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ABSTRACT

Based on the stationary co-content theorem in nonlinear circuit theory and

the penalty function approach in nonlinear programming theory, a canonical

circuit for simulating general nonlinear programming problems with equality

and/or inequality constraints has been developed. The task of solving a non

linear optimization problem with constraints reduces to that of finding the solu

tion of the associated canonical circuit using a circuit simulation program, such

as SPICE.

A catalog of canonical circuits is given for each class of nonlinear program

ming problem. Using this catalog, an enginner can solve nonlinear optimization

problem by a cookbook approach without learning any theory on nonlinear pro

gramming. Several examples are given which demonstrate how SPICE can be

used, without modification, for solving linear prograrrvming problems, quadratic

programming problems, andpolynxymaxdprograrnrning problems.

Research sponsored in part by the Office of Naval Research Contract N00014-76-0572 and by the
National Science Foundation under Grant ECS-8020640.

L 0. Chua is with the Department of Electrical Engineering and Computer Sciences and the
Electronic Research Laboratory, University of California, Berkeley,CA94720.
G. N. Lin is -with the flfomgtmi Railroad Institute, Shanghai 201803, China. He is presently a

.visiting Research Fellow at the University of California, Berkeley.



- 2 - /a^

1. Introduction

Nonlinear programming is widely encountered in engineering problems [l-
4]. Indeed, almost any realistic design optimization problem subject to some
practical constraints fall within the domain of nonlinear programming. The
essence of a general nonlinear programming problem is to find the extremum of
a nonlinear objective function subject to certain constraints. From nonlinear
circuit theory we know that the operating point of a reciprocal circuit also
corresponds to the extremum of some potential function under certain con
straints (KCL.KVL and constitutive relations ofcircuit elements)[5]. Hence, if we
can synthesize a reciprocal resistive nonlinear circuit whose potential function
is identical to the given objective function being minimized, and whose element
constitutive relations impose the same equality and inequality constraints, then
the solution of this circuit is precisely the solution of the nonlinear program

ming problem. This observation was originally due Dennis [6] and subsequently
extended by Stern [7], However, their circuits contain circuit elements ( e.g.,
dc multi-winding transformers and ideal diodes ) which have been impractical to
build until only recently. Moreover, their circuits are restricted to only two spe- 1
cial classes of nonlinear programming problems; namely, linear programming

and quadratic programming.

The above objections can now be overcome as follow. First, since general
purpose circuit simulation programs [8], such as SPICE [9], are now widely avail
able, the canonical " nonlinear programming " circuit can be simulated on a

digital computer, thereby allowing the use of a much larger repertoire ofcircuit
elements. Second, given any class of nonlinear programming problem, not just
linear or quadratic problems, we give a canonical circuit in this paper which
simulates the problem.

The main objective of this paper is to present a catalog of canonical non
linear programming circuits in a strictly cookbook fashion so that anyone acces
sible to a circuit simulation program with a large enough repertoire of allowed
circuit elements can solve a nonlinear programming problem without learning

any theory on nonlinear programming. Indeed, since the circuit diagram
remains unchanged for each class of nonlinear programming problems -hence
the name "canonical circuit"- it can be stored in the computer memory so that
the user needs only supply the parameters associated with a particular problem. ^
This catalog is given in Section 2 along with an example and a step-by-step
instruction on how to specify the parameters.
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In Section 3 we use the extremum property of potential functions from non

linear circuit theory and the penalty function interpretation from nonlinear pro

gramming theory to justify the validity of our approach.

2. Catalog of Canonical Nonlinear Programming Circuits

In each of the following optimization program, we specify just the objective

function to be minimized and the equality and inequality constraints to be

satisfied. To avoid redundancy, all inequalities are assumed to be "greater then"

( fe ) . There is no loss of generality in this assumption because if fi^O or x^O

for some i, we can rewrite it as -f&0 or -x<^0 , and then relabeling it by /"< and

^ , respectively. Actually, even the "equality" signs can be absorbed within the

inequalities. However, consistent with the "cookbook" approach in this section,

we will collect them separately before the inequality constraints. The portions

of the canonical circuit for simulating the equality and inequality constraints

will be identified so that if no equality (resp. inequality) constraints are present

in a particular program, then the corresponding portion of the identified circuit

can simply be deleted.

2.1. Linear Program

Minimizing the following objective function p(x) subject to the given con

straints.

