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Abstract

Differentiable and nondifferentiable optimization problems

in normed spaces may fail to have solutions. Even when they have

solutions, optimization algorithms may produce minimizing sequences

that have no accumulation points. To deal with this difficulty,

this paper examines optimization problems as problems on sequences,

in an extended normed space, and derives first and second order optim

ality conditions for them.
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1. Introduction

Engineering design periodically produces new classes of optimization

problems in normed spaces. Among the earliest of such problems were

those of optimal control. More recently design centering and tuning C 1,2]

has produced problems with maxminmax functions in the constraints, and

the design of wings, turbine blades and bridges has produced problems

with eigenvalue inequalities C3,4,5j. Thus, in designing the profile

of a seismically resistant bridge, one may wish to minimize the weight

of the structure, while considering both its low amplitude linear behaviour

and large amplitude nonlinear behaviour. As a linear structure, the

lowest natural frequency of the bridge must lie above a specified value;

while as a nonlinear structure, its excursions, with respect to time,

produced by a set of earthquakes, must be maintained within prescribed

limits so as to avoid destruction. Of course, there are also constraints

on the profile of the bridge, itself.

Abstractly, such problems can be viewed as being of the form

P : min{f(x)|x € X} (1.1)

where X is a subset of X , a "convenient" topological

space, in which P may or may not have a solution, and f : X •*• E is

continuous and bounded on X. X is convenient in the sense that it is

reasonably easy to construct and analyse an optimization algorithm in

its topology. The algorithm is usually accompanied by a convergence

theorem which states that if a sequence {x.}.sQ constructed by the algorithm

has accumulation points, then all these accumulation points are in X

and satisfy some condition of optimality. Now, even when X is closed

and bounded, a sequence {x.}. n , constructed by an optimization algorithm,
l i^u
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may fail to have accumulation points either because (1.1) has no solution

in the topology of X or because of the particular process used by the

algorithm in constructing the x*. As an example of the latter, consider

the case where X = L C0,1], the x. are all continuous functions, but
oo ' ' 2.

*

all the local minima x are only piecewise continuous. Obviously, such

phenomena are disturbing since they lead to the conclusion that the con

vergence theorems in question are vacuous.

A standard approach in dealing with the above described difficulties

is to replace the space X with a suitable extension , e.g., as in the

case when ordinary controls are replaced by relaxed controls in optimal

control problems [17]. Unfortunately, by and large, the construction of

minimal extensions can be quite difficult, for example, as was the case

with relaxed controls. Consequently, the question arises whether there

may not be an easier approach, one based on the concept of minimizing

sequences in the original space X and utilizing elements of optimization

algorithm theory. This paper explores this question.

In constructing a theory of optimality conditions for minimizing

sequences we felt it was important to take into account the following

facts and goals. Firstly, optimization algorithms construct sequences

{x.} which may not be Cauchy and along which the cost f(x.) may not be

monotonically decreasing. Secondly, by and large, any subsequence of

a locally minimizing sequence, constructed by an optimization algorithm,

is a locally minimizing sequence. Thirdly, in computing a search direction,

many algorithms solve a relatively simple program whose value can be viewed

as an optimality function 0(x). These optimality functions vanish only

at stationary points. When an optimality function is continuous, it

can be used loosely as an e-solution detector.
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We show that a natural extension of the space X in (1.1) is

to an extended norm space X of sequences in X and that many of the well

known optimality functions can be used to provide both first and second

order optimality conditions for characterizing minimizing sequences of P.
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2. The Space of Minimizing Sequences

Consider the problem

P: inf{f(x)|x e X} (2.1)

where X is a subset of a normed space X and f :X -*• E is continuous

and bounded from below on X.

Our definitions of global and local minimizing sequences reflect the

fact that when an optimization algorithm is applied to P it may produce

a sequence {x.}. which is not Cauchy and for which {f(x.)K~ is not
1 lHI 1 1=0

*
monotonically decreasing. However, any accumulation point x, that such

f .,00 , # #
a sequence ix.i may have will be a local minimum, or at least a

1 i=0
stationary point.

Definition 2.1: {x.} , x. € X, i = 0, 1, 2,..., is an eventually

feasible sequence (for P) if

x e X> = 0 (2.2)

D

Definition 2.2; a bounded eventually feasible sequence {x.}. is a globally

minimizing sequence (for P) if for all bounded eventually feasible

sequences {x.}. _s0

Tim f(x.) < llmf(x.) (2.3)
i-*» i-*»

lim inf{ || x.-x|
i-*» x

The following result is obvious.

