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ABSTRACT

Using the Kuhn-Tucker conditions from mathematical programming theory,

a canonical nonlinear programming circuit for simulating general nonlinear

programming problems has been developed. This circuit is canonical in the

sense that its topology remains unchanged and that it requires only minimum

number of 2-terminal nonlinear circuit elements. Rather than solving the prob

lem by iteration using a digital computer, we obtain the answer by setting up the

associated nonlinear programming circuit and measuring the node voltages. In

other words, the nonlinear programming circuit is simply a special purpose ana

log computer containing a repertoire of nonlinear function building blocks. To

demonstrate the feasibility and advantage of this approach, several circuits

have been built and measured. In all cases, the answer are obtained almost

instantaneously in real time and are accurate to within 3% of the exact answers.
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1. Introduction

Nonlinear programming is a basic tool in engineering design where a set of

design parameters is optimized subject to inequality constraints [1-4].

Numerous algorithms have been developed over the past 2 decades for solving

nonlinear programming problems using a digital computer. One basic problem

that characterizes this digital computer approach is that the computation time

could be excessive even for low-dimensional problems. Moreover, for certain

nonlinearities, the iteration may not even converge.

One alternative to overcome the above objection is to develop a special cir

cuit which simulates both the objective function and the constraint functions.

This approach was first proposed by Dennis [5] in 1959, and further extended by

Stern [6] in 1965, for solving linear and quadratic programs. The basic building

blocks they used are linear resistors, dc voltage and current sources, ideal

diodes and multiport transformers. Their approach, however, had been mainly

of theoretical interest because until only recently, it is difficult to build mul

tiport transformers that work at dc. Moreover, the pn-junction diode available

then did not represent a good approximation to an ideal diode. But perhaps the

most serious objection is that this approach is not valid for more general non

linear programming problems.

Our objective in this paper is to show that all of the above objections can

now be overcome. First of all, advances in device technology now allows us to

combine an op amp and an ordinary pn-junction diode to obtain a v-i charac

teristic which nearly approach that of an ideal diode [7]. Second, multiport

transformers that operate at dc can now be built using solid state components

[10,13].

But most important of all, we will present in this paper an entirely new cir

cuit which is capable of simulating any nonlinear programming problems, not

just linear or quadratic programs. The circuit is-made of ideal diodes, and non

linear controlled sources ( with multiple controlling variables ) only. In the

current state-of-the-art, each nonlinear controlled source must be custom built

using commercially available solid state devices. Several examples are given in

this paper to demonstrate the current techniques for realizing nonlinear con

trolled sources.

What we have in effect is a special analog computer for simulating nonlinear

programming problems. Consequently, it will clearly be less accurate and, at

present, expensive to build. However, the cost should continue to decrease as
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better and cheaper devices become available.

There are 2 main advantages, however, of an analog computer approach

over the conventional digital computer approach. First, since no iteration is

involved, there is never a convergence problem so long as the nonlinear pro

gramming problem has a solution. Secondly, unlike the digital computer

approach, the solution is obtained in real time.

In many applications, the variables x in a nonlinear programming problem

must be continuously optimized as some system parameter varies. Solving this

problem using a digital computer would entail storing the entire data in a buffer

while the computer iterates to optimize x , for each parameter value. Clearly,

this is a very time consuming task; moreover, there is no guarantee that the

iteration will always converge for all parameter values.

Our nonlinear programming circuit is ideally suited for solving this problem

because the solution will automatically adjusts to the optimum value as some

parameter is varied. Moreover, it is done in real time. In certain applications (

e.g., adaptive control ), the variable x must be optimized in real time as some

system parameter changes in an unpredictable way. For this class of problems,

the present approach would seem to be the only solution.

2. Nonlinear Programming Circuit

Consider the following general nonlinear programming problem*:

Minimize a scalar function

p(*i.*z zq) (1)

subject to the constraints

/i(xi.a:e xq)?>0

/2(*1.*2 *g>0' (2)

fpfrvXz xq)^0

where q and p are two independent integers.

• Other nonlinear programming problems can "be recast into the standard form (1) and (2).



The well-known Lagrange multiplier approach for solving this problem con

sists of defining a Lagrange function

L(x.\) = <p(x)+ ZXjfjix) (3)

where the real constants XltA2 Xp are called Lagrange multipliers [3,4]. If the
program has a solution x* , i.e.,

min p(x) = <p(x*)

and

/;-(x') a* 0. j = 1,2 p

then the following conditions must hold:

and

^>+JiV^) =0, I-1A. ...g

fj(x')>0, j = 1.2....,p

X/<;0, ; = 1,2,...,p

(^/;(x#) = 0, j = l,2,...,p

^ = 0

Vdjid, = 0

(4)

(5)

(6)

(7)

Equations (4) to (7) are called Kuhn-Tucker conditions. The proof of the neces
sity of these conditions can be found in [4].

