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ABSTRACT

A characterization of program referencing dynamics based on the temporal behavior
of memory demand (as represented by the working set size of a program for a given win
dow size) is proposed. A deterministic generative model which produces a reference
string having a given dynamic characterization is then presented, and its practical imple
mentation is discussed. An experimental study of the accuracy and the viability of such a
model is performed, together with a theoretical and empirical investigation of the feasi
bility of constructing a synthetic program which produces an approximation to that
artificial string, thereby exhibiting the given dynamic behavior. The results for working-
set-like environments are good, those for other types of memory policies reveal that
improvements to the string generation algorithm or different characterizations are
needed.
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1. Introduction

The need for characterizing the referencing behavior of programs arose with the
advent of virtual memory systems, since the importance of this behavior was immediately
recognized. Various models have been proposed and actually exploited so far (see for
example [12]), but they have failed, in some way or another, to capture the dynamics ofa
program's referencing behavior, that is the aspect of such behavior which really
influences a virtual memory system's performance. Indeed, this performance is deter
mined not so much by the mean memory demands or by the mean page fault rates of the
programs in the workload, but rather by the laws of variation of these indices in time and
by the time relationships existing among the programs during their exe6utions. Most of
the existing models can successfully reproduce the mean values ofprogram performance
indices, but they cannot in general reproduce, simply because of the criteria their design
has been based on, the dynamic variations of these indices.

This paper proposes a characterization of program dynamics and presents a model
which is based on it. The power and the limitations of this model are discussed, and its
use in the generation of reference strings and of synthetic programs obeying a given
dynamic characterization is explored both theoretically-and experimentally. The model
is based on the variations in time of the memory demand ofa program as represented by
the working set size curve, and is therefore oriented towards representing program
behavior in working-set-like environments.

The ability to reproduce a certain dynamic behavior by generating an artificial refer
ence string which has a given characterization is quite useful in most applications of
trace-driven simulation to the study of memory policies, of the interactions between
memory policies and scheduling disciplines, and ofprogram behavior. An artificial string
is generally less expensive to procure, more easily modifiable in a controlled way. and less
space-consuming than a real address trace. The last characteristic comes from the fact
that in most cases an artificial string does not have to be stored between consecutive
instances of its use, but can be produced by the generating program and processed on
the fly every time it is needed. Furthermore, an artificial string can be designed and
implemented according to given specifications (e.g.. a characterization of its dynamics)
thereby allowing one to perform completely controlled simulation experiments, which
cannot be performed with a real string because of its lack of flexibility. Asynthetic pro
gram exhibiting a given dynamic characterization is also useful when studies of the types
mentioned above are to be empirically performed.

Section 2 introduces the proposed characterization, discussing it in the context of a
paged virtual memory; this will be the context of our discussion throughout the paper,
but the characterization and the resulting model could be extended to a segmented
environment. An algorithm which is capable of producing a reference string with a given
dynamic characterization is illustrated in Section 3. Both the characterization and the
algorithm were first presented in [9], and refined versions of both in [10J. Section 4
describes the results of various experiments performed with a program that implements
the algorithm discussed in Section 3 to explore its practical viability. The problem of
building a synthetic program which, during its execution, will reference its virtual address
space as dictated by a given dynamic characterization is examined in Section 5. where
the results ofsome experiments performed with sucha program are also reported.



2. A Characterization of Program Dynamics
In spite of ail the efforts made so far, a viable approach to the characterization of the

dynamic behavior of a program has not been proposed yet. At one extreme, we have a
complete characterization, namely, the reference string generated by the program when
processing a given set of input data (in this paper, by "behavior of a program" we shall
always refer to the behavior of a program-input pair). The reference string (i.e., the
sequence of addresses issued by the CPU during the program's execution) contains com
plete referencing dynamics information but is excessively long for most purposes, hard to
classify and compare to other strings, inflexible (i.e.. hard to modify in a controlled
manner), and input-data dependent in unknown ways. At the opposite extreme, we find
program behavior models whose dynamics either is totally unrelated to that of the origi
nal string (e.g., the Independent Reference Model [5]) or cannot be easily related to it
(e.g., the two-level Markov-LRU Stack Model described in [6]).

The approach to be proposed here is based on the working set model. The appeal of
this characterization stems from the attractiveness of that model, from the increasing
popularity of working-set-like policies, and from the natural and relatively compact way in
which the characterization can represent the dynamics of a program's memory demand.
It should be immediately stressed that the characterization to be presented below,
though based on the working set model and hence somehow biased towards variable-size
memory policies of the working set type, is not intended only to describe the dynamic
behavior of a program in .a working set environment, but to model those aspects of such
behavior which are the most relevant ones in any virtual memory environment. Whether
or not this is indeed the case will be the subject of a discussion in Section 4.

Let virtual time be measured in memory references rather than in microseconds,
and assume for simplicity that references are equally spaced on the virtual time axis. In
this discrete-time context, the working set W(t,T) at time t with window-size T can be
defined as the set of the pages referenced in the closed interval (t-T+1, t). If the refer
ence string generated by the program is the finite sequence r = \rt\ (t = 1,2....n), where
rt is the name of the page referenced at time tt the above definition of W(t,T) can be
extended to the interval 1 ^ t ss T assuming that, for 2 - T ss t <> 0, rt is defined and is
the name of a non-existing page whose size is 0. By w(t,T) we shall denote the size of set
W at time t with window size T.

