Copyright © 1982, by the author(s). All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

CANONICAL PIECEWISE - LINEAR ANALYSIS

Ъy

L. O. Chua and R. L. P. Ying

Memorandum No. UCB/ERL M82/25

23 February 1982

•

CANONICAL PIECEWISE - LINEAR ANALYSIS

by

Leon O. Chua and Robin L. P. Ying

Memorandum UCB/ERL M82/25

23 February 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering University of California, Berkeley 94720

CANONICAL PIECEWISE - LINEAR ANALYSIS[†]

Leon O. Chua and Robin L.P. Ying[§]

ABSTRACT

Any resistive nonlinear circuit can be approximated to any desired accuracy by a global piecewise-linear equation in the *canonical form*

$$\mathbf{a} + \mathbf{B} \mathbf{x} + \sum_{i=1}^{p} \mathbf{c}_{i} \mid < \alpha_{i}, \ \mathbf{x} > -\beta_{i} \mid = 0$$

All conventional circuit analysis methods (nodal, mesh, cut set, loop, hybrid, modified nodal, tableau) are shown to always yield an equation of this form, provided the only *nonlinear* elements are 2-terminal resistors and controlled sources, each modeled by a 1dimensional piecewise-linear function.

The well-known Katzenelson algorithm when applied to this equation yields an efficient algorithm which requires only a minimal computer storage. In the important special case when the canonical equation has a *lattice structure* (which always occur in the hybrid analysis), the algorithm is further refined to achieve a dramatic reduction in computation time.

[†] Research supported in part by the Joint Services Electronics Program Contract F49620-79-C-0178, by the Office of Naval Research under Contract N00014-78-C-0572, and the National Science Foundation under Grants ECS 80-20-640/ENG-7722745.

[§] The authors are with the Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory, University of California, Berkeley, CA 94720.

1. INTRODUCTION

The Katzenelson algorithm [1] for solving piecewise-linear resistive circuits has been refined and extended to the most general case of a system of piecewise-linear equations f(x) = 0 in a series of excellent papers during the last decade [2-6]. In these papers, the n-dimensional piecewise-linear functions are specified by

$$\mathbf{f}(\mathbf{x}) = \mathbf{J}_i \, \mathbf{x} + \mathbf{s}_i \,, \quad i = 1, 2, \dots, K \tag{1.1}$$

where J_i is a constant $n \times n$ matrix and s_i is a constant n-vector, both defined in region $R_i \subset \mathbb{R}^n$. The whole space \mathbb{R}^n is divided into a finite number (K) of polyhedral regions by a finite number (p) of hyperplanes

$$\langle \alpha_i, \mathbf{x} \rangle = \beta_i, \quad i = 1, 2, \dots, p, \quad \mathbf{x} \in \mathbb{R}^n$$

$$(1.2)$$

where a_i is the normal vector to the *i*-th hyperplane, β_i is a constant and \langle , \rangle denote the usual vector "dot" product in **R**ⁿ. For illustration, see *Example 1* (n=2, k=4) in Section 2.3.

In order to solve (1.1) and (1.2) in a computer, it is necessary to store an $n \times n$ matrix J_i , two n-vectors \mathbf{s}_i and \mathbf{a}_i and a scalar β_i for each of the K polyhedral regions. The number K depends on the number of regions required to approximate a nonlinear function $\mathbf{f}(\mathbf{x})$ to within acceptable accuracy. For n > 100, K is generally an extremely large number. Hence for large n, it becomes extremely tedious and error prone for a user to input all the data necessary to specify (1.1) and (1.2). Moreover, this data also requires an excessive amount of computer memory. For most piecewise-linear functions of practical interest, the above objection can be overcome by representing (1.1) and (1.2) by a single piecewise-linear equation in the canonical form [8]

$$\mathbf{f}(\mathbf{x}) = \mathbf{a} + \mathbf{B}\mathbf{x} + \sum_{i=1}^{p} \mathbf{c}_{i} | < \alpha_{i}, \mathbf{x} > -\beta_{i} | = 0$$
(1.3)

where **B** is a constant $n \times n$ matrix, **a**, **c**_i, and α_i are constant n-vectors, and β_i is a constant.

Our first objective is to show, in section 2, that any piecewise-linear function defined by (1.1) and (1.2) which satisfies the *linear partition* assumption in [8] has an equivalent canonical representation (1.3), where **a**, **B**, **c**_i, α_i and β_i can be calculated via explicit formulas.

Our second objective in this paper is to show, in section 3, that if the only nonlinear elements in a resistive circuit are 2-terminal resistors and/or controlled sources (all 4 types) modeled by arbitrary 1-dimensional piecewise-linear functions, then any conventional circuit analysis method (nodal, mesh, loop, cut set, hybrid, modified nodal, tableau, etc.) always gives rise to an equation having the canonical form (1.3). Since the above repertoire of nonlinear elements are sufficient to model all resistive n-terminal or coupled elements [9-10], we conclude that all resistive nonlinear circuits can be modeled, to within any prescribed accuracy, by an equation in the canonical form (1.3).

Our final objective is to apply the Katzenelson algorithm developed in [6] to the canonical form (1.3). The resulting method -- called the *canonical Katzenelson algorithm* -- given in section 4 is applicable to any system of piecewise-linear equations represented in the canonical form (1.3), regardless of whether it comes from a circuit or not.

2. CANONICAL FORM REPRESENTATION OF CONTINUOUS PIECEWISE-LINEAR FUNCTIONS

/ · · ·

In this section, we discuss the canonical form representation of continuous piecewiselinear functions. First, we review briefly the single-variable $(f : \mathbb{R}^1 \to \mathbb{R}^1)$ case in section 2.1 and the scalar multi-variable $(f : \mathbb{R}^n \to \mathbb{R}^1, n > 1)$ case in section 2.2. We also present a new formula for determining the coefficients of f in the multi-variable case which is more general than that given in [8]. In section 2.3 we propose a general compact form for representing an n-dimensional piecewise-linear function $(f : \mathbb{R}^n \to \mathbb{R}^n, n > 1)$.

2.1 1-dimensional scalar function: $f : \mathbb{R}^1 \to \mathbb{R}^1$

A function $f : \mathbb{R}^1 \to \mathbb{R}^1$ is said to be continuous piecewise-linear if (1) it is continuous, and (2) it is composed of finitely many linear segments. Points common to two segments of different slopes are called *break points*.

Consider an arbitrary continuous piecewise-linear function f with p distinct breakpoints $x_1 < x_2 < \ldots < x_p$ as shown in Fig. 1. Let m_i , $i = 0, 1, 2, \ldots, p$ denote the slope of each segment. It is proved in [7] that f can be represented globally by the following canonical form:

$$f(x) = a + bx + \sum_{i=1}^{p} c_i |x - x_i|$$
(2.1)

where $x \in \mathbb{R}^{1}$ and the coefficients can be calculated explicitly by :

 $b = \frac{1}{2} (m_0 + m_p)$ (2.2)

$$c_i = \frac{1}{2} (m_i - m_{i-1}), \quad i = 1, 2, ..., p$$
 (2.3)

$$a = f(0) - \sum_{i=1}^{p} c_i |x_i|$$
(2.4)

A simplified derivation of these relationships are given in Appendix A. It should be noted that since (2.2)-(2.4) defines a *unique* set of coefficients for each piecewise-linear function, the representation (2.1) is also unique.

2.2 n-dimensional scalar function: $f : \mathbb{R}^n \to \mathbb{R}^1$

A linear partition in IRⁿ is a finite set of hyperplanes characterized by the equation

$$\langle \boldsymbol{\alpha}_i, \boldsymbol{x} \rangle = \boldsymbol{\beta}_i, \quad \boldsymbol{i} = 1, 2, \dots, p, \quad \boldsymbol{x} \in \mathbb{R}^n \tag{2.5}$$

where $\alpha_i \in \mathbb{R}^n$ denotes the normal vector to the *i*-th hyperplane. A linear partition is said to be *non-degenerate* if for every set of linearly-dependent $\alpha_{j1}, \alpha_{j2}, \dots, \alpha_{j_m}$.

 $1 \leq j_1, j_2, \ldots, j_m \leq p$, the rank of $[\alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_m}]$ is strictly less than the rank of $\begin{bmatrix} \alpha_{j_1} & \alpha_{j_2} & \ldots & \alpha_{j_m} \\ \beta_{j_1} & \beta_{j_2} & \ldots & \beta_{j_m} \end{bmatrix}$. Geometrically, this means that the dimension of the intersection among any j of the p hyperplanes must be less than or equal to n - j where n is the dimension of the space. For example, if three lines intersect at a common point in \mathbb{R}^2 , then any

partition in IR² containing those three lines is degenerate.

A linear partition in \mathbb{R}^n separates \mathbb{R}^n into many polyhedral regions. There are unbounded regions as well as bounded regions. The unbounded regions can be divided into two classes. Suppose some of the hyperplanes in the linear partition, or their intersections, are parallel to each other. As we translate these hyperplanes (or their intersections) until they coincide into a single hyperplane (or intersection) some of the unbounded regions may vanish. We call them the *pseudo-unbounded regions*. The remaining regions which remain unbounded in spite of the above translations are called *essentially-unbounded regions*. For example, in Fig. 2(a), regions R_1 and R_5 are pseudo-unbounded since they vanish upon merging L_1 and L_2 . Regions R_2 , R_3 , R_4 , R_6 , R_7 and R_8 are essentially-unbounded. In Fig. 2(b), R_7 is pseudo-unbounded since it vanishes upon merging the parallel intersections L_1 . L_2 and L_3 . Note that we can always eliminate bounded regions as well as pseudo-unbounded regions by merging the parallel hyperplanes and/or their intersections.

Consider a linear partition in \mathbb{R}^n defined by (2.5) and an arbitrary polyhedral region $R_k \in \mathbb{R}^n$. Let **x** be an interior point of R_k . Then we have $\langle \alpha_i, \mathbf{x} \rangle \neq \beta_i$ for i = 1, 2, ..., p. If we define

$$\omega_{ki}(\mathbf{x}) = sgn \left(\langle \alpha_i, \mathbf{x} \rangle - \beta_i \right), \quad i = 1, 2, \dots, p$$
(2.6)

then the $p \times 1$ vector $\mathbf{w}_k(\mathbf{x}) = [\omega_{k_1}(\mathbf{x}), \omega_{k_2}(\mathbf{x}), \dots, \omega_{k_p}(\mathbf{x})]^T$ is called the sign-sequence vector of R_k . We can actually drop the dependence of \mathbf{x} on \mathbf{w}_k since by (2.6) \mathbf{w}_k remains the same for all \mathbf{x} in the interior of R_k . Thus a polyhedral region is uniquely identified by its sign-sequence vector.

It is shown in [8] that any continuous piecewise-linear function $f : \mathbb{R}^n \to \mathbb{R}^1$ with a nondegenerate linear partition defined by (2.5) can be represented globally by the following canonical form:

$$f(\mathbf{x}) = a + \langle \mathbf{b}, \mathbf{x} \rangle + \sum_{i=1}^{p} c_i \mid \langle a_i, \mathbf{x} \rangle - \beta_i \mid$$
 (2.7)

where **x**, **b**, α_i , i = 1, 2, ..., p are in \mathbb{R}^n , and the coefficients can be calculated explicitly by

$\mathbf{b} = \frac{1}{k} \sum_{j=1}^{k} \nabla f(\mathbf{x}) _{R_{j-1}}$	(2.8)
$c_{i} = \frac{1}{2} \frac{\alpha_{i}^{T} \left(\nabla f(\mathbf{x}) _{R_{i+}} - \nabla f(\mathbf{x}) _{R_{i-}} \right)}{\langle \alpha_{i}, \alpha_{i} \rangle}$	(2.9)
$\boldsymbol{a} = \boldsymbol{f}(0) - \sum_{i=1}^{p} \mathbf{c}_{i} \mid \boldsymbol{\beta}_{i} \mid$	(2.10)

where $R_{j_{\bullet}}$, j = 1, 2, ..., k, denotes the essentially-unbounded regions, and $R_{i_{+}}$ and $R_{i_{-}}$ denote the two adjacent regions (associated with the *i*-th hyperplane) where their sign-sequence vectors differ only at the *i*-th position. A simplified derivation in of these relationships are given in Appendix B.

4

Note that for any $t \in \mathbb{R}$, $t \neq 0$, $\langle t \alpha_i, \mathbf{x} \rangle = t\beta_i$ and (2.5) represent the same hyperplane. Hence, the coefficients in (2.7) as computed by (2.8)-(2.10) are not unique but rather depend on the scale factor t used in representing the linear partition. However, if we normalize the representation (2.5) by defining the scale factor $t_i \stackrel{def}{=} \frac{sgn(\beta_i)}{\sqrt{\langle \alpha_i, \alpha_i \rangle}}$, for $i = 1, 2, \ldots, p$, $\beta_i \neq 0$.¹ then we will get a unique representation for the linear partition as well as a unique set of coefficients for the canonical form of f(.).

Remark: Non-degeneracy is only a sufficient condition for the existence of a canonical form representation. Examples exist (see [8]) such that a piecewise-linear function f(.) can be represented in canonical form (2.7) even though its associated linear partition is degenerate. We will show in section 3 that in formulating equations for piecewise-linear circuits, this sufficient condition can be ignored.

2.3 n-dimensional vector function: $f : \mathbb{R}^n \to \mathbb{R}^n$

Definition 2.1

An *n*-dimensional function $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ is said to be continuous piecewise-linear if all its components $f_i: \mathbb{R}^n \to \mathbb{R}^1, i = 1, 2, ..., n$ are continuous piecewise-linear.

Any *n*-dimensional function $f: \mathbb{R}^n \to \mathbb{R}^n$ with its components $f_i: \mathbb{R}^n \to \mathbb{R}^1$ represented in the canonical form (2.7) can be represented globally by the following explicit analytical expression:

$$f(x) = a + Bx + \sum_{i=1}^{p} c_i | < \alpha_i, x > -\beta_i |$$
 (2.11)

where **x**, **a**, $c_i \in \mathbb{R}^n$ and $B \in \mathbb{R}^{n \times n}$. The coefficients are given explicitly by :

$$\mathbf{B} = \frac{1}{k} \sum_{j=1}^{k} \mathbf{J}(\mathbf{x}) \mid_{\mathbf{x} \in R_{jm}}$$
(2.12)

$$\mathbf{c}_{i} = \frac{1}{2} \frac{\left[\mathbf{J}(\mathbf{x}) \mid_{\mathbf{x} \in R_{i+}} - \mathbf{J}(\mathbf{x}) \mid_{\mathbf{x} \in R_{i-}} \right] \alpha_{i}}{\langle \alpha_{i}, \alpha_{i} \rangle}$$
(2.13)

$$\mathbf{a} = \mathbf{f}(0) - \sum_{i=1}^{p} \mathbf{c}_{i} \mid \beta_{i} \mid$$
(2.14)

where J(x) is the Jacobian matrix of f; $R_{j\infty}$, j = 1, 2, ..., k, denotes the essentiallyunbounded regions, and R_{i+} , R_{i-} denote the two adjacent regions where their sign-sequence vectors differs only at the *i*-th position.

The derivation of (2.12) - (2.14) is similar to that of (2.8) - (2.10). The coefficients in (2.11) clearly depends on the scalar factor used in representing the linear partition.

It is important to note that in generalizing from (2.7) to (2.11), we have assumed that each component f_i of f is associated with the same linear partition in the domain. This

¹For the case
$$\beta_i = 0$$
 where $sgn(\beta_i)$ is undefined, we choose $t_i \stackrel{\text{def}}{=} \frac{1}{\sqrt{\langle \alpha_i, \alpha_i \rangle}}$.

assumption, however, entails no loss of generality since we can always introduce additional hyperplanes for each f_i until their linear partitions are identical for all i = 1, 2, ..., p.

Remark : We can write (2.11) in an even more compact matrix form. Define

$$\mathbf{C} \stackrel{\text{def}}{=} [\mathbf{c}_{1}, \mathbf{c}_{2}, \dots, \mathbf{c}_{p}] \in \mathbb{R}^{n \times p}, \mathbf{D} \stackrel{\text{def}}{=} [\alpha_{1}, \alpha_{2}, \dots, \alpha_{p}] \in \mathbb{R}^{n \times p} \text{ and} \\
\mathbf{e} \stackrel{\text{def}}{=} [\beta_{1}, \beta_{2}, \dots, \beta_{p}]^{T} \in \mathbb{R}^{p}, \text{ then (2.11) can be written as}^{2} \\
\mathbf{f} (\mathbf{x}) = \mathbf{a} + \mathbf{B}\mathbf{x} + \mathbf{C}abs (\mathbf{D}^{T}\mathbf{x} - \mathbf{e})$$
(2.15)

Example 1.

The linear partition shown in Fig. 3 is defined by $\langle [1-1]^T, \mathbf{x} \rangle = 0$ and $\langle [1 1]^T, \mathbf{x} \rangle = 0$. A continuous piecewise-linear function $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^2$ is defined in each region as follow:

$$\mathbf{f}(x_1, x_2) = \begin{cases} \begin{bmatrix} 4x_1 \\ 3x_2 \end{bmatrix}, & x_1, x_2 \in R_1 ; \begin{bmatrix} 2x_1 \\ x_2 \end{bmatrix}, & x_1, x_2 \in R_3 \\ \vdots & \vdots \\ \begin{bmatrix} 3x_1 + x_2 \\ x_1 + 2x_2 \end{bmatrix}, & x_1, x_2 \in R_2 ; \begin{bmatrix} 3x_1 - x_2 \\ -x_1 + 2x_2 \end{bmatrix}, & x_1, x_2 \in R_4 \end{cases}$$

the associated Jacobian matrices are :

$$\mathbf{J}_{f}(x_{1}, x_{2}) = \begin{cases} \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}, x_{1}, x_{2} \in R_{1} ; \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, x_{1}, x_{2} \in R_{3} \\ \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}, x_{1}, x_{2} \in R_{2} ; \begin{bmatrix} 3 - 1 \\ -1 & 2 \end{bmatrix}, x_{1}, x_{2} \in R_{4} \end{cases}$$

using (2.12) - (2.14) to compute the coefficients, we can express f in the form of either (2.11) or (2.15):

$$\mathbf{f}(x_{1}, x_{2}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} | x_{1} + x_{2} | + \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} | x_{1} - x_{2} |$$
$$= \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} abs \left[\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right] \qquad \square$$

3. CANONICAL EQUATION FORMULATION FOR PIECEWISE-LINEAR RESISTIVE CIRCUITS

Consider the simple circuit shown in Fig. 4. R1 is voltage controlled and R2 is current controlled. The v-i characteristics of R1 and R2 are approximated by continuous piecewise-linear segments and represented in the canonical form (2.1) as follow :

²For
$$\mathbf{x} = [x_1, x_2, ..., x_n]^T \in \mathbb{R}^n$$
, $abs(\mathbf{x}) \stackrel{\text{def}}{=} [|x_1|, |x_2|, ..., |x_n|]^T$.

R1:
$$i_1 = g(v_1) = a_1 + b_1 v_1 + \sum_{i=1}^{p_1} c_{1i} | v_1 - V_{1i} |$$

R2: $v_2 = r(i_2) = a_2 + b_2 i_2 + \sum_{j=1}^{p_2} c_{2i} | i_2 - I_{2j} |$

KVL implies $v_1 + v_2 + 2i_1 = E$ and KCL implies $i_1 = i_2$. Therefore $v_2 = \tau(i_2) = \tau(i_1) = \tau(g(v_1))$ and the equilibrium equation of the circuit is $v_1 + \tau(g(v_1)) + 2g(v_1) = E$. We note that this equation is no longer in the canonical form (2.1) since the composition of $\tau(.)$ and g(.) causes the absolute sign to be *nested*. On the other hand, the equilibrium equation can also be formulated as follow: $i_1 = i_2$ implies

 $v_1 + v_2 + 2i_1 = E$ and $v_1 + v_2 + 2i_2 = E$

Writing these equations in the vector form, we get

$$\begin{bmatrix} v_1 + \tau (i_2) + 2g(v_1) \\ v_1 + \tau (i_2) + 2i_2 \end{bmatrix} = \begin{bmatrix} E \\ E \end{bmatrix}$$

Substituting r(.) and g(.) into the above equation and rearranging terms, we obtain

$$\begin{bmatrix} 2a_1 + a_2 - E \\ a_2 - E \end{bmatrix} + \begin{bmatrix} 2b_1 + 1 & b_2 \\ 1 & b_2 + 2 \end{bmatrix} + \begin{bmatrix} v_1 \\ i_2 \end{bmatrix} + \sum_{i=1}^{p_1} \begin{bmatrix} 2c_{1i} \\ 0 \end{bmatrix} | v_1 - V_{1i} |$$
$$+ \sum_{j=1}^{p_2} \begin{bmatrix} c_{2j} \\ c_{2j} \end{bmatrix} | i_2 - I_{2j} | = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Indeed, this equation is in the canonical form (3.11) provided that we identify $\mathbf{x} = \begin{bmatrix} v_1 & i_2 \end{bmatrix}^T$, $\boldsymbol{\alpha}_i = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$, $\boldsymbol{\alpha}_j = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$, $\boldsymbol{\beta}_i = V_{1i}$, $\boldsymbol{\beta}_j = I_{2j}$ for $i = 1, 2, ..., p_1$, $j = 1, 2, ..., p_2$.

The above discussion shows that arbitrary elimination of variables will not, in general, give rise to a system of equations in canonical form, even though KVL and KCL are *linear* equations and the constitutive relation of all resistors are expressed in canonical form (2.1). However, by proper formulation, it is possible to reduce the equations in canonical form.

Consider the class of nonlinear circuits made of linear and nonlinear 2-terminal resistors, linear and nonlinear controlled sources (all 4 types), each depending on a single controlling variable, dc independent sources (battery and current sources), as well as any linear multi-terminal resistive elements, such as ideal transformers gyrators, etc. Through equivalent circuit transformation techniques, virtually any dc resistive circuit can be reduced to this class [9-10]. Our objective in this section is to show that if we approximate the characteristics defining each nonlinear resistor or nonlinear controlled source by a continuous piecewise-linear function and represent it in the canonical form (2.1), then, for all conventional methods of circuit formulation, the equilibrium equation of the resulting circuit will always assume the n-dimensional canonical form given in (2.11). We will prove this rather remarkable and unifying result for each of the following common equation formulation methods : nodal analysis, mesh analysis, cut set analysis, loop analysis, hybrid analysis, modified nodal analysis, and tableau formulation.

