions than SWS.

Of course, claims (a), (b), and (d) require that appropriate criteria for
comparison be selected, and must be confirmed by suitable experiments. The
criteria, the experiments, and their results are described in the next section.

3. Experimenting with VSWS

The minimum set of policies to be compared with VSWS in order to verify
the validity of the claims made at the end of the previous section clearly con-
sists of SWS and DWS. Since the three policies involved were local and of the WS
type, it was felt that uniprograrnming experiments would be sufficient for their
comparison. Three program traces were selected for our trace-driven simula-
tion experiments: APL, the execution of a program originally written in APL, and
containing 1,642,000 references; WATEX, the execution of a FORTRAN program
translated by a WATFIV compiler, a trace of 1,642,200 references; and WATFIV,
generated by a WATFIV compiler, and consisting of 1,048,599 references. The
page size used to transform these traces into page reference strings was 512
words. Extensive data on the performance of these traces under the WS policy
has been published by Smith [18].

To compare the static performances of the three policies (claim (a)), we
resorted to the three types of diagrams most widely used for this purpose: those
of the mean fault rate vs. the mean memory occupancy, of the mean memory
occupancy vs. the policy parameter, and of the space-time product vs. the poli-
cy parameter. Since the parameter of the VSWS policy to be modified (i.e., §) is
not homogeneous with those of the other two policies, that are window sizes, for
VSWS we plotted the memory occupancy and the space-time product vs. the
mean sampling interval (i.e., the mean time between successive scannings of the
use bits). The memory occupancy of a process at a certain time was considered
to be equal to the size of its resident set at that time, ignoring the fact that a
page dropped from the resident set is still in main memory, and can be re-
claimed, until it is replaced. The dynamic performances of the three policies
(claim (b)) were compared by visual inspection of the memory occupancy vs.
virtual time curves. Some dynamic information was also provided by the di-
agrams of the mean page fault rate vs. the maximum memory occupancy. As far
as claim {d) was concerned, the numbers of process suspensions required by
SWS and VSWS were plotted as functions of the mean sampling interval.

Some preliminary experiments were run to determine reasonable values
for the M and L parameters of VS¥S. For all the traces, we set M/ = 500 refer-
ences and L = 15,000 references. The choice of the value of M was dictated by
our estimate of the number of instructions the operating system may have to
execute in order to examine all the use bits of a process and to make the ap-
propriate changes in the process' page table. To select the value of L, we ob-
served that, for very low page fault rates, VSWS degenerates into SWS with a win-

Ferrari and Yih -7-

dow size (and sampling interval) equal to L. Thus, it seems reasonable to choose
for L a value not too far from those values of 7 beyond which the space-time pro-
duct of a process starts increasing. This guarantees that, even during possibly
long periods of very low fault rates, the space-time product will still be in the
neighborhood of its minimum. In all experiments, the multiplicative parameter
of DWS was chosen equal to 0.5.

The three traces produced roughly similar results. Figure 1 displays the
mean fault rate vs. mean and maximum memory occupancy diagrams for
WATEX. While the mean curves are practically indistinguishable, the maximum
curves show that VSWS and DWS are better than SWS, though the differences are
rather small. The results produced by the other traces, especially those for @ >
5, were about the same. Note that some of the values of @ are reported on the
curves for VSWS. The memory occupancy vs.T curves for WATFIV are displayed in
Fig.2; those for the other two traces are similar to them. In Fig.2, DWS performs
better than SWS in all respects, while VSWS exhibits an intermediate perfor-
mance, closer to that of DWS for small values of T and to that of SWS for larger
values of T (when T approaches 15,000 references, VSWS degenerates into SWS).
It should be noted that for DWS the actual values of the mean window size are
smaller than those reported in Figs.2 and 3, which correspond to the maximum
window sizes used in the corresponding runs under DWS.

The diagrams of the space-time product vs. T for WATFIV in Fig.3 show that
DWS achieves smaller memory occupancies at the price of higher fault rates.
The result is a space-(virtual)time product larger than those achieved by the
other two policies, of which VSWS is, by a small margin, the better.