A natural way to represent the dynamic behavior of a program is by using the curve
w(t,T) (see for instance [1] [3]), which, for a given window size T, is a function of virtual
time t. Under the assumptions made in the previous paragraph, this characterization is
totally equivalent to the one based on the string of integers w = \wt J, (t = 1,2....n), which
consists of the consecutive values of working set size. The objection that the amount of
information in string w is as large as that found in the program's reference string can be
answered by observing that the important aspects of a dynamic phenomenon can often be
captured by assigning the coordinates ofa relatively small number ofpoints ofthe curves
which describe it; also, string w may be modeled stochastically according to working set
oriented criteria [8]; this question will be discussed further in Section 4.

However, the knowledge of w(t,T) may not be sufficient to characterize a program's
behavior. Not all of the arrivals and departures of pages cause working set size varia
tions. While an increment in the working set size is always the result of the arrival of a
new page (when running the program with those input data and that window size in a pure
working set environment, this arrival would produce a page fault), there are arrivals
which do not change the working set size. This is the case when the arrival of a new page
is accompanied by the simultaneous departure of an old page from the working set. The
above statement can be repeated for decrements in w(t.T) and departures. Simultane
ous arrivals and departures can be specified in several alternative ways; to simplify our
discussion, we shall assume that the occurrence times of these events are given. All the
other characterizations will have to lead to the string of the occurrence times in order for
artificial reference strings with the assigned properties to be generated. Thus, the char
acterization we are proposing consists of the two finite sequences of integers

w = (tufci (t = 1,2,.,.n),

f=W 0' = i.2....*).



where fj is the time index at which the j-th arrival-departure event occurs. For the sake
of brevity, an arrival-departure event will be called a flat fault in the sequel, and the
above will be called a (w,f) characterization. Areference string and its (w,f) characteri
zation are presented in Fig. 1.

What conditions are to be satisfied by a (w,f) characterization in order for it to
represent a reference string? Can w and / be assigned arbitrarily? Before answering
these questions, we must introduce the departure set D(t,T). First, we observe that a
departure occurs at time t if either

wt = Wt_x —1

or

'/*•*
for some j. Second, we notice that in both cases the departing page is the one which has
been referenced at time t-T. The departure set D(t,T) is the set of pages which drop
out of W(t,T) during the closed interval (t +1, t + T-l); in other words, it is the set of
pages referenced between t - T+1 and t which are not referenced between t and
t + T-1; its cardinality dj at time t is equal to the sum of the number of working set size
decrements and of the number of flat faults occurring between t +1 and t + T-1 (the
page referenced at time t cannot drop out of Wbefore t + T). Note that a decrement is
said to take place at time t + 1 if Wt^-Wt - 1. Figure 1 includes string
d = \dt I (t=1.2,...n) for 7*=6. Note also that, like W, set D can be defined for t <T assum
ing that ail references for t«s0 are made to a non-existing page whose size is 0, and which
does neither arrive nor depart.

An answer to the previous questions can now be provided.

Theorem 1.

Given a reference string r = \rt\ (t = l,2....n). and assuming that the working set of
the program which has produced r is initially empty, its (w,f) characterization has the
following properties:

(a) uij = 1;
(b) 0 < wt «s min(p,T) (* =l,2,...n), where p is the total number of pages in the pro
gram;

(c)/i>0,/,>/,--! 0=2.3....*:);
(d) \wt -u»t-i | ^ 1 (*=2,3,...n);
(e)wfj =ttf/,-i <p 0'=1.2....fc);
(f)dt <wt (*=1.2,...n).

Proof.

(a) Since JV(t,T) = J&fort^O, after the first reference we have wl = 1.
(b) The working set, by definition, can never, contain more than p pages or T pages,

whichever is smaller. Also, its size must be positive at all times.
(c) The ft's are positive time indices arranged in chronological order and corresponding

to the occurrences of flat faults.

(d) By definition, the working set size after each reference can either change by 1 or
remain constant. All other changes are impossible.

(e) Aflat fault cannot occur when the working set size is either increasing or decreasing,
or when it contains all the program's pages.

(f) Since no page may drop out of the working set more than once during an interval of
T references, and the page referenced at time t is guaranteed to be in
W{t + T-1,T). the maximum cardinality of D(t,T) equals tvt - 1 (see for example
string d in Fig. l). Q.E.D.
The inverse question now arises: given a (w,f) characterization which satisfies the

conditions of Theorem 1, can one construct a reference string which is described by that



characterization? We shall see in the next section that this question has an affirmative
answer.

3. The Generation of a Reference String Having a Given Dynamic Behavior
An algorithm will now be presented for obtaining a reference string with a given

(w,f) characterization. It will then be shown that, if the characterization has the proper
ties in Theorem 1, the algorithm completes its task successfully, and that, if it does not,
the algorithm cannot generate the entire string.