3.1 Nodal, mesh, cut-set and loop equations in canonical form

Theorem 3.1 (Nodal and cut set analysis)

Consider a connected resistive circuit N containing only linear 2-terminal resistors, dc independent sources, voltage-controlled piecewise-linear 2-terminal resistors and linear or piecewise-linear voltage-controlled current sources. If each piecewise-linear characteristic is represented in the canonical form (2.1), then the *nodal equation* and *cut set* equation of N always assume the canonical form (2.11).

Proof :

Observe that the assumptions assure the existence of the nodal equation. By applying source transformation, we can assume without loss of generality that each branch in N is in the composite form (see Fig. 5) where n_k can be a linear resistor, a voltage-controlled piecewise-linear resistor, a linear voltage-controlled current source or a piecewise-linear voltage-controlled current source. The $v_k - i_k$ relation of n_k takes the following forms:

(1) if n_k is a linear resistor, then

$$i_k = g_k v_k \tag{3.1}$$

(2) if n_k is a piecewise-linear voltage-controlled resistor, then

$$i_{k} = a_{k} + b_{k} v_{k} + \sum_{i=1}^{P_{k}} c_{ki} | v_{k} - V_{ki} |$$
(3.2)

(3) if n_k is a linear voltage-controlled current source, then

$$i_k = g_k v_j \tag{3.3}$$

where v_{j} , $j \neq k$ is the voltage of some other branch.

(4) if n_k is a piecewise-linear voltage-controlled current source, then

$$i_{k} = a_{k} + g_{k} v_{j} + \sum_{i=1}^{p_{k}} c_{ki} | v_{j} - V_{ki} |$$
(3.4)

Now let q be the total number of composite branches in N, \mathbf{u}_k , k = 1, 2, ..., q, be unit vectors in \mathbb{R}^q , and define $\hat{\mathbf{v}}_q = \begin{bmatrix} \hat{v}_1 \hat{v}_2 \dots \hat{v}_q \end{bmatrix}^T$, $\mathbf{E}_q = \begin{bmatrix} E_1 E_2 \dots E_q \end{bmatrix}^T$, then since $\hat{i}_k = J_k + i_k$, and $v_k = \hat{v}_k + E_k$ for k = 1, 2, ..., q, we can write (3.1) - (3.4) in the following general form:

$$\begin{aligned} \hat{i}_{k} &= J_{k} + a_{k} + \sum_{j=1}^{q} \langle b_{k_{j}} \mathbf{u}_{j}, \hat{\mathbf{v}}_{q} + \mathbf{E}_{q} \rangle + \sum_{j=1}^{q} \sum_{i=1}^{p_{j}} c_{ji} \mid \langle \mathbf{u}_{j}, \hat{\mathbf{v}}_{q} + \mathbf{E}_{q} \rangle - V_{ji} \mid \\ &= \left[J_{k} + a_{k} + \sum_{j=1}^{q} \langle b_{k_{j}} \mathbf{u}_{j}, \mathbf{E}_{q} \rangle \right] + \sum_{j=1}^{q} \langle b_{k_{j}} \mathbf{u}_{j}, \hat{\mathbf{v}}_{q} \rangle \\ &+ \sum_{j=1}^{q} \sum_{i=1}^{p_{j}} c_{ji} \mid \langle \mathbf{u}_{j}, \hat{\mathbf{v}}_{q} \rangle - (V_{ji} - \langle \mathbf{u}_{j}, \mathbf{E}_{q} \rangle) \mid \\ &T \end{aligned}$$

Define $\hat{i}_q = [\hat{i}_1, \hat{i}_2, ..., \hat{i}_q]$, then the above equation gives :

$$\hat{\mathbf{i}}_{q} = \begin{bmatrix}
J_{1} + a_{1} + \sum_{j=1}^{q} < b_{1j} \, \mathbf{u}_{j} , \mathbf{E}_{q} > \\
J_{2} + a_{2} + \sum_{j=1}^{q} < b_{2j} \, \mathbf{u}_{j} , \mathbf{E}_{q} > \\
\vdots \\
J_{q} + a_{q} + \sum_{j=1}^{q} < b_{qj} \, \mathbf{u}_{j} , \mathbf{E}_{q} > \\
+ \sum_{j=1}^{q} \begin{bmatrix}
b_{1j} \, \mathbf{u}_{j}^{T} \\
b_{2j} \, \mathbf{u}_{j}^{T} \\
\vdots \\
b_{qj} \, \mathbf{u}_{j}^{T}
\end{bmatrix} \hat{\mathbf{v}}_{q} \\
+ \sum_{j=1}^{q} \sum_{i=1}^{p_{j}} c_{ji} \, \mathbf{u}_{j} | < \mathbf{u}_{j} , \hat{\mathbf{v}}_{q} > - (V_{ji} - < \mathbf{u}_{j} , \mathbf{E}_{q} >) | \\
= \frac{def}{a} + \hat{\mathbf{B}} \, \hat{\mathbf{v}}_{q} + \sum_{j=1}^{q} \sum_{i=1}^{p_{j}} \hat{\mathbf{c}}_{ji} | < \mathbf{u}_{j} , \hat{\mathbf{v}}_{q} > - (V_{ji} - < \mathbf{u}_{j} , \mathbf{E}_{q} >) |$$
(3.5)

9

Let A be the reduced incidence matrix associated with N relative to an arbitrary datum node, and **e** be the node-to-datum voltage vector, then KCL implies $\mathbf{A} \, \hat{\mathbf{i}}_q = \mathbf{0}$ and KVL implies $\hat{\mathbf{v}}_q = \mathbf{A}^T \, \mathbf{e}$. Applying these two equations to (3.5), we get :

$$A\hat{a} + A\hat{B}A^{T}e + \sum_{j=1}^{q} \sum_{i=1}^{p_{j}} A\hat{c}_{ji} | < u_{j}, A^{T}e > -(V_{ji} - < u_{j}, E_{q} >) |$$

= $a + Be + \sum_{j=1}^{q} \sum_{i=1}^{p_{j}} c_{ji} | < Au_{j}, e > -\beta_{ji} | = 0$ (3.6)

where

$$\mathbf{a} \stackrel{\text{def}}{=} \mathbf{A} \hat{\mathbf{a}}, \ \mathbf{B} \stackrel{\text{def}}{=} \mathbf{A} \hat{\mathbf{B}} \mathbf{A}^T, \ \mathbf{c}_{ji} \stackrel{\text{def}}{=} \mathbf{A} \hat{\mathbf{c}}_{ji}, \ \beta_{ji} \stackrel{\text{def}}{=} V_{ji} - \langle \mathbf{u}_j, \mathbf{E}_q \rangle$$
(3.7)

Note that the *nodal equation* (3.6) is precisely in the form of (2.11) provided we relabel the double indices in the last term.

To formulate the cut set equation of N, pick a tree and choose the tree branch voltages v_e as independent variables. Replacing A in (3.6) by the fundamental cut set matrix Q, we obtain the following equation

$$Q\hat{a} + Q\hat{B}Q^{T}v_{e} + \sum_{j=1}^{q}\sum_{i=1}^{p_{j}}Q\hat{c}_{ji} | < u_{j}, Q^{T}v_{e} > -(V_{ji} - < u_{j}, E_{q} >) |$$

= $a + Bv_{e} + \sum_{j=1}^{q}\sum_{i=1}^{p_{j}}c_{ji} | < Qu_{j}, v_{e} > -\beta_{ji} | = 0$ (3.8)

where

$$\mathbf{a} = \mathbf{Q} \,\hat{\mathbf{a}} \,, \, \mathbf{B} = \mathbf{Q} \,\hat{\mathbf{B}} \,\mathbf{Q}^T \,, \, \mathbf{c}_{ji} = \mathbf{Q} \,\hat{\mathbf{c}}_{ji} \,, \, \beta_{ji} = V_{ji} - \langle \mathbf{u}_j \,, \, \mathbf{E}_q \rangle$$

$$(3.9)$$

Equation (3.8) is precisely in the form of (2.11) provided we relabel the double indices in the last term. Π

Example 2.

Consider the bridge circuit containing five voltage-controlled piecewise-linear resistors as shown in Fig. 6. Assume the v-i characteristics of these resistors are expressed in the canonical form (2.1):

بدائه والمصحيف أبسا الشب

يري. مما يا ميكن فراحيا أفرير الدارة ما

$$i_{k} = a_{k} + b_{k}v_{k} + \sum_{i=1}^{p_{k}} c_{k_{i}} | v_{k} - V_{k_{i}} |$$
, $k = 1, 2, 3, 4, 5$

e e la constante de la constante

Shift the current source I_s in parallel with R1 and R3 so that the resulting circuit contains only 5 composite branches and 4 nodes. The reduced incidence matrix **A** with respect to datum node \bigoplus is

	1	0	0	1	0
A =	-1	1	1	0	0
	0	-1	0	-1	1

Computing the coefficients using (3.7), we obtain

$$\mathbf{a} = \mathbf{A} \begin{bmatrix} a_1 - I_s \\ a_2 \\ a_3 - I_s \\ a_4 \\ a_5 \end{bmatrix} = \begin{bmatrix} a_1 + a_4 - I_s \\ -a_1 + a_2 + a_3 \\ -a_2 - a_4 + a_5 \end{bmatrix}$$
$$\mathbf{B} = \mathbf{A} \operatorname{diag} \begin{bmatrix} b_1 \ b_2 \ b_3 \ b_4 \ b_5 \end{bmatrix} \mathbf{A}^T = \begin{bmatrix} b_1 + b_4 & -b_1 & -b_4 \\ -b_1 & b_1 + b_2 + b_3 & -b_2 \\ -b_4 & -b_2 & b_2 + b_4 + b_5 \end{bmatrix}$$

$$\mathbf{c}_{ji} = c_{ji} \mathbf{A} \mathbf{u}_j$$
, $\beta_{ji} = V_{ji}$, $j = 1, 2, 3, 4, 5$

The nodal equation in the canonical form is :

$$\mathbf{f} \left(\begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} \right) = \begin{bmatrix} a_1 + a_4 - I_3 \\ -a_1 + a_2 + a_3 \\ -a_3 - a_4 + a_5 \end{bmatrix} + \begin{bmatrix} b_1 + b_4 & -b_1 & -b_4 \\ -b_1 & b_1 + b_2 + b_3 & -b_2 \\ -b_4 & -b_2 & b_2 + b_4 + b_5 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$

$$+ \sum_{i=1}^{p_1} \begin{bmatrix} c_{1i} \\ -c_{1i} \\ 0 \end{bmatrix} | e_1 - e_2 - V_{1i} | + \sum_{i=1}^{p_2} \begin{bmatrix} 0 \\ c_{2i} \\ -c_{2i} \end{bmatrix} | e_2 - e_3 - V_{2i} |$$

$$+ \sum_{i=1}^{p_3} \begin{bmatrix} 0 \\ c_{3i} \\ 0 \end{bmatrix} | e_2 - V_{3i} | + \sum_{i=1}^{p_4} \begin{bmatrix} c_{4i} \\ 0 \\ -c_{4i} \end{bmatrix} | e_1 - e_3 - V_{4i} |$$

$$+ \sum_{i=1}^{p_5} \begin{bmatrix} 0 \\ 0 \\ c_{5i} \end{bmatrix} | e_3 - V_{5i} | = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

It is remarkable to observe that the resulting nodal equation is in closed analytic form. Changing the resistor characteristics only changes the parameters in this equation.

Theorem 3.2 (Mesh and loop analysis)

Consider a connected resistive circuit N containing linear 2-terminal resistors, dc independent sources, current-controlled piecewise-linear 2-terminal resistors and linear

or piecewise-linear current-controlled voltage sources. If each piecewise-linear characteristic is represented in the canonical form (2.1), then the mesh equation and loop equation of N always assume the canonical form (2.11).

Proof : Dual of Theorem 3.1. []

3.2 Canonical equation for modified nodal analysis and tableau formulation

In the case when N contains both voltage and current controlled elements, we may resort to modified nodal analysis.

Theorem 3.3 (Modified nodal analysis)

Consider a connected resistive circuit N containing only linear 2-terminal resistors, dc independent sources, current-controlled and voltage-controlled piecewise-linear 2terminal resistors, linear and piecewise-linear controlled sources (all 4 types) and any linear multi-terminal resistive elements. If each piecewise-linear function is represented in the canonical form (2.1), then the modified nodal analysis of N always assumes the canonical form (2.15).

Proof :

Partition the elements in N into the following groups :

$$\mathbf{i}_{C} = \mathbf{G}(\mathbf{v}_{C}) + \mathbf{N}(\mathbf{i}_{R})$$
(3.10)

$$\mathbf{v}_{E} = \mathbf{M} \left(\mathbf{v}_{C} \right) + \mathbf{S} \left(\mathbf{i}_{R} \right) \tag{3.11}$$

$$\mathbf{v}_R = \mathbf{R}(\mathbf{i}_R) \tag{3.12}$$

where G(.) in (3.10) includes all voltage-controlled resistors, voltage-controlled current sources and dc current sources; N(.) in (3.10) includes all current-controlled current sources; M(.) in (3.11) includes all voltage-controlled voltage sources; S(.) in (3.11) includes all current-controlled voltage sources and dc voltage sources; R(.) in (3.12) includes all current-controlled resistors.

Using the same procedure as in the proof of *Theorem 3.1*, we can express (3.10) - (3.12) into the canonical form (2.15):

$$\mathbf{i}_{G} = [\mathbf{a}_{G} + \mathbf{B}_{G} \mathbf{v}_{G} + \mathbf{C}_{G} abs (\mathbf{D}_{G}^{T} \mathbf{v}_{G} - \mathbf{e}_{G})] + [\mathbf{a}_{N} + \mathbf{B}_{N} \mathbf{i}_{R} + \mathbf{C}_{N} abs (\mathbf{D}_{N}^{T} \mathbf{i}_{R} - \mathbf{e}_{N})]$$
(3.13)

$$\mathbf{v}_{\mathcal{B}} = \left[\mathbf{a}_{\mathcal{H}} + \mathbf{B}_{\mathcal{H}} \mathbf{v}_{\mathcal{G}} + \mathbf{C}_{\mathcal{H}} abs \left(\mathbf{D}_{\mathcal{H}}^{T} \mathbf{v}_{\mathcal{G}} - \mathbf{e}_{\mathcal{H}}\right)\right] + \left[\mathbf{a}_{\mathcal{S}} + \mathbf{B}_{\mathcal{S}} \mathbf{i}_{\mathcal{R}} + \mathbf{C}_{\mathcal{S}} abs \left(\mathbf{D}_{\mathcal{S}}^{T} \mathbf{i}_{\mathcal{R}} - \mathbf{e}_{\mathcal{S}}\right)\right] \quad (3.14)$$

$$\mathbf{v}_R = \mathbf{a}_R + \mathbf{B}_R \mathbf{i}_R + \mathbf{C}_R abs \left(\mathbf{D}_R^T \mathbf{i}_R - \mathbf{e}_R \right)$$
(3.15)

Let A be the reduced incidence matrix of N relative to some datum node, and partitioned A as $A = \begin{bmatrix} A_G & A_B & A_R \end{bmatrix}$. Let J denote the source current vector and \mathbf{v}_n denote the node-todatum voltage vector, then KCL and KVL give :⁸

$$\mathbf{A}_{c} \mathbf{i}_{c} + \mathbf{A}_{R} \mathbf{i}_{R} + \mathbf{A}_{R} \mathbf{i}_{R} = 0 \tag{3.16}$$

$$\mathbf{A}_{G}^{T} \mathbf{v}_{n} = \mathbf{v}_{G} , \ \mathbf{A}_{E}^{T} \mathbf{v}_{n} = \mathbf{v}_{E} , \ \mathbf{A}_{R}^{T} \mathbf{v}_{n} = \mathbf{v}_{R}$$
(3.17)

⁵Note: Current sources have been absorbed into ig.

Substituting (3.13), (3.17) into (3.16) and (3.17) into (3.14), (3.15) respectively, we get

$$\mathbf{A}_{G}\left[\mathbf{a}_{G}+\mathbf{B}_{G}\mathbf{A}_{G}^{T}\mathbf{v}_{n}+\mathbf{C}_{G}abs\left(\mathbf{D}_{G}^{T}\mathbf{A}_{G}^{T}\mathbf{v}_{n}-\mathbf{e}_{G}\right)\right]+\mathbf{A}_{E}\mathbf{i}_{E}+\mathbf{A}_{R}\mathbf{i}_{R}=0$$
(3.18)

$$\mathbf{A}_{Z}^{T} \mathbf{v}_{n} = \left[\mathbf{a}_{M} + \mathbf{B}_{M} \mathbf{A}_{C}^{T} \mathbf{v}_{n} + \mathbf{C}_{M} abs \left(\mathbf{D}_{M}^{T} \mathbf{A}_{C}^{T} \mathbf{v}_{n} - \mathbf{e}_{M} \right) \right]$$
$$+ \left[\mathbf{a}_{S} + \mathbf{B}_{S} \mathbf{i}_{R} + \mathbf{C}_{S} abs \left(\mathbf{D}_{S}^{T} \mathbf{i}_{R} - \mathbf{e}_{S} \right) \right]$$
(3.19)

$$\mathbf{A}_{R}^{T} \mathbf{v}_{n} = \mathbf{a}_{R} + \mathbf{B}_{R} \mathbf{i}_{R} + \mathbf{C}_{R} \mathbf{a}bs \left(\mathbf{D}_{R}^{T} \mathbf{i}_{R} - \mathbf{e}_{R} \right)$$
(3.20)

Let $\mathbf{x} = [\mathbf{v}_n^T \mid \mathbf{i}_E^T \mid \mathbf{i}_R^T]^T$ be the vector of independent variables and rewrite (3.18) - (3.20) into vector form, we get

$$\begin{bmatrix} \mathbf{A}_{G} \ \mathbf{a}_{C} \\ \mathbf{a}_{M} + \mathbf{a}_{S} \\ \mathbf{a}_{R} \end{bmatrix} + \begin{bmatrix} \mathbf{A}_{G} \ \mathbf{B}_{G} \ \mathbf{A}_{G}^{T} & \mathbf{A}_{E} \ \mathbf{A}_{R} \\ -\mathbf{A}_{R}^{T} + \mathbf{B}_{M} \ \mathbf{A}_{C}^{T} & \mathbf{0} \ \mathbf{B}_{S} \\ -\mathbf{A}_{R}^{T} & \mathbf{0} \ \mathbf{B}_{R} \end{bmatrix} \mathbf{x}$$

$$+ \begin{bmatrix} \mathbf{A}_{G} \ \mathbf{C}_{G} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{M} \ \mathbf{C}_{S} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \ \mathbf{C}_{R} \end{bmatrix} \mathbf{a} \mathbf{b} \mathbf{s} \left[\begin{bmatrix} \mathbf{A}_{G} \ \mathbf{D}_{G} \ \mathbf{A}_{G} \ \mathbf{D}_{M} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \ \mathbf{0} \end{bmatrix}^{T} \mathbf{x} - \begin{bmatrix} \mathbf{e}_{G} \\ \mathbf{e}_{M} \\ \mathbf{e}_{S} \\ \mathbf{e}_{R} \end{bmatrix} \right] = \mathbf{0}$$
(3.21)

Defining

$$\mathbf{a} = \begin{bmatrix} \mathbf{A}_{G} \ \mathbf{a}_{G} \\ \mathbf{a}_{H} + \mathbf{a}_{S} \\ \mathbf{a}_{R} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \mathbf{A}_{G} \ \mathbf{B}_{G} \ \mathbf{A}_{C}^{T} & \mathbf{A}_{E} \ \mathbf{A}_{R} \\ -\mathbf{A}_{E}^{T} + \mathbf{B}_{H} \ \mathbf{A}_{C}^{T} & \mathbf{0} \ \mathbf{B}_{S} \\ -\mathbf{A}_{R}^{T} & \mathbf{0} \ \mathbf{B}_{R} \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} \mathbf{A}_{G} \ \mathbf{C}_{G} \ \mathbf{0} \ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{H} \ \mathbf{C}_{S} \ \mathbf{0} \\ \mathbf{0} & \mathbf{0} \ \mathbf{0} \ \mathbf{C}_{R} \end{bmatrix},$$
$$\mathbf{D} = \begin{bmatrix} \mathbf{A}_{C} \ \mathbf{D}_{G} \ \mathbf{A}_{G} \ \mathbf{D}_{H} & \mathbf{0} \ \mathbf{0} \\ \mathbf{0} & \mathbf{0} \ \mathbf{0} \ \mathbf{0} \end{bmatrix}, \quad \mathbf{e} = \begin{bmatrix} \mathbf{e}_{C}^{T} \ \mathbf{e}_{H}^{T} \ \mathbf{e}_{S}^{T} \ \mathbf{e}_{R}^{T} \end{bmatrix}^{T}$$

we can recast (3.21) in the following canonical form :

 $\mathbf{a} + \mathbf{B}\mathbf{x} + \mathbf{C} abs \left(\mathbf{D}^T \mathbf{x} - \mathbf{e} \right) = 0 \qquad []$

Theorem 3.4 (Tableau analysis)

Consider a connected resistive circuit N containing only linear 2-terminal resistors, dc independent sources, current-controlled and voltage-controlled piecewise-linear 2terminal resistors, linear and piecewise-linear controlled sources (all 4 types) and any linear multi-terminal resistive elements. If each piecewise-linear function is represented in the canonical form (2.1), then the *tableau formulation* always assumes the form of (2.15).