Objective function:

<p(T^-axXi +• a&z + • • • + OqXq

Equality constraints:

/^x) = 611arl + 612ar2+ • • • +blqxq - Ci = 0

/m(x) a bmlxx + bm2xz + • • • +bmxq - cm = 0

Inequality constraints:

/p(x) = bpi*i + &pa*2 + • • +*>w*? - cp ;> 0

(la)

(lb)

(lc)
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Xi—di ^ 0

Xq-dq & 0

(Id)

The canonical linear programming circuit for solving this problem is given

in Fig.l. Here, all diodes are pn-junction diodes whose i/i-i* curve is described

by:

•i* =I,(e"</VT-1) (2)

where Ia and Vf denote the diode saturation current and thermal voltage, and

can be assigned any convenient default value (usually stored in the simulation

program library). The diamond-shape symbol denote a controlled voltage

source if it encloses a plus-minus sign, or a controlled current source if it

encloses an arrowhead.

The circuits for simulating the constraints (lb), (lc) and (id) are enclosed

within boxes jVb JVe and Nd respectively. If there are no equality constraints, l

simply delete Nb. If there are no inequality constraints (lc), simply delete Ne

and change subscript "p" to "m" in the controlled sources. If there are no ine

quality constraints (Id), simply delete the elements inside Nd.

In the special case where the constraints consists of only (id), delete

Nb.Nc1Nd, as well as all controlled current sources. In this case, the circuit

reduces to only N* and the dc current sources. Note that if Eq.(ld) had been

deleted and embedded within Eq.(lc), the resulting circuit in this case (

obtained by deleting Nb and Nd ) would contain "2q" additional controlled

sources. Hence, it is advantageous to consider (id) separately.

If the computer simulation program does not allow controlled sources to

depend on more then one variable, simply connect two or more controlled vol

tage ( resp. current ) sources in series ( resp. in parallel ).

Note that except for the two extra parameters R and A, all other parame

ters in Fig.l are obtained directly from the specification Eqs.(la)-(ld). For rea

sons that will be explained in Section 3, R should ideally be zero ( short circuit)

and A should ideally be infinite For circuit simulation programs, such as SPICE,

which do not allow connecting a short circuit across an independent and/or con- ^*^)
trolled voltage source, R must be assigned a small value. Our experience with

SPICE shows that too small a value for R could result in excessive computer time
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or non-convergence. Too large a value for R would result in an inaccurate solu

tion. For SPICE, we recommend choosing 10~* £ R ^ 10"6 .

Similarly, A should be specified by a large but finite number. Our experi
ence with SPICE shows that too large a value for A could also result in excessive

computer time or non-convergence. Similarly, too small a value for A would
result in an inaccurate solution. For SPICE, we recommend choosing

lO^A^lQ5.

Solution Procedure:

Simulate the canonical linear programming circuit and solve for the node

voltages vltv2, • • • ,vq . Then the solution of the linear programming problem is
approximately equal to these node voltages; i.e., Xj = vx , x2 = v2 , xq = vq . The

solution becomes exact when R = 0 and A = « . Using SPICE and the above

recommended values of R and A the error is found to be less than 0.001% for

most examples, which is clearly insignificant.

Example 1 ( [10], p80 )

minimize <p = 50xx + 40x2

subject to:

inequality constraints: / x(x) = 3xt + 2x2 —35 ^ 0

/z(x) = 5xx + 6x2 - 60 ^ 0

/3(x) = 2xx + 3x2 - 30 ^ 0

xltx2^ 0

Since there are no equality constraints, the canonical linear programming

circuit for solving Example 1 is shown in Fig.2. Note that since Nb is absent, only

the extra parameter A is needed. The solution obtained from SPICE ( with A=

10,000 ) is:

Xl = vx - 8.999984. x2 = vz = 3.999987

For this simple circuit, we could obtain the solution by analyzing the circuit

directly ( without using a computer ). In fact, since, (to be shown in Section 3),
the pn-junction diode-controlled source combination is used merely to approxi

mate an ideal diode, we can obtain the exact solution by solving the simplified

circuit in Fig.3. Note the symbol of the ideal diode in Fig.3 differs from that of
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the pen junction diode in Fig.2, which is enclosed by a circle. Solving this circuit

by inspection, we obtain

*i = v\ = 9t x2 = v2 = 4, ix = 14, i2 = 0, i3 = 4

Remarks:

1. If some /;-(x) ^ 0 in Eq.(lc), rewrite it as

/^(x) = -bilxl - 6j2x2 - • • - b5qxq - c, Ss 0

2. If some Xj - dj ^ 0 in Eq.(ld), change the variable X* in Eqs.(la)-(ld) to -a\ .

3. If there are no equality constraints, set m=0 and delete Eq.(lb).

4. If there are no inequality constraints, delete Eq.(lc).

2.2. Quadratic Program

Aprogramming problem is called a quadratic program if all constraints are
linear ( the same as Eqs.(lb)-(ld) ) and the objective function is of the following

form:

^(x)=Arx+i-x^Gx (3)

where A is a real q-vector and G is a qxg positive semi-definite symmetric real
matrix. Quadratic programs are also a kind of convex program and have unique

solutions.

The canonical quadratic programming circuit is shown in Fig.4. Note the
only difference from Fig.l is in Fig.4 where there is an additional set of multi-
voltage controlled current sources ji,jz,....jq ( on the far right of Fig.4 ). Their
values are:

Ji^tfU'i (4)

This set of controlled current sources corresponds to the term —x^Gxin Eq.(3).

Since the constraint functions are all linear, as in the case of the linear pro

gram, the remaining part of Fig.4is identical to that of Fig.l.

If p(x) in Eq.(3) is givenin the polynomial form instead of the matrix form,
then;*!,^, . . . ,jq can also be specified by

^
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*"S"* i=1,2 q (5)
By expanding the matrix term x^Gx and differentiating it, we can see that Eq.(4)
and Eq.(5) are equivalent.

Example 2 ( [10], p324 )

minimize cp = 2xf —6x1x2 + 9x| - 18x! + 9x2 (8)

subject to f i = - x t - 2x2 + 12 ^ 0

/2 = -4Xi + 3x2 + 20 2: 0 (7)

xlt x2^0

Equation (6) can be rewritten as

P=[-18 9]x+i-^X|jx
The simulating circuit is shown in Fig.5. The solutions of this circuit ( with

A=10,000 ) are

xx = Vj = 6.30002, x2 = vz = 1.73333

They are in agreement with the solutions from [10].

2.3. Polynomial Program

SPICE can deal with nonlinear controlled sources with multidimensional

polynomial nonlinearity. In principle, SPICE can precisely simulate those non

linear programming problems whose objective and constraint functions are poly

nomial functions.

A general polynomial programming problem has the following form:

minimize <p{xx,xz xq) (8a)

subject to:

equality constraints: / t(x1,x2,...jsq) = 0

(8b)-

/m(*l.*2 Xq) =0 '
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inequality constraints: /m+i(x1,x2,... .x,) ^ 0

(8c)

/,(ll,*8....A)iO

xx-dx& 0

(8d)

Xg-rfj&O

Here p,/i,/2 fp are multi-variable polynomial functions. The canonical simu
lating circuit is shown in Fig.6.

Again, if there are no equality constraints, simply let m=0 and delete Nb in

Fig.6. If there are no inequalityconstraints, let p=m and delete Nc in Fig.6.

Note that the controlling variables of the "q" controlled current sources in

Fig.6 include both voltages ( vx.vz vq ) and currents ( ix,iz ip ).
Although some circuit simulation programs, such as SPICE, allow controlled
sources controlled by multiple variables, the controlling variables must be of the

same type ( either all voltages or all currents ). In this case, we have to convert
the current variables ( ix,iz, ... ,ip ) to voltage variables. This can be done by
introducing some additional controlled sources. For example, either Fig.7(a) or
Big.7(b) can convert a current variable i to a voltage variable v.

Example 3 ( [11]. p301)

minimize <p = -xxxzXgX4

subject to / j =x? +x| - 1 = 0

/jjSX^-XgsO

/3 = x| -x2 = 0

Xi, X2, Xg, X4& 0

The simulating circuit is shown in Fig.8. Taking

R s lxlO"3 Q

the following solutions are obtained by SPICE:
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xx = vt = 0.793700, x2 = vz = 0.707106, x3 = v3 = 0.529731, x4 = v4 = 0.840896

These solutions are in agreement with the solutions from [11].