The assigned dynamic behavior can be reproduced by referencing one of the pages
not belonging to the working set whenever w or / indicate that an arrival is to take place,
and one of the pages already in the working set otherwise. In addition, T references
before the time a departure is expected to occur, the page which has just been refer
enced is to be marked to prevent further references to it until its departure time. If no
departure is to take place T references from the current time t, the page just referenced
will have to be referenced again on or before time t + T (if it is referenced at t + T for the
first time after t, we shall consider it as a re-referenced page rather than viewing this as
the departure and the simultaneous arrival of the same page). -

In order to apply the algorithm just described, we need to know at any time t the
current contents of the working set, whether an arrival must take place at t, and whether
a departure must take place at t + T. Also, the pages in the working set are to be divided
into two categories: the marked pages, which cannot be referenced before they drop out,
and the unmarked ones, which must be referenced before they drop out. It is therefore
convenient to construct and maintain three sets, the set of unmarked pages, to be called
the candidate set C, the set of marked pages or forbidden set F, and the external set E,
which contains all the pages not in the working set. These three sets are disjoint, and
their union coincides with the set P of all pages. Thus,

C(t,T)\jF{ttT)= W(t,T) = P-E(t,T).

To simplify our symbology, we shall leave the dependence of these sets on t and T
implicit and write C,F, and E whenever no ambiguity may arise.

Page rit referenced at time t, will either join F or C, depending on whether or not its
departure is expected to take place at t + 7\ In any case, the page will be assigned t + T as
its time index, and, when required, we shall write rt[t + T]: if the page is added to F, the
time index is the time at which it will leave F and join E, thereby departing from the
working set; if it is added to C, the time index represents the latest possible time at which
the page is to be referenced again in order for the given dynamics to be accurately repro
duced. While the page to be referenced at time t can be chosen arbitrarily from among
the members of C (if no arrival is to occur) or of E (if an arrival must take place), it may
be convenient to keep the members of C ordered according to their time indices, i.e., in
FIFO order, so as to minimize the probability of unwanted departures which will require
repeating the string generation procedure for the last window with different page selec
tions. On the other hand, the choice of a page from E does not have to satisfy any such
condition and can be made according to several oriteria; for example, trying to reproduce
given proportions of sequential and random referencing behaviors (one approach would
be to assign the probability that the next external reference is to the next page, if indeed
this page is not in the working set at that time). Set F does not have to be ordered, but
the amount of searching to be performed at each reference to see whether the current
time coincides with the time index of any member of F is minimized if F is treated as a
FIFO queue.

The algorithm discussed informally so far in this section is more formally described
in Fig. 2, where we have assumed that both C and F are FIFO queues. Note that in the
figure first (Q) represents the oldest member of FIFO queue Q, and the union operator
\J in Q\j\x \ appends page x to FIFO queue Q. Note also that, if F is empty when Step 6 is
executed, the test of the time index of its first element will have a negative result as if
such element existed and its time index were different from t. Finally, whenever the pro
cedure "error" is invoked, the algorithm halts, since it can no longer accurately repro
duce the given dynamics.



Asample application of the algorithm in Fig. 2 is presented in Fig. 3. The given (w,f)
characterization is the one of the reference string in Fig. 1. Step 5 of the algorithm
clearly shows that, at all time instants, rt is appended either to C or to F with time index
t + T. This suggests that we can keep track of the contents of both C and F by writing the
name of each referenced page on a single line (the C/F line in Fig. 3) T time instants
ahead, i.e., at the time corresponding to its time index. When the first element of C is
used as the next reference, its symbol on the C/F line is crossed out and rewritten T
instants ahead. The elements of F, whose symbols appear underlined on line C/F in Fig.
3, are crossed out and join set E when the current time goes beyond their position (see
Step 6). The generated string r* does not, of course, coincide with the original string r
but has the same dynamic properties, as characterized by the (w,f) pair. Note that the
contents of set E are not shown in the figure.

We can now prove that the conditions of Theorem 1 are necessary and sufficient for
the algorithm in Fig. 2 to generate a reference string with an assigned dynamic behavior.

Theorem 2.

The string generation algorithm described in Figure 2 produces a reference string
with a given (w,f) characterization if and only if this characterization exhibits the pro
perties (a) through (f) listed in Theorem 1.

Proof.

(A) The condition is necessary. Since by Theorem 1 all reference strings have pro
perties (a) through (f), the given {w,f) characterization must have these properties in
order for the generated string to be faithfully represented by it.

(B) The condition is sufficient. Let the given (w,f) characterization exhibit proper
ties (a) through (f). The discussion of the algorithm in the first part of this section shows
that, by construction, the algorithm generates a string r whose behavior is characterized
by the given (w,f) description. This conclusion can also be reached by formally analyz
ing the reference selection phase (Step 3) and the set updating phase (Steps 5 and 6) in
Figure 2: page arrivals are handledby referencing pages outside the working set (Step 3),
page departures by preventing the referencing of the pages expected to leave (Steps 3
and 5) and by transferring them from F to E (i.e., out of the working set) at the proper
times (Step 6). Thus, the only cases in which we cannot obtain the desired result arise
when the algorithm is not allowed to terminate. There are three error exits in the
description of Fig. 2, which will now be discussed separately.