Proof :

Let A be the reduced incidence matrix of N relative to some datum node, and \mathbf{v}_n be the node-to-datum voltage vector, then KCL, KVL and element constitutive relations give :

$$\mathbf{A}\mathbf{i} = \mathbf{A}\mathbf{J} \tag{3.22}$$

$$\mathbf{v} = \mathbf{A}^T \, \mathbf{v}_n \, + \, \mathbf{E} \tag{3.23}$$

13

$$\mathbf{f}_{I}(\mathbf{i}) + \mathbf{f}_{V}(\mathbf{v}) = \mathbf{S} \tag{3.24}$$

using the same procedure as in the proof of *Theorem 3.1*, we can express $f_I(.)$ and $f_V(.)$ in the canonical form (2.15)

$$\mathbf{f}_{I}(\mathbf{i}) = \mathbf{a}_{I} + \mathbf{B}_{I} \mathbf{i} + \mathbf{C}_{I} abs \left(\mathbf{D}_{I}^{T} \mathbf{i} - \mathbf{e}_{I} \right)$$

$$(3.25)$$

$$\mathbf{f}_{V}(\mathbf{v}) = \mathbf{a}_{V} + \mathbf{B}_{V}\mathbf{v} + \mathbf{C}_{V}abs\left(\mathbf{D}_{V}^{T}\mathbf{v} - \mathbf{e}_{V}\right)$$
(3.26)

Substituting (3.25) - (3.26) into (3.24) and writing (3.22) - (3.24) into vector form, we get :

$$\begin{bmatrix} -A J \\ -E \\ a_{I} + a_{V} - S \end{bmatrix} + \begin{bmatrix} A & 0 & 0 \\ 0 & 1 & A^{T} \\ B_{I} & B_{V} & 0 \end{bmatrix} \begin{bmatrix} i \\ v \\ v_{n} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ C_{I} & C_{V} & 0 \end{bmatrix} abs \begin{bmatrix} D_{I} & 0 & 0 \\ 0 & D_{V} & 0 \\ 0 & 0 & 0 \end{bmatrix}^{T} \begin{bmatrix} i \\ v \\ v_{n} \end{bmatrix} - \begin{bmatrix} e_{I} \\ e_{V} \\ 0 \end{bmatrix} = 0$$
(3.27)

Clearly (3.27) is in the canonical form (2.15).

3.3 Canonical equation for hybrid analysis

Theorem 3.4 (Hybrid analysis)

Consider a resistive circuit N containing linear 2-terminal resistors, dc independent sources, voltage and current controlled piecewise-linear resistors, linear controlled sources (all 4 types) and linear multi-terminal resistive elements. Let \hat{N} denote the *m*port obtained by extracting all voltage-controlled piecewise-linear resistors in N across "voltage" ports, and all current-controlled piecewise-linear resistors across "current" ports (Fig. 7). If the characteristic of each piecewise-linear resistor is represented in the

canonical form (2.1), and if \hat{N} admits hybrid representation (3.28), then

(a) the hybrid equation of N always assumes the canonical form (2.11):

(b) the linear partition in the domain always forms a *lattice structure* in the sense that the partition hyperplanes are parallel to the coordinate axes defined by the independent variables.⁴

Proof :

Consider the linear *m*-port \hat{N} shown in Fig. 7. Let $\hat{v}_1, \hat{v}_2, \ldots, \hat{v}_l$ be the voltages of the voltage ports and $\hat{i}_{l+1}, \hat{i}_{l+2}, \ldots, \hat{i}_m$ be the currents of the current ports. The assumption implies that \hat{N} has a hybrid representation :

$$\begin{bmatrix} \hat{\mathbf{i}}_{a} \\ \hat{\mathbf{v}}_{b} \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{H}}_{aa} & \hat{\mathbf{H}}_{ab} \\ \hat{\mathbf{H}}_{ba} & \hat{\mathbf{H}}_{bb} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{v}}_{a} \\ \hat{\mathbf{i}}_{b} \end{bmatrix} + \begin{bmatrix} \hat{\mathbf{s}}_{a} \\ \hat{\mathbf{s}}_{b} \end{bmatrix}$$
(3.28)

where $\hat{\mathbf{v}}_{a} = [\hat{v}_{1} \hat{v}_{2} \dots \hat{v}_{l}]^{T}, \hat{\mathbf{v}}_{b} = [\hat{v}_{l+1} \hat{v}_{l+2} \dots \hat{v}_{m}]^{T}, \hat{\mathbf{i}}_{a} = [\hat{i}_{1} \hat{i}_{2} \dots \hat{i}_{l}]^{T},$

⁴Any piecewise-linear equation having this property will henceforth be called an "equation with a lattice structure". $\hat{\mathbf{i}}_{b} = [\hat{i}_{l+1} \hat{i}_{l+2} \dots \hat{i}_{m}]^{T}$, and $[\hat{\mathbf{s}}_{a} \hat{\mathbf{s}}_{b}]^{T}$ is the source vector. By assumption, each voltage-controlled piecewise-linear resistor is represented by

$$i_{k} = a_{k} + b_{k} v_{k} + \sum_{i=1}^{p_{k}} c_{ki} | v_{k} - V_{ki} |, \quad k = 1, 2, ..., l$$
(3.29)

and the second second

Similarly, each current-controlled piecewise-linear resistor is represented by

$$v_k = a_k + b_k i_k + \sum_{i=1}^{p_k} c_{ki} | i_k - I_{ki} |, \quad k = l+1, l+2, \dots, m$$
(3.30)

Defining $\mathbf{v}_{a} = [v_{1} v_{2} \dots v_{l}]^{T}$, $\mathbf{v}_{b} = [v_{l+1} v_{l+2} \dots v_{m}]^{T}$, $\mathbf{i}_{a} = [i_{1} i_{2} \dots i_{l}]^{T}$, $\mathbf{i}_{b} = [i_{l+1} i_{l+2} \dots i_{m}]^{T}$, and recasting (3.29) - (3.30) into vector form, we get

$$\begin{bmatrix} \mathbf{i}_{a} \\ \mathbf{v}_{b} \end{bmatrix} = \tilde{\mathbf{a}} + \tilde{\mathbf{B}} \begin{bmatrix} \mathbf{v}_{a} \\ \mathbf{i}_{b} \end{bmatrix} + \sum_{j=1}^{m} \sum_{i=1}^{p_{j}} c_{ji} \mathbf{u}_{j} | < \mathbf{u}_{j} \cdot \begin{bmatrix} \mathbf{v}_{a} \\ \mathbf{i}_{b} \end{bmatrix} > -\beta_{ji} |$$
(3.31)

where

$$\widetilde{\mathbf{a}} = \begin{bmatrix} a_1 & a_2 & \dots & a_l & a_{l+1} & \dots & a_m \end{bmatrix}^T, \ \widetilde{\mathbf{B}} = diag \begin{bmatrix} b_1 & b_2 & \dots & b_l & b_{l+1} & \dots & b_m \end{bmatrix}$$
$$\beta_{ji} = \begin{cases} V_{ji} & j = 1, 2, \dots, l \\ I_{ji} & j = l+1, l+2, \dots, m \end{cases}$$

and \mathbf{u}_j is the unit vector in \mathbb{R}^n , $j = 1, 2, \dots, m$.

1

From Fig. 7 we have $\hat{v}_k = v_k$, $\hat{i}_k = i_k$, k = 1, 2, ..., m. Hence, $\hat{v}_a = v_a$, $\hat{i}_a = i_a$, $\hat{v}_b = v_b$, $\hat{i}_b = i_b$. Equating the right hand side of (3.28) and (3.31) we get

$$\begin{vmatrix} \hat{\mathbf{H}}_{aa} & \hat{\mathbf{H}}_{ab} \\ \hat{\mathbf{H}}_{ba} & \hat{\mathbf{H}}_{bb} \end{vmatrix} \mathbf{x} + \begin{bmatrix} \hat{\mathbf{s}}_{a} \\ \hat{\mathbf{s}}_{b} \end{bmatrix} = \tilde{\mathbf{a}} + \tilde{\mathbf{B}} + \sum_{j=1}^{m} \sum_{i=1}^{p_{j}} c_{ji} \mathbf{u}_{j} \mid < \mathbf{u}_{j} , \mathbf{x} > -\beta_{ji} \mid$$

After rearranging terms, we get

1

$$\mathbf{a} + \mathbf{B} \mathbf{x} + \sum_{j=1}^{m} \sum_{i=1}^{p_j} \mathbf{c}_{ji} | < \mathbf{u}_j , \mathbf{x} > -\beta_{ji} | = 0$$
(3.32)
where $\mathbf{x} = \begin{bmatrix} \mathbf{v}_a \\ \mathbf{i}_b \end{bmatrix}$, $\mathbf{a} = \tilde{\mathbf{a}} - \begin{bmatrix} \hat{\mathbf{a}}_a \\ \hat{\mathbf{a}}_b \end{bmatrix}$, $\mathbf{B} = \tilde{\mathbf{B}} - \begin{bmatrix} \hat{\mathbf{H}}_{aa} & \hat{\mathbf{H}}_{ab} \\ \hat{\mathbf{H}}_{ba} & \hat{\mathbf{H}}_{bb} \end{bmatrix}$, $\mathbf{c}_{ji} = c_{ji} \mathbf{u}_j$

Equation (3.32) is precisely in the form of (2.11) provided we relabel the double indices in the last term. This completes the proof of (a).

The partition hyperplanes associated with (3.32) are defined by $\langle u_j, x \rangle = \beta_{ji}$, $i = 1, 2, ..., p_j$. Since u_j defines the normal direction of the *j*-th hyperplane in the linear partition and since u_j is a unit vector in \mathbb{R}^m , (b) follows immediately. []

Remark: Theorem 3.4 can be easily generalized such that the piecewise-linear resistors extracted across the voltage and current ports of N can be mutually coupled; i.e. $i_{g} = f(v_{a}, i_{b})$ and $v_{b} = g(v_{a}, i_{b})$, where f(.) and g(.) are represented in the canonical form (2.11).

Consider the resistor circuit shown in Fig. 8(a) where R1 is voltage controlled with its v-*i* characteristic shown in Fig. 8(b) and R2 is current-controlled with its v-*i* characteristic shown in Fig. 8(c). The v-*i* characteristics of R1 and R2 are represented as follow:

R1:
$$i_1 = \frac{1}{4} + \frac{3}{4} v_1 - |v_1| + \frac{3}{4} |v_1 - 1|$$
 (3.33)

الأدريكم ومعتقص ومسودين

R2:
$$v_2 = -\frac{1}{4} + \frac{3}{4}i_2 - \frac{1}{4}|i_2 + 1|$$
 (3.34)

Extracting R1 across the voltage port and R2 across the current port (see Fig. 8(d)), we obtain the following hybrid representation for the remaining linear 2-port \hat{N} :

$$\begin{bmatrix} i_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -2 & \frac{2}{3} \end{bmatrix} \begin{bmatrix} v_1 \\ i_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
(3.35)

Substituting (3.33) and (3.34) into (3.35) and rearranging terms, we obtain the following hybrid equation in the canonical form (2.15):

$$\begin{bmatrix} \frac{1}{4} \\ -\frac{1}{4} \end{bmatrix} + \begin{bmatrix} -\frac{5}{4} & 2 \\ 2 & \frac{1}{12} \end{bmatrix} \begin{bmatrix} v_1 \\ i_2 \end{bmatrix} + \begin{bmatrix} -1 & \frac{3}{4} & 0 \\ 0 & 0 & -\frac{1}{4} \end{bmatrix} abs \left[\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^T \begin{bmatrix} v_1 \\ i_2 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right]$$

 $= \begin{bmatrix} 0\\0 \end{bmatrix}$

The lattice structure of the linear partition is shown in Fig. 8(e).

4. CANONICAL KATZENELSON ALGORITHM

In this section, we adapt the canonical form representation to the *Katzenelson algorithm.* We state the conditions which guarantee the convergence of this algorithm in terms of the coefficients of the *n*-dimensional canonical representation. An alternate way of handling the familiar "corner" problem is also discussed with an illustrative example. Finally, we compare the bookkeeping complexity and computational efficiency involved in equations with and without lattice structures.

Definition 4.1

A continuous mapping $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ is said to be *norm-coercive* if $|| \mathbf{f}(\mathbf{x}) || \to \infty$ as $|| \mathbf{x} || \to \infty$.

The following theorem gives sufficient conditions for the existence of solution in terms of the coefficients of f(.), where f(.) is expressed in (2.15). The proof follows directly from a corresponding theorem in [6].

Theorem 4.1

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a norm-coercive continuous piecewise-linear function expressed in the form (2.15). If there exists a point $\mathbf{x}_0 \in \mathbb{R}^n$ which satisfies⁵

(1)
$$\mathbf{D}^T \mathbf{x}_0 - \mathbf{e} \neq 0$$

(2) $\mathbf{B}(\mathbf{x} - \mathbf{x}_0) \neq -\mathbf{C} [abs(\mathbf{D}^T \mathbf{x} - \mathbf{e}) - abs(\mathbf{D}^T \mathbf{x}_0 - \mathbf{e})] \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x} \neq \mathbf{x}_0$
(3) det { $\mathbf{B} + \mathbf{C} [sgn(\mathbf{D}^T \mathbf{x}_0 - \mathbf{e})] \mathbf{D}^T$ } > 0

then for any given $y_0 \in \mathbb{R}^n$, there exists an $x \in \mathbb{R}^n$, such that $f(x) = y_0$. Furthermore, the Katzenelson algorithm starting from x_0 converges to a solution in a finite number of steps.

For complete generality, we will present the *canonical Katzenelson algorithm* without assuming the equilibrium equation has a lattice structure. However, remarks will be given at each step where a lattice structure can bring significant savings in bookkeeping and/or computation.

Canonical Katzenelson Algorithm

Consider the equation

$$\mathbf{f}(\mathbf{x}) \stackrel{\text{def}}{=} \mathbf{a} + \mathbf{B}\mathbf{x} + \mathbf{C} abs \left(\mathbf{D}^T \mathbf{x} - \mathbf{e} \right) = \mathbf{y}_0 \tag{4.1}$$

Step 1: Choose an initial point \mathbf{x}_0 satisfying conditions (1), (2) and (3) in Theorem 4.1. Let k = 1, h = 0, $\mathbf{x}^{(k)} = \mathbf{x}_0$. Let R_k denote the region containing $\mathbf{x}^{(k)}$. R_k can be identified by its sign-sequence vector (2.6). Go to step 2.

Step 2: Compute $n^{(k)}$ by

$$\mathbf{n}^{(k)} = \begin{bmatrix} \mathbf{J}_{R_k} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{y}_0 - \mathbf{f}(\mathbf{x}^{(k)}) \end{bmatrix}$$
(4.2)

where \mathbf{J}_{R_k} is the Jacobian matrix of **f** in region R_k . Go to step 3.

Step 3: If $\mathbf{n}^{(k)}$ is a zero vector, then $\mathbf{x}^{(k)}$ is the solution, and the algorithm terminates here. Otherwise let $A^{(k)}$ be a subset of $\{1, 2, \dots, p\}$ such that for $i \in A^{(k)}$, $\langle \alpha_i, \mathbf{x} \rangle = \beta_i$ is a boundary hyperplane of region R_k . Then for each $i \in A^{(k)}$ such that $\langle \alpha_i, \mathbf{n}^{(k)} \rangle \neq 0$, compute

$$t_i^{(k)} = \frac{\beta_i - \langle \alpha_i, \mathbf{x}^{(k)} \rangle}{\langle \alpha_i, \mathbf{n}^{(k)} \rangle}$$
(4.3)

and go to step 4.

Remark : Since it is generally impossible to identify the boundaries associated with each region of (4.1), the number of elements in set $A^{(k)}$ is always equal to p-1 (i.e. all hyperplanes except the one which contains $\mathbf{x}^{(k)}$). However, if the equilibrium equation has a lattice structure, then each region has at most 2n boundaries (therefore the size of $A^{(k)}$ is always 2n-1 after the first iteration) and can be easily identified by simply comparing the coordinates of $\mathbf{x}^{(k)}$ with the β_i 's. Substantial computing time can be saved at this point since not only the total number of $t_i^{(k)}$ to be calculated is reduced, but also no multiplication is required for the dot products in (4.3) because α_i is now a unit vector. Note that in general p is much greater than 2n, and p = 2n occurs only when each of the piecewise-linear characteristic has exactly

$$s_{For \mathbf{x} \in \mathbf{R}^n}$$
, $sgn(\mathbf{x}) \stackrel{def}{=} diag(sgn(x_1), sgn(x_2), \dots, sgn(x_n))$, where $sgn(x_i) = 1$ when $x_i > 0$ and

17

one breakpoint.

Step 4: (a) If det $J_{R_k} \neq 0$, let $\hat{A}^{(k)}$ be the subset of $A^{(k)}$ such that for all $i \in \hat{A}^{(k)}$

$$sgn(t_i^{(k)}) sgn(\det \mathbf{J}_{R_k}) = 1$$
(4.4)

If $\hat{A}^{(k)}$ is an empty set, then $\mathbf{x}^{(k)} + \mathbf{n}^{(k)}$ is the solution and the algorithm terminates. Otherwise, find $\hat{t}_i^{(k)} \stackrel{def}{=} \min_{\substack{i \in \mathcal{I}^{(k)} \\ i \in \mathcal{I}^{(k)}}} |t_i^{(k)}|$ and go to step 5.

(b) If det $J_{R_{L}} = 0$, then find

$$\hat{t}_{i}^{(k)} = \min_{i \in A^{(k)}} |t_{i}^{(k)}|$$
(4.5)

and go to step 5.

Remark : Again, observe that if equation (4.1) has a lattice structure, then the size of $\hat{A}^{(k)}$ will be smaller and searching for $\hat{t}_i^{(k)}$ will also be easier.

Step 5: If $\hat{t}_i^{(k)} \ge 1$, then $\mathbf{x}^{(k)} + \mathbf{n}^{(k)}$ is the solution and the algorithm terminates here. If $\hat{t}_i^{(k)} < 1$ and it is not unique⁶, go to step 8. If $\hat{t}_i^{(k)} < 1$ and it is unique, let h = i, $t_{\min}^{(k)} = t_i^{(k)}$ and go to step 6.

Step 6: Compute

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + t_{\min}^{(k)} \mathbf{n}^{(k)}$$
(4.6)

$$\mathbf{J}_{R_{h+1}} = \mathbf{J}_{R_h} + 2 \, \mathbf{c}_h \, \alpha_h^T \tag{4.7}$$

where c_h is the *h*-th column in matrix **C** and a_h is the *h*-th column in matrix **D**. Go to step 7.

Remark : If equation (4.1) has a lattice structure, then a_h in (4.7) will be a unit vector, and hence the dyad product of c_h and a_h^T requires no multiplication at all.

Step 7: Increment k by 1. If det $J_{R_k} \neq 0$, then go to step 2. Otherwise, find a vector $\hat{\mathbf{n}} \neq 0$ in the null space? of J_{R_k} . Let $\mathbf{n}^{(k)} = \hat{\mathbf{n}}$ and go to step 3.

Step 8: (the corner problem)⁸. Since the $t_i^{(k)}$'s are not unique, let $I^{(k)}$ be a subset of $\hat{A}^{(k)}$ containing the indices *i* where the $t_i^{(k)}$'s are equal. Choose any *i* from $I^{(k)}$, let h = i. $t_{i}^{(k)} = \hat{t}_i^{(k)}$ and compute $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + t_{\min}^{(k)} \mathbf{n}^{(k)}$. Go to step 9.

Step 9: Check $\mathbf{x}^{(k+1)}$ against the existing corner points stored in step 10. If $\mathbf{x}^{(k+1)}$ is a new corner point then go to step 10. Otherwise go to step 11.

Step 10: Store the corner point $\mathbf{x}^{(k+1)}$ Go to step 12.

Step 11 : Let $N_I^{(k)}$ be the total number of elements in set $I^{(k)}$. Construct a region list $L_I^{(k)}$ which consists of all neighborhood regions of the corner point except region R_k .

 $sgn(x_i) = -1$ when $x_i < 0$.

⁶We say $\hat{t}_i^{(k)}$ is not unique if there exist at least 2 indices "m" and "n" such that $\hat{t}_i^{(k)} = |t_m^{(k)}| = |t_n^{(k)}|$. ⁷The vector $\hat{\mathbf{n}}$ in the null space of $\mathbf{J}_{R_{k+1}}$ can be found using standard linear system techniques. ⁶Note that $\mathbf{x}^{(k+1)}$ is now a corner point. **Remark**: Since each region is uniquely identified by its sign-sequence vector, step 11 consists merely of generating those sign-sequence vectors which represents the neighborhood regions. Let $\mathbf{w}^{(k)}$ denote the sign-sequence vector of region R_k . We generate the sign-sequence vectors from $\mathbf{w}^{(k)}$ by varying the sign at the *j*-th position of $\mathbf{w}^{(k)}$ for $j \in I^{(k)}$, while keeping the remaining entries identical. Clearly this procedure will generate $2^{N_f^{(k)}} - 1$ sign-sequence vectors.

Step 12: Select a new region R_{k+1} from the list $L_l^{(k)}$ associated with the corner point $\mathbf{x}^{(k+1)}$ in accordance with the following precedence: (1) the sign sequence of R_{k+1} matches $\mathbf{w}(\mathbf{\hat{x}})$. (2) det $\mathbf{J}_{R_{k+1}} > 0$. (3) det $\mathbf{J}_{R_{k+1}} = 0$. (4) det $\mathbf{J}_{R_{k+1}} < 0$. Remove R_{k+1} from the list $L_l^{(k)}$ and go to step 13.

Remark : Step 12 and step 13 form a loop until we identify the correct region to proceed. Here, $w(\hat{x})$ is the sign-sequence vector computed in step 13.

Step 13: Repeat step 2 and step 3 (i.e. repeat (4.2) and (4.3) with k replaced by k+1) to compute $\mathbf{n}^{(k+1)}$ and $t_i^{(k+1)}$ for $i \notin I^{(k+1)}$ (go through step 7 first if det $\mathbf{J}_{R_{k+1}} \neq 0$). Repeat step 4 to find $\hat{t}_i^{(k+1)}$, then compute $\hat{\mathbf{x}} = \mathbf{x}^{(k+1)} + \frac{1}{2} \hat{t}_i^{(k+1)} \mathbf{n}^{(k+1)}$ and the sign-sequence vector $\mathbf{w}(\hat{\mathbf{x}})$. To determine if region R_{k+1} is the correct region to proceed, we compare $\mathbf{w}(\hat{\mathbf{x}})$ with $\mathbf{w}^{(k+1)}$ (the sign-sequence vector of region R_{k+1}). If they are equal, (then R_{k+1} is the correct region to continue), set $\mathbf{x}^{(k+2)} = \hat{\mathbf{x}}$, $\mathbf{J}_{R_{k+2}} = \mathbf{J}_{\mathbf{w}(\hat{\mathbf{x}})}$ and increment k by 2. Go to step 2. If $\mathbf{w}(\hat{\mathbf{x}})$ and $\mathbf{w}^{(k+1)}$ are not equal, then go to step 12.

Remark: Since most of step 13 consists of repeating step 2, step 3 and step 4, substantial savings in computing time will result if equation (4.1) has a lattice structure (recall the **Remarks** following step 3 and step 4.)