The validity of claim (b), that is, that VSWS has a dynamic performance
comparable to the one of DWS and substantially better than the performance of
SWS, was tested in a large number of experiments. Figures 4, 5, and 8 present
some sample results. In Fig.4, we see the memory occupancy of the APL trace
vs. virtual time for the first 450,000 references, both under SWS and under
VSVWS. The window size for SWS has been set equal to the mean sampling interval
of VSWS, whose parameter @ equals 12. As expected, the VSWS curve has lower
peaks and milder ascending slopes. This tends to be the case also for the depres-
sions, where the memory occupancy of VSWS is often higher than that of SWS,
and for some of the descending slopes, which VSWS often follows with some delay
with respect to SWS.

The behaviors of the same portion of the APL trace under the three poli-
cies to be compared in our experiments, but with a different value of T (the one
given by VSWS with @ = 7), are displayed in Fig.5. VSWS seems in most cases even
more effective than DWS in clipping the memory occupancy waveform, but is
often slower in reducing the resident set size, and tends to keep it at slightly
higher values during the depressions, when page faults are rare. This
phenomenon is more clearly visible in Fig.6, where the portion of the WATEX
trace between reference 420,000 and reference 1,020,000 is used to compare
DWS with VSWS for @ = 5 (T = 13,138 references).

To substantiate claim (d), the numbers s of process suspensions required
by VSWS and by SWS have been measured in all experiments. In Fig.7, we have
plotted s vs. T for the two policies and the WATFIV trace. The difference between
the two curves is still substantial (i.e., a factor of 2) at T = 10,000, which, for
WATFIV, corresponds to @= 7.

Ferrari and Yih -8-

If we take all of our results into account, the most convenient range of
values for @ seems to be the one between 5 and 8 for all the traces. Even though
the problem of determining the sensitivity of the policy’s performance to the
value of @ has not been directly addressed in our experiments, this observation
suggests that in most installations a value for @ can probably be found such that
most of the processes in the workload will run with nearly-optimum static and

dynamic performance, and a number of suspensions substantially smaller than
under SWS.

4, Conclusions

A new local variable size memory management policy, the variable-interval
sampled working set (VSWS) policy, has been presented. VSWS is a working-set-
like algorithm that, in the experiments we have performed, exhibited a static
performance, as measured by all the commonly used indices, very close to that
of the SWS policy, and a dynamic performance noticeably better than that of
SWS. Its implementation requires the type of hardware support needed by SWS
and PFF, which is substantially simpler than that required by WS or by DWS in
their original versions. Another advantage of VSWS over SWS is its generally
lower number of process suspensions for use bit scanning purposes, due to the
fact that most of the scannings take place at page fault times; in the limit, the
number of such suspensions under VSWS could approach that of PFF, which is
zero or (if a bound on the duration of a faultless interval is added as a second
parameter to PFF) very small. Having three parameters instead of one is a
drawback of VSWS, but two of the parameters are actually sampling frequency
bounds and should be expected to be modified much less frequently (especially
M) than the third. Furthermore, our limited experimental investigations seem to
suggest that it may be possible to choose a value for the third parameter, @,
which will make the performances of most processes close to their optimum
values. In other words, if further, more extensive experimentation will confirm
the validity of these observations, the controllability of VSWS may be found to be
closer to that of WS than to that of PFF.

Most of the performance comparisons between SWS and VSWS in Section 3
have been made for equal values of T, that is, for equal total sampling overheads.
Since the values of the static performance indices produced by the two policies
are quite close (see Figs.2 and 3), their actual total overheads (as measured, for
example, by the respective numbers of times the use bits are scanned during
the execution of a process) should be expected to be roughly the same if the
performance levels achieved are about the same. This ovehead is substantially
lower than that caused by the PFF policy, which scans all the use bits at every
page fault, at least in order to reset them, if not also to determine the pages to
be expelled from the resident set. Thus, SWS and VSWS are the local variable-size
policies, among those known today, with the lowest overhead. The only existing
working-set-like policy with a substantially lower overhead is WSClock [2], which,
however, is a global policy.