(i) Let wt > lUj _! at some time t. If E were empty after the generation of rt_lt we
would have Wt-\ = p, where p is the number of pages in the program. This would require
wt >p, which is impossible if condition (b) is satisfied. If on the other hand we have
fj = t for some j, E cannot be empty, since we would have wt-x =p, and condition (e)
would not hold. Thus, the first error exit in Step 3 can never be taken if the given charac
terization has properties (b) and (e).

(ii) Let u>j *£ i^-i and t * fj for all j (i.e., no page arrival at time t). By definition,
D(ttT) is the set of pages leaving the working set between t+1 and t+T-1, and F(t-1,T) is
the set of departures expected to take place between t and t + T-1. Thus, if there is a
departure at time t (i.e.. if wt < t^-i), we have \F(t -1.701 = <k + 1? if. on tne other
hand, there is no departure (i.e., wt = ^t-i), then \F(t -l,T)\ - Q%. Since W= C\jFt and
C and F are disjoint, we have

«*-!= IC(*-1.71)I + \F(t-l,T)\,
and, if wt < to*-!,

wt < \C(t-l,T)\ +dt + 1.

If C(t -1, T) were empty, condition (f) would not be satisfied, since we would have
Wt ^ a*.

Let us now assume wt = ttfe-i* Then

wt = | C(*-1.701 +dt.



The sampling methodology adopted for obtaining relevant points of the w(t) curve is
based on two parameters <5 and fi.

First, the total number of points n in the original string w is reduced by a factor of 6
by sampling w at intervals of <5 time units; the reduced string w6,wz6% • • -wn will be
denoted by wr. In our experiments, we set (5=50. Since the original string consisted of
500,000 references, the number of points was first reduced to 10,000. The importance of
guaranteeing an interval of at least 6 time units between two consecutive sample points
will become clear in Section 5.

String wT is then sampled in the following manner:1 two consecutive sample points
Wi-8 and wit with u^_5 # wit are selected, provided that the time that elapsed since the
selection of the last point exceeds some minimum value ju; otherwise, onlywt is selected.
The motivation behind the introduction of parameter /z is primarily to test the accuracy
of our interpolation technique in approximating the real w(t,T) curve: we do not want to
specify too many points that are very close to each other, but, rather let the interpolation
fill in the curve. When, for example, many slope changes occur over a relatively short
period of time, we would end up with a large number of points; by reducing this number,
we not only save more space, but we also speed up the string-generation algorithm, which
will have to deal with fewer input points. Of course, fj, must not be too large, since fluctua
tions in the working set size over a large time interval would cause an intolerable amount
of deviation between the interpolation approximation and the real w(t) curve. For our
experiments, we selected //, = 2000, and we obtained the impressive further reduction to
524 points.

We shall now try to determine what properties of a modeled program's referencing
behavior are preserved in the behavior of the reference string artificially generated by
the algorithm described in Section 3. Our approach will be the one schematically
represented in Fig. 5.

The program to be modeled produces (with a given set of input data) a reference
string r, which, processed by a pure working set policy with a given 7\ yields a (w,f)
characterization of the program. This characterization is reduced as described above,
and then input to GENWS for the generation of the artificial reference string r'. String r'
is processed under a given memory policy, and a set of performance indices I* are
obtained. String r is also processed under the same policy, and produces values of the
same performance indices to be collectively denoted by I.

We want to investigate the following issues:
(1) Which of the performance indices I are reproduced (within a tolerable level of

error) by the generated r'?
(2) How accurate is our interpolation technique in approximating the real w(t,T)

curve, and how sensitive are the performance indices to such an approximation?
(3) By how much can we reduce the number of points required for a complete char

acterization, and still obtain values for set I' reasonably close to the correspond
ing values for set I?

(4) Is the accuracy of the model sensitive'to Tl
One important observation should be made here: given a complete characterization

of w{t,T) by specifying the coordinates of all the points where a change of slope occurs,
the model will reproduce the program's w{t,T) curve exactly; thus, there is no reason to
validate results for complete (w,f) characterizations, since, in that case, GENWS guaran
tees faithful reproduction of the working set size at all points, and we shall only consider
incomplete characterizations.

The trace used in our experiments consisted of the first 500,000 references gen
erated by a program written in APL during its execution. This trace is described also in
[11]. Page addresses were obtained from the original virtual addresses in the trace by
assuming a page size of 1024 bytes.

Figure 6 shows a plot of the w(t,T) curve for our trace with T=10,000. This value of
T allows us to distinguish various phases during the execution of the program. For



example, the steep slopes are characteristically (though by no means exclusively) pro
duced by phases of sequential behavior, where the program references a large number of
pages over a relatively short period of time; the long flat section (interrupted only by a
"rectangular pulse") is characteristic of a local phase (typically produced by a loop) dur
ing which a relatively small number of pages are repeatedly referenced. Since this pro
gram contains aspects of both extremes of paging dynamics, we felt we could test the
model over a wide range of referencing behaviors simply by using this single trace. Vari
ous published w(t,T) curves with realistic values of T (see, for example, [1], [4], [ll])
show patterns of behavior similar to those that appear in Fig. 6.