D

00

Proposition 2.1: Suppose that {x.}.^ is a globally minimizing sequence

then

a) lim f($.) exists;
i-*» X

CO

b) every infinite subsequence of {x.} is a globally minimizing
1 i=0

sequence. Q
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Our definition of a locally minimizing sequence, below, ensures

the property that every subsequence of a locally minimizing sequence, con

structed by an algorithm,is also a locally minimizing sequence.

Definition 2.3: A bounded eventually feasible sequence {x.}.^ is

a locally minimizing sequence Cfor P) if there exists a p > 0 such

that for all eventually feasible sequences lx.J-.__. satisfying

Hi || x.-x. || <p (2.4)
i-*» l ^

We have

lim f(x.) < Tim f(x.) (2.5)
K L K X

i->oo i-»oo-

K

for all infinite subsets K cl+ A {0,1,2,...}, with i •*• °° denoting :

i e K, i -*• °°. D

Proposition 2.2: Suppose that {x.}. is a locally minimizing sequence.

Then for every infinite subset K c W , {x.}. is a locally minimizing

sequence.

Proof: Let p > 0 be as specified in Definition (2.3) and suppose that

there is a subsequence {x.}. T.,for some infinite K* c W which is not
n l ieK' +

a minimizing sequence. Then there must exist an infinite K" c K'

and a sequence {x.}. „„ such that

Hi || x. - x. || < p (2.6)
K" x x -

and

i-w

lim f(x.) < lim f(x.) . (2.7)
K" L K" • L

i-*» i-H»

— /s . r I00
Let x. = x. for all i € K" and let x. = x. otherwise, then tx./.-n
li ll i i5^

satisfies (2.4) but fails to satisfy (2.5) for K = K", contradicting

the assumption that {x.}.^ is a locally minimizing sequence. This
i i=u

completes our proof. . r-i
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00

Remark: Note that for a locally minimizing sequence {x ^^ »the
00 , ,

bounded sequence {f(x.)}._-> may have more than one accumulation point.

D

We are now ready to put the problem P into one-to-one correspondence

g

with a problem P defined in a space of sequencesand thus remove the

need for determining whether minimizing sequences do or do not have

accumulation points in X.

Definition 2.4: a) We define X to be the class of infinite sequences

{x.}~ ,with x. eX ,ic M+ .

b) We define te.}i=0 » ^vi^i=o in *
to be equivalent if

1*» || x -y || =0
i-x»

We shall denote this equivalence relation by the symbol » .

c) We define the vector space X to be X/~ , with

addition and scalar (real) multiplication defined as follows:

a<xi>I=o ={axi}I=o (2'9)
D

Proposition 2.3: The operations of addition and scalar multiplication

in Xs, as given by (2.8) and (2.9), are well defined, i.e. if

s , sf, s , s1 e X are such that s ~'S* and s ~ s' , then (s +s ) ~ (s'+sT)
x' x' y' y xx yy xy xy

and for any aeff,as~asl. n
J x x U

Next, we define the concepts of an extended norm and of an extended

normed vector space.

Definition 2.5: a) Let Z be a real vector space and let ||| .||| be a

functional on I which can take on the value <». We say that ||| .||| is an

extended norm if it has all the properties of a norm on any convex subset

B c Z on which [||. ||| is finite, viz :
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i) HI z HI > 0 ¥z e Z

ii) ||1 z HI = 0 *=> z = 0,

iii) UIohPI = |a| |||. H, Vze B,

iv) HI Vz2"l i "I zl "I + "I z2 "I' 'zeB-

b) With 111*111 an extended norm, we say that

(2» III'III) is an extended normed space if the vector addition

operation is bicontinuous and the scalar multiplication is

continuous onBxf (with respect to |||.|||), where B is any convex

bounded set in Z. n

We note that the scalar multiplication operator cannot be con

tinuous at any z € Z , Z an extended normed space, at which |||z||| = °°,

since for any a. •*• 0 as i -*- °°, a. > 0, |||a.z|||= oo for all i e ffl , while

III 0.z||| -0 .

