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ABSTRACT

The incremental capacitance and inductance of many electronic devices

are frequency and bias dependent. This paper presents a systematic method

for modeling such devices using only positive and/or negative linear time-

invariant capacitances and inductances. In the nonlinear case, these capi-

citances and inductances are functions of either the port voltage or the

port current. Using the theory developed in tis paper, any (2k + 2) order

linear higher-order capacitor or inductor is shown realizable by a one-port

containing (2k + 2) positive and/or negative linear inductors and capacitors
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I. INTRODUCTION <+\
It is well known that the incremental resistance, capacitance and induc

tance parameters in the circuit models of many devices are found to vary with

frequency. Indeed, device manufacturers sometimes publish experimental curves

giving the measured incremental resistance R(w), capacitance C(w), or inductance

L(oj) as a function of frequency to [1] - [4]. In [6] and [7]the capacitance of an

MOS system is examined and it has been shown that the small-signal MO.S capacitance

depends upon the toperatino frequency. In [4]the frequency-dependent capacitance
curve of a varactor diode measured by a network analyzer is given. It is also *

well known that the"surface inductancVof a conductor"ts frequency dependents a

result of skin effect [9].

The incremental capacitance of MOS systems and varactor diodes also vary

with bias voltages [4, 6, 10]. Therefore, in some cases the incremental

resistance R(to,x), incremental capacitance C(to,X) and incremental inductance

L(<o,x) are also nonlinear functions of another parameter X, such as bias volt

age, temperature, light intensity, etc.

In the following, modeling of C(<o) and L(<o) will be considered first.

Modeling of C(<o,X) and L(<o,X) will be considered in Section III.F. ^%

For the sinusoidal steady-state analysis of a linear time-invariant

(LTI) circuit, frequency-dependent capacitors and inductors can be modeled by

an LC one-port. In fact, for a passive LC one-port NL£,
ZLC(Jto) A jX(co) A ju>A(u)), where A(<o) = X(aj)/to

indicates that N,c can be considered as a frequency-dependent inductance when
A(w) > 0, and a frequency-dependent capacitance when A(u) < 0. However, since

X(oj) is an increasing function of u> for passive LC one-ports,the type of L(<o)
and C(w) characteristics that can be modeled using only positive inductors and

capacitors is rather restrictive. If negative inductors and capacitors are

also used,then a much wider class of frequency-dependent capacitors and inductors

can be modeled. For example, negative inductors and capacitors are used in [5]

to model solid state cavity masers.

In this paper, modeling C((o) and L(u>) by rational functions will be con

sidered. It will be shown that any odd rational function F(s) can be realized

as the driving-point function of a one-port which contains-i:L. ±C elements only.

Consequently, a LTI "generalized" capacitor or inductor of any order [1] can be
realized by a ±L,±C one-port. On the other hand, if the incremental capacitance

C(w) or incremental inductance L(w) is given as a continuous function in a '
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frequency band w,< w< io2 then it can be approximated to any desired accuracy by
an odd rational function F(s) such that

where e is an arbitrarily small positive number. Hence any continuous C(a>)

or L(u>) can be modeled by a ±L, ±C one-port having F(s) as its driving-point

function.

As it is known, the driving-point function F(s) of a +L, +C (LC) one-

port is the ratio of two polynomials, one being odd and the other even, such

that there is no missing term in F(s), i.e., there is no missing even (resp.,

odd) term in the even (resp., odd) polynomial. On the other hand, all but the

highest (resp., the lowest) degree term in the odd (resp., even) polynomial

are missing if F(s) is the driving-point function of a LTI "higher-order"

capacitor or inductor as defined in [1], Hence, in this respect, a higher-order

capacitor or inductor is an extreme type of element and a realization of an

m-th order capacitor or inductor by a ±L, ±C one-port requires at least m+1

elements for m > 1.

Properties of -L, +C one-ports(henceforth abbreviated as -LC one-ports)

and +L, -C one-ports (abbreviated as -CL one-ports) are quite similar to that of

LC one-ports. For example, in all cases the drivinp-point functions have no

missing terms.

In Section II, modeling frequency-dependent capacitances and inductances

by -LC and -CL one-ports will be considered and necessary and sufficient con

ditions for an odd rational function to be realized as the driving-poing func

tion of a -LC or -CL one-port will be given.

In Section III, modeling frequency-dependent capacitances and inductances

by ±L,±C one-ports will be considered. First, it will be shown that an odd

polynomial with no missing term, whose order is 2k + 1 can be realized as the

driving-point function of a ±L, ±C one-port which contains 2k + 1 elements.

Then it will be shown that a minimal ±L, ±C realization of a LTI generalized

capacitor or inductor of order 2k + 1 contains at least 2k + 2 elements if

k > 0.

II. MODELING FREQUENCY-DEPENDENT CAPACITANCES AND INDUCTANCES BY -LC AND

-CL ONE-PORTS.

A one-port made of negative inductors and positive capacitors as shown

in Figure 1 realizes a frequency-dependent capacitor; namely, if the input
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admittance is denoted by Y(s), then C(a>) AY(ju>)/Jco > 0 for all real u values.