For T=10,000, no flat faults were found to occur in the string. This is hardly surpris
ing, since, for T=10,000, a flat fault can occur at time t only if a page fault occurs at time
t and if the page referenced at time (£-10,000) is never referenced again before time t, a
highly unlikely event. At 7'=5000, no flat faults were detected either. Only for much
smaller, unrealistic window sizes were some flat faults found (for instance, 6 for T=1000).
Thus, flat faults were ignored in all our experiments.

a. Experiments under WS and SWS with 7*=10.000 references

Having used 7'= 10,000 references in the generation of artificial string r\ in the first
experiment following the general scheme of Fig. 5 the memory policy was the pure work
ing set policy with T= 10,000. The results are presented in Table I.

Note that 6 is defined as

5=;r£ \w(i)-vf(i)\ .
where it/(i) is the working set size of r' at time i. All results, including 6. which is a
measure of dynamic fit between the two curves w and w', indicate that the approximation
is an excellent one, in spite of the reduction by three orders of magnitude of the size of
the input to GENWS. Since there are 850 points at which the slope of the original w(t,T)
curve changes, our input to GENWS, consisting of 524 points, represents a 38% reduction
of the minimum quantity of information needed for a complete characterization of the
curve. When w' (t) is plotted on the same diagram asw(t) (see Fig. 6), the two curves are
practically indistinguishable, as are the two page fault plots shown in Fig. 7.

The results obtained under the sampled WS policy (SWS) with a sampling interval
equal to the window size were very similar to those just presented. Note that the w(t)
curve sampled with our methodology was that generated by r in a SWS environment with
T=10,000, and that only 305 points of that curve were sufficient to obtain a very accurate
reproduction of the dynamic characterization of r.

b. Experiments under WS and SWS with 7=5000 and 7=20.000

When the string r' generated in the previous experiments was run in a simulated
working set environment with T=20,000. the results were quite close to those obtained by
running r in the same environment (the mean working set sizes and the mean page fault
rates were practically the same, and the relative error in the space-time product was
-8%), the only exception being the maximum working set size (56 pages for r', 78 pages
for r). A totally different set of results was obtained, as expected, with 7=5,000. The rela
tive errors in the mean working set size, in the mean page fault rate, and in the mean
space-time product were +5%, -40%, and -30%, respectively. No error was found, however,
in the maximum working set size of r'. Similar results were obtained by running r and r'
under the SWS policy with 7=20,000 and 7*=5,000.

c. Experiments under local LRU with m.=20 page frames
The size m of the fixed partition for our LRU experiment was chosen on the basis of

Denning and Schwartz's observation [7] that, if Tm is the value of Tat which w(T)~m,
then fLRui171)^/ws(Tm). That is, when the size of the partition equals the mean working
set size, the page fault rates_of LRU and WS are about the same (in reality, fiRui771) tends
to be slightly higher than fws(Tm)). Since, for 7=10,000 references, iu*20 pages, we
chose m=20 page frames. The mean fault rate produced by r under LRU was somewhat



higher than that produced by the same string under WS, as expected. However, the mean
fault rate produced by r' under LRU turned out to be orders of magnitude greater than
that produced by r under the same policy, in spite of the maximum-locality approach
implemented by the algorithm in the version presented in Section 3. This can be
explained by observing that, to keep w(t) constant at some value w over an interval of
time, GENWS will reference w pages cyclically, so a typical substring of r' might look like

...l%2,3...w-l,w,1,2,3,...w-l,w, 1,2,3...

Note that any two adjacent elements in such a substring are distinct, and that the
interreference interval for any page (i.e., the interval of time between successive refer
ences to that page) is at least w. What happens is that, over an interval of time during
which w>m, every consecutive reference in r' (after the initial m distinct pages have
been loaded) will produce a page fault!

This problem could be solved or alleviated by allowing the user to specify, for exam
ple, the mean interreference times between pages for all pages in the program's address
space. Thus, the algorithm, instead of generating pages in cyclic order, could attempt to
preserve the values of these times by an appropriate selection of pages from the candi
date set. (The only reason for treating the candidate set as a FIFO queue is to make the
probability of unwanted departures equal to zero, thereby avoiding the need to check that
these events did not occur.)
d Experiments under PFF with r=1543 references

The value of the PFF policy parameter t [4] was obtained by setting it equal to the
mean lifetime the program exhibits under the WS policy with 7=10,000 references. As
can be derived from Table I, the mean lifetime is 1543 references. With this value of t, the
program's mean memory occupancy is about equal to w. The results of our experiment,
performed according to the general scheme in Fig. 5, showed large differences between
the values of the mean memory occupancies, space-time products, and page fault rates
produced by r and r'. To explain the reasons for these results, we note that if the largest
working set size that appears in the (w,f) characterization for r is Wa^, then GENWS will
produce r' using a set of only lUmax distinct pages (which are identified by the integers
l.^.-.i^max). In r', as soon as m reaches wmax, no page faults can occur again under PFF,
simply because no new page numbers outside this set will be generated. (For 7=10,000,
for example, r' under PFF produces a constant m=wmax=56, and no page faults at all soon
after time t = 10,000.) In reality, a program's execution usually involves many more pages
that the maximum working set size observed under a working set policy with a fixed 7.
Thus, the set of pages that GENWS uses should have the same size as that of referenced
pages; the user could, for example, be allowed to specify the page reference probabilities.