To make a an extended normed space we define |||. ||| on X by

HIzHI A Tim- HIx HI (2.10)
i-*»

where {x.}. _ is any sequence in the equivalence class z.

The following result is obvious in view of the definition of the

equivalence relation ~ and the properties of the norm || .|| on X.

Proposition 2.4: The functional ||| .||| defined by (2.10) is a well

defined extended norm on X , and (X , ||| .|||) is an extended normed space.

s
For the problem P to make sense in the context of X , it is

D

s
necessary that the asymptotic behaviour of f(') on z € X be independent

of the particular choice of a sequence ix.J-._q in the equivalence class

defined by z. Consequently we postulate as follows.

Assumption 2.1: The function f(') is uniformly continuous on bounded sets

D
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We obtain immediately

Proposition 2.5: If {a^}"^ ~ {xpi=o and Hl{xi}i=o I" <°° » then
lim f(x.) = lim f(x!). Furthermore, if {x.}. _ is eventually feasible

11 i i=0 '
00

then so is {x!}. _ .
i i=0

s s
Let X c X be defined by

D

Xs A {z e Xs||||z||| <* and z is eventually feasible} (2.11)

and let the extended function f : Xs •* M be defined by

fS(z) -Tim" f(x.) (2.12)
f i s

where z = ix.}.. . We now define the problem P as follows :

s s

P : min{f (z)
.s

2 e X } (2.13)

Proposition 2.6: Problem P has a solution if and only if P admits a

bounded minimizing sequence. Furthermore, the values of P and PS

are the same.

We note that if z solves P and {x.}.^, a sequence in the equivalence

class z, has an accumulation point x, then x is a feasible minimizer

for P. Similarly, if & is a global minimizer for P, then

CO c

z = {x.}. rt , 3C. = x , is a solution to P .
i i=0 i

The introduction of the function f makes the formalism(2.13) very

appealing with respect to global solutions. However, it fails with

respect to local solutions. Thus, if we define, as is customary, z e xS,

to be a local minimizer of P if for some p > 0,

fS(z) < fS(z) Vz € B(z,p) (2.14)

with B(z,p) A {z z—z III <^ p}, we find that z is not a locally minimizing

sequence, as defined in Definition 2.4. Consequently, we use the following.

Definition 2.6: We say that z e X is a local minimizer for P if {x.}.^' x 1=q

is a locally minimizing sequence for P, where {&.}. is any sequence in

the equivalence class z. 0
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Quite clearly, because of Assumption 2.1, local minimizers for

s s
P are well defined. Furthermore, if z is a solution to P and

ix. J-. is any sequence in the equivalence class defined by z, then

{x.}.-. is a minimizing sequence for P.

We are now ready to proceed to the next task : the development of

necessary and sufficient conditions for characterizing local minimizers

of PS.
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3. Unconstrained Minimization

s s • s
We begin by assuming that X = X in P, so that X = X in P .

We shall consider both differentiable and nondifferentiable cost functions

f(').

We shall characterize optimality of minimizing sequences by means of

first and second order optimality functions which tend to zero along

minimizing sequences. Since we will be dealing with bounded sequences

which are not necessarily Cauchy, we will have to require that various

properties hold uniformly on bounded sets.

We shall denote the first Frechet derivative of f(») by f (•) and

the second Frechet derivative by f (•)• We note that f maps X into

X1, the dual of X and that f maps X into X" the dual of X*.
xx

Proposition 3.1: Suppose that f(.•) is uniformly, continuously Frechet

Is s
differentiable on bounded sets in X . Let 0 : X •*• E be defined on

uc

bounded z € X by

Is

9„ Cz) A lim inf{(.f (x.),h) || h|| < 1} (3.1)uc^ - -T^ xi -
where {x.}. is any sequence in the equivalence class z. If z is

s Is a.
a local minimizer for P , then 0 (z) = 0.