The analysis and synthesis of -LC one-ports can be reduced to the analysis
and synthesis of LC one-ports which is a well established topic. However, only
some restricted class of odd rational functions can be realized by -LC one-ports.

For example, the following section shows that a fifth-order capacitor whose
input admittance is Y(s) =Ds5, where Dis areal number, can not be realized
by a -LC one-port.

A. Modeling frequency-dependent capacitance by -LC one-port

Choosing node 1'as the datum node and applying node equations, the input
impedance of the one-port shown in Fig. 1 can be expressed as,

A,n(s^

«»)--8iT (2J)
where A(s) and A^s) are the determinant and (1,1) cofactor of the node admit
tance matrix, respectively. Note that A(s) and An(s) can be expressed as the
summations of tree-admittance products [13]:

A(s) = I (tree-admittance product of tree t- of N) (2.2a)
all trees of N

i /e% = y (tree-admittance product of tree t. of N') (2.2b)
11ls' all trees of N' n

where N is the one-port circuit shown in Fig. 1 and N' is the circuit obtained
from N by joining nodes 1 and 1'. A term in (2.2) has the following form:

n y.- n C,sp"q (2.3)
i=l n i=l 1

where y. A 1/L- and, pand q are the numbers of capacitors and inductors in the
associated tree, respectively. If q is odd then the coefficient of s is
negative; otherwise positive. If the number of nodes in Fig. 1 is denoted by
n+ 1, then, p+ q = nwhen (2.3) is a term in (2.2a) and p+ q = n- 1when
(2.3) is aterm in (2.2b). Let p+q=nthen sp"q =sn_2q. Hence if qis
increased (resp., decreased) by 1then n-2q is decreased (resp., increased) by
2and the sign of the coefficient of sp'q in (2.3) is changed. Clearly, the
number of terms of the degree sn_2q is equal to the number of different trees
whose q branches are inductors and n-q branches are capacitors, and the coeffi
cients are positive (resp., negative) when q is even (resp., odd). The
results can be stated as a theorem.

Theorem 1. The input impedance of a -LC one-port can be expressed as,
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amsm +an,,s",-2+...
Z(S) =.,«"♦.,«-*♦ (2-4)b s + b o s + ...

n n-£

where

i) a.(resp., b.) and a. J resp., b.._2) have opposite signs,
ii) If the negative coefficients in (2.4) are multiplied by -1, then

the resulting impedance function is the input impedance of a one-port which

is obtained from the given one-port by replacing each -L.. by L... n

It is well-known that an odd rational .function can be realized as

the input impedance of an LC one-port if and only if it can be written in the

form of [14].

k k s k s

z<s) =koos +^ +-TT+---+-irT (2'5)
s -Ho-j s +o)

where k > 0 and k. > 0, i = 0,l,2,...,p, and uk <= IR , i = 1,2,...,p. Z(s)

in (2.5) can also be written as,

ZUJ-Ls +pi-* L—+...+ 1—t- (2.6)
1 L-jS p Lps

where L^= k^, CQ =l/kQ, C. =1/k. and I. =k./w2, i=1,2,...,p.
Equation (2.6) leads to the Foster 1 type realization shown in Fig. 2.

In the case of a -LC one-port, (2.5) and (2.6) take the following forms,

respectively,

k k s k s
Z(s) =-k^s +-f +-^-j +... +-^ (2.7)

s -(o1 s -o)p

Z(s) =-L s +^ + ]—j- +... + 1-T- (2.8)
v c^s-p-L- cs-y-1 LjS p .Lps

where L =k , C =1/k , C. =1/k. and L. =k./<o2 i =1,2,...,p. On the
CO CO 0 01 1 111

other hand, if the right hand side of Eqn. (2.5) represents an LC input

admittance then partial fraction expansion of a -LC input admittance takes

the following form,

k -k s -k s

Y(s) =kros -f +-^-?+ ... +-£-? (2.9)
* s -uC s -of

where k > 0 and k„. > 0, i = 0,1,2,...,p. Hence the poles and zeros of an LC
OO —— I ^— * *
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input impedance Z,c(s) and -LC input impedance Z iC(s) are in one-to-one
correspondence, respectively,' namely if jto. is a pole (resp., zero) of

Z,c(s) then u. = Im[jcj.] is a pole (resp., zero) of Z,c(s). The results can
be stated as a theorem:

Theorem 2. A rational function Z(s) can be realized as the input impedance

of a -LC one-port if and only if it can be expressed in one of the following

two forms:

k(s2-co2)(s2-<o2)...(s2-u>2)
Z(s) = -—I .-I f- (2J0a)s(s^)(sZ-o)J)...(s-^)

ks(s2-a)2)(s2-a)2)...(s2-(o2)
Z(s) = k-4 2-7 9-4- (2.10b)

(s2-a)2)(s2-u)2)...(s2-(o2)
where u>. S IR , u>. > ai. if i > j; r (resp., q) is odd (resp., even) integer and

either q = r + 1 or r = q + 1; k < 0 if Z(») f 0 and k > 0 if Z(<») = 0. «

The susceptance B(oi) and frequency-dependent capacitance C(<o) associated

with