Of course, the specification of interreference times and of probabilities for page
references has the disadvantage that the model increases in complexity and becomes
cumbersome to use.

An open question, to be investigated in a future paper, is whether the string-
generation algorithm described in Section 3 can be extended so that it can generate a
reference string r' that satisfies two (or more) w(t,T) curves for two (or more) different
values of 7. In this case, would the resulting reference string be a significantly more
accurate model of r (for memory policies different from WS and SWS) than an artificial
string satisfying just one curve?

e. Experiments under WS with different nominal window sizes

To test the sensitivity of the model's accuracy to changes in the window size (denoted
by 7 in Fig. 5), the experiment described in a above under the pure WS policy was
repeated for T=5,000. 15,000, and 20.000 references. Some of the results are plotted in
Fig. 8, which shows the space-time products of r (solid line) and r' (broken line) vs. 7. As
may be seen in Fig. 8, the errors in the space-time product for window sizes different
from T=10,000 were larger than those for T=10,000 but always very small. The lower
values of the space-time product for r' at all window sizes were due to the slightly fewer
page faults produced by GENWS because of the bias of its interpolation method towards
local behavior. The values of the dynamic error "S ranged from 2.27% (of w) for T=5,000 to



0.58% for T = 20,000. Thus, the dynamic accuracy of the reproduction improved as the
variability of w(t) decreased.

The reduction factors characterizing the incomplete specification of the w strings
which were input to GENWS ranged between 41% for T=5,000 and 36% for T=20,000 with
respect to the minimum-size complete specification. With respect to the amount of infor
mation needed to specify the whole w string, the incomplete specifications represented
reductions by factors from 542 for T=5,000 to 1129 for T=20,000.

5. Reproducing Dynamics by an Artificial Program
We now turn our attention to the problem of constructing an artificial program which,

given a reference string (for example, one generated by GENWS), reproduces during its
execution the given string. This program, if it can be implemented, may be used to emu
late the memory consumption pattern of an actual program in a computer system's work
load.

The problem of constructing synthetic programs that reproduce characteristics of
program referencing behavior for virtual memory environments has recently received
some attention; in particular, Babaoglu's design [2] of a program that is able to repro
duce a given lifetime curve has a number of aspects in common with the problem being
discussed here.

In this section, we show how, with the aid of GENWS, a program may be designed
which reproduces a given w(t,T) curve while executing under a pure working set policy
(with window size 7), and that the program works well even in the more realistic environ
ment of a sampled working set policy.

A possible approach to this problem," the one we shall actually take, is to use GENWS
to generate a reference string r' having the given (w,f) characterization, and then to
construct a synthetic program which, when running, issues a string of references ideally
coinciding with r\ The program may be organized as shown in Fig. 9. The program reads
a page address rx and then immediately references page rx itself, reads the next page
address r2 and immediately accesses page rz , and so on. This typical "read-next-page-
and-access" pattern, where the program "flies off" to access the desired page, and then
"rebounds" back to the page containing the code of the artificial program to execute the
next instruction, explains why the method has been called the boomerang approach, and
the program it produces the "BOOMERANG" program Unfortunately, with this procedure,
although the desired pages are referenced during the execution of the program, there
also are a number of undesired references occurring in between the desired ones, caused
by the fetching and execution of BOOMERANG'S own instructions, and by the accesses to
the page that contains the segment of r' being currently referenced. The reference
string r" produced by BOOMERANG, then, is of the form
a\az ' ' ' QlQriQiQz ' ' ' <lQrzaia2 ' ' ' QQr3' *' . where the rt are the desired page refer
ences from r* and the gt are extraneous references. Note that the rt are assumed to be
available at the outset and not to be computed on the fly because of the excessive
number of extraneous references that would result from the on-the-fly computation
approach.

All sequences of extraneous references qflz' • qq have the same length Q and
reference the same number Vof distinct pages. Thus, the extraneous references produce
the following two effects on the (w,f) characterization of r": (a) the time scale is
expanded by a factor of (Q + 1) with respect to that of the characterization of r' (r" is
(Q + 1) times as long as r'). and (b) the working set sizes are all increased by Vor slightly
more than V, depending on the number of pages containing segments of r' accessed dur
ing one window.

We can reverse these effects simply by transforming the desired (w,f) characteriza
tion into a new characterization (w*,f*) to be used to generate a reference string r*
which, when input to BOOMERANG, causes the resulting r" to exhibit the original (w,f)
characterization (see Fig. 10). Such a transformation involves shrinking the time scale
and the window size by a factor of (Q + l), and decreasing the working set sizes by V. The
following are the transformation rules:



(1) tt* «-fci/(£+l)l;
(2) w*(ti*) «- w(ti)-V, ifw(ti) > V,

w*(ti*) «- 1, otherwise;

(3) /;•*<-[/,/($+Dl:
(4) 7* «-[7/(£+l)l.

Note that the length of r* is only approximately l/(Q+l) times the length of the
reference string r" produced by the execution of the synthetic program; also, r" is
expected to exhibit the given (w,f) characterization with a reasonably small error.