' uc

Proof: First we note that, because of the assumption on f (•)» the function
x

01 :X -»• Edefined by
uc J

0^c(x) Ainf{Cfx(x),h) h|l < 1} (3.2)

Is
is uniformly continuous on bounded sets and hence 0 (•) is well defined.

uc

1 Q q 00

Also, 0 Cz) <_ 0 for any z e X . Hence suppose that z (={£.}._)

s *•
is a local minimizer for P , with associated radius P > 0 , and that

Is
0 Cz) < 0. Then there exists a 6 > 0 and an infinite subsequence
uc
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{x.}. „ such that 01 (&.)< -6 for all i e K. For i e K, let h. € X,
1 icK uc 1 — 1

be such that || h. || < 1 and (Jc (£j,h.) < -5/2. Then, because f (•)
1 ^~ xi i —~ x

is uniformly continuous on bounded sets, there exists a X e (0,p3 such

that, with s. € (0,1), by the mean value theorem,

f(x. + Xh.) - fCxO = X(.f (x.+s.Xh.),h.) < -X 6/4 for all i £ K (3.3)
1 i i xiiii —

*i°° * /\ .;
Consider now the sequence {x.}. rt defined by x. = x. for all l i K and

^ i 1=0 J l l
* — *

x. = x. + Xh. for all i € K. Clearly, C2.4) fails for x. = x^, i e Ji^

and hence we get a contradiction. m

Proposition 3.2: Suppose that f(») is twice uniformly, continuously

2s s
Frechet differentiable on bounded sets in X. Let 0 : X -*• E

uc

be defined on bounded z £ X by

02s(z) A lim inf{(f (x.) (h) ,h) | || h|| <1} (3.3)
uc = XX 1 I ii II =

i-*»
oo S

where {x.}.jBn is any sequence in the class z. If z £ X is a local
s 2s

minimizer for P then 0ucCz) ^_ 0-
2

Proof: Let 0 : X + E be defined by
uc

0uc(x) A inf{(fxx(x)(h),h) | || h|| < 1} (3.4)
2 . 2s

Since 0 (•) is uniformly continuous on bounded sets, 0 (•) is well
uc uc

defined. Now suppose that z(»{x.}>=0 is a local minimizer for P ,with
2s

associated radius {5, and that 0 (z) = -6 < 0. Then there exists an

infinite subsequence {x.}. R and a corresponding sequence fti^^ »

such that ||h.,||j< 1 and (fx(x£) ,hj <0, satisfying (^(xJ(hj ,h£) <-6/2

for all i € K. Hence, making use of the uniform continuity of fxx(*)

and the Taylor formula with remainder, we find that there exist a

X € (O,^ 3 such that

fOc.+Xh.) -f(x.) = X(f (x.),h.) + X2/1Cl-s)(f (x.+sX h )(h.),h.)ds
11 1 X 1 1 q XX j. XXX

< -X2 6/8 ,Vi £K (3.5)
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Setting x. = x. for i i K and x. = x. + Xh. for i £ K, we get a
° 1 1 111 °

contradiction of the fact that 2 is a local minimizer. This completes

the proof. r-.

It is also quite easy to prove the following result.

Proposition 3.3: Suppose that fC') is twice uniformly, continuously

Frechet differentiable on bounded sets in X. Suppose that z £ X

is such that (i) |||z|||< «,Cii) lim f(x.) >-« ,for {a^}?^ in
the equivalence class z, (iii) 0 (z) = 0 and (iv) 0 Cz) > 0.

g

Then z is a local minimizer for P . r-.

Thus, for the case where f(a) is differentiable, we see that

the standard optimality conditions for P lead directly to corresponding

g

optimality conditions for P . As we shall shortly see, this is not true

for the nondifferentiable case : when f(a) is assumed to be only uniformly

Lipschitz continuous on bounded sets in X. We recall C6 ] that,

the generalized gradient 3f(*) of f(*),is defined as the subset of X1

satisfying for every x, h in X the relation

f°(x;h)Alim f(*+y+A,h)-f(x+y)
x+o x
y-K)

= sup{(£,h) C £ 3f(x)} (3.6)

where f°(x;h) is called the generalized directional derivative of f(•)

at x, in the direction h. The sets 3f(x) are bounded on bounded sets

in X and upper semi-continuous. The standard first order optimality

condition for P, see [6,7] , is that if x is a local minimizer for P

then 0 € 3f(x) . A first attempt to convert this statement into an

optimality function produces the following candidate 0 : X -*• E defined

by
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0(x) A sup inf(CS,h)