Our main objective here is to show that the nonlinear circuit shown in Fig.l

is described precisely by Eqs.(4)-(7), provided we identify each node voltage vt
with the variable xl and each reversed diode current i,- with the Lagrange multi

plier Xj.

The diodes in Fig.l denote ideal diodes with v^-i^ characteristic shown in

Fig.2. Note that

(8)

(9)

(10)
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Each diamond shape symbol enclosing a plus-minus sign denotes a non

linear controlled voltage source, whose terminal voltage depends on the node

voltage Vi,v% vq in accordance with the prescribed nonlinear function

fj(vi.vz vq).

Each diamond shape symbol ( in the middle column ) enclosing an arrow

head is a controlled current source whose terminal current depends on both the

reversed diode currents id.>id*> • • • .*bL« an(i the node voltages vltV2 vq in

accordance with the prescribed function

£ . d/jfri^g Vq)
fix* dv~t

Each diamond shape symbol ( on the right ) enclosing an arrowhead

denotes a controlled current source whose terminal current depends on the

node voltages vltV2 vq in accordance with the prescribed nonlinear func

tion

djp(vltv2, . . • ,vg)
dvt

To prove that Fig. 1 indeed simulates the Kuhn-tucker conditions, note that

Eq.(4) is simply obtained by applying KCL at each node 1, 1=1,2 q, in Fig.l.

Next, observe that

Vdj =-fj(vi,V2,.f.,vq) ss 0
' s.

\ • '•

in view of (8)-(9). Hence fj(vvvz vq) ^ 0. Finally, note that since ij = -i^ , it

follows from Eqs.(9) and (10) that i;- £ 0 and ijfj(vi,v2 vq) = 0, j = l,2,...j>.

Therefore, whenever there are unique solutions x* and X* for the original

nonlinear programming problem, the node voltages v and the reversed currents

i through the diodes at the operating point of this circuit will automatically give

the solutions x* and X*.

3. Circuit Implementation

Consider now the task of implementing the nonlinear programming circuit

in Fig. 1 using solid state devices.

The ideal diodes can be implemented by the pn-junction diode op amp

feedback circuit shown in Fig.3. The diode dj in Fig.3(a) represents a pn-
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junction diode. To distinguish it from an ideal diode, we use a symbol slightly

different from that of an ideal diode. The driving-point characteristic of this cir

cuit was shown in [7] to be an excellent approximation to that of an ideal diode.

The nonlinear controlled sources can be realized by combinations of op amp

and nonlinear multipliers [8] using recent techniques developed in [9-12]. At

present, each nonlinear controlled source for a given problem must be custom

built, and suffers from accuracy, sensitivity and stability problems. However, as

more accurate and versatile components become available, it would be possible

to design special analog computers with a large enough repertoire of building

blocks so that the nonlinear controlled sources can be routinely assembled at

ease.

In this section, we will consider a few examples of nonlinear programming

problems and show how Fig.l can be actually implemented using standard off-

the-shelves components.

A. Linear and Quadratic Programs

A programming problem is called a quadratic program if it has the following

form:

minimize ^(v) =Arv+ -^vTGv (11)

subject to f(v) = Bv - e ^ 0 (12)

where A and v are q-vectors, f and e are p-vectors, B is a (pxq ) matrix and G is

a ( ax9l ) symmetric, positive semidefine matrix. In the special case where

G = 0, the resulting problem is called a linear program.

A general circuit which simulates (11)-(12) is shown in Fig.4. Note that the

right part of Fig.l is realized using only dc current sources and linear resistors.

The values of the resistor i?i;- connecting node i and node j is

R<j=—?r-. i*j (13)

The value of the resistor R& connecting node i to ground ( the reference node )

is

The dc current source in Fig.4 can be realized by the transistor- op amp circuit
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shown in Fig.5 [7].

Note also that the middle part of Fig.l reduces to a (p+q)-port transformer,

which can be realized using the technique developed in [13], in addition to a set

of dc voltage sources. If, as is often the case in practice, some constraints in

Eq.(l2) assume the special form

fj(vltv2,...,vq) =vt - e ^ 0 (15)

then since

dfj{vi.vz Vq) _
dvi ~~

1 i=l

0 i*l

the circuit in Fig.l corresponding to this constraint reduces to that shown in

Fig.6. This circuit can be further reduced to that of Fig.7 since they both

impose the same constraint on the ideal diode. The ideal diode-battery combi

nation in Fig.7 and in the right part of Fig.4 can be realized by the two op-amp

circuit shown in Fig.7, where the op amp A2 is used to provide an adjustable bias

voltage e. Let us illustrate this with an example.