Clearly, the above transformation rules do not guarantee that (w*,f*) will be a valid
characterization, i.e., that it will satisfy conditions (a) through (f) of Theorem 1. If any of
those conditions is not satisfied, GENWS will not be able to generate r", and the synthetic
program will not be produced by the approach described in Fig. 10. The properties stated
in Theorem 1 can be translated into the following three conditions, which the reduced
(w,f) characterization must satisfy in order for (u>*./*) to be valid:
(A) \w(tj)-w(ti)\ ^ \tj-ti\/(Q+l) for any two points of coordinates (ti,w(ti)) and

(tj,w(tj)) appearing in the reduced w string;
(B) wmax-V^\T/(Q+l)}\
(C) if tm-tx < 7, then b(tlttm) < w(tx) - 7, for any substring w(tj), w(tz), - • •w(tm) of

w, where

A(Mm)= "£' w(U)--w(ti+l) +ff>(tlttm)

is the minimum number of departures that must occur between rj and tm, and
4>(tx,tm) is the total number of flat faults occurring in (ti.tm).
Condition (A) is a consequence of applying condition (d) to w*: for any *** and fy*,

we must have

\w*(tj*)-W*(ti*)\ ^tj'-ti*],
which, because of transformation rules (l) and (2), and assuming wfa) > V, w(tj) > 7,
becomes condition (A). Note that, when either or both of the values of w(t) being con
sidered is not greater than 7, condition (A) is sufficient to ensure the fulfillment of condi
tion (d), though it is no longer necessary.

It is clear now why there should be, as stated in the previous section, some minimum
interval of time between the points selected to represent the w(t) curve: the length of
this interval is based on the value of Q. For example, if £=4 and 7=2. the valid pair of
input points with coordinates (20,5) and (25,8) would be transformed into the invalid pair
(4,3) and (5,8). Thus, one consequence of the transformation is that slopes that are too
steep, as defined by condition (A), will not be reproducible. Since most programs exhibit
temporal locality, however, the longer the time interval between selected points, the
greater the probability that condition (A) holds.

Condition (B) stems from property (b) of Theorem 1. and (C) comes from (f), but is
slightly more restrictive, since the transformation reduces the working set size by 7
pages. For example, if <?=4, 7=2, and 7=50, then the valid reduced substring $(50, °0»
(70, 8). (90. 4)j is transformed into the substring |{10, 3). (14, 6), (18. 2)J. which is invalid
since the number of departures required (6-2 = 4) within the new window 7* = 10
exceeds the initial working set size (w*(tx*) = 3).

One other point to be noted is that the time interval between any two specified flat
faults must be greater than Q.

A synthetic program was implemented according to the principles of BOOMERANG on
a VAX 11/780 computer supporting a VMUNIX, a virtual memory version of Bell Labora
tories' UNIX operating system developed at the University of California at Berkeley. The
results we shall now present were obtained by performing trace-driven simulations of the
execution of that program.



The actual implementation of a BOOMERANG program is very simple, and the design
concepts can easily be kept machine-independent. In our implementation, we were able
to limit the number of extraneous references to £=8, and the number of distinct extrane
ous pages accessed to 7=4. (Of the eight extraneous references, five access the page
containing the BOOMERANG program's instructions, one accesses the page containing the
current page address, and two access two other pages for index calculations.)

The eight extraneous references occur in a fixed sequence, and are all invariant
except for the single reference to the page containing the current segment of r*, which
will change every time a segment of r* has been entirely used. Transformation rule (2) is
correct, or almost, if we assume that this reference remains invariant over a time interval
whose length is on the order of 7. (While the VAX 11/780 uses 512-byte pages. VMUNDC,
the Berkeley-developed paging version of the Bell Laboratories' UNIX operating system,
defines pages as 1024-byte blocks. Such a block could hold 512 2-byte page names, so one
block is accessed to generate 512 x (8 + 1) = 4608 references of r" before a new one is
needed.)

The question to be investigated was whether and how accurately our implementation
of BOOMERANG could reproduce a given (w,f) dynamics under a working set policy with
realistic values of 7. Our previous discussion indicated that the answer depends pri
marily on the value of Q and on the steepness of the slopes in the w{t,T) curve to be
reproduced.

Using the sampling methodology described in Section 4 to obtain an incomplete
(w.f) characterization, experiments were performed with T=5,000, 10,000, and 20,000
references on the APL program trace introduced in the previous section.

For T=5,000, the transformed characterization was hopelessly invalid: too many
points failed to satisfy condition (C). This was due to the large number of oscillations in
the w(t) curve for this value of 7. Thus, at this relatively small window size, the approach
was found to be unsatisfactory.

For T=10,000 (the near-optimal window size for this program), both conditions (B)
and (C) were satisfied, and only for one pair of points was (A) not satisfied. This result
seems to indicate that the "steep slopes" problem can almost be ignored for typical pro
gram behavior and reasonable window sizes. After adjusting one of the two points so that
(A) would be satisfied over all the string, BOOMERANG could run, and the resulting w(t,T)
curve was, for all practical purposes, identical to that produced by GENWS. Similar con
clusions were reached for T=20,000; again, the resulting curve was practically identical to
that produced by GENWS.