5Hh||<l

which is recognized as being a generalization of the function

min{||h|| h £ 3f(x)> in/1. Since 3f(«) is only u.s.c, 0(«) is

not continuous and it is very easy to construct functions f(°) and

sequences {x.} such that x. •*• x , a local minimizer, so that 0 € 3f(x)

and hence 0(x) = 0, but 0(x.) = -1 for all i. Clearly,0 (•) cannot

be used to characterize minimizing sequences for P. However, referring

to C 2 , 8 3, we find that there are other functions that can. For

example, following C 2 , 8 3> for any e >_ 0, and x £ X, let

3£f(x) A \J 3f(x') (3.8)
xf£B(x,e)

where B(x,e) A {x1 € X || x'-x|| _< e} and

0 (x) A sup inf{(£,h)|$€ 3 f(x)} (3.9)

l|h||<i c

It can be shown C2,8 3that 3 f(#) is u.s.c. and closed and bounded on bounded

sets. Next, with 6 € (0,1), let

EA {0,1,$,32,... } (3.10)

and let e : X -*• E be defined by

e(x) - max{e € E|0 (x) > e} (3.11)

The following result can be found in C 2 , 8 3.

Proposition 3.4: 0 e 3f(x) <?=> 6(x) = 0 <=> e(x) =0.
' D

However, while {8(x.)}.^ generally will not converge to zero for
1 i~u

00 »oo

{x.}.=_ a locally minimizing sequence for P, (e(x.)}. Q must converge

to zero along such a sequence, as we shall shortly see • Consequently,

if we define 0S , :Xs ^-m by
ucnd

5 € 3fCx)} (3.7)

-14-



vS

0ucndCz) - lim eCxi) (3-12)

with ix./.=0 any sequence in the equivalence class z.

Proposition 3.5: If z £ X is a bounded local minimizer for PS, then

0ucnd <« = ° •
n

Proposition 3.5 is a special case of a result to follow and hence its

proof will not be given.

We now proceed formally.

Definition 3.1: Let G(») be a map from X into 2r (i.e. the class of subsets

of Xf). We shall say that G(«) is uniformly u.s.c. on bounded sets3

with respect to %f(')t if for any bounded set B c X and any 6 > 0,

there exists a p > 0 such that for all x, y € B satisfying || x-y|| < p

and any n e 3f(y), there exists a £ € G(x) such that || £-n|| < 6. •

It is easily seen that if G(») is any map whichis uniformly u.s.c.

on bounded sets w.r.t. 3f(#), then (i) 3f(x) c G(x), and (ii) for any

6 > 0, there exists an e > 0 such that 3 f(x) c N (G(x)) A {x* | inf || x'-y|| £ e},
e £ ycG(x)

In fact, we have the following result.

Proposition 3.6: For any £ > 0, the map 3 f(#)is uniformly u.s.c. on

bounded sets, w.r.t. 3f(•) .

D

Proof: Let x € X be arbitrary and let 6 > 0. Then, setting p • £ > 0

we get for any y £ B(x,p) that 3f(y) c 3 f(x) by definition. Hence

the proposition holds.

D

X1
Proposition 3.7: Let G : X-»• 2 be uniformly u.s.c. on bounded sets with

respect to 3f(»). If 2 is a local minimizer for P , then 0S(z) = 0, where
G

nS//n,0j:C2) A lim 0G(Xi)
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A lim sup inf{(.£,h)
h 5

5 e GCx.), h £ X, || h|| < 1} (3.13)

g

Proof; Clearly, 0GC") is well defined. Now suppose that z is a local
S ^ S -/\ ^

minimizer for P , with associated radius p > 0, and that 0n(z) = 6 > 0.

s s
(Clearly 0„Cz) > 0 for all bounded z £ X ). Then there exists an infinite

subset K c JSf such that 0_(2.) > 6/2 for all i £ K, with {x.}~ any
+ (j 1 — 1 L=U

sequence in the class z. Let 6 = 6/4 > 0 and a corresponding p > 0 satisfy

the requirements of Definition 3.1. For i £ K, let h. be such that

(£,h.) > 6/2 for all £ £ G(x.). Then, by the mean value theorem [9 3 ,

f(x.-Xh.) - f(x.) = X<£.,,h.> (3.14-;
11 1 1A 1

with £.,€ 3f(x.-sXh.) for some s €(0,1). Now let X = min(p,p), then
1A 1 1

(i) || (x.-Xh.) - x. || < p for all i £ K , (ii) with r^ € G^) such that
/\

|| n. - £ || £ 6/4, we get from (3.14)
1 iX

f(x.-Xh.) - f(x.) = -XCS ,h. )= -X Gn.+(S .-n.),h)ii i ui iiXii

< -\Kn.,h.)+ || qx- -njl )

ilHn^)* 6M)
< -X 6/4 . (3.15j

Clearly, the sequence

x. = x. for i i K, x. = x.- Xh., violates (2.5) for the local mini-
11 ill

mizer z, and hence we have a contradiction.
D

Referring to Proposition 3.7 we note that since 3f(x) c G(x) is

always true, 0 £ 3f(x) =*> 0 £ G(x), hence & optimal for P => 0 e G(x).