Justification:

(1) To show the Jacobian matrix can be computed from the one in the adjacent region by (4.7), let R_1 , R_2 be two adjacent regions and J_1 , J_2 be the Jacobian matrices in R_1 and R_2 respectively. Then:

$$\mathbf{J}_{1} = \mathbf{B} + \mathbf{C} \left[sgn \left(\mathbf{D}^{T} \mathbf{x}^{(1)} - \mathbf{e} \right) \right] \mathbf{D}^{T}$$

$$(4.8)$$

$$\mathbf{J}_2 = \mathbf{B} + \mathbf{C} \left[sgn \left(\mathbf{D}^T \mathbf{x}^{(2)} - \mathbf{e} \right) \right] \mathbf{D}^T$$
(4.9)

where $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are arbitrary interior points in R_1 and R_2 respectively. For continuous piecewise-linear functions,

$$\mathbf{J}_1 = \mathbf{J}_2 + \gamma \, \alpha_i^{\ T} \tag{4.10}$$

where χ is a constant vector to be determined [1]. Substituting (4.8) and (4.9) into (4.10), we get :

$$\mathbf{J}_1 - \mathbf{J}_2 = \mathbf{C} \left[sgn \left(\mathbf{D}^T \mathbf{x}^{(1)} - \mathbf{e} \right) - sgn \left(\mathbf{D}^T \mathbf{x}^{(2)} - \mathbf{e} \right) \right] \mathbf{D}^T$$
(4.11)

since the sign-sequence vectors differ only at the *i*-th position for R_1 and R_2 , we have

18

$$sgn(D^T \mathbf{x}^{(1)} - \mathbf{e}) - sgn(D^T \mathbf{x}^{(2)} - \mathbf{e}) = diag(0, 0, \dots, 0, 2, 0, \dots, 0)$$

where the number "2" is at the i-th diagonal position. Therefore (4.11) reduces to

$$\mathbf{J}_1 - \mathbf{J}_2 = 2 \mathbf{c}_i \, \boldsymbol{\alpha}_i^T \tag{4.12}$$

Comparing (4.10) with (4.12), we identify $\gamma = 2 c_i$ and hence (4.7) is proved.

(2) The method we used to solve the corner problem (step 8 - 13) is fully justified in [6] (Theorem 3 through Theorem 5), and is not repeated here. However, we will illustrate the method in *Example 4*.

Example 4. (Step-by-step illustration of the canonical Katzenelson algorithm)

Consider the circuit shown in Fig. 9(a) where both resistors R1 and R2 are voltage controlled. Their $v \cdot i$ characteristics in Figs. 9(b) and 9(c) are represented in canonical form :

R1:
$$i_1 = \frac{1}{4} + \frac{3}{4}v_1 - |v_1| + \frac{3}{4}|v_1 - 1$$

R2: $i_2 = -\frac{1}{4} + \frac{3}{4}v_2 - \frac{1}{4}|v_2 + 1|$

The canonical form equation for this circuit is found to be

$$\begin{bmatrix} \frac{5}{8} & -\frac{3}{4} \\ \frac{3}{4} & 2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + \begin{bmatrix} \frac{1}{2} & -\frac{3}{8} & \frac{1}{4} \\ -1 & \frac{3}{4} & -\frac{1}{3} \end{bmatrix} abs \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^T \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{1}{8} \\ E_0 + \frac{1}{12} \end{bmatrix}$$
(4.13)

let $E_0 = 1$ so that $\mathbf{y}_0 = \begin{bmatrix} -\frac{1}{8} & \frac{13}{12} \end{bmatrix}^T$. The linear partition in this case consists of 3 straight lines $v_1 = 0, v_2 = 1$, and $v_2 = -1$, as shown in Fig. 9(d). Define $\mathbf{x} = \begin{bmatrix} v_1 & v_2 \end{bmatrix}^T$.

Step 1: Choose an arbitrary point $\mathbf{x}_0 = \begin{bmatrix} -1 & -\frac{3}{2} \end{bmatrix}^T$ as shown in Fig. 9(d).

$$\mathbf{n}^{(1)} = \begin{bmatrix} \frac{1}{2} & -1 \\ 1 & \frac{7}{3} \end{bmatrix}^{-1} \left[\begin{bmatrix} -\frac{1}{8} \\ \frac{13}{12} \end{bmatrix} - \begin{bmatrix} \frac{3}{8} \\ -\frac{41}{12} \end{bmatrix} \right] = \begin{bmatrix} \frac{20}{13} \\ \frac{33}{26} \end{bmatrix}$$

Since the region R_1 containing \mathbf{x}_0 is bounded only by the first $(v_1 = 0)$ and third $(v_2 = -1)$ hyperplane, we set $A^{(1)} = \{1, 3\}$ and compute $t_1^{(1)}$ and $t_3^{(1)}$:

$$t_{1}^{(1)} = \frac{0 - \langle [10]^{T}, [-1-\frac{3}{2}]^{T} \rangle}{\langle [10]^{T}, [\frac{20}{13}\frac{33}{26}]^{T} \rangle} = \frac{13}{20}, \ t_{3}^{(1)} = \frac{-1 - \langle [01]^{T}, [-1-\frac{3}{2}]^{T} \rangle}{\langle [01]^{T}, [\frac{20}{13}\frac{33}{26}]^{T} \rangle} = \frac{13}{33}$$

Step 4 & 5: (k=1). Since det $J_{R_1} = \frac{13}{6} > 0$, we have $\hat{A}^{(1)} = \{1, 3\}, t_{\min}^{(1)} = \frac{13}{33}$ and h = 3.

Step 6: (k=1). (4.6) implies

$$\mathbf{x}^{(2)} = \begin{bmatrix} -1\\ -\frac{3}{2} \end{bmatrix} + \frac{13}{33} \begin{bmatrix} \frac{20}{13}\\ \frac{33}{26} \end{bmatrix} = \begin{bmatrix} -\frac{13}{33}\\ -1 \end{bmatrix}$$

(4.7) implies

$$\mathbf{J}_{R_2} = \begin{bmatrix} \frac{1}{2} & -1\\ 1 & \frac{7}{3} \end{bmatrix} + 2 \begin{bmatrix} \frac{1}{4}\\ -\frac{1}{3} \end{bmatrix} \begin{bmatrix} 0 \ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2}\\ 1 & \frac{5}{3} \end{bmatrix}$$

Step 7: (k=1). det $J_{R_2} = \frac{4}{3} > 0$. Set k = 2 and go to step 2.

Step 2 & 3: (k=2). (4.2) implies $\mathbf{n}^{(2)} = \begin{bmatrix} \frac{85}{132} & \frac{5}{4} \end{bmatrix}^T$. Set $A^{(2)} = \{1, 2\}$ and compute $t_1^{(2)}$ and $t_2^{(2)}$:

$$t_1^{(2)} = \frac{0 - \langle [10]^T, [-\frac{13}{33} - 1]^T \rangle}{\langle [10]^T, [\frac{85}{132}, \frac{5}{4}]^T \rangle} = \frac{52}{85}, \ t_2^{(2)} = \frac{1 - \langle [10]^T, [-\frac{13}{33} - 1]^T \rangle}{\langle [10]^T, [\frac{85}{132}, \frac{5}{4}]^T \rangle} = \frac{184}{85}$$

Step 4 & 5:
$$(k=2)$$
. Since det $J_{R_2} = \frac{4}{3} > 0$, we have $\hat{A}^{(2)} = \{1, 2\}, t_{\min}^{(2)} = 1$, and $h = 1$
Step 6: $(k=2)$. (4.6) implies $\mathbf{x}^{(3)} = [0 - \frac{4}{17}]^T$, and (4.7) implies $J_{R_3} = \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -1 & \frac{5}{3} \end{bmatrix}$

Step 7: (k=2). det $J_{R_3} = 2 > 0$. Set k = 3 and go to step 2.

Step 2 & 3: (k=3). (4.2) implies $\mathbf{n}^{(3)} = \begin{bmatrix} \frac{1}{6} & \frac{25}{34} \end{bmatrix}^T$. Set $A^{(3)} = \{2, 3\}$ and compute $t_2^{(3)}$ and $t_3^{(3)}$:

$$t_{2}^{(3)} = \frac{1 - \langle [10]^{T}, [0 - \frac{4}{17}]^{T} \rangle}{\langle [10]^{T}, [\frac{1}{6}, \frac{25}{34}]^{T} \rangle} = 6, \ t_{3}^{(2)} = \frac{-1 - \langle [01]^{T}, [0 - \frac{4}{17}]^{T} \rangle}{\langle [01]^{T}, [\frac{1}{6}, \frac{25}{34}]^{T} \rangle} = -\frac{26}{25}$$

Step 4 & 5: (k=3). det $J_{R_3} = 2 > 0$ implies $\hat{A}^{(3)} = \{2\}$. Since $\hat{t}_2^{(3)} = t_2^{(3)} = 6 > 1$ solution of (4.13) is given by:

$$\mathbf{x}^{(3)} + \mathbf{n}^{(3)} = \begin{bmatrix} 0\\ -\frac{4}{17} \end{bmatrix} + \begin{bmatrix} \frac{1}{6}\\ \frac{25}{34} \end{bmatrix} = \begin{bmatrix} \frac{1}{6}\\ \frac{1}{2} \end{bmatrix}$$

The iteration procedure is now terminated. The solution path is shown in Fig. 9(d).

Example 5. (Step-by-step illustration of step 8 - 13: corner problem)

Consider the same example as in *Example 4*. However, instead of $\mathbf{x}_0 = \begin{bmatrix} -1 & -\frac{3}{2} \end{bmatrix}^T$, let us choose $\mathbf{x}_0 = \begin{bmatrix} -1 & -\frac{17}{7} \end{bmatrix}^T$.

Step 2 & 3: (k=1).

$$\mathbf{n}^{(1)} = \begin{bmatrix} \frac{1}{2} & -1 \\ 1 & \frac{7}{3} \end{bmatrix}^{-1} \left(\begin{bmatrix} -\frac{1}{8} \\ \frac{13}{12} \end{bmatrix} - \begin{bmatrix} \frac{73}{56} \\ -\frac{67}{12} \end{bmatrix} \right) = \begin{bmatrix} \frac{20}{13} \\ \frac{200}{91} \end{bmatrix}; \quad A^{(1)} = \{1, 3\}$$

$$t_{1}^{(1)} = \frac{0 - \langle [10]^{T}, [-1 - \frac{17}{7}]^{T} \rangle}{\langle [10]^{T}, [\frac{20}{13} \frac{200}{91}]^{T} \rangle} = \frac{13}{20}, \ t_{3}^{(1)} = \frac{-1 - \langle [01]^{T}, [-1 - \frac{17}{7}]^{T} \rangle}{\langle [01]^{T}, [\frac{20}{13} \frac{200}{91}]^{T} \rangle} = \frac{13}{20}$$

Step 5: (k=1). Since $\hat{t}_1^{(1)} = \hat{t}_3^{(1)} = \frac{13}{20}$, they are not unique. Go to step 8. Step 8: (k=1). $I^{(1)} = \{1, 3\}$. Set h = 1 and compute

$$\mathbf{g}^{(2)} = \begin{bmatrix} -1\\ -\frac{17}{7} \end{bmatrix} + \frac{13}{20} \begin{bmatrix} \frac{20}{13}\\ \frac{200}{91} \end{bmatrix} = \begin{bmatrix} 0\\ -1 \end{bmatrix}, \text{ go to step 9.}$$

Step 9: (k=1). This is the first time we hit the corner $[0-1]^T$. Go to Step 10.

Step 10 & 11: (k=1). $N_1^{(2)} = 2$. Sign-sequence vector for region R_1 is $\mathbf{w}_0^{(1)} = [-1 - 1 - 1]^T$; construct $L_l^{(1)} = \{\mathbf{w}_1^{(1)}, \mathbf{w}_2^{(1)}, \mathbf{w}_3^{(1)}\}$, where $\mathbf{w}_1^{(1)} = [1 - 1 - 1]^T$, $\mathbf{w}_2^{(1)} = [-1 - 1 1]^T$, $\mathbf{w}_3^{(1)} = [1 - 1 1]^T$.

Step 12: (k=1). Since det $J_{w_1^{(1)}} = \frac{5}{2}$, det $J_{w_2^{(1)}} = \frac{4}{3}$, and det $J_{w_3^{(1)}} = 2$ are all positive, and

since $\mathbf{w}(\hat{\mathbf{x}})$ is still undefined at this moment, pick an arbitrary region (say $\mathbf{w}_{1}^{(1)}$) to continue. Go to Step 13.

Step 13: (k=1). Repeat step 2 $n^{(2)} = \begin{bmatrix} \frac{7}{15} \frac{6}{5} \end{bmatrix}^T$. Since $I^{(1)} = \{1, 3\}$, we only need to compute $t_2^{(2)}$ in step 3.

$$t_{2}^{(2)} = \frac{1 - \langle [10]^{T}, [0-1]^{T} \rangle}{\langle [10]^{T}, [\frac{7}{15}\frac{6}{5}]^{T} \rangle} = \frac{15}{7}$$

compute

$$\hat{\mathbf{x}} = \begin{bmatrix} 0\\ -1 \end{bmatrix} + \frac{1}{2} \frac{15}{7} \begin{bmatrix} \frac{7}{15}\\ \frac{6}{5}\\ \frac{6}{5} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\ \frac{2}{7}\\ \frac{7}{7} \end{bmatrix} \text{ and } \mathbf{w}(\hat{\mathbf{x}}) = \begin{bmatrix} 1 - 1 & 1 \end{bmatrix}^T$$

Since $\mathbf{w}_1^{(1)} = [-1 - 1 - 1]^T$ is not equal to $\mathbf{w}(\mathbf{\hat{x}})$, go back to step 12 to select another region.

Step 12: (k=1). Since $\mathbf{w}_{3}^{(1)} = \mathbf{w}(\hat{\mathbf{x}})$, choose the region represented by $\mathbf{w}_{3}^{(1)}$ and go to step 13.

Step 13: (k=1). Repeat step 2 and step 3: $\mathbf{n}^{(2)} = \begin{bmatrix} \frac{1}{6} & \frac{3}{2} \end{bmatrix}^T$, $t_2^{(2)} = 6$, and $\hat{\mathbf{x}} = \begin{bmatrix} \frac{1}{2} & \frac{7}{2} \end{bmatrix}^T$. Since $\mathbf{w}(\hat{\mathbf{x}}) = \begin{bmatrix} 1 - 1 & 1 \end{bmatrix}^T$ is equal to $\mathbf{w}_3^{(1)}$, set $\mathbf{x}^{(3)} = \begin{bmatrix} \frac{1}{2} & \frac{7}{2} \end{bmatrix}^T$, $\mathbf{J}_{R_3} = \mathbf{J}_{\mathbf{w}_3^{(1)}}$, increment k by 2 and go to step 2. Step 2 & 3: (k=3). (4.2) implies $\mathbf{n}^{(3)} = \begin{bmatrix} -\frac{1}{3} & -3 \end{bmatrix}^T$. Set $A^{(3)} = \{1, 2, 3\}$ and (4.3) implies $t_1^{(3)} = \frac{3}{2}, t_2^{(3)} = -\frac{3}{2}, t_3^{(3)} = \frac{3}{2}$.

Step 4 & 5: (k=3). det $J_{R_3} = 2 > 0$ implies $\hat{A}^{(3)} = \{1, 3\}$. Since $\hat{t}_1^{(3)} = \frac{3}{2} > 1$, solution of (4.13) is given by:

$$\mathbf{x}^{(3)} + \mathbf{n}^{(3)} = \begin{bmatrix} \frac{1}{2} \\ \frac{7}{2} \end{bmatrix} + \begin{bmatrix} -\frac{1}{3} \\ -3 \end{bmatrix} = \begin{bmatrix} \frac{1}{6} \\ \frac{1}{2} \end{bmatrix} \qquad []$$

Remark :

Two programs have been written to implement the *canonical Katzenelson algorithm* on a PDP-11/780 VAX computer running a UNIX time-sharing operating system⁹.

The first program exploits the special properties possessed by equations having a *lattice* structure. The second program does not exploit this structure and is therefore more general, but less efficient. Examples 4, 6, 7 and θ^{10} are used to compare these two programs and the result is shown in Table 1. Note that every example in Table 1 has lattice structure. By exploiting this structure, one can expect the saving in cpu time to increase with the size of the circuit.

	Total number of	Total CPU time (in seconds) ¹¹		
Examples	regions traversed	general case	optimized for lattice structure	
4	3	0.20 - 0.28	0.18 - 0.20	
6	5	0.32 - 0.52	0.25 - 0.40	
7	18	0.82 - 0.88	0.33 - 0.47	
8	11	0.95 - 1.32	0.58 - 0.80	

Table 1.	Summary of	f computation fo	or Example 4, 6	3, 7 and 8
----------	------------	------------------	-----------------	------------

5. CONCLUDING REMARKS

Since the dc circuit model of most electronic devices are made of 2-terminal nonlinear resistors and nonlinear controlled sources depending on a single controlling variable, the equilibrium equation of most dc electronic circuits are automatically in the canonical form, upon approximating each nonlinear function by a 1-dimensional piecewise-linear function.

22

⁹PDP and VAX are Trademarks of the Digital Equipment Co., UNIX is a Trademark of Bell Laboratories. ¹⁰Examples 6, 7 and 6 are listed in Appendix C.

¹¹ Since UNIX is a time-sharing system, the actual time depends on the current load on the system at that time. Hence we give only a range of the total CPU time.

In the more general situation when the nonlinearity consists of coupled equations, they can often be approximated by combinations of a few functions of one variable. In fact, from a theoretical point of view, we can invoke Kolmogorov's theorem which asserts that any continuous multi-dimensional function $f: \mathbb{R}^n \to \mathbb{R}^n$ can be approximated to any desired accuracy over any compact region in \mathbb{R}^n by a composition of functions of only one variable. This in turn will allow us to construct a circuit model whose only nonlinear elements are 2-terminal resistors [10]. It follows therefore that any resistive circuit can be modeled, to within any desired accuracy, by a system of piecewise-linear equations in canonical form.

This result is particularly appealing from a circuit-theoretic point of view because all methods of circuit analysis give rise to an equilibrium equation of the same form. In fact, for small circuits, such as the bridge circuit presented in *Example 2*, it is now possible to derive highly efficient "canned computer programs" where the user need only specify the breakpoints and slopes of the nonlinear resistors in the circuit. Such a program are ideally suited for implementation in personal *microcomputers*. For example, one can easily store in a single $5\frac{1}{4}$ " floppy disk, the canned program for analyzing piecewise-linear resistive circuits in all standard configurations, e.g., ladder, lattice, bridge-T, twin-T, etc.

In the case where the circuit has a hybrid equation, the canonical equation always possesses a *lattice structure*. This remarkable property allows a substantial saving in computing time in the canonical Katzenelson algorithm. In the case where the circuit has *multiple solutions*, this property allows the development of a special algorithm which guarantees that all solutions are found.

From an analytical point of view, the canonical form allows us to carry out algebraic manipulations on piecewise-linear circuits. This make it possible to derive closed form solutions and sensitivity formulas for many prototype circuits.

Finally, it would be desirable to compare the computational efficiency between the canonical Katzenelson algorithm with the recent piecewise-linear approach described in [12] and [13].

23

REFERENCES

- J. Katzenelson, "An algorithm for solving nonlinear resistive networks," Bell System Tech. J., vol. 44, pp. 1605-1620, Oct. 1965.
- [2] T. Fujisawa and E.S. Kuh, "Piecewise-linear theory of nonlinear networks," SIAM J. Appl. Math., vol. 22, no. 2, pp. 307-328, Mar. 1972.
- [3] T. Fujisawa, E.S. Kuh and T. Ohtsuki, "A sparse matrix method for analysis of piecewiselinear resistive networks," *IEEE Trans. Circuit Theory*, vol. CT-19, no. 6, pp. 571-584, Nov. 1972.
- [4] M.J. Chien and E.S. Kuh, "Solving piecewise-linear equation for resistive networks," Circuit Theory and Applications, vol. 4, pp. 3-24, 1976.
- [5] M.J. Chien and E.S. Kuh, "Solving nonlinear resistive networks using piecewise-linear analysis and simplicial subdivision," *IEEE Trans. Circuits and Systems*, vol. CAS-24, no. 6, pp. 305-317, Jan. 1977.
- [6] T. Ohtsuki, T. Fujisawa, and S. Kumagai, "Existence theorems and a solution algorithm for piecewise-linear resistor networks," SIAM J. Math. Anal., vol. 8 no. 1, pp. 69-99, Feb. 1977.
- [7] L.O. Chua and S.M. Kang, "Section-wise piecewise-linear functions: canonical representation, properties, and applications," *Proceedings of the IEEE*, vol. 65, no. 6, pp. 915-929, June 1977.
- [8] S.M. Kang and L.O. Chua, "A global representation of multidimensional piecewise-linear functions with linear partitions," *IEEE Trans. Circuits and Systems*, vol. CAS-25, no. 11, pp. 938-940, Nov. 1978.
- [9] L.O. Chua, "Device modeling via basic nonlinear circuit elements," *IEEE Trans. Circuits* and Systems, vol. CAS-27, pp. 1014-1044, Nov. 1980.
- [10] L.O. Chua and P.M. Lin, Computer Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques, Englewood Cliffs, NJ: Prentice-Hall, 1975.
- [11] L.O. Chua and R. Ying, "Finding all solutions of piecewise-linear equations", U.C. Berkeley ERL Memorandom No. UCB/ERL M81/54, July 23, 1981.
- [12] S.N. Stevens and P.M. Lin, "Analysis of piecewise-linear resistive networks using complementary pivot theory," *IEEE Trans. Circuits and Systems*, vol. CAS-28, pp. 429-441, May 1981.
- [13] W.M.G. van Bokhoven, "Macromodelling and simulation of mixed analog-digital networks by a piecewise-linear system approach," *Proceedings of the 1980 IEEE International Conference on Circuits and Computers.*

APPENDIX

A Justification of coefficients for canonical equation (2.1)

For $x \neq x_i$, i = 1, 2, ..., p, (2.1) implies that

$$\frac{d}{dx}f(x) = b + \sum_{i=1}^{p} c_i \, sgn(x - x_i)$$
(A.1)

since $m_j = \frac{d}{dx} f(x) \mid_{x_j < x < x_{j+1}}$ (A.1) implies that

$$m_0 = b - \sum_{i=1}^p c_i$$
 (A.2)

$$m_j = b + \sum_{i=1}^{j} c_i - \sum_{i=j+1}^{p} c_i \quad j = 1, 2, \dots, n-1$$
 (A.3)

$$m_p = b + \sum_{i=1}^p c_i \tag{A4}$$

It is clear that (A.2) and (A.4) imply (2.2), (A.3) implies (2.3), and finally (2.4) follows from (2.1) upon substituting x = 0.