Due to the increasing memory demands in a number of important applica-
tions, and to the technology-driven trend toward smaller page sizes, the use bit
scanning overhead is bound to become a major characteristic of those memory
policies which base their estimation of the current locality on the information
contained in the use bits. Schemes for reducing the overhead of VSWS or SWS

Ferrari and Yih -90-

will therefore have to be studied and experimented with before local variablfa-
size policies become really viable alternatives to the global policies adopted in
most current virtual memory systems.

Acknowiedgements

The authors are grateful to Peter Denning for an enlightening conversation
on the subject of this paper and to the members of the PROGRES group for the
several improvements that resulted from many long and heated discussions on
VSWS."

References

[1] O.Babaoglu, Virtual Storage Management in the Absence of Reference Bits,
Ph.D. dissertation, University of California, Berkeley (November 1981); also,
PROGRES Report No.81.8, Computer Science Division, University of California,
Berkeley (December 1981).

[2] R.W.Carr and J.L.Hennessy, WSClock - A simple and effective algorithm for vir-
tual memory management, Proc. ACM-SIGOPS 8th Symp. on Operating Systems
Principles (December 1981), 87-95. ’

[3] W.W.Chu and H.Opderbeck, The page fault frequency replacement algorithm,
AFIPS Conf. Proc. 41 (FICC 1972), 597-609.

[4] P.J.Denning, Memory Allocation in Multiprogrammed Computer Systems, MIT
Project MAC, Computation Structures Group Memo 24 (March 19686).

ES] P.J.Denning, The working set model for program behavior, Comm. ACM 11
May 1968), 323-333.

[6] P.J.Denning, Thrashing: Its causes and prevention, AFIPS Conf. Proc. 33 (FICC
1968), 915-922.

[7] P.J.Denning, Working sets past and present, IEEE. Trans. Software Engineering
SE-6,1 (January 1980), 64-84.

[8] M.A.Franklin, G.S.Graham, and R.K.Gupta, Anomalies with variable partition
paging algorithms, Comm. ACM 21 (March 1978), 232-236.

[9] G.S.Graham, A Study of Program and Memory Policy Behavior, Ph.D. disserta-
tion, Purdue University (December 1976). ‘

[10] G.S.Graham and P.J.Denning, On the Relative Controllability of Memory Poli-
cies, in: KM.Chandy and M.Reiser, eds., Computer Performance (North-Holland
Publ. Comp., Amsterdam, 1977), 411-428.

[11] R.K.Gupta and M.AFranklin, Working set and page fault frequency replace-
ment algorithms: A performance comparison, IEEE Trans. Computers C-27 (Au-

Ferrari and Yih -10-

gust 1978), 706-712.

[12] K.C.Kahn, Program Behavior and Load Dependent System Performance,
Ph.D. dissertation, Purdue University (August 1978).

[13] R.L.Mattson, J.Gecsei, D.R.Slutz, and LL.Traiger, Evaluation techniques for
storage hierarchies, IBM Sys. J. 9 (1970), 78-117.

[14] J.B.Morris, Demand paging through the use of working sets on the MANIAC II,
Comm. ACM 15 (October 1972), 867-872.

[15] J.-F.Paris, Personal communication (February 1981).

[16] B.G.Prieve, A Page Partition Replacement Algorithm, Ph.D. dissertation,
University of California, Berkeley (1974).

[17] J.Rodriguez-Rosell and J.P.Dupuy, The design, implementation, and evalua-
tion of a working set dispatcher, Comm. ACM 18 TApril 1973), 247-253.

[18] A.J.Smith, A modified working set paging algorithm, IEEE Trans. Computers
C-25 (September 1978), 907-914.

[19] J.R.Spirn, Program Locality and Dynamic Memory Management, Ph.D.
dissertation, Princeton University (March 1973).