However, 0 £ G(x) is obviously a weaker optimality condition than 0 £ 3f(x).

The condition 0 £ G(x) can be strengthened when GC*),can be parametrized,

as follows.
X*

Proposition 3.8; For £ >^ 0, let G : X -*- 2 be a family of maps that

are uniformly u.s.c. on bounded sets w.r.t 3f(#), such that for all x € X,
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U) G0(x) = 3f(x);

(ii) 0 _<£<£' => G£(x) c G£,(x),

(iii) G (x) is convex and weak * compact.

Next, let 0 : X •»• E be defined by

0(x) Amax{££E|0G (x) > £> (3.16;
£

(with E as in (3.9)) and 0s : Xs -»• E by

0S(z) A IIS 0(xj (3.U)
/\ s s

If z is a local minimizer for P , then 0 (z) = 0 .

Proof: Suppose that z is a local minimizer for P , but 0 (z) = £ > 0,

with § £ E» Then there must exist an infinite K c M
+

such that 0(x.) = £ for all i £ K, i.e. 0_ (x.) > £ for all i £ K.
i b l —

£

But by Proposition 3.7, this contradicts the local minimality of {x }
1 1€K

and hence the proof is complete.
D

The maps 3 f(0 are not the only known examples of maps that

are uniformly u.s.c. with respect to 3f(«) and satisfy the assumptions

of Proposition 3.8. In C 10, 113 we find very different maps in this

class that are used for optimization problems with eigenvalue constraints.
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4. Constrained Minimization

In this section we shall propose a set of optimality functions for

g

a variety of constrained problems of the form P . Since the proofs

associated with these optimality functions are either quite straight

forward, or follow directly from existing results, they will be omitted.

We begin with equality constrained problems (c.f. C123, Chap. 8).

Proposition 4.1: Suppose that f(°) is uniformly continuously differentiable

on bounded sets in X and that

X = {x|hL(x) = 0, j £1} (4.1)

where I A {1,2,...,£} and hJ : X -»• E are uniformly continuously differ

entiable on bounded sets. Furthermore, suppose that the functionals

h (x), j € Z, x £ X are linearly independent for all x € X. If z

. . . s
is a local minimizer for P , then

z£Xs A{z £Xs|lim hj(Xi) =0, j£1} (4.2)
i-*»

0ls(2) A lim inf{(f (x.),v) +\ ||v||2
ce • xx "M

i-*» v
(hx(V'v) " 0}

=0 . (4.3)

where {x.}.=n is any sequence in the equivalence class z . .-,

When X = ff11, the inf in (4.3) can be replaced by min and in that case the

Lagrange conditions give for the "inner" problem in (4.3)

3h(x.)T
Vf(x.) + v. + —5-^—^- = ° (4'4)

l l 3x i

where v. solves the inner problem.

When x. solves P, v. =0 and (4.4) reduces to the standard Lagrange
i i

condition. Thus, C4.4)is in one-to-one correspondence with the usual

first-order conditions for P. We can also obtain a second order

condition as follows:

-18-



Proposition 4.2: Suppose that the assumptions of Proposition 4.1 hold

and that in addition f(«) and hJ(«), j e £> are all twice uniformly

continuously differentiable on bounded sets. For any x e X, let

u : X •*• ST be defined by

p(x) A arg min {|| f (x) +J uV (x) || } (4.5)

and let L : Xxr+i" be defined by

L(x,u) A f(x) + <il,h(x)> (4.6)

If z solves PS then (i) 2 € XS, (ii) 9*" (z) =0 and

02s(2) Alim inf{(L (x.)(v),v)| (h^(x ),v) =0, j €I, ||v|| =1} >0
ce ==I ^-™~" xx i xx

(4.7)

where {x.}._n is any sequence in the equivalence class z. g

It is also quite easy to establish a second order sufficient

condition for PS under the assumptions of Proposition 4.2, viz., if

z £Xs, and 0 (z) = 0 and 0 (z) > 0, then z is a local minimizer for
ce ce

ps.