B. Justification of coefficients for equation (2.7)

We derive (2.8) first. For $\mathbf{x} \in \mathbb{R}^n$ and $\langle \alpha_i, \mathbf{x} \rangle \neq \beta_i, i = 1, 2, ..., p, (2.7)$ implies

$$\nabla f(\mathbf{x}) = \mathbf{b} + \sum_{i=1}^{p} c_i \left[sgn \left(< \alpha_i, \mathbf{x} > -\beta_i \right) \right] \alpha_i$$
(A.5)

(A.5) implies

$$\sum_{j=1}^{k} \left\{ \nabla f(\mathbf{x}) \mid_{\mathbf{x} \in R_{j_{\infty}}} \right\} = \sum_{j=1}^{k} \mathbf{b} + \sum_{j=1}^{k} \left\{ \sum_{i=1}^{p} c_{i} \left[sgn \left(< \alpha_{i}, \mathbf{x} > -\beta_{i} \right) \right] \alpha_{i} \mid_{\mathbf{x} \in R_{j_{\infty}}} \right\}$$

which can be simplified to

$$\mathbf{b} = \frac{1}{k} \sum_{j=1}^{k} \left\{ \nabla f(\mathbf{x}) \mid_{\mathbf{x} \in R_{j-}} \right\} + \frac{1}{k} \sum_{j=1}^{k} \left\{ \sum_{i=1}^{p} c_{i} \left[sgn \left(< \alpha_{i}, \mathbf{x} > -\beta_{i} \right) \right] \alpha_{i} \mid_{\mathbf{x} \in R_{j-}} \right\}$$

Therefore to derive (2.8), it suffices to show

$$\sum_{j=1}^{k} \left\{ \sum_{i=1}^{p} c_{i} \left[sgn \left(< \alpha_{i}, \mathbf{x} > -\beta_{i} \right) \right] \alpha_{i} \mid_{\mathbf{x} \in R_{j}} \right\} = 0$$
(A.6)

Since we are only interested in $x \in R_{j=1}$, for j = 1, 2, ..., k, the procedure described below will eliminate all bounded regions as well as pseudo-unbounded regions.

Consider a very general case such that there are g groups of hyperplanes in the linear partition, each containing n_g parallel hyperplanes. For each group, we merge the n_g hyperplanes into one. (Note: we have $k_1 \stackrel{\text{def}}{=} p - \sum_{j=1}^{g} n_j + g$ hyperplanes left.) Then move each of the k_1 hyperplanes in parallel to itself until all pseudo-unbounded and bounded regions vanish. This is always possible since no two of the k_1 hyperplanes are parallel to each other. Clearly there are $k \stackrel{\text{def}}{=} 2k_1$ regions left and all of them are essentially-unbounded. Since each

hyperplane $\langle \alpha_i, x \rangle = \beta_i$, i = 1, 2, ..., p, divides \mathbb{R}^n into two regions whose sign-sequence vectors differ only at the *i*-th position, we have

$$\sum_{j=1}^{k} sgn \ (<\alpha_{i}, x >) = 0 \quad \text{for } i = 1, 2, ..., p$$

where $\mathbf{x}_j \in R_{j\infty}$ for j = 1, 2, ..., k. Equation (4.6) follows upon interchanging the summation sign.

$$\sum_{j=1}^{k} sgn (< \alpha_{i}, x_{j} > -\beta_{i})] = 0 \quad \text{for } i = 1, 2, ..., p$$

To derive (2.9), let $\mathbf{x} \in R_{j+}$ in (A.5), we get

$$\nabla f(\mathbf{x}) \mid_{\mathbf{x} \in R_{j+}} = \mathbf{b} + \sum_{\substack{i=1\\i \neq j}}^{p} c_i \left[sgn \left(< \alpha_i, \mathbf{x} > -\beta_i \right) \right] \alpha_i + c_j \alpha_i$$
(A.7)

Similarly, let $\mathbf{x} \in R_{j \bullet}$ in (A.5), we get

$$\nabla f(\mathbf{x}) \mid_{\mathbf{x} \in R_{j-}} = \mathbf{b} + \sum_{\substack{i=1\\i \neq j}}^{p} c_i \left[sgn \left(< \alpha_i, \mathbf{x} > -\beta_i \right) \right] \alpha_i - c_j \alpha_i$$
(A.8)

Multiplying both sides of (A.7) and (A.8) by $\alpha_i f$ and subtracting, we obtain (2.9).

Finally, substituting $\mathbf{x} = \mathbf{0}$ in (2.7), we get (2.10). []

C. Examples

Example 6.

Consider the circuit shown in Fig. A1. Piecewise-linear resistors R1 and R3 are voltage controlled, piecewise-linear resistor R2 is current controlled. Their canonical form representation are given by

R1:
$$i_1 = \frac{5}{6} |v_1 + 6| - \frac{5}{6} |v_1 - 6|$$

R2: $v_2 = \frac{1}{6} |i_2 + 1| - \frac{1}{6} |i_2 - 5|$
R3: $i_3 = v_3 - \frac{5}{4} |v_3 - 1| - 2 |v_3 - 2| - |v_3 - 3|$

The associated circuit equation is represented in the canonical form as follow :

$$\mathbf{B}\begin{bmatrix} \boldsymbol{v}_1\\ \boldsymbol{i}_2\\ \boldsymbol{v}_3 \end{bmatrix} + \boldsymbol{abs} \left(\mathbf{D}^T \begin{bmatrix} \boldsymbol{v}_1\\ \boldsymbol{i}_2\\ \boldsymbol{v}_3 \end{bmatrix} - \mathbf{e} \right) = \begin{bmatrix} 5\\ 5\\ -5 \end{bmatrix}$$

where

$$\mathbf{B} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} -\frac{5}{6} & \frac{5}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{6} & \frac{1}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{5}{4} & -2 & 1 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{5}{4} & -2 & 1 \end{bmatrix}$$

$$\mathbf{e} = \begin{bmatrix} -6 & 6 & -1 & 5 & 1 & 2 & 3 \end{bmatrix}^T$$

The initial point is $\mathbf{x}_0 = [7 \ 6 \ -1]^T$ and the solution is $[0.1 \ 2.2 \ 2.87]^T$. []

Example 7.

Consider the circuit shown in Fig. A2. R1 and R2 are voltage controlled. Their characteristics are given in the canonical form as follow :

R1:
$$i_1 = -\frac{125}{8} + \frac{9}{8}v_1 + \frac{7}{8}|v_1 + 1| - \frac{3}{2}|v_1 - 2| + \frac{3}{4}|v_1 - 5|$$

 $-\frac{1}{8}|v_1 11| - \frac{9}{8}|v_1 - 13| + 2|v_1 - 15|$
R2: $i_2 = -\frac{29}{4} + \frac{3}{2}v_2 - \frac{3}{2}|v_2 + 8| + \frac{3}{2}|v_2 + 5| - \frac{3}{2}|v_2 + 1|$
 $+\frac{3}{2}|v_2 + 1| - \frac{3}{4}|v_2 - 3| - \frac{5}{4}|v_2 - 8| + \frac{3}{2}|v_2 - 10|$
 $+|v_2 - 13| - \frac{5}{4}|v_2 - 16| + \frac{1}{4}|v_2 - 18|$

The associated circuit equation is represented in the canonical form as follow :

$$\begin{bmatrix} \frac{13}{8} & \frac{1}{2} \\ \frac{1}{2} & 2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + \sum_{i=1}^{16} \mathbf{c}_i \mid < \alpha_i , \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} > -\beta_i \mid = \begin{bmatrix} \frac{161}{8} \\ -\frac{11}{4} \end{bmatrix}$$

where $\alpha_i = [10]^T$ for i = 1, 2, ..., 6 and $\alpha_i = [01]^T$ for i = 7, 8, ..., 16.

$$\mathbf{c}_{1} = \begin{bmatrix} \frac{7}{8} \\ 0 \end{bmatrix}, \ \mathbf{c}_{2} = \begin{bmatrix} -\frac{3}{2} \\ 0 \end{bmatrix}, \ \mathbf{c}_{3} = \begin{bmatrix} \frac{3}{4} \\ 0 \end{bmatrix}, \ \mathbf{c}_{4} = \begin{bmatrix} -\frac{1}{8} \\ 0 \end{bmatrix}, \ \mathbf{c}_{5} = \begin{bmatrix} -\frac{9}{8} \\ 2 \end{bmatrix}, \ \mathbf{c}_{6} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \\ \mathbf{c}_{7} = \begin{bmatrix} 0 \\ -\frac{3}{2} \end{bmatrix}, \ \mathbf{c}_{8} = \begin{bmatrix} 0 \\ \frac{3}{2} \end{bmatrix}, \ \mathbf{c}_{9} = \begin{bmatrix} 0 \\ -\frac{3}{2} \end{bmatrix}, \ \mathbf{c}_{10} = \begin{bmatrix} 0 \\ \frac{3}{2} \end{bmatrix}, \ \mathbf{c}_{11} = \begin{bmatrix} 0 \\ -\frac{3}{4} \end{bmatrix}, \ \mathbf{c}_{12} = \begin{bmatrix} 0 \\ -\frac{5}{4} \end{bmatrix}, \\ \mathbf{c}_{13} = \begin{bmatrix} 0 \\ \frac{3}{2} \end{bmatrix}, \ \mathbf{c}_{14} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \mathbf{c}_{15} = \begin{bmatrix} 0 \\ -\frac{5}{4} \end{bmatrix}, \ \mathbf{c}_{16} = \begin{bmatrix} 0 \\ \frac{1}{4} \end{bmatrix}$$

 $\beta_1 = -1$, $\beta_2 = 2$, $\beta_3 = 5$, $\beta_4 = 11$, $\beta_5 = 13$, $\beta_6 = 15$, $\beta_7 = -8$, $\beta_8 = -5$.

 $\beta_9 = -3$, $\beta_{10} = -1$, $\beta_{11} = 3$, $\beta_{12} = 8$, $\beta_{13} = 10$, $\beta_{14} = 13$, $\beta_{15} = 16$, $\beta_{16} = 18$ The initial point is $\mathbf{x}_0 = \begin{bmatrix} 16 & 20 \end{bmatrix}^T$ and the solution is $\begin{bmatrix} 1.5 & 1.5 \end{bmatrix}^T$.

Example 8.

Consider the four transistor circuit shown in Fig. A3(a). Each transistor is modeled by a controlled source in series with a p-n junction diode as shown in Fig A3(b). The diode $I_D - V_D$ characteristic is represented by a continuous piecewise-linear function with 6 segments as shown in Fig. A3(c). The reader is referred to [11] for the canonical representation of the equilibrium equation. The initial point is $\mathbf{x}_0 = [1011]^T$ and the solution is $[3.290404 \times 10^{-1} 3.652363 \times 10^{-1} 3.376266 \times 10^{-1} 3.602442 \times 10^{-1}]^T$.

FIGURE CAPTIONS

- Fig. 1. A continuous 1-dimensional piecewise-linear function.
- Fig. 2. Examples illustrating pseudo-unbounded regions and essentially-unbounded regions :
 - (a) R_1 , R_5 and R_{10} are the only pseudo-unbounded regions.

(b) R_7 is the only pseudo-unbounded region.

- Fig. 3. In *Example 1*. \mathbb{R}^2 is partitioned by two 1-dimensional hyperplanes (straight lines) $x_1 = x_2$ and $x_1 = -x_2$ into 4 regions R_1 , R_2 , R_3 and R_4 .
- Fig. 4. Circuit containing 2 piecewise-linear resistors.
- Fig. 5. A composite branch.
- Fig. 6. Bridge circuit containing 5 voltage-controlled piecewise-linear resistors.
- Fig. 7. Extracting all nonlinear resistors we obtain a resistive m-port \hat{N} containing only *linear* resistive elements and dc independent sources. The ports attached to voltage-controlled {resp. current-controlled} resistors are called voltage {resp. current} ports.
- Fig. 8. Figures for *Example 3*.
 - (a) Circuit containing 2 piecewise-linear resistors and a controlled source.
 - (b) v-i characteristics for piecewise-linear resistor R1.
 - (c) v-i characteristics for piecewise-linear resistor R2.

(d) \hat{N} is obtained by extracting R1 across the voltage port and R2 across the current port.

(e) Lattice structure defined by 3 1-dimensional hyperplanes (straight lines) $v_1 = 0$, $v_2 = 1$ and $i_2 = -1$, each one parallel to either coordinate axis v_1 or i_2 . Note that all regions have the same *regular* pattern – bounded or unbounded rectangles – typical in a lattice structure.

- Fig. 9. Figures for Example 4.
 - (a) Circuit containing 2 piecewise-linear resistors and a controlled source.
 - (b) v-i characteristics for piecewise-linear resistor R1.
 - (c) v-i characteristics for piecewise-linear resistor R2.

(d) Lattice structure in the $v_1 - v_2$ plane. The dotted line path indicates the iteration goes from $\mathbf{x}^{(1)} = \mathbf{x}_0$ to $\mathbf{x}^{(2)}$, $\mathbf{x}^{(3)}$, and finally converges to the true solution at $(\frac{1}{6}, \frac{1}{2})$.

- Fig. A1. Figure for *Example 6*. Circuit containing 3 piecewise-linear resistors.
- Fig. A2. Figure for Example 7. Circuit containing 2 piecewise-linear resistors.
- Fig. A3. Figures for Example 8.
 - (a) A 4-transistor circuit.
 - (b) Simplified Ebers-Moll model of an NPN transistor.
 - (c) Piecewise-linear approximation of diode $v \cdot i$ characteristic: $m_0 = 0$, $m_1 = 2.153 \times 10^{-2}$, $m_2 = 2.666 \times 10^{-2}$, $m_3 = 3.765 \times 10^{-2}$, $m_4 = 8.603 \times 10^{-2}$, $m_5 = 1.865 \times 10^{-1}$;

$$\begin{split} V_1 &= 0.306, \ V_2 = 0.321, \ V_3 = 0.336, \ V_4 = 0.351, \ V_5 = 0.376. \\ I_D &= -3.33570322 \times 10^{-2} + 9.32400146 \times 10^{-2} \ v_D + 1.25666608 \times 10^{-2} \mid v_D - V_1 \mid \\ &+ 2.23537270 \times 10^{-3} \mid v_D - V_2 \mid + 8.49354618 \times 10^{-3} \mid v_D - V_3 \mid \\ &+ 2.41900658 \times 10^{-2} \mid v_D - V_4 \mid + 5.02251145 \times 10^{-2} \mid v_D - V_5 \mid. \end{split}$$

Fig. I

;

(a)[,]

į

Fig. 2

Fig. 4

Fig. 5

Fig. 6

Fig. 7

.....

(e)

•

(d)

Fig. Al

Fig. A2

Fig. A3

cka.h

Canonical Katzenelson Algorithm --/• **+**¢ **+**+ Copyright (c) 1982 Robin L.P. Ying ** ... •• This package uses the "Canonical Katzenelson Algorithm" to ** solve the piece-wise linear algebraic system ** f(x) = y** where f(.) is in the piecewise-linear canonical form. ** f(.) has a lattice structure, then a specially optimized If version of the algorithm is used. ** ... •• It can be run on a PDP-11/780 VAX-UNIX system which supports •• the double-precision IMSL library. It contains the following ** separated modules: ++ cka.h: contains definitions of data structures and global ** ** variables. ... main.c: handles command line options. ** ... input.c: reads input from user terminal or a data file. ** ** katz.c: contains the main routines for solving the given ++ ** piecewise-linear system. ****** lattice.c: same as katz.c but optimized for lattice structure. ++ ** ** corner.c: handles the corner problem. ****** ** init.c : does initializations for lattice structure. ** checks and computes items in structure REGION. *0 region.c: **\$**9 contains REGION_QUEUE manipulating routines. ŧ¢ queue.c: ** ** contains printing routines. print.c: ** ** prints run-time error messages. error.c: ** ++ containing various supporting routines. support.c: ** ** Makefile: file maintenance program. 60 ... ** The following routines are needed from the double-precision IMSL ** library: budatf(), luelmf(), lureff(), uertst(), ugetio(), vxadd(), ... vxmul(), vxsto(). ... •/

cka.h

cka.h

.

```
- katz.h -
/$
64
  This module is the header file for all KATZ routines.
$0
60
•/
                     printf
                                         /° abbreviations */
#define pf
#define fpf
                     fprintf
                     prdmtrx
#define pm
                     prdvctr
#define pv
#define piv
                     privctr
                                         /* input string buffer size */
/* input string buffer */
#define B_SIZE 256
char buf[B_SIZE];
          FORMAT1"%6.3f "
                                         /° printing format */
#define
#define FORMAT2"%13.6e "
                     (REGION °)
(CORNER *)
#define RNIL
                                         0177777
                                         0177777
#define CNIL
                     region }
typedef struct
                     region *link;
                                         /* region queue link */
/* region id */
           struct
           înt
                     id;
                                          /• sign sequence vector [hyp] •/
           int
                     *sgnsq;
                                         /* point in region [dim] */
           double
                     •рх;
                                         /* f(px) [dim] */
/* <alpha,x> [hyp] */
           double
                     •ру;
           double
                     •dx;
                                         /* solution curve direction [dim] */
           double
                     •nk;
                                         /• Jacobian matrix [dim][dim] •/
           double
                     •jcbn;
                                         /* sign of determinant of Jacobian */
                     detsgn;
           int
                                          / boundaries [hyp] (lattice) */
                     *bdry;
           int
} REGION;
typedef struct
           REGION •head;
                                          /° head of queue ●/
                                          / tail of queue */
           REGION *tail;
                                          /° number of elements in queue */
           int
                     n;
} REGION_QUEUE;
 /* intersection of solution curve and boundary */
typedef
           struct
                      ٤
            double value;
                      index;
            int
} TI;
                                          /* array of TI */
/* array of pti */
            •pti;
 П
            **qti;
 П
                                          /° indices of e[] °∕
                     {
•beta;
 typedef struct
            int
 BETA;
                      corner {
corner *link;
 typedef struct
                                          /* corner queue link */
/* corner point [dim] */
/* indices [n_uniq] */
            struct
            double
                      •cx;
                      *index;
            int
                                          /* sign sequence vector [hyp] */
/* =1 if sgnsq[] is set */
            int
                      *sgnsq;
                      sgnfig;
            int
```

cka.h

REGION_QUEUE *CNRRGN; /* neighborhood regions of the corner */ { CORNER; typedef struct { CORNER •head; /* head of queue */ /* tail of queue */ /* number of elements in queue */ CORNER *tail; int n; { CORNER_QUEUE; /* variables defined in main.c */ /* =1 : lattice structure */ lattice; extern int /* dimension of system */ dim; int extern /* total # of hyperplanes */ /* =1 : debug flag */ /* =1 : print details of iteration */ /* =1 : test solution */ extern int hyp; extern int afig; pfig; extern int extern int tflg; /* =1 : z[] is defined in input file */
/* =1 : using IMSL routines */
/* significant digit */ xflg; int extern extern int imsl; sigdgt; int extern /* significant aign */
/* if |z| < epsilon then z:=0 */
/* B[dim][dim] */
/* 0[dim][hyp] */
/* D[dim][hyp] */
/* e[hyp] */
/* x[dim] */
/* x[dim] */</pre> extern double epsilon; •B; double extern double *C; extern double *D; extern double *e; extern •x; double extern /• y[dim] •/ double •у; extern /• variables defined in input.c •/ /* line # in the input file */ extern int line: /• variables defined in region.c •/ extern int rgn_count; ier; extern int /• variables defined in init.c •/ REGION_QUEUE *RGNQ; CORNER_QUEUE *CNRQ; double *wk; extern extern /* wk[dim*(dim+3)] */ extern /• jcbntmp[dim][dim] */ /• •axis[dim] */ extern double *jcbntmp; •axis; BETA extern /• beta_count[dim] •/ *beta_count; int extern /* dcolumn[hyp] */ *dcolumn; extern int

cka.h

main.c

main.c

/*	- mar	in.c —					
•• main() —— the	main int	eractive routine.				
99 \$7 80	Comman	rd line fla	gs:				
99 99 99	'-a': this option sets the 'aflg' as well as 'pflg' & 'tflg' so that all details of iteration will be printed.						
** \$* **	'-p ':	-p': this option sets the 'pflg' so that details of each region will be printed.					
40 40 40	' -t' :	this optic will be t	on sets the 'tflg' so that the solution ested by substituting it back to $f()$.				
•• ••	~-i `:	this optic routines	on sets the 'imsl' flag so that the IMSL are used.				
	'-s n': this option sets the significant digit to 'n' decimal digits (default: $n=9$), $n < 0$ is ignored; if $n = 0$ then the accuracy test in IMSL routine is disabled; this option automatically sets the '-i' option.						
80 80 80 80	'-f input-file': the file name after '-f' is taken to be the input file, otherwise the program will prompt for input option.						
80 80 80 80 80 80 80 80 80 80 80 80	'-o out	nutput-file': the file name after '-o' is taken to be the output file which contains the coefficients of the pwl function key-inned from the user terminal, so that the output file can be used as an input file next time; if the user has selected the terminal input option but did not specify the output file name, the default output file name is "Pwlf.def".					
#include <stdio.h> #include "cka.h"</stdio.h>							
FILE	•fpin=st	tdin, •fpou	it=stdout;				
int int int dcuble	lattice=0; dim, hyp; afig=0, pfig=0, tfig=0, xfig=0, imsl=0, sigdgt=9; epsilon, *B, *C, *D, *e, *x, *y;						
main (argc, argv) main							
register register	int char	argc; **argv;					
ι	registe: registe: double	r int r char	i, fflg=0, oflg=0, sflg=0; *str; *pd;				
	FILE cha r	fopen(); s_get();	; ;				
	pf("\tC K A\t2.0\n\n");						