The experiment with T=10,000 was repeated in a sampled working set environment
following the scheme presented in Fig. 10, where, however, BOOMERANG was executed
under the SWS policy, and the original (it;,/) characterization was obtained by applying
the sampling methodology described in Section 4 to the w(t,T) curve generated by the
SWS policy with a sampling interval equal to T. The (w*,f*) characterization correspond
ing to a specification of (w,f) based on only 434 points turned out to be a valid one. As
shown in Table II, which displays the values of the main indices, and in Fig. 11, which com
pares the page faulting patterns of the two programs, BOOMERANG can provide a very
accurate emulation of the dynamics of program memory demands.

6. Conclusions

The (in,/) characterization of a program's referencing dynamics presented in Sec
tion 2 has been shown to exhibit the following main properties:

(a) it lends itself easily to the construction of a generative deterministic model, and to
the design and implementation of a synthetic program which is capable of reproduc
ing a given dynamics with reasonable accuracy in working-set-like environments;

(b) while requiring substantially more information to be specified than most program
behavior models, its accuracy is still quite acceptable with 3 or 4 orders of magni
tude less information than a full reference string requires;



(c) it is based on variables having physical meanings, so that it is easy to modify it in a
controlled way, to create hypothetical characterizations for the purposes of, say,
testing the dynamic properties of a memory policy, and to study the relationships
between it and the underlying program structure;

(d) it also allows generative stochastic models to be built, and to form the basis for syn
thetic programs with the characteristics summarized in property (a) above; these
models will typically need considerably smaller amounts of information to be
specified than those required by the deterministic model discussed in this paper.
The major drawback of the (w,f) characterization is its lack of robustness with

respect to memory policies and policy parameters. Although it is intended to be a
policy-independent characterization, in that it describes the time variations of a
program's memory demand, the accuracy of an artificial string or of a synthetic program
having a given dynamic characterization under the WS policy with a certain value of the
window size 7 is sensitive to the value of T with which the string or the program is pro
cessed (if 7 is decreased), and even more to the memory policy under which it is pro
cessed. The problem of varying window sizes can probably be solved, or eased, by a char
acterization based on two or three working set size strings and flat fault strings
corresponding to two or three different, suitably chosen values of T. This more complex
characterization, expected to be more robust even with respect to variations in the type
of memory policy, for which some changes to the algorithm described in Section 3 have
also been proposed in Section 4, will be the subject of a forthcoming paper.
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Table I
Experimental results under WS with T=10,000

Index R R' Error

Mean working set size w 20.90 20.92 +0.1%

Maximum working set size U>mex 56 56 0

Space-time product srpxlO"8 1.067 1.058 -0.8%

Page fault rate /xlO4 6.48 6.44 -0.6%

Mean absolute difference
between working set sizes 3 0.228 1*0%

Table II

Experimental comparison between the APL program
and its reproduction by the BOOMERANG synthetic program

(policy: SWS; T=10,000)

Index APL BOOMERANG ERROR
Mean working set size
Maximum working set size
Space-time product
Page fault rate
Mean absolute difference
between working set sizes "5 Q57 2.39%

w 23.82 23.98 +0.6%

W™* a 78 77 -1.2%

stpxicr8 1.070 1.049 -1.9%

/xlO4 5.82 5.72 -1.7%



10 20 30 |

r. ababccdgdcebdbdeedejgh^abcdecbec
w 122233444345544 33333456666665444
f ••••••

d: 00001 I I I2I222I2I I 1223455543

Rg. 1 A reference string r, its working set size string w for 7=5, its flat fault string /
(whose entries are the times marked by a dot), its w(t,T) curve, and its decrement
string d. Note that the references with a tar correspond to page arrivals,
and the underlined ones to page departures.



Inputs: n,k, 7, P, wt (t = l.n). fj (;' = l.fc).
Output: rt(t = l.n).
/niiioZiza^ion

1. C «- 0 ; F «- J0 ; £ «- P; tu0 «- 0; /fc+1 - 0; r «- 1; ; «- 1;
2. for i «- 1, T do it^H «- wn]

Reference Selection
3. if ^>^-i or /^ = t then begin if E= & then error; rt *• e s E;

E «- E —\e\ end
elsebegin if C= JO then error;rt *- first (C); C+- C- first (C) end;

4. if timeindex [first (C)] = t then error;
Set Updating
5. if wt+T <u>t+T-i or fm = t + 7 for some m^j then F *- F\j[rt[t +7]J

else C <- Cuinti + T'li:
6. if timeindex [/irs*(F)] = * then begin E «- E\j\first(F)l: F *-.F - {first(F)l end;

Zoop Control
7. if /;- = t then j +• j + 1:
8. if r < n then begin £ «- * + 1, go to 3 end else stop.

Fig. 2. Adescription of the string generation algorithm.



w 1222334443455443333 34 56666665444

r*ababcadcadifaefafaiihieobcdfbcdf
c/f &*4$i4i4iiiiiii *tili*ii'L*i

Fi, 3. Generation or astring r- *h U. same <„/) characterization as
string r in Fig. 1 (7=6).



w(t)

W(tj) ^(tj.wftj))

W(tj) X-
(tj,w(tj))

(tj+tp/2

Fig. 4. The interpolation technique for w(tj) >iv(ti).
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