When inequalities are present, it is possible to deduce a broad family

of optimality functions for PS from the literature on algorithms (see e.g. [13,143)

We shall state the simplest (see C13> 14, 153).

Proposition 4.3; Suppose that f(-) is uniformly continuously differentiable

on bounded sets in X and that

XA{x|hj(x) =0, j£I; gk(x) <0, i€m} (4.8)
where the h^ :X •+ E and gk :X •*• E' are all uniformly continuously differ

entiable on bounded sets. Furthermore suppose that the functionals

hJ(x), i € I , x £ X are linearly independent for all x £ X.
x

Let ty : X •»• E be defined by

Y(x)+ Amax{0,gk(x)} <4-9)
kern

-19-



If 2 is a local minimizer for P then

2£Xs A{z | lim h:iCxi) - 0, j £I,
j_->oo

and for y >^ 1,

,1s

lim g (x±) < 0, k e m} $4.10)

k,0cei(2) AlHS inf ia || v||2 +max{(fx(xi),v)-Y^(xi)+; g*"(x\) +
1-K»

(gx Cx^.v) - ip(Xi), k €m}) (hJ(Xi),v) =0, j£1} =0
(4.11)

D

Next we turn to a class of non-differentiable problems (seeC8 3).

Proposition 4.4: Suppose that f(#) is uniformly locally Lipschitz con

tinuous on bounded sets and that

X a {x|g (x) _< 0, k € m}

where the gk :X -»• E are all uniformly locally Lipschitz continuous

(4.12)

on bounded sets. Furthermore, suppose that 3f(») and all the 3g (•)

are weak * compact and uniformly u.s.c. on bounded sets. For any £ _> 0,

and x € X let

k,-,I (x) A {k€m|g*(x) > ip(x). - e>

v?(x) A arg min{ || v|

v (x) A arg min{ || v|

v £ co 3 g (x)}

kcl (x)
£

k,-,
v € co{3 f(x) u 3g (x)}}

e k£l£(x)

Tfi) Amaxie-^^-U vf& IKl-.*®*) II vf(x) || }
£

and

01. ,(x) - max{£ £ E- Y„(x) > e) •
cind ' £ —

If z is a local minimizer for P , then

z £ Xs A {Z€X* lim g (x.) < 0, k £ m }
i-x»

-20-
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(4.15)

(4.16)

(4.17)
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and

01? ,(2)A lim 01. ,(x.) =0 (4.19)
cind = cind 1

i-*»

where {x. K _ is any sequence in the equivalence class z.i 1=0 D

To conclude this section we state an optimality function for a

simple optimal control problem, based on the Maximum-Principle and first

used in C 6 3.

Consider the dynamical system

xCt) = h(x(.t),u(t)), t £ CO,13 (4.20)

with x(0) = x and h : tf x % •+• m twice uniformly continuously

differentiable on bounded sets. We shall denote by x (*) the solution

of (4.20) corresponding to the control u(#). Let Q be a compact subset

of Hi and let <J> : E •*• E be twice uniformly continuously differentiable

on bounded sets. We now define

X A Lm CO,13 (4.21a)
= oo

f(u) A (|>(xuCl)) (4.21b)

X A lu € Lm CO,13
= 00 '

u(t) £ ft ?t € CO,13} (4.21c)

Finally, let X"*(-) denote the solution of the adjoint equation

X(t) =- H (xU(t),u(t))TX(t) (4.22a)
X(l) = V<J>(xUCD) (4.22b)

g

Proposition 4.5: Suppose z is a local minimizer for P , with f, X and

X defined as in (4.21a-b). Then

0s (z) A lim 0 (a.) = 0 (4.23)
oc = OC 1

where

1

© .Cu) A/ min:<(hCxUCt),v) - h(xU(t) ,uCt)), Xu(t)>dt
0 V€i2

D
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5. Conclusions

We have shown that it is quite straightforward to construct

optimality conditions for minimizing sequences by reinterpreting or

modifying existing results. We hope that this work will lead to a

better understanding of the behaviour of optimization algorithms .
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