·· ·

:

```
goto loop;
                                                                                                                                                    default
                                                                                                                                            preak;
                                                                                                                                     :0 = 20
                  fpf(stderr,"Take input from terminal. /n/n');
                                                                                                                                                  :,1, 3593
                                                                                                                                            preak;
  \mathfrak{M}_{\mathfrak{C}^{++}}:
\mathfrak{M} ( (tpin=topen(str,"r")) == NULL ) error(2,str):
                                                                                        str = s_get(buf,stdin);
                                           i(" :sman slh juqni reind", rietait
                                                                                                                                                   :,], əsəə
                 fpi(stderr,"Input options (f: file, t: terminal): ");
switch ( *(s_get(buf,stdin)) ) {
                                                                                                                                                             1:0001
                                                                                                                                                      } ( 2印: ) 1
                                                                                                                                                                                          ł
                                                                                                                                          :(1)jix9
                                fpf(stderr,"Specify only '-[aptisfo]'. \n");
                                                                                                                                                      default:
                                                                                                                                   continue;
                                                                                                                                           :++810
                          Case 'o':

if ( fpout=fopen(argv[1]);

if ( (fpout=fopen(argv[1]);

if ( (fpout=lopen(argv[1]);

if ( (
/. all ingino atim ./
                                                                                                                                   continue;
                                                                                                                                            :++8
                                (fpin=topen(argv[1],"r")) == NULL )
error(S,argv[1]);
                                                                                                   if ( ofte ) error(1);
if ( (fpin=fopen(arg
                                                                                                                                                     :,], 9583
      /. all tuqui boar ./
                                                                                                                                   continue;
                                                                                                                                                               ł
                                                                                                                             :++&us
                                                                                                                 i = Jybyiz
                                                                                                                           <u>п</u>(і>о)
                                                                                                            i = atoi(argv[1]);
                                                                                                                                          ;++i2mi
                                                                                                                                                     :,s, əsəə
                /. 10phs 10sal ./
                                                                                                                                    continue;
                                                                                                                                          ;++lami
                                                                                                                                                      :,1, 9889
             /. Ismi no must ./
                                                                                                                                     continue;
                                                                                                                                             :++301
                                                                                                                                                     :,1, 9583
               /. Byla uo una ./
                                                                                                                                     continue;
                                                                                                                                            :++8yd
               /. Byd uo uint ./
                                                                                                                                                   :,d, əseə
                                                                                                                                     continue;
                                                                                                                                              :++8u1
                                                                                                                                             :++अर्ग्वे
                                                                                                                                             ;++3<sup>th</sup>
                                                                                                                                                     :,2, 9583
               /. Sys us unt ./
                                 while ( --argc > 0 ) if ( (*++argv)[0] == '-' )
while (*++*argv) switch (**argv) {
                      pt^{(nee} [ optimized for lattice structure ]/n/n');
                                                                                                                                                  19441304++
                                                                                              if ( strempr("Lx", argv[0],S) ) i
                                                                                           /. Boy eintours evitor tos ./
```

.. . . .

nain.c

Į

D. Main. C

uvom...

main.c

...**mai**n

main.c

```
}
}
if ( !fflg && !oflg ) {
    fpf(stderr,"Enter output file name: ");
      str = s_get(buf,stdin);
      ofig++;
      if ( (*str == '\n') ||
(fpout=fopen(str,"w")) == NULL ) {
           fpf(stderr,"Using default file: 'Pwlf.def'\n");
if ( (fpout=fopen("Pwlf.def","w")) == NULL )
                error(2,"Pwlf.def");
      }
1
if (imsl)
      pf("** [ using IMSL routine ]\n");
epsilon = 5.0;
for (i=0; i < sigdgt+2; i++)
      epsilon *= 0.1;
if ( sfig || pfig ) {
    pf("** [ significant digit is set to %d ]\n",sigdgt);
    pf("** [ epsilon = %8.1e ]\n\n",epsilon);
ł
                                   /* read title, dim, hyp */
if (filg)
      filread(1);
else
      ttyread(1);
 /* allocate spaces */
B = (double •) palloc(dim*dim*sizeof(double));
C = (double *) palloc(dim *hyp *sizeof(double));
D = (double *) palloc(dim*hyp*sizeof(double));
e = (double *) palloc(hyp*1*sizeof(double));
x = (double *) palloc(dim*1*sizeof(double));
y = (double *) palloc(dim*1*sizeof(double));
/° initialize them to 0 */
i = dim*dim;
pd = B; while ( i - > 0 ) pd + = 0;
i = dim^{\bullet}hyp;
pd = C; while ( i - > 0 ) pd + = 0;
i = dim^{\bullet}hyp;
pd = D; while ( i - > 0 ) pd + = 0;
i = hyp;
pd = e; while ( i - > 0 ) pd + = 0;
i = dim;
pd = x; while ( i-- > 0 ) pd++ = 0;
i = dim;
pd = y; while ( i - - > 0 ) pd + + = 0;
                                    /* read B[,],C[,],D[,],e[],y[] */
if (fflg)
      filread(2);
else
      ttyread(2);
                                    / print coefficients */
print_eqn();
```

}

2

if (lattice) latt(); else katz(); main.c

...main

) /* switch iteration routines */

Page 4 of main.c

input.c

input.c

```
/•
                  - input.c -
00
60
    input.c :
              ttyread() -- read input from user tty and write to output file.
••
•0
              filread() -- read data from input file.
              b_pack() -- pack blanks and tabs in a string.
strcmpr() -- compare strings up to n bytes.
read_rc() -- read values of 'row' and 'col'.
QQ
....
              read_rc()
80
                               -- read entries of B[][].

-- read entries of C[][].

-- read entries of D[][].

-- read entries of e[].
@
              read_B()
              read_C()
read_D()
¢¢
...
              read_e()
read_x()
....
                               -- read entries of x
**
...
               read_y()
                               -- read entries of y[]
•/
#include <stdio.h>
#include "cka.h"
                                                                                      - [input.c] -
                  - ttyread() -
/•
89
     ttyread() -- read input from user tty and write to output file.
....
۰/
                                                                      /• defined in main() */
               FILE
                             *fpin, *fpout;
extern
                                                                      line:
int
                                                                                                                             ttyread
ttyread (flag)
register int
                             flag;
£
               register int
                                           i, j;
               register char
                                           *str:
               int i_get(), tim[2];
char *ctime(), *s_get();
double d_get(), tmp;
               switch ( flag ) {
  case 1:
                                                        /* read title, dim, hyp */
                       time(tim);
                      dim = i_get(buf,stdin);
                       pf("Enter column dimension of matrix D[,]: ");
hyp = i_get(buf,stdin);
fpf(fpout,"\ndim\t= %d\nhyp\t= %d\n",dim,hyp);
                       break:
                case 2:
                        /* read B[,] */
                       pf("\nEnter elements of matrix B[,]:");
                       pi( \nEnter elements of matrix D(:): );
for (i=0; i < dim; i++) {
    pf("\n\trow %d:\n",i+1);
    for (j=0; j < dim; j++) {
        pf("\t\tB[%d,%d] = ",i+1,j+1);
        tmp = B[i*dim+j] = d_get(buf,stdin);
        fpf(fpout,"B[%d,%d]\t= %16.9e\n",i+1,j+1,tmp);</pre>
```

```
:Set
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Jui religer
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (3sh) beerlft
ppอมาป
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 /•
                                                                                                                                                                                                                                                                                                 filread() -- read data from input file.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ....
                                                                                                                                                                                                                                                                                                                                                                                                           - ()ppeunf -
                                                                                                                                    - [o.tuqui] -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 •/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ł
                                                                                                                                                                                                                                                                                                                                                                                                                                       preak
                                                                                                                                                                                                                                                                                                                                                                                                                                    :++800
                                                                                                                                                                                                             ł
                                                                                                                                                                                                               pf("/nEnter elements of vector y[]:/n");
pf("/nEnter elements of vector y[]:/n");
pf("/t/ty[%d] = ".i+1);
pf("/t/ty[%d] = d_get(buf,stdin);
tmp = y[i] = d_get(buf,stdin);
tpl(fpout,"y[%d]/t= %16.9e/n",i+1,tmp);
}
                                                                                                                                                                                                                                                                                                                                                                                 /. [']R post ./
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ł
                                                                                                                                                                                                                ł
                                                                                                                                                                                                                                                                                                                                                                                                                                               ł
                                                                                                                                            ł
                                                                                                                                                                                                                                                                                                                                                                                                                                                 ł
                                                                                                                                             /* read C[,] */
p1("\nEnter elements of matrix C[,]:");
p1("\nEnter elements of matrix C[,]:");
p1("\n\trow $\fracktriansum{k}(-1,-1);
p1("\n\trow $\fracktriansum{k}(-1,-1);
p1("\trow $\fracktriansum{k}(-1,-1);
p1("\trov{$\trow $\trow $\trov{$\trow $\trov{$\trov{$\trow $\trov{$\trow $\trov{$\trow $\trov{$\trow $\trov{$\trow $\trov{$\trow $\trov{$\trow $\trow 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ł
                                                                                                                                                                                                                                                                                                                                                                                                                                                   Ł
       pposhiji...
```

o.Juqni

o.Juqui

input.c

...filread

٤

```
register int
                                  dfig=0, hfig=0;
                                  *s_get(), btmp[B_SIZE];
atoi();
           char
           int
           if ( flag == 1 ) {
    while ( s_get(buf,fpin) != NULL ) {
                      line++;
                      b_pack(buf,btmp);
if ( strcmpr("dim=",btmp.4) ) {
    dim = atoi(&btmp[4]);
    dim = (& upp);
                             if ( dim <= 0 ) error(4,"filread()");</pre>
                             dflg++;
                       3
                      'else if ( strcmpr("hyp=",btmp,4) ) {
    hyp = atoi(&btmp[4]);
    if ( hyp <= 0 ) error(5,"filread()");</pre>
                             hfig++;
                       else {
                             pf("%s\n",buf);
                       if ( dfig && hfig ) return;
                 error(6,"filread()");
           3
            else {
                  while ( s_get(buf,fpin) != NULL ) {
    line++;
                       b_pack(buf,btmp);
                       switch ( btmp[0] ) {
                             case 'B':
                                   read_B(&btmp[1]);
break;
                             case 'C':
                                   read_C(&btmp[1]);
                                   break;
                              case 'D':
                                   read_D(&btmp[1]);
                                   break:
                              case 'e':
                                   read_e(&btmp[1]);
break;
                              case 'y':
                                   read_y(&btmp[1]);
                                   break;
                              case 'x':
                                   read_x(&btmp[1]);
                                   xfig++;
                                    break;
                        }
                 3
            3
}
                                                                         - [input.c] -
               - b_pack() -
                       pack blanks and tabs in a string.
** b_pack() -
•/
```

Page 3 of input.c

~

input.c

```
b_pack
b_pack (buf1, buf2)
register char
                   buf1[], buf2[];
£
          register char
                            *p1, *p2;
                                               /* start */
          p1 = buf1;
          p2 = buf2;
          /* packing */
               case '\t':
                   p1++;
break;
               default:
                    *p2++ = *p1++;
                    break;
          •p2 = ^\0';
}
                                                           - [input.c] -
             - strcmpr() -
                -- compare strings up to n bytes.
...
   strcmpr() -
• /
                                                                                     strcmpr
strempr (str1, str2, n)
                    *str1, *str2;
register char
register int
                    n;
£
           while ( n-- > 0 ) {
    if ( *str1++ == *str2++ )
                    continue;
               else
                    return(0);
           return(1);
ł
 /•
                                                           - [input.c] -
             - read_rc() -
 e0
   read_rc() -- read values of 'row' and 'col'.
 **
 •,
                                                                                      read_rc
read_rc (flag, str, row, col)
register int
                    flag, *row, *col;
 register char
                     *str;
 £
                             count=0;
           register int
           int
                    atoi();
           if ( *str != '[' && *str != '(' ) error(6,"read_rc()");
           *row = atoi(++str);
if ( *row <= 0 ) error(6,"read_rc(): row < 0");</pre>
```

input.c

o.Juqni

(rite) (Later)

o.Juqui

orpoor...

٤ $C[(--row)^{h}Dyp+(--col)] = atof(atr+index);$ index = read_rc(1,str,&row,&col); if (row > dim || col > hyp) error(7,"read_C()"); read_rc(), index, row, col; atof(); aldrob JŪĮ rediater char :115. (ris) J_beer ٤ $B[(-row)^{dim}+(--col)] = atof(atr+index);$ $index = read_rc(1,str,&row,&col);$ if (row > dim || col > dim) error(7,"read_B()"); read_rc(), index, row, col; atof(); alduob Jui redo relation :uns. read_B (str) 1. .. -- read Datues of B[][], C[][], D[][], e[], x[], y[]. -68 **08** - [o.iuqui] -•/ ł return(++count); :++;unoo ł :++1moo :++1]s **while** (*str != '\0' && *str != '\') { المَّلْمُ *str != '\0'); II (*str == '\0') error(6,"read_rc()"); ł :++junoo \mathbf{i} (\circ col <= 0) error(6, "read_rc(): col < 0"); (TJ2++)ioJE = loo* Į :++3moo :++JJS if (fag) {
 while (*str == ~0') error(6,"read_rc()");
 while (*str == ~0') error(6,"read_rc()"); /* ; rearch for ', */ :++junoo

Tead

Lead

Tead_B

input.c

input.c

...**r**ead_D

```
*str;
register char
Į
                    read_rc(), index, row, col;
          int
          double
                    atof();
          index = read_rc(1,str,&row,&col);
if ( row > dim || col > hyp ) error(7,"read_D()");
          D[(--row)*hyp+(--col)] = atof(str+index);
ł
                                                                                             read_e
read_e (str)
register char
                     *str;
٤
                     read_rc(), index, col;
           int
                     atof();
           double
           index = read_rc(0,str,&col);
if ( col > hyp ) error(7,"read_e()");
           e[--col] = atof(str+index);
}
                                                                                             read_x
read_x (str)
register char
                     •str;
Į
                    read_rc(), index, row;
atof();
           int
           double
           index = read_rc(0,str,&row);
           if ( row > dim ) error(7,"read_x()");
           x[--row] = atof(str+index);
ł
                                                                                             read_1
read_y (str)
register char
                      *str;
 ł
                     read_rc(), index, row;
atof();
           int
            double
           index = read_rc(0,str,&row);
           if ( row > dim ) error(7,"read_y()");
            y[--row] = atof(str+index);
 }
```

...

*9

ş

```
/•
                - katz.c -
•• katz() -- this is the main iteration routine, each action
             falls in clearly defined steps; called by main().
•/
#include <stdio.h>
#include "cka.h"
katz ()
             registerinti, j, k, flag, itmp, isave;intSgn(), nti, n_uniq, *sgntmp, detfig;doubled_get(), Abs(), dtmp1, dtmp2;REGION*rgn_init(), *corn(), *rgn, *rgntmp;
   /* STEP 0: initialization */
             init():
             sgntmp = (int •) palloc(hyp*sizeof(int));
             isave = -1;
             rgn = rgn_init(0);
   start::
              /° get initial point from the user terminal */
             if ( !xfig ) {
                    fpf(stderr,"\nEnter initial point:\n");
                   fiag = 1;
for (i=0; i < dim; i++) {
    fpf(stderr,"\tx[%d]= ",i+1);
                                                              /° it is an initial guess */
                         rgn->px[i] = d_get(buf,stdin);
                    1
                    ,
pf("\n");
              }
              élse {
                    for (i=0; i < dim; i++)
    rgn->px[i] = x[i];
pf("\n°* Initial point x0[] = ");
                    pv(x,dim,FORMAT1);
                    pf("\n");
              ł
    /* STEP 1 & 2: check region and compute rgn->nk[] */
   step1:;
              detfig = 0;
              switch ( rgn_check(rgn,flag) ) {
                                                               /° x[] on boundary */
              case 1:
                    if ( flag ) {
    pf("** x[] is on a boundary.\n");
    xflg = 0;
    rest.
                    break;
                                                              -/* detJ = 0 */
              case 2:
                    if ( flag || pflg )
    pf("** x[] is in a region where detJ=0.\n");
if ( flag )
    f("** x[] is in a region where detJ=0.\n");
                    goto start;
else {
```

•:

· .

katz

print_sol(rgn); :[i]Aa<-ngi =+ [i]xq<-ngi Į ٤ Ł pf("qti[%d]->value=%6.3f\n",i,qti[i]->value); pf("qti[%d]->value=%6.3f\n",i,qti[i]->valuex); **if** (after) { pf("nti=%d_n",nti); pf("+i; i,nt > i;0=i) **ioi** poilou(_[57]:4.112 $i = i \pi$ \. []itq bilov to # lotot */

 for (j=0; j < hyp; j++)</td>

 if ((pti[j].index != -1) && (det fig ||

 (Sgn(pti[j].value) == rgn->detagn)))

 qti[i++] = &pti[j];

 /. Totruos ./ :0 = 1 } (Ser) 1 /* []the in most tug ,2'[]the value of them in gtil] */ ł ٤ £ ł if afig) { pf("pti[%d].value=%6.3f\n",j,pti[j].value); pf("pti[%d].index=%d\n",j,pti[j].index); , ;++geft √ noitosersini no ei stott •/ if (lec, r < dim, r++) dtmp1 += D[i*hy+j]*(rgn->nk[i]); f (Abs(dtmp1) > epsilon) { pti[j].value = (e[j] - rgn->dx[j])/dtmp1; pti[j].index = j; (++i : mib > i :0=i) **101** /. LD010 ./ 1. znoitosreini 110 brit. ;0 = 26A /* poll noitoscraini */ ::cqəjz ✓• STEP 3: find intersections •/ Į preak; :0 = 3ey (3ey) H > ssoug toitini regnol on •/ default: preak; return; print_sol(rgn); :C 9289 I notulos sit tid tert */ break :7qste otog :++Bujəp /. + dats un past ./

Katz.c

katz.c

zìDy...

}

· •

katz.c

...katz

```
return;
```

the second second

/° STEP 5: find the minimum and determine if it is unique */

```
/* sorting */
                                      /° uniqueness flag °/
n_{uniq} = 1;
if ( nti > 1 ) {
      for (itmp=nti/2; itmp > 0; itmp/=2)
for (i=itmp; i < nti; i++)
for (j=i-itmp; j >= 0 &&
(dtmp1=Abs(qti[j]->value))
             >= (dtmp2=Abs(qti[j+itmp]->value));
            for (i=1; i < nti; i++)
if (qti[0]->value == qti[i]->value)
                                                   /* size of set. Ik */
             n_uniq++;
}
if ( afig ) {
    pf("min: qti[0]->value=%6.3f\n",qti[0]->value);
    pf("min: qti[0]->index=%d\n",qti[0]->index);
ł
if ( qti[0]->value >= 1.0 ) {
    for (i=0; i < dim; i++)
</pre>
                                                   /° solution is reached °/
            rgn->px[i] += rgn->nk[i];
       print_sol(rgn);
       return;
ł
```

/* STEP 6: as minimum is unique, find next iteration point x[] */

```
for (i=0; i < dim; i++)
     x[i] = rgn \rightarrow px[i] + qti[0] \rightarrow value * rgn \rightarrow nk[i];
                                          /* corner problem */
if ( n_uniq > 1 ) goto step8;
 /* setup sign sequence vector for next region */
for (j=0; j < hyp; j++)
    sgntmp[j] = rgn->sgnsq[j];
isave = qti[0] -> index;
sgntmp[isave] = -sgntmp[isave];
/* this region is over, get next region to iterate */
                                          /* put region to RGNQ */
putrgn(RGNQ,rgn);
flag = 0;
rgn = rgn_init(0);
                                          /° setup rgn->px[] °/
for (i=0; i < dim; i++)
rgn->px[i] = x[i];
for (j=0; j < hyp; j++)
rgn->sgnsq[j] = sgntmp[j];
                                          /* setup rgn->sgnsq[] */
goto step1;
```

katz.c

. . .

katz.c

...katz

```
/* STEP 7: Jacobian matrix is singular */
step7:;
    zerodet(rgn);
    goto step3;
/* STEP 8: corner problem */
step8:;
    rgntmp = corn(x,n_uniq,rgn);
    putrgn(RGNQ,rgn);
    rgn = rgntmp;
    goto step3;
end:;
    pf("\n??-> Program ends abnormally <-??\n");</pre>
```

}

. . **. .**

```
/0
                - lattice.c -
...
•• latt() -- this is the main iteration routine which has
             been optimized for lattice structure, each action falls in clearly defined steps; called by main().
+
....
•/
#include <stdio.h>
#include "cka.h"
                                                                                                                      latt
latt ()
٤
             register int i, j, k, flag, itmp, isave;
int Sgn(), dim2=2*dim, nti, n_uniq, *sgntmp, *bdtmp, detflg;
double d_get(), Abs(), dtmp1, dtmp2, *xtmp;
             REGION *rgn_init(), *corn(), *rgn, *rgntmp;
   /* STEP 0: initialization */
             init();
             sgntmp = (int •) palloc(hyp•sizeof(int));
bdtmp = (int •) palloc(hyp•sizeof(int));
xtmp = (double •) palloc(dim•sizeof(double));
             isave = -1:
             rgn = rgn_init(0);
   start:;
             /* get initial point from the user terminal */
if (!xfig ) {
                    fpf(stderr,"\nEnter initial point:\n");
fag = 1:
/* it is an initial guess */
                    pf("\n");
              }
              else {
                    rgn->px[i] = x[i];
pf("\n*• Initial point x0[] = ");
pv(x,dim,FORMAT1);
pf("\n");
                    for (i=0; i < dim; i++)
              ł
    /* STEP 1 & 2: check region and compute rgn->nk[] */
    step1:;
              detfig = 0;
              switch ( rgn_check(rgn,flag) ) {
                                                               /° x[] on boundary °/
              case 1:
                    if ( flag ) {
    pf("** x[] is on a boundary.\n");
                          xfig = 0;
                          goto start;
                     break;
```

lattice.c

lattice.c

...latt

```
/* det=0 */
         case 2:
                if ( flag || pflg )
        pf("** x[] is in a region where detJ=0.\n");
                if (flag)
                      goto start;
                else
                      detfig++;
                                                           /• used in step 4 •/
                      goto step?;
                break;
                                                           /* just hit the solution */
          case 3:
                print_sol(rgn);
                return;
                break;
          default:
                                                           /* no longer initial guess */
                if (flag) flag = 0;
                break
          3
/• STEP 3: find intersections •/
step3:;
                                                            /* counter */
          i = 0:
          for (j=0; j < hyp; j++) {
    pti[i].index = -1;</pre>
                                                            /* clear */
                 if ( j != isave ) {
    k = dcolumn[j];
                       if ( (rgn->bdry[j]) && (Abs(rgn->nk[k])>epsilon) ) {
    pti[i].value = (e[j] - rgn->px[k])/rgn->nk[k];
                             pti[i++].index = j;
if ( afig ) {
    pf ("pti[%d].value=%6.3f\n",i-1,pti[i-1].value);
    pf ("pti[%d].index=%d\n",i-1,pti[i-1].index);
                             }
                       }
                 }
           ł
                                                            /* total # of intersections */
           nti = i:
/* STEP 4: get valid pti[]'s, put them in qti[] */
                                                            /• if # of intersections > 0 •/
           Hf ( nti ) {
                                                            /* counter */
                 j = 0;
                 for (i=0; i < nti; i++)
if ( (pti[i].index != -1) && (detfig ||
                              (Sgn(pti[i].value) == rgn->detsgn)) )
                       qti[j++] = &pti[i];
                                                            /* total # of valid pti[] */
                 nti = j_i
                 if ( afig ) {
    pf("nti=%d\n",nti);
                       for (i=0; i < nti; i++) {
    pf("qti[%d]->value=%6.3f\n",i,qti[i]->value);
    pf("qti[%d]->index=%d\n",i,qti[i]->index);
                       }
                 }
           3
```

.