Unlike linear and quadratic programs, the general polynomial programs do

not necessarily have a unique solution: they may have no solution or have more

than one solutions. Therefore, the corresponding simulating circuit may also

have no operating point, or have more than one operating points. To which

operating point the simulation program actually converges depends strongly on

the initial conditions we give to the circuit. If we want to pick the global

minimum, we must find all local minima. By comparing the values of <p at these

extremum points, we can identify the global minimum. Unfortunately, there are

currently no general circuit simulation programs capable of finding all operat

ing points of a multivalued circuit.

2.4. Signomial Program

Another interesting class of nonlinear program is the signomial program. A

g(v) = Zc^x?* •••x?>

where C* and cfy are real constants. An optimization problem is called a signo

mial program if its objective function and constraint functions are signomial

functions. It can be stated as follows.

minimize <f>(zx,xz, . . . ,xq)

subject to fj(xXtxz x7)s;0, j = 1,2,....p

X;,X2, . . . ,Xq 25 0

where <p and fj are signomial functions of (xltx2, • • • ,xq). Signomial programs
are usually solved via a geometric programming approach. Obviously, polyno

mial program is a special case of signomial program. Since many programs,

such as SPICE, can only deal with polynomial nonlinearities, we must convert a

signomial program to a polynomial program. This can be done as follows. First,

express each a^ as

7ltf
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where mu and n^ are integers. For each variable xt (I = 1,2,....g) , choose the

largest integer n^ from all n^, andlet yt = xt l. Then,

^'(yi.V2. - • • >Vq) =?(*i.*2 Xq)

and

ffyl'VZ Vq) =/>(*1^2 •«?)

are functions of (yi.y2.....y*) with only integer powers. If in fj ( yx,yz, . . . .yq )
there are some terms including negative power, say yCm (m is a positive
integer), we can just multiply f} by yf* without changing the sign of the con
straint fj since yi Ss 0. By doing this, all constraint functions are converted to
polynomial functions.

If in <p there are some terms including negative powers, say yfm, we intro
duce a new variable yq+x and impose an additional equality constraint

Ift—Vf-A'l (9)

Substituting Eq.(9) into p'(yi,y2 Vq)* we 8et

<pm(yi*yz v».v*+i) = /(y 1-2/2 v*)

Here ^"(2/1.3/2. • • • .Vq^Vq+i) contains no negative power of yt. Because we have
imposed the new equality constraint (9), <p"(yx,yz, • • . .yg.y?+i) ana
tp'(yx,yz, . . . ,yq) are equal. We can then solve it as a polynomial program.

Example 4 ( [10], p376 )

minimize <p{xXtxz) =7xf +0.2x?Bx§-s + 15xf8x2-°-5

subject to / ifci.xj = 1 - 8xf8x2-1 s-0

x1(x2 > 0

Rrst, we introduce new variables

yi=*?-8. y2 =*S-5

We then get a new programming problem:

minimize piVvVz) =7Vi +O-Syft/f + ISyrt/a"1 ^\

subject to / i (y i.y2) = 1 - 8y f^sf2 &0

^^i|t



-11-

1/1.1/2 >0

Next, multiply / [ (y i.y^ by y fy| and introduce a newvariable y3

ya-yfVf1

we get the following equivalent polynomial programming problem:

minimize p"(yi.y2.ya) = 7vi + 0-2y?yf + 15y3

subject to / r (y i.y2.y3) = y tvzy* -1 = o

/s(yi*v»va) = yfi/f - 8 ;> o

V1.y2.y3 > o

The simulating circuit is shown in Pig.9. The SPICE solution for this circuit with

i?=lxl0"7 and A= 1,000 is

yx = «! = 1.2335, y2 = vz = 1.8588, y3 = v3 = 0.2324

These values are very close to the solution given in [10]. Again, since a signomial
program does not necessarily have a unique solution, the corresponding simulat

ing circuit does not necessarily have a unique operating point.