Example 1.

minimize <p{vi,vz,v^) = QAvx + =-(5i>? + 8i/f + 4uf - &vxv2 - 3u2V3)

subject to Vi + v2 + V3 ^ 1

Vl, V2, Vg^ 0

The simulating circuit corresponding to Fig.3 is shown in Fig.9. In addition,

we have to give adequate units to the physical circuit. To ensure that all signals

( voltages and currents ) are within the dynamic range of the op amp, we choose
the following normalizing values:

V0 = 1 volt, /0 = 1 ma, B0 = 1 fcfi (16)

All the values of voltages, currents and resistors of Fig.9 have to be normalized

with respect to these normalizing values. Using the op amp circuit in [13] to

implement the (l+3)-port transformer, and using Fig.8 to implement Fig.7, we

obtain the complete quadratic programming circuit in Fig. 10. This circuit was

built and its node voltage are measured:

vx = 0.258, v2 = 0.329, v3 = 0.407
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The theoretical solutions for this problem are:

vx = 0.2520, v2 = 0.3328, v3 = 0.4150

The biggest relative error is

0.258 - 0.252

0.252
•= 2.38%

B. General Nonlinear Program

Since there is an almost infinite variety of nonlinear controlled sources

depending on several controlling variables, it would be impractical to catalog

simplified versions of Fig.l, as we have done in Fig.3, for quadratic programs.

Since each nonlinear programming circuit must presently be custom designed

and built, let us consider a typical example.

Example 2.

minimize <p(vvv2) = 0Av2 + vf +v% -vxv2+ -^pr-vf (17)

subject to vx + 0.5i;g > 0.4 (18)

0.57;! + v2> 0.5 (19)

vlt v2^0 (20)

The simulating circuit corresponding to Fig.l is shown in Fig. 11. The non

linear controlled current source i=0.1i;2 is implemented by the circuit shown in

Fig.12, where the analog multiplier ( see symbol in Fig.13 ) is defined by

10
Vwt =

The actual characteristic shown in Fig. 14 gives an excellent approximation. Tak

ing the same normalizing values as (16), the complete nonlinear programming

circuit for implementing Fig. 11 is shown in Fig. 15. This circuit was built and the

measured node voltages are:

Vi = 0.336, v2 = 0.320

The theoretical solutions are:

Vj = 0.3395, v2 = 0.3302

The biggest relative error is:
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0.330 - 0.320

0.330
= 3.03%

Example 3.

In the laboratory it is very easy to change some parameters in the simulat

ing circuit. This corresponds to changing some coefficients in the original non

linear programming problem. For instance, in the above example if we adjust

the dc voltage Va in Fig. 15 from 0.4 to some other values, the constraint (18) will

change accordingly. This is especially useful when we want to know how the

minimum point of y> varies with the coefficient. For the circuit in Fig. 15, we used

an adjustable dc voltage source as Va and measured the values of v1 and v2

corresponding to different values of Va. All measurements are in good agree

ment with the theoretical solutions. Next, we used a 100Hz sinusoidal voltage

source in place of the dc voltage Va and traced the vx-v2 Lissajous figure

(Fig.16). This is the trace of the point min <p(vl%v2) when the constant of right

hand part of constraint (18) changes continuously. Using SPICE[14], the simu

lating circuit in Fig. 11 is also solved for different values of Va. Fig. 17 is the com

puter output of !»! and v2 when Va increases from 0 to 1 with an increment of

0.01. Fig.17 is drawn according to the data in Fig.18 ( only a part of the data is

listed in Fig. 18 ). A comparison between Fig.16 and Fig.17 shows that the labora

tory result is reasonably close to the theoretical result simulated using SPICE.

Yet the result in Fig. 16 is obtained instantly whereas that in Fig. 17 requires con

siderable computer time because the problem must be solved repeatedly many

times, one for each parameter value.
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Figure captions

Fig.l The canonical circuits.

Fig.2 An ideal diode.

Fig.3 A realization of an almost ideal diode.

Fig.4 A general simulating circuit for a quadratic program.

Fig.5 A realization of a dc current source.

Fig.6 The simulating circuit corresponding to the constraint (12).

Fig.7 The simplified circuit of Fig.6.

Fig.8 A realization of a biased almost ideal diode.

Fig.9 The canonical circuit for Example 1.

Fig. 10 The laboratory circuit for Example 1. All unmarked resistors are lOkQ.

Fig. 11 The canonical circuit for Example 2.

Fig. 12 Realization of a nonlinear voltage controlled current source.

Fig. 13 The symbol of an analog multiplier.

Fig. 14 The v-i relation of the circuit in Fig.12. Horizontal scale: O.lv/div; Vertical

scale: O.lma/div.

Fig. 15 The laboratory circuit for Example 2. All unmarked resistors are 10A:Q.

Fig. 16 An oscilloscope tracing for Example 3. Horizontal and vertical scale:

O.lv/div.

Fig. 17 The trace drawn according to the data in Fig. 18.

Fig. 18 A computer output of the canonical circuit in Fig. 11.
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