...latt

```
/* solution is in unbounded region */
if ( !nti ) {
    for (i=0; i < dim; i++)
        rgn->px[i] += rgn->nk[i];
    print_sol(rgn);
    return;
}
```

/* STEP 5: find the minimum and determine if it is unique */

```
/* sorting */
           n_uniq = 1;
if ( nti > 1 ) {
                                                      /* uniqueness flag */
                  for (itmp=nti/2; itmp > 0; itmp/=2)
for (i=itmp; i < nti; i++)
for (j=i-itmp; j >= 0 &&
(dtmp1=Abs(qti[j]->value))
>= (dtmp2=Abs(qti[j+itmp]->value));
                          j-=itmp)
                                \mathbf{k} = (\mathbf{int})qti[j];

qti[j] = qti[j+itmp];

qti[j+itmp] = (TI *)k;
                   for (i=1; i < nti; i++)
                   if (qti[0]->value == qti[i]->value)
                                                     /* size of set Ik */
                          n_uniq++;
           }
           if ( afig ) {
    pf("min: qti[0]->value=%6.3f\n",qti[0]->value);
    pf("min: qti[0]->index=%d\n",qti[0]->index);
            }
           if ( qti[0]->value >= 1.0 ) {
    for (i=0; i < dim; i++)
        rgn->px[i] += rgn->nk[i];
                                                                     /° solution is reached °/
                   print_sol(rgn);
                   return;
            }
/* STEP 6: as minimum is unique, find next iteration point x[] */
            /* must save z[] since rgn_check() uses it */
```

```
for (i=0; i < dim; i++) {
    x[i] = rgn->px[i];
    xtmp[i] = x[i] + qti[0]->value * rgn->nk[i];
}
if ( n_uniq > 1 ) goto step8; /* corner problem */
/* save rgn->sgnsq[] and rgn->bdry[] for next region */
for (j=0; j < hyp; j++) {
    sgntmp[j] = rgn->sgnsq[j];
    bdtmp[j] = rgn->bdry[j];
}
/* setup sign sequence vector for next region */
isave = qti[0]->index;
```

```
isave = qti[0]->index;
sgntmp[isave] = -sgntmp[isave];
```

}

lattice.c

```
...latt
```

```
flag = 0;
rgn = rgn_init(0);
        /* setup rgn->px[] */
for (i=0; i < dim; i++)
    rgn->px[i] = xtmp[i];
        /* setup rgn->sgnsq[] and rgn->bdry[] */
for (j=0; j < hyp; j++) {
    rgn->sgnsq[j] = sgntmp[j];
    rgn->bdry[j] = bdtmp[j];
}
         ł
         goto step1;
/* STEP 7: Jacobian matrix is singular */
step?:;
         zerodet(rgn);
         goto step3;
/* STEP 8: corner problem */
step8:;
         rgntmp = corn(xtmp,n_uniq,rgn);
putrgn(RGNQ,rgn);
rgn = rgntmp;
         goto step3;
   end:;
         pf("\n??-> Program ends abnormally <-??\n");
```

Page 4 of lattice.c

```
corner.c
```

• • • •

```
- corner.c -
/•
...
** corner.c :
                        -- deals with corner problem;
            corn()
ę¢
            zerodet() --- deals with det J = 0 case.
¢¢
•/
#include <stdio.h>
#include "cka.h"
                                                                        - [corner.c] -
               - corn() -
 /•
Q#
•• corn() -- this routine handles the corner problem, called
            by katz() and latt().
$0
•/
REGION *corn (cx, n_uniq, rgn_in)
double
             •cx;
register int
                        n_uniq;
register REGION •rgn_in;
             register int i, j, k, n;

int nomatch, mask, nti, found, sgnmatch, flag, detfig;

double Abs(), dtmp1, dtmp2, *xtmp;

CORNER *cnrinit(), *getcnr(), *cnr;

REGION *rgn_init(), *getrgn(), *rgntmp, *rgntmp2;
£
             if ( afig ) pf("\n** hit corner **\n");
    /* STEP 8 & 9 */
              n = CNRQ ->n;
             /* check if the corner point is new */
if ( n != 0 ) for (j=0; j < n; j++) {
    cnr = getcnr(CNRQ);</pre>
                    nomatch = 0;
for (i=0; i < dim; i++) if ( cx[i] != cnr->cx[i] ) {
                         nomatch++;
                         break:
                    if ( nomatch )
                         putcnr(CNRQ,cnr);
                    else
                          break:
              }
     /* STEP 10 & 11 */
              if ( !n || nomatch ) {
    cnr = cnrinit();
                                                            /* new corner */
```

corner.c

```
/* save indices */
            cnr->index = (int *) palloc(n_uniq*sizeof(int));
            for (k=0; k < n uniq; k++)

cnr->index[k] = qti[k]->index;
            /* generate (2**n_uniq-1) neighborhood regions */
                                              /* nti = 2**n_uniq */
            nti = 1 << n_uniq;
            for (i=1; i < nti; i++)
                 for (mask=1,k=0; k < n_uniq; mask<<=1,k++)</pre>
                 if (mask & i)
                      rgntmp->sgnsq[cnr->index[k]]
= -rgn_in->sgnsq[cnr->index[k]];
                 for (j=0; j < dim; j++)
    rgntmp->px[j] = cx[j];
                 /* compute jcbn[,] and nk[] but don't compute sgnsq[] */
if ( rgn_check(rgntmp,0) == 2) zerodet(rgntmp);
                 putrgn(cnr->CNRRGN,rgntmp);
             }
        }
/* STEP 12 */
        sgnmatch = 0;
step12:;
        detfig = 0;
        n = cnr \rightarrow CNRRGN \rightarrow n;
                                               /* cnr->sgnsq[] is not set */
        if ( !cnr->sgnfig ) {
             found = 0;
             for (k=0; k < n; k++) { /* det
rgntmp = getrgn(cnr->CNRRGN);
                                               /* det > 0 */
                  if ( rgntmp->detsgn > 0 ) {
                       found++;
                       break
                  else
                       putrgn(cnr->CNRRGN,rgntmp);
                                               /• det = 0 •/
             if ( !found )
for (k=0; k < n; k++) {
                  rgntmp = getrgn(cnr->CNRRGN);
                  if ( rgntmp->detsgn = 0 ) {
                       found++;
                       detfig++;
                       break;
                  {
                  else
                       putrgn(cnr->CNRRGN,rgntmp);
                                                /• det < 0 •/
             if (!found)
             for (k=0; k < n; k++) {
                  rgntmp = getrgn(cnr->CNRRGN);
                  if ( rgntmp->detsgn < 0 ) {
    found++;</pre>
                       break;
                   s
                   else
```

```
putrgn(cnr->CNRRGN,rgntmp);
    }
ł
                                     /* match the sgnsq[] */
else {
    for (k=0; k < n; k++) {
         rgntmp = getrgn(cnr->CNRRGN);
         nomatch = 0;
         for (j=0; j < hyp; j++)
if ( rgntmp->sgnsq[j] != cnr->sgnsq[j]) {
              nomatch++;
              break
         if ( nomatch )
              putrgn(cnr->CNRRGN,rgntmp);
         else
              break:
     sgnmatch++;
3
```

/* STEP 13: repeat STEP 2 & 3 to find intersections */

```
/* intersection flag */
/* assume j != cnr->index[k] */
/* find all intersections */
/* clear */
flag = 0;
nomatch = 1;
for (j=0; j < hyp; j++) {
    pti[j].index = -1;
    for (k=0; k < n_uniq; k++)
</pre>
           if (j == cnr -> index[k]) nomatch = 0;
      if ( nomatch ) {
            dtmp1 = 0;
           for (i=0; i < dim; i++)
           /* there is an intersection */
                  ł
            }
      }
}
/° counter °/
      for (j=0; j < hyp; j++)
if ( (pti[j].index != -1) && (detfig ||
            (Sgn(pti[j].value) == rgntmp->detsgn)) )
qti[i++] = &pti[j];
                                              ^ total # of valid pti[] °/
      nti = i;
      if ( afig ) {
    pf("nti=%d\n",nti);
            for (i=0; i < nti; i++) {
    pf("qti[%d]->value=%6.3f\n",i,qti[i]->value);
    pf("qti[%d]->index=%d\n",i,qti[i]->index);
            3
       }
 }
```

corner.c

3

/0

**

\$†

•/

Į

```
if ( nti > 1 ) /* find the minimum */
/* use mask as an arbitrary integer buffer */
            if (nti > 1)
            for (mask=nti/2; mask > 0; mask/=2)
for (i=mask; i < nti; i++)
            for (j=i-mask; j \ge 0 \&\&
               (dtmp1=Abs(qti[j]->value)) >= (dtmp2=Abs(qti[j+mask]->value));
               j-=mask)
                  \mathbf{k} = (\mathbf{int})qti[\mathbf{j}];
qti[\mathbf{j}] = qti[\mathbf{j}+mask];
                  qti[j+mask] = (TI *)k;
            ļ
            if ( afig ) {
    pf("min: qti[0]->value=%6.3f\n",qti[0]->value);
    pf("min: qti[0]->index=%d\n",qti[0]->index);
            ł
            /* find point x[] */
xtmp = (double *) palloc(dim*sizeof(double));
            for (i=0; i < dim; i++)
                  xtmp[i] = rgntmp -> px[i] + 0.5 * qti[0] -> value * rgntmp -> nk[i];
             /* determine sgnsq[] and put it in cnr->sgnsq[] */
            if ( !cnr->sgnfig ) {
                  rgntmp2 = rgn_init(-999);
                  for (i=0; i < dim; i++)
    rgntmp2->px[i] = xtmp[i];
compute_jy(rgntmp2,-1);
                                                            /* compute sgnsg[] */
                  for (j=0; j < hyp; j++)
    cnr->sgnsq[j] = rgntmp2->sgnsq[j];
                                                            /* set flag */
                  cnr->sgnfig++;
            }
            if (!sgnmatch )
                   goto step12;
             else
                   for (i=0; i < dim; i++)
                        rgntmp->px[i] = xtmp[i];/* setup rgntmp->px[] */
                   rgntmp->id = rgn_count++; /* reset rgntmp->id */
                   return(rgntmp);
            }
               -zerodet() -
                                                                          - [corner.c] -
** zerodet() -- deals with det J[.] = 0 case, called by katz(),
            latt() and corn().
                                                                                                             zerodet
zerodet (rgn)
register REGION
                       •rgn;
             register int
                                    i;
             double d_get();
             pf("\n** Jacobian matrix is singular:");
            pm(rgn->jcbn,dim,Hatthr b blighter);
pm(rgn->jcbn,dim,dim,FORMAT1);
fpf(stderr,"\nEnter a non-zero vector nk[]");
fpf(stderr," so that J[,]nk[] = 0 :\n");
for (i=0; i < dim; i++) {</pre>
```

corner.c

}

corner.c

...zerodet

:

fpf(stderr,"\tnk[%d] = ",i+1);
rgn->nk[i] = d_get(buf,stdin);
"\nnk[1:\t");

} pf("\nnk[]:\t"); pv(rgn->nk,dim,FORMAT1); pf("\n");

init.c

init.c

/*		– init.c –	
99	init.c	:	
**		init()	call rest routines to initialize;
••		normalize D()	normalize D[,] & e[];
••		parallel groups()	find parallel hyperplane groups;
••		cnrinit()	initialize CORNER and CORNER_QUEUE.
•/			

```
#include "cka.h"
```

REGION_QUEUE	•RGNQ;	/*	a queve of regions in the iteration */
CORNER_QUEUE	•CNRQ;	/•	a queue of corners in the iteration */
BETA	*axis;	/•	axis[i] is an array of the structure BETA •/
int	<pre>*beta_count;</pre>	/•	<pre>beta_count[j] is the # of parallel hyperplanes with normal direction being the j-th axis */</pre>
int	•dcolumn;	/*	dcolumn[j] contains the index of the nonzero entry in the j-th column of $D[][] */$
double	•wk;	/*	wk[] is the working area for IMSL routines */
double	◆jcbntmp;	/•	jcbntmp[][] is the working area for computing inverse of Jacobian when using IMSL routines */

/* - init() - - [init.c] ** init() -- takes care of all necesary initializations;
** called by lattice().
*/

```
init ()
{
```

init

```
register int i, j;
```

```
/* allocate spaces */
RGNQ = (REGION_QUEUE *) palloc(sizeof(REGION_QUEUE));
RGNQ->head = RGNQ->tail = RNIL;
RGNQ->n = 0;
CNRQ = (CORNER_QUEUE *) palloc(sizeof(CORNER_QUEUE));
CNRQ->head = CNRQ->tail = CNIL;
CNRQ->n = 0;
if ( imsl ) {
    wk = (double *) palloc(dim*(dim+3)*sizeof(double));
    jcbntmp = (double *) palloc(dim*dim*sizeof(double));
}
if ( lattice ) {
```

```
register double
                                                                                                    i, j, fag:
*dmjb*
                                                                                                                              Jui Telest
                                                                                                                                          () G_stilemron
(-azilonnon
                                                                                                                                                                 1.
                                    should contain one and only one nonzero entry; this routine
corresponding nonzero entry in the columns of D[,] and set
that entry to 1; called by unit().
                                                                                                                                                                  40
                                                                                                                                                                  -
                                                                                                                                                                  ...
                                                                                                                                                                  $$
                                       •• normalize_D() -- for hibrid representation, each column of D[,]
                                                                                                                                                                  80
                                                                                                             - ()(] = normalize -
                                                                                                                                                                  1
                                            - [2.1114] -
                                                                                                                                                                    Ł
                                                                                                                        rgn_count = 0;
                                                                                          /. frigunos uoibes ezipigius ./
                                                                                                                                                   Į
                         /* quarter of boundaries for each region = hyp */
pti = (TT *) palloc(hyp*sizeof(TI));
qti = (TT **) palloc(hyp*sizeof(TT *));
qti = (T
                                                                                                                                             ejze
                                                                                                                                                   ł
                                                                                                                                           ł
                                                                                                                                   £
                                             pi( Xi ); { {
    if (i=0; i < dim; i++) {
        pf("beta_count[%d] = %d\n",i,beta_count[i]);
        pf("beta_count[%d] = ",i);
        pf("axis[%d].beta[] = ",i);
        pf("sxis[%d].beta[]);
        pf("xd ",axis[i].beta[j]);
        pf("n");
    }
}</pre>
                                                                                                                       } ( afts ) i
:("n/")iq
                                                                                                             berallel_groups();
                                                                        /. sanous sundasalin jennand puil ./
                                     for (i=0; i < dim; i++) if ( beta_count[i] > 0 )
sxis[i].beta = (int *) palloc(beta_count[i]*sizeof(int));
                                                                                        ^ normalize D[.] and e[] °/
normalize_D();
                                                                                                   for (i=0; i < dim; i++)
beta_count[i] = 0;</pre>
                                                             exis = (BETA *) palloc(dim*aizeof(BETA));
dcolumn = (int *) palloc(hyp*aizeof(int));
beta_count = (int *) palloc(dim*aizeof(int));
                                                                       pti = (TI \circ) palloc(S^{dim} \circ aizeof(TI));
qti = (TI \circ) palloc(S^{dim} \circ aizeof(TI \circ));
                                                                                                                                         10
                                                                                               noitosub sixo doos ri **
                                          soundradky happunog z unnursou soy uober 1000 ...
   ini...
```

o.Jini

o.Jini

init.c

3

```
...normalize_D
                                                     /* scan D by column */
          for (j=0; j < hyp; j++) {
                flag = 0;
                                                     /* for each row in a column */
                for (i=0; i < dim; i++) {
                     dtmp = \&D[i*hyp+j];
                                                      /• hit nonzero entry •/
                     if ( *dtmp != 0 ) {
                                                      /* the only nonzero */
                           if (!flag ) {
                                flag++;
                                /* normalizing */
if ( *dtmp != 1.0 ) {
                                      e[j] /= *dtmp;
                                      •dtmp = 1.0;
                                }
                                dcolumn[j] = i; /* the i-th row in the j-th
                                                         column is nonzero •/
                                beta_count[i]++;/* # of hyperplanes in the
                                                         i-th parallel group */
                                                      /• >= 2 nonzero entries •/
                           élse
                                error(8);
                      }
                3
                 /• all entries in column j are 0 •/
                if ( !flag ) error(8);
           ł
                                                                   - [init.c] -
              - parallel_groups() -
/•
.
  parallel_groups() -- identical columns in D[.] represents
parallel hyperplanes; this routine groups those columns
in sets and sort (using SHELL sort) the corresponding
'beta (i.e. e[j])' in ascending order; called by init().
$$
**
**
**
•/
                                                                                    parallel_groups
parallel_groups ()
           register int
                                i, j, k, index, fiag, gap;
                      count, *tested;
           int
           tested = (int •) palloc(hyp•sizeof(int));
for (i=0; i < hyp; i++) tested[i] = 0;</pre>
           i = 0;
            count = 0;
            while ( count++ < hyp ) {</pre>
                 index = 0;
                 flag = 0;
                 k = -1;
                 axis[dcolumn[i]].beta[index++] = i;
                 tested[i]++;
                  •• find parallel columns by searching for the same
                  ** dcolumn[j].
                  •/
                 for (j=i+1; j < hyp; j++)
```

init.c

}

/•

e9

49

++ •/

ş

}

. . .

```
...parallel_groups
                                            /° if not tested °/
            if ( !tested[j] ) {
                 /* if the j-th column is parallel to the i-th */
                 if ( dcolumn[j] == dcolumn[i] ) {
                      axis[dcolumn[j]].beta[index++] = j;
                      tested[j]++;
                      count++;
                 3
                 / get the 1st nonparallel untested column */
                 else if ( !flag ) {
                      flag ++;
k = j;
                 }
             }
             if (k = -1)
                                            /* all are parallel */
                 break:
             else
                                            /° k = 1st nonparallel column °/
                 i = k
        }
         /• SHELL sorting so that beta is in increasing order •/
        -= gap)
                  if ( e[axis[k].beta[j]] == e[axis[k].beta[j+gap]] )
                      error(9);
                  else {
                      index = axis[k].beta[j];
axis[k].beta[j] = axis[k].beta[j+gap];
                       axis[k].beta[j+gap] = index;
                  }
              }
         ł
                                                        - [init.c] -
           - cnrinit() -
  cnrinit() -- allocate spaces for structure CORNER and
          CORNER_QUEUE.
register CORNER *cnrinit ()
         register CORNER *cnr;
          cnr = (CORNER •) palloc(sizeof(CORNER));
          cnr->cx = (double *) palloc(dim*sizeof(double));
cnr->sgnsq = (int *) palloc(hyp*sizeof(int));
          cnr -> sgnfig = 0;
          cnr->CNRRGN = (REGION_QUEUE *) palloc(sizeof(REGION_QUEUE));
          cnr->CNRRGN->head = cnr->CNRRGN->tail = RNIL;
          cnr \rightarrow CNRRGN \rightarrow n = 0;
          return(cnr);
```

ulu->urc]' ulu->source]' ... is the determinant positive ?
 is the determinant positive ?
 is the determinant positive ? **40** ** **30** .. ** ... - ()yosyo ub. -- [2100821] --/ Į :(ngr)nrujer rgn->dx = (double *) palloc(hyp*sizeof(double)); əstə rgn->bdry = (int *) palloc(hyp*sizeof(int)); for (j=0; j < hyp; j++) rgn->bdry[j] = 0; I (lattice) I rgn->jcbn = (double *) palloc(dim*dim*aizeof(double)); rgn->sgrsq = (int *) palloc(hyp*sizeof(int)); rgn->px = (double *) palloc(dim*sizeof(double)); rgn->nk = (double *) palloc(dim*sizeof(double)); rgn->nk = (double *) palloc(dim*sizeof(double)); rgn->id = flag; əstə rgn->id = rgn_count++; ✓ not associated with corner . (3eft:) **H** uZI = (REGION •) palloc(aizeof(REGION)); register REGION *rgn; register int Jai Təleigən :Sey REGISTER RECION (3sh) jini_n27 /• . rgn_init() -- allocate space for structure REGION. ... - [2.núgar] -•/ ieL! JUI /* error code for INSL routines */ rotation of regions
 rotation of regions
 reconnected during the iterations :junoo uzi Jui #include "cka.h" /+ rgn_init() -- allocates space for REGION, rgn_check() -- checks valid region, compute_jy() -- computes Jacobian & y[]=pulf(x[]). ** ** ** : эларыт 👓 ** - 2.naipar -•/