2.5. General nonlinear programs

Ageneral nonlinear programming problem has the following form:

minimize ^p(xx,xz,...,xq)

subject to:

equality constraints: / i(x1,x2,... ,x?) = 0

/m(*i.*2 *q) = °

inequality constraints: fm+x(x x,xZt... ,xq) ^ 0

/2,(*l.*2..".*g)S>0

(8a)

(8b)

(8c)
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xx—dx ^ 0

(Bd)

xg-d,^0

Here p./ii/2i..../p are arbitrary nonlinear functions. The canonical simulating

circuit for this problem is the same as that shown in Fig.6. Unfortunately, since

SPICE can only deal with nonlinear controlled sources with polynomial nonlinear-

ities, this simulating circuit usually can not be implemented precisely using

SPICK To overcome this problem, we need some circuit simulation program

which can deal with a broader category of nonlinear controlled sources. Or, if

we are constrained to SPICE, we have to approximate nonlinear functions using

polynomial functions and convert the general nonlinear program into an approx

imating polynomial program.

3. Theoretical Justification

A general nonlinear programming problem can be stated as follows:

Minimize a scalar function

' <p(vx.vz,...,vq)

subject to constraints:

/i(vi,ve....,v9)^0

fp(vx,v2,...,vq)&0

(10)

(11)

where q and p are two independent integers.

In the literature, there are a few different forms for stating the same prob

lem. For example, instead of minimizing Eq.(10), we can also maximize its nega

tive. Also, in Eq.(ll) we can use g(.)=-/ (.)^0 instead of / (.)s*0. Besides, equal
ity constraints are included in Eq.(ll) already, since /(.)=0 is equivalent to
/(.)fe0and-/(.>0.

Therefore, to state the problem as in Eq.(lO) subject to Eq.(ll) does not

lead to any loss of generality.
'^N
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Corresponding to this problem, consider first the ideal simulating circuit in

the canonical form shown in Fig.10. It is composed of ideal diodes and nonlinear

controlled sources. If the original problem has a solution and if by any means

we build this simulating circuit ( either model it on computers or build it by

using real devices in the laboratory ), the node voltages vx,vz vq will be the

solution minimizing (1) subject to (2).

To make the proof self-consistent, let us first introduce the concept of the

potential function called co-content and the corresponding stationary co-content

theorem. The potential function co-content G(v) of a reciprocal voltage-

controlled n-port ( Fig. 11 ) described by i=i(v) is defined by the following line

integral [5]:

S(v) =fi(j)dv (12)
o

For a reciprocal voltage-controlled n-port, the Jacobian matrix of i(y) is
symmetric and we have the following stationary co-content theorem.

Theorem 1: For a reciprocal voltage-controlled n-port described by i=i(v), the
port voltage Vq at the operating point is a stationary point of the co-content of
then-port, defined by (12); i. e., the gradient of 3(v) vanishesat v0.

Proof: Let us denote the voltages and currents at the operating point by vq and

io, respectively. Since the n-port in Fig. 11 is open-circuited, obviously at the

operating point we have

i0 = 0 (13)

From Eq.(l2) we have

*> -^-- <*= 1A--n) (14)
Hence Eq.(l3) implies

vBMUfc-o (15)

Equation (IS) in turn implies G(v9) is a stationary point of G(y).

Q.E.D.

\ Now we apply this theorem to the circuit of Fig.10. We divide the canonical

simulating circuit into two parts. Suppose <p(v) is continuously twice
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diflerentiable with respect to each vit then obviously the right hand part Nx (

Ftg.12 ) is a voltage-controlled q-port and has a well-defined incremental conduc

tance matrix Gr. The ijtfi element of G' is

Under the assumption that tp is twice differentiabie, Gf is symmetrical. Hence Nx

is reciprocal. Therefore, according to definition (12) the co-content Gx of Nx is

glW=|ji(g-dU4) =?'W (17)
For the remaining part of Fig.10, we redraw it as Fig.13. It is a q-port seen

from the right hand side. It can also be considered as a (p+q)-port with its p-

ports on the left terminated by loads. This circuit has the following property: //

each fj{yr) (j=l,2,...,p) is continuously twice differentiabie with respect to
vi (i=l,2,...,g) and each load R3- is a voltage-controlled resistor, then the co-
content Sg of the q-port defined by (12) equals the sum of co-contents of all <"a%

resistors Rx throughRp. Namely,

^(•) =!,&,(/,(•)) (18)

The proof of this important relationship is given in Appendix 1.