E Pa,gesj

Fig.1. Mean fault rate (7) vs. mean (f2) and maximum (m,,..) memory occu-
pancy for WATEX under SWS, DWS, and VS#S.

we A Traces]

WS

30 —

- V5W5

Am’mul

o pW 5

20 =
ey

140 1 _
o T T >

0 5000 40000 15000 fT7

(ReFerencEs)

Fig.2. Mean (7) and maximum (m z) I€mory occupancy vs. T (the sampling
interval and window size for SWS, the window size for DWS, the mean sarmpling
interval and mean window size for VSWS) tor WATEX. :

sﬂ; A
x40

10 -

8 YSws

-~
gl
I

1 1
0 5000 40000 45000 |T'

[REFERENCES]

Fig.3. Space-time product vs. T for WATFIV under SWS, DWS, and VS#S.

working

LSS Baas § T \ LOmniL RAtnt Aund RN Bl SAuk SNl Aunny BEmS T v T T Y L f \J T Lamme | LA | T \J ¥ LA B e T ™Y T Y LI e s T

8=12, M=500, L=15006. Ave.: sanpling interval=130633.]

R I N A s R R R I A R I I TR T T T R A M R R R TR o

R R RIS

APL TRACE, VSWS vs. SWS. YSWS:
: : 3WS: WINDOW=sampling interval=13033.

--

s

............ E--oa-o.-.......f : ‘)S(JS“

:
:
...... O S AR . A
d b
: X
: :
: X
:
:
:
............................ R R 1 R SR N
Y
:)
:
. :
: :
:
I eletretarentananitas

ORI DU UUN THUN FUUL WY SUNN VAU WA G VNN SN W WU DUSEY SHLVY ST SH N NN WA I W S | P S VS NS VY YU T Y

(<) 4% 96 1356 138 225 270

Thousand referehnces

Fig-4. Memory occupancy vs. virtual time for APL (first 450,000 ref
under SWS with 7 = 13,033 and VSWS with @ = 12, ' erences)

-

—

90 L] A A LS I" v L] L A2 ' L] LJ v L 'l' L3 v L LS T LJ 1} Ll L] ll' ¥ A v L] ' L Ll LJ L] Il' L) LS LS L] ' L) " L L 'I' Al v L v 4

N . : :]
" { APL TRAGET VSUS be. SUS, DUS. : : : 5
! 81 Froveeenrennnns RIS R *)\lJCaQ=?ll=GOBL-159E10.Fl\fe,.samplxnglnter've;lﬂ1?4.
- o SUS UIHDO[J-* ampl 1ng n) te rval-gl?" . : : oo 1

'c vsus oooooooo N A SRR N .\ oo : -------------- A ESRERRERRES :0 1-
n 1 : : DUS: ummw 9L74. : : : : ; i

226

Thousarnd references

Fg.5. Memory occupancy vs. virtual time for APL (first 440,000 references)
under SWS and DV/S with 7 = 9174, and VSWS with @ = 7.

T e R e v

TPy

L S

?e [L) T v 1] L] T v L] | v ¥ L] L] l L] v v L] | L] v Al v T v L] v L] 1 L] L] L L3 ! v L v L] 1] T LJ L g v T T 4 T ™

. . WATEX TRFICE- \!SMS vE . DU
63 .E. feveencarareanne ;. t}'{'(,i:?:'g"?'i;g"”ﬁggﬁ'gm'i_:é;i's”gi'g'é';"ﬁ\}'e'."é’;}r;‘;i';}{&J",:}{{é’}\};i'é'l"g'iﬁ'g':"""'""'";
DUg ¢ WINDOW=123138, : : :]

Thousand retferences

Fig.6. Memory occupancy vs. virtua! time for WATEX (referenées between
420,000 and 1,020,000) under DWS with 7 = 13,138 and VSWS with @ = &.

e - o -

! T T ;_
0 5000 40000 45060 T
' LReFerences)

Fig.7. Number of process suspensions {s) vs. T for WATFIV under SWS and VS9S.

TET T A R ey o -y VISP ST PR TT AT RIS TayY WS SIS GANTIIS, ARG JA AN S TR T o tg Y . NI SO SS

	Copyright notice 1982
	ERL-82-16