· • ·

region.c

region.c
60

```
rgn->dx[],
rgn->py[].
$$
                       rgn->jcon[],
80
90
                       rgn->detsgn.
•/
                                                                                                 rgn_check
rgn_check (rgn, flag)
register REGION
                       *rgn;
                                                         /* flag==1 : initial point */
register int
                       flag;
£
                                  i, j, k, m, n;
            register int
                       Sgn();
            int
            double Abs(), tmp1, tmp2, tmp3;
            /° compute rgn->sgnsq[], rgn->jcbn[][] and rgn->py[] °/
            compute_jy(rgn,flag);
            /* check if the point rgn->px[] is on a boundary */
if ( flag ) for (j=0; j < hyp; j++)
    if ( rgn->sgnsq[j] == 0 ) return(1);
             /• compute y[] - f(x[]) and store the result in rgn->py[] */
            k = 0:
            for (i=0; i < dim; i++) {
    rgn->py[i] = y[i] - rgn->py[i];
    if ( Abs(rgn->py[i]) > epsilon ) k++;
                                                         / solution is found ! */
             if ( !k ) return(3);
             /• determine boundary hyperplanes •/
             if (lattice)
                   for (i=0; i < dim; i++) if ( beta_count[i] > 0 ) {
                        /* initial point */
                        if (flag) {
                             rgn->bdry[k]++;
                              else for (n=0; n < m; n++) {/* scan */
j = axis[i].beta[n];
k = axis[i].beta[n+1];
                                   if ( e[j] < rgn->px[i] && rgn->px[i] < e[k] ) {
    rgn->bdry[j]++;
                                         rgn->bdry[k]++;
                                    }
                              }
                         3
                        else for (n=0; n < beta_count[i]; n++) {
    m = axis[i].beta[n];
    if ( m == qti[0]->index ) {

                                    rgn->bdry[m]++;
                                   if ( x[i] < e[m] ) {
    if ( m < k ) rgn->bdry[m+1]++;
    if ( m > j ) rgn->bdry[m-1] = 0;
                                    else if ( x[i] > e[m] ) {
    if ( m < k ) rgn->bdry[m+1] = 0;
```

region.c

}

•• **

** ++

.. •/

```
...rgn_check
                            if ( m > j ) rgn->bdry[m-1]++;
                       1
                   }
               }
           3
       }
        /• compute rgn->nk[] */
       if ( !imsl ) {
           }
       else {
            •• using IMSL routines: see legt2f.f in IMSL for details
            •• on the calling sequence of indatf(), inelmf() & inreff().
            •/
            transp(rgn->jcbn,jcbntmp,dim,dim);
            i = dim^{\bullet} dim;
            for (j=0; j < i; j++) wk[j] = jcbntmp[j];
            j = i + dim;
            k = j + dim;
ludatf_(&wk[0],jcbntmp,&dim,&dim,&sigdgt,
                &tmp1,&tmp2,&wk[i],&wk[j],&tmp3,&ier);
                                         /• jcbn singular •/
            if (ier > 128) {
                if ( pfig ) error(10,"rgn_check()",rgn);
return(2);
            élse {
                for (i=0; i < dim; i++)
                    rgn \rightarrow nk[i] = wk[i+k];
             }
        3
        /* find sign of det J */
        rgn->detsgn = Sgn(tmp1);
        if ( afig ) print_rgn(rgn);
        return(0);
                                                   - [region.c] -
           – compute_jy() –
  compute_jy() -- compute

(1) rgn->sgnsq[].
(2) rgn->jcon[][] and

                         (3) rgn->py[].
                                                                      compute_jy
compute_jy (rgn, flag)
register REGION •rgn;
```

ł

}

.

region.c

```
...compute_jy
                                                                 /* =1 : initial point.
register int
                           flag;
                                                                      compute (1), (2) & (3);
=0 : compute (2) & (3);
=-1: compute (1) only. */
                                        i, j, k, m, n, flg1;
              register int
              double tmp;
               /* compute rgn->dx[] and rgn->sgnsq[] °/
              if ( lattice ) {
                     /*

** note that since columns of D[][] are unit vectors,
** we only need one component of rgn->px[] at a time.

                     •/
                     if ( flag ) for (j=0; j < hyp; j++)
    rgn->sgnsq[j] = Sgn(rgn->px[dcolumn[j]]-e[j]);
               ł
              else {
                     for (j=0; j < hyp; j++) {
                           rgn \rightarrow dx[j] = 0;
                           for (i=0; i < dim; i++)
                                  rgn \rightarrow dx[j] += D[i^{hyp+j}]^{(rgn \rightarrow px[i]);}
                           if (flag)
                                  rgn->sgnsq[j] = Sgn(rgn->dx[j]-e[j]);
                     }
               }
               /* compute rgn->jcbn[] and rgn->py[] */
               if ( flag >= 0 ) {
    for (i=0; i < dim; i++) {</pre>
                           m = i^{\circ} dim;
                            n = i^{\bullet}hyp;
                            rgn \rightarrow py[i] = 0;
                            fl\bar{g}1 = 0;
                           for (j=0; j < dim; j++) {
    rgn->jcbn[m+j] = B[m+j];
    rgn->py[i] += B[m+j] * rgn->px[j];
                                  for (k=0; k < hyp; k++) {
    tmp = C[n+k] • rgn->sgnsq[k];
    rgn->jcbn[m+j] += tmp • D[j•hyp+k];
    /*
                                         ** the following line is excuted only
                                         ** once for each i.
                                         •/
                                         if (!fig1) {
                                                if ( lattice )
                                                      rgn \rightarrow py[i] += tmp

• (rgn \rightarrow px[dcolumn[k]] - e[k]);
                                                else
                                                      rgn \rightarrow py[i] += tmp \circ (rgn \rightarrow dx[k]-e[k]);
                                         }
                         ;
fig1++;
}
                    }
               3
```

print.c

print.c

Å.

```
/*
**
               - print.c -
ŧ¢
   This module contains 4 routines:
            print_eqn() -- print the coefficients of the pul function;
print_sol() -- print solution;
print_rgn() -- print all information in the structure REGION.
÷÷
**
**
•/
#include "cka.h"
                                                              -[print.c] -
                - print_eqn() -
/•
$$
   print_eqn() -- print coefficients of the pulf(.).
**
                                                                                                       print_eqn
print_eqn ()
             pf("\nCoefficients of the canonical equation:");
             pf("\nB[,]:");
             pm(B,dim,dim,FORMAT1);
             pf("C[,]:");
pm(C,dim,hyp,FORMAT1);
             pf("D[,]:");
pm(D,dim,hyp,"%2.0f ");
             pf("\ne[]:\t");
pv(e,hyp,FORMAT1);
             pf("\n\ny[]:\t");
pv(y,dim,FORMAT1);
             pf("\n");
 }
                                                                           - [print.c] -
                - print_sol() -
 60
      print_sol() -- print solution.
                                                                                                         print_sol
 print_sol (rgn)
 register REGION
                         *rgn;
 £
             register int i;
register REGION *rgntmp;
             REGION
                          *getrgn();
             pf("\n** Solution x[] = ");
pv(rgn->px,dim,FORMAT2);
                                                            /* print solution */
             if ( tflg ) {
                                                            /* test solution */
                    compute_jy(rgn,1);
for (i=0; i < dim; i++)
    rgn->py[i] = y[i] - rgn->py[i];
```

print.c

```
print.c
```

...print_sol

```
pf("\n=> f(x[]) - y[] = ");
pv(rgn->py,dim,FORMAT2);
            1
            i = RGNQ ->n;
            /* print out all regions where the solution curve passes by */
            if ( pfig && i > 0 ) {
    pf("\n\n** Regions in iteration :\n");
                  while ( RGNQ \rightarrow n != 0 ) {
                       rgntmp = getrgn(RGNQ);
print_rgn(rgntmp);
                  }
            }
            if ( pfig ) {
    pf("\n\n** Last region in the iteration :\n");
                  print_rgn(rgn);
            }
            pf("\n\n^{\bullet\bullet} Number of regions traveled: ");
if ( i > 0)
pf("%d.\n",i+1);
            else
                  pf("1.\n");
3
               - print_rgn() -
                                                                       -[print.c] -
10
...
   print_rgn() -- print all information in the structure REGION.
                                                                                                   print_rgn
print_rgn (rgn)
register REGION
                        *rgn;
ş
            register int
                                   k:
            pf("\nrgn->id: %d",rgn->id);
            pf("\nsign sequence: ");
            for (k=0; k < hyp; k++)
pf("%2d ",rgn->sgnsq[k]);
            pf("\npoint x[]: ");
pv(rgn->px,dim,FORMAT1);
            pf("\npoint y[]: ");
pv(rgn->py,dim,FORMAT1);
            pf("\nvector nk[]: ");
pv(rgn->nk,dim,FORMAT1);
             pf("\nJacobian matrix:");
                  pm(rgn->jcbn,dim,dim,FORMAT1);
             pf("\nSign of determinant: %2d",rgn->detsgn);
             if (lattice) {
                  pf("\nboundaries : ");
for (k=0; k < hyp; k++)
```

print.c

}

Ł

:

print.c

...print_rgn

. . . .

pf("%2d ",rgn->bdry[k]);

• • • • • • • • •

والمعط أسوا تعاصده وال

•••••••

pf("\n");

}

Page 3 of print.c ·

queue.c

3

```
- queue.c -
/4
.
   This module contains routines: putrgn(), getrgn().
...
9/
#include "cka.h"
                                                           - [queue.c] -
            - putrgn() -
19
**
  putrgn() -- places REGION at the end of REGION_QUEUE, it always
...
90
          assumes queue != NIL.
•/
                                                                                     putrgn
putrgn (rgnq, rgn)
register REGION_QUEUE
                             *rgnq;
register REGION
                             *rgn;
£
          rgn \rightarrow link = RNIL;
           /* gueve was initially empty */
          if (rgnq->head == RNIL) {
               rgnq->head = rgn;
               rgnq->tail = rgn;
          }
          /* queue was not empty, append at the end */
          else {
               rgnq->tail->link = rgn;
               rgnq->tail = rgn;
          }
          rgnq->n++;
          return:
ł
                                                           - [queve.c] -
             -getrgn() -
10
.
**
   getrgn() -- gets one REGION from the front of REGION_QUEUE and
returns a pointer to that REGION, it returns NIL if
the REGION_QUEUE is empty.
eo
#P
¢¢
•/
REGION
           *getrgn (rgnq)
register REGION_QUEUE
                              *rgnq;
٤
           REGION *rgn;
           /* if queue is empty, return NIL */
           rgn = RNIL;
           /* if queue is not empty, get one from the front */
           if (rgnq->head != RNIL) {
                rgn = rgnq->head;
                rgnq->head = rgnq->head->link;
                rgnq->n--;
```

Page 1 of queue.c

queue.c

```
return(rgn);
}
                                                          - [queue.c] -
            - putcnr() -
10
••
  putcnr() -- places CORNER at the end of CORNER_QUEUE, it always
**
....
          assumes queue != NIL.
*/
                                                                                     putcnr
putenr (enrq, enr)
register CORNER_QUEUE
                            *enrq;
register CORNER
                            *cnr;
Ł
          cnr -> link = CNIL;
          /* queue was initially empty */
if (cnrq->head == CNIL) {
               cnrq->head = cnr;
               cnrq->tail = cnr;
          ł
          /* queue was not empty, append at the end */
          else {
               cnrq->tail->link = cnr;
               cnrq->tail = cnr;
          3
          cnrq->n++;
          return;
}
                                                          - [queue.c] -
/*
            -getcnr() -
**
   getcnr() --- gets one CORNER from the front of CORNER_QUEUE and
returns a pointer to that CORNER, it returns NIL if
**
...
00
          the CORNER_QUEUE is empty.
•/
CORNER *getcnr (cnrq)
register CORNER_QUEUE
                            *enrq;
£
          CORNER *cnr;
          /* if queue is empty, return NIL */
          cnr = CNIL;
           /* if queue is not empty, get one from the front */
          if (cnrq->head != CNIL) {
               cnr = cnrq - > head;
               cnrq->head = cnrq->head->link;
               cnrq->n--;
          }
          return(cnr);
3
```

queue.c

```
jresid
                                              print_rgn(rgn);
                                     pf("singular./n");
                                                          erze
                                        ;("n/[J2M1] ")1q
          pf("/t/timprovement to be effective.");
     else if ( ier == 131 ) { pl("is too ill-conditioned for iterstive h");
                 pf("is algorithmically singular.");
                                      ( est == 19i ) li
                                                 } ( iami ) i
                                  pf("lacobian matrix is ");
                                                          :01 3583
            /. ()พวอบุว นอะ ./
                                                        preak;
    pf(" is not compatible with hybrid representation.");
                                     pi("Error: vector e[]");
                                                           :6 9590
       / ()sdnos6 jejjest /
                                                        'yeard
    pf("Error: matrix D[,]");
pf(" is not compatible with hybrid representation.");
                                                            :8 9289
          /. ()([ əzilmmon "
                                                        preak;
pf("%s: array index out of range at line %d. /n", atr, line);
                                                            :2 9593
                 /. ()posult ./
                                                        presk;
       pf("%s: input syntax error at line %d./n",str,line);
                                                            :9 9289
                 /• ()pparfif •/
                                                        preak;
          fpf(stderr,"Error from %s:\thyp <= 0 ",str);
fpf(stderr,"st line %d in the input file.\n",line);
                                                            ceze p:
                                                        preak;
          ip!(stderr,"at line %d in the input file./n",line);
              fpf(stderr,"Error from %s:/tdim <= 0 ",str);
                                                           :7 3583
                                                        preak;
 "Error from %s:/t'dim' or 'hyp' undefined./n",str);
                                                    ipi(stderr,
                                                            :5 9269
                                                        ;Meerc;
                  ipi(stderr,"Can not open file: %s/n",str);
                                                            :S 9263
                  /. ()unu ./
                                                        pleak;
        ipi(stderr,"Specify only one of '-f' and '-o'.\n");
                   / () un nu /
                                                            C936 J:
                                                      } ( 3sh ) doiwa
                                                                  register REGION
                                                          :u81*
                                                                     register char
                                                          :uns.
                                                           :Sey
                                                                       Jui religer int
                                                             error (flag, str, rgn)
                                                                  #include "cka.h"
                                                               #include <stdio.h>
                                                                                  /•
                                           •• error() -- print error messages.
                                                                                  ...
                                                          - 0.70779 -
```

roms

error.c

error.c

}

ŀ

• • •

...error

} if (flag < 10) {
 pf("\n**-> program aborted <-**\n");
 exit(1);
 /* fatal error */</pre> } else $pf("\n^{**}-> program continued <-^{**}\n");$

```
support.c
```

```
/•
               - support.c -
••
   support.c -- contains the following supporting routines:
    i_get(), d_get(), l_get(), s_get(),
    Abs(), Sgn(), inprdct(), transp(), prdmtrx(),
    privctr(), prdvctr(), lineqn(), rowech(), palloc().
...
QQ
$$
...
•/
#include
                        <stdio.h>
** i_get() -- get an integer from input.
int
            i_get (str, fp)
register char
FILE
                         •str;
                         •fp;
٤
                        $_get();
atoi();
             char
             int
             s_get(str,fp);
             return(atoi(str));
}
•• d
                  - get a double number from input.
       _get()
•/
double
             d_get (str, fp)
register char
                         *str;
                         •fp;
FILE
{
             char *s_get();
double atof();
             s_get(str,fp);
return(atof(str));
}
 ** l_get() --- get a line (with NL) from input.
 char
              ¶_get (str, fp)
 register char
                          *str:
                          •fp;
 FILE
 ł
              register int
                                     С;
              register char
                                      *cs;
              cs = str;
              while ((c=getc(fp)) != n' \&\& c >= 0) *cs++ = c;
              if (c<0 && cs==str)
                    return(NULL);
              else {
*cs++ = ^\n';
```

```
support.c
```

· •.

```
•cs = '\0';
                 return(str);
           }
3
** s_get() -- get a string (without NL) from input.
*/.
char
            *s_get (str, fp)
register char
                      *str;
FILE
                      *fp;
£
            register int
                                 c;
•cs;
            register char
            cs = str;
            while ((c=getc(fp)) != '\n' \&\& c >= 0) *cs++ = c;
            if (c<0 && cs==str)
return(NULL);
           else {
*cs = '\0';
return(str);
            }
}
•• Abs()
              - find absolute value with type double argument.
double
            Abs (x)
double
            X;
ł
            if (x >= 0.0)
                  return(x);
            else
                 return(-x);
}
 /*
** Sgn()
               - determine sign of a type double argument.
            Sgn (x)
int
 double
            X;
 ٤
            if ( x > 0.0 )
    return (1);
else if ( x < 0.0 )
    return (-1);</pre>
             else
                  return (0);
 }
```

support.c

```
** inprdct() -- inner product of 2 vectors: c = <x,y>
double
          inprdct (px, py, dim)
                     •рх, •ру;
register double
register int
                     dim;
£
           register int
                               i;
           double sum=0;
           for (i=0; i < dim; i++)
                sum += px[i] \circ py[i];
           return(sum);
}
** transp() -- find trasnpose of a given matrix.
                                                                                               transp
transp (pa, pat, row, col)
register double
                     *pa, *pat;
                     row, col;
register int
£
           register int
                               i, j;
           for (i=0; i < row; i++)
for (j=0; j < col; j++)
                pat[j*row+i] = pa[i*col+j];
ł
•• prdmtrz() -- print a double precision matriz.
                                                                                           prdmtrx
prdmtrx (pm, row, col, format)
register double
                      *pm;
                      row, col;
register int
register char
                      format;
Į
           register int
                               i, j;
           for (i=0; i < row; i++) {
    printf("\n\t");
    for (j=0; j < col; j++)
        printf(format,pm[i*col+j]);</pre>
           printf("\n");
3
 ** privctr() -- print an integer vector.
                                                                                              privctr
privctr (pv, dim, format)
                      •pv, dim;
•format;
register int
 register char
```

register int

prdvctr (pv, dim, format)

register double

register int register char

for (i=0; i < dim; i++) printf(format,pv[i]);

> •pv; dīm;

format;

i;

prdvctr() -- print a double precision vector.

ł

}

. .

Ł

3

Ł

support.c

...privctr

prdvctr

linegn

```
register int
                                i;
           for (i=0; i < dim; i++)
    printf(format,pv[i]);</pre>
•• lineqn() -- solve linear system Az = b.
lineqn (pa, px, pb, dim, flag, deta)
register double
                      •pa;
           *px, *pb, *deta;
dim, flag;
double
int
                      axcol, err;
           int
           register double *pax;
           register int
                                i, j, m, n;
                                                      /* # of cols in AX[][] */
           axcol = dim+1;
           pax = (double *) malloc(dim*axcol*sizeof(double));
            /* append x[] to the last column of A[][] => AX[][] */
            for (i=0; i < dim; i++) {
                 m = i^{\bullet}axcol;
                 n = i^{*}dim;
                 for (j=0; j < dim; j++)
    pax[m+j] = pa[n+j];
pax[m+dim] = pb[i];</pre>
            }
            /* compute row-echelon form of AX[][] */
            rowech (pax, pax, dim, axcol, deta, & err);
            /• if non-singular, start back substitution •/
            if (!err) for (i=dim-1; i >= 0; i--) {
                 m = i^{*}axcol;
                 px[i] = pax[m+dim];
                 for (j=dim-1; j > i; j--)
    px[i] -= px[j] * pax[m+j];
            }
```

}

.

support.c

...lineqn

rowech

```
/• if flag != 0 then return A[][] in its row-echelon form */
           if (flag != 0) for (i=0; i < dim; i++) {
                m = i^*axcol;
                n = i^{\circ}dim;
                for (j=0; j < dim; j++)
    pa[n+j] = pax[m+j];</pre>
           }
                                                     /* free spaces */
           free(pax);
           return(err);

    rowech() -- Reduce matrix A to the row echlon form,
    The pivot element is chosen to be the maximum in that

**
           column.
•/
rowech (pa, pr, arow, acol, deta, dep)
register double
                      *pa, *pr;
            •deta;
double
           arow, acol, *dep;
int
ł
            double Abs(), max, tmp;
                      row, col, maxrow, stop;
            int
            register int
                                i, j, m, n;
                                                      /° copy A to R °/
            for (i=0; i < arow; i++) {
                 m = i^*acol;
                 for (j=0; j < acol; j++)
    pr[m+j] = pa[m+j];</pre>
            }
                                                      /° initialize °/
            stop=0; row=0; *deta=1.0;
            while (!stop) {
            for (col=0; col < acol; col++) {
                  •• find the maximum element in the column as the
                  •• pivot element.
                  •/
                 max = 0.0;
                  for (i=row; i < arow; i++) {
                       tmp = pr[i^{accl+col}];
                       if (tmp != 0.0 && Abs(tmp) > Abs(max)) {
                            maxrow = i;
                            max = tmp;
                       ł
                  if (max != 0.0) {
                       m = maxrow^{\circ}acol;
                       n = row*acol;
                       if ( maxrow != row ) {
/* interchange "maxrow" and "row" */
                            for (j=col; j < acol; j++) {
    tmp = pr[m+j];
    pr[m+j] = pr[n+j];
    pr[n+j] = tmp;
}</pre>
                             (*deta) *= (-1.0);
                       ł
```

```
...rowech
```

```
/• normalize pivot element •/
                     (*deta) *= max;
pr[n+col] = 1.0;
                     for (j=col+1; j < acol; j++)
pr[n+j] /= max;
                                                   /* increment row */
                     row++;
                     if ( row < arow ) {
                           •• reduce entries in "col" below "row" to 0.
                          •/
                          for (i=row; i < arow; i++) {
    tmp = pr[i*acol+col];</pre>
                               if (tmp != 0.0)
                                    }
                     3
                ł
                                                    /• terminate iteration •/
           stop = 1;
           /* find first linear dependent column */
           *dep = 0;
           if ( pr[i*acol+i] != 1.0) {
                     •dep = i+1;
                     break;
                }
           }
}
   palloc() -- C storage allocator, it calls "malloc()" to get 4096
...
           bytes (2K words) at a time and re-distributes them to its caller. The purpose is to reduce the number of calls to "malloc()". If the number of bytes left is less than needed,
**
••
...
           those spaces are waisted.
...
•/
           PAGESIZ 4096
#define
            •palloc (nbytes)
char
unsigned
                     nbytes;
Ł
                                                    /* page top */
/* current pointer position */
           static
                      char
                                *pgtop;
                                *cptr;
           static
                      char
                                                    /* next pointer position */
           static
                                •nptr;
                      char
                                                    /* total length used */
           static
                      unsigned tingth;
                                flag;
           static
                      int
           if ( nbytes > PAGESIZ )
    return ( (char *) malloc(nbytes) );
           if (!flag ) {
                 pgtop = (char •) malloc(PAGESIZ);
nptr = pgtop;
                 tlngth = 0;
                 flag++;
           3
```

support.c

3

Page 7 of support.c

Makefile

- Makefile -# # Maintain CKA program groups. CFLAGS = -0Makefile cka.h main.c input.c katz.c lattice.c corner.c FILE = init.c region.c print.c queue.c error.c support.c OBJS = main.o input.o katz.o lattice.o corner.o init.o region.o print.o queue.o error.o support.o S(OBJS) a.out: cc \$(CFLAGS) \$(OBJS) -limsld -lF77 -lI77 -lm rm -f Kx Lx; mv a.out Kx; ln Kx Lx cka.h main.c main.o: cka.h input.c input.o: ł 1

katz.o:	cka.h katz.c
lattice.o:	cka.h lattice.c
corner.o:	cka.h corner.c
init.o:	cka.h init.c
region.o:	cka.h region.c
print.o:	cka.h print.o
queue.o:	cka.h queue.c
error.o:	cka.h error.c
support.o:	support.c

Makefile