In the circuit of Fig. 10, all loads Rx through Rp are ideal diodes. The consti

tutive relation of an ideal diode ( Fig.14 ) is

v^O, i=0; v=0. i^O (19)

which is neither voltage-controlled nor current-controlled. But, an actual diode

( as well as its model in a circuit-solving program, e.g. SPICE ) is voltage-

controlled and its dc characteristic can be modeled by an equation of the form (

Fig.15 ):

i=/,(e*"-l) (20)

If Im is chosen small enough and k is chosen large enough, Eq.(20) can approxi

mate Eq.(l9) as closely as we want. In a simulation program, such as SPICE,

with a built-in pn-junction diode model, we can easily simulate this near-ideal ^
characteristic by connecting the pn-junction diode in series with a voltage-

controlled voltage source as shown in the preceding figures, when the
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controlling coefficient A is chosen to be a sufficiently large number.

The co-content of a diode with the v-i relation expressed by (20) is

(21)

Note that when v<0, G<t(v) is very small. On the other hand, when v=0,

2a(v)=0 and when v>0, (k(v) grows rapidly. For example, if we take

/, = lxlO-*14. k = lxlO8

the co-content of a diode for some values of v will be as shown in Table 1.

Table 1

The co-content of a diode when

/, = lxlO-l4andfc = lxlO6

V 5i(«)
-100 lxlO"12

-10 lxlO-13

-1 lx 10"14

-0.1 lxlO"15

0 0

lxlO"7 5.17X10"23

lxlO"8 7.18X10"21

lxlO"8 2.20X10"6

lxlO"4 2.69X1083

2X10"4 7.22X1068

Since

«*, =/i(v), j =l,2,...,p,

in Fig. 13, the co-content Gz of Nz is given by:

where Go denotes the sum of the co-content of the diodes.

Q8(v) =Jiqff =Q,=Ji/s[ (22)
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Now, when we connect Nx and Nz together, according to the reciprocity clo

sure theorem [6], the resulting circuit ( Fig.10 ) is also a reciprocal voltage-

controlled q-port. The co-content G of the whole circuit is

G(y) =Gx +Gz =?(v) +Ifil9 k *+/,(•)] (23)

According to Theorem 1, the operating point of the circuit in Fig.10 is a sta

tionary point of (r . We now have two situations:

(1) The operating point vp occurs inside the feasible region*. In such a situa

tion, all*constraints are inactive and all diodes work under negative or zero

voltages. Consequently, Go is almost zero over all feasible region and the

second term in Eq.{23) is " swamped " by p(v). Therefore, as Ia -»0 and A: -»«,

the mjnimum of G tends to the minimum of <p. Fig. 16 shows the situation

for the one-dimensional case. The operating point gives the solutions

minimizing (1) subject to (2).

(2) The unrestricted minimum of <p occurs outside the feasible region. In such

a situation, at least one of the diodes will work under forward voltage. The 1

corresponding constraints are active now. As we can see from Fig. 17, Go

grows very fast when the operating point leaves the boundary. The

minimum of G is now located at a point-outside the boundary but very close

to the boundary. Note that although G appears to be discontinuous at this

point in Rg.17(b), G is actually differentiabie so long asi<« in Eq.(23).

Consequently the minimum point obtained by solving \ ' =0 will occur

near the left boundary in Fig. 17(b). Hence, Go works as an exterior penalty

function [3]: it forces the operating point to approach the boundary from

the non-feasible region, as /, -»0 and k -»«.

Therefore, in both situations, the operating point gives the solution minim

izing Eq.(lO) subject to Eq.(ll).

Remarks: Two Special Constraints:

(1) In practical programming problems it is frequent that some constraints

have the following form:

vt^d (24)

*The set of all vectors • satisfying constraint (11)is called the feasible region.
^\
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where d is a constant including 0 as a special case. For such a constraint, we

can simplify the canonical simulating circuit. Let us rewrite it as

fj - vt -d ^ 0

Obviously we have

dfj =
dVi

1 i =Z

0 i * I

According to the ideal canonical simulating circuit in Fig. 10, the circuit

corresponding to this constraint is shown in Fig. 18. Note that the controlled

source in this simplified circuit depends only on the port voltage Vj and a con

stant d, which can be simulated by a battery. Hence, the circuit in Fig. 18 can

be replaced by the equivalent circuit in Fig. 19.

When d = 0, the constraint circuit in Fig. 19 simplifies further to the circuit

in Fig.20. This explains why in Eqs.(ld) and (8d), as well as in Figs.l, 4, and 6, we

specify Eq.(24) as a separate constraint, even though it is a special case of the

other more general constraints.

V (2) For an equality constraint

the corresponding part of the simulating circuit is shown in Fig.21. The two

back-to-back ideal diodes in parallel form a short circuit. Since short-circuiting

of a controlled voltage source is not allowed in many simulation programs, such

as SPICE, we can use the circuit in Fig.22 to replace the circuit in Fig.21, where

R is chosen to be a very small resistor. The co-content of a linear resistor R is

«•> • w
If R is very small, (^(v) will be very large when v#Q. Thus, choosing an ade

quately small value for R ( for example, R = lxlO^^lxlO"9 ), the circuit of

Fig.22 will act as a penalty function for the corresponding equality constraints.

4. Concluding Remarks
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(1) For a general nonlinear programming problem stated in Eqs.(lO) and (11)

we have developed a canonical simulating circuit shown in Fig. 10. This cir

cuit is canonical in the sense that its structure is invariant and can there

fore be stored in the computer library. For a specific problem, the user

need only specify the relevant parameters and functions.

(2) For certain classes of programming problems ( linear program, quadratic

program, polynomial program and signomial program ) we have shown how

to implement the canonical simulating circuit on SPICE in a cookbook

fashion.

(3) For those programming problems which have more than one local minima,

the SPICE solution in general gives only a local minimum. Which operating

point SPICE actually converges to will depend largely on the initial condi

tions. Except for the piecewise-linear method described in [12], no general

algorithm is currently available for finding the global minimum.

5. Appendix 1

Our task in this appendix is to prove:

(1) The q-port in Fig. 13 has a well-defined co-content when Rx through Rp are

voltage-controlled resistors.

(2) The co-content of this q-port equals the sum of the co-contents of Rx

through iip.

Assume each function /y(v) ( j=l,2,...,p ) is continuously twice differentiabie
and each resistor Rj (j=l,2 p ) has a diflerentiable v-i relationship i = R3(v).
Then the current through the rath port is

*M-A*C*M>^
The ninth element of the conductance matrix Y is:

Under the assumptions mentioned above, we have

ymn = ynm *».* = 1.2.....g

Therefore the q-port is reciprocal and hence has a well-defined co-content;

namely,

/^S!\

•^^\
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B-J,i<fa &** -hi-****=Ja (25)
Q.E.D.

Another interesting fact is that if all ports on the p-port side are open-

circuited, the co-content of this (p+q)-port is zero. This is obvious from Eq.(17)
vif we notice the co-content of a linear resistor R is ^=- and

lim^=-=0

Since thi«? (p+q)-port has such a special property and since it reduces to a

(p+q)-port transformer ( apart from the addition of a set of dc voltage sources

at the q-port side ) when all fj(.) are linear functions, it can be considered as a
nonlinear generalization of a (p+q)-port transformer.
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Figure captions

Fig.l The simulating circuit for a linear program.

Fig.2 The simulating circuit of Example 1.

Fig.3 An ideal simulating circuit of Example 1.

Fig.4 The simulating circuit for a quadratic program.

Fig.5 The simulating circuit of Example 2.

Fig.6 The simulating circuit for a polynomial program.

Fig.7 Two circuits for converting a current variable i to a voltage variable v.

Fig.8 The simulating circuit of Example 3.

Fig. 9 The simulating circuit of Example 4.

Fig. 10 The ideal simulating circuit for a general nonlinear program.

Fig. 11 Ann-port.

Fig. 12 The first part of the general simulating circuit.

Fig. 13 The second part of the general simulating circuit.

Fig. 14 An ideal diode.

Fig. 15 A pn-junction diode.

Pig.18The situation when min <p occurs inside the feasible region (one-
dimensional case).
(a) The function <p(v) and Go(v).
(b) The fuction G(v) = <p(v) + Go(v). Note that v(Q) w v(Q').

Fig.17The situation when min <p occurs outside the feasible region (one-
dimensional case).

(a) The function <p(p) and Go(v).
(b) The fuction G(v) = <p(v) + Go(v) is differentiabie at Q'.

Fig. 18 The simulating circuit corresponding to the constraint Vi a d.

Fig. 19 The equivalent simulating circuit of Fig. 18.

Fig.20 The equivalent simulating circuit corresponding to the constraint vt & 0.

Fig.21 The circuit for simulating an equality constraint.

Fig.22 A practical method for simulating the equality constraint imposed by
Fig.21. Here, R is chosen to be a very small but positive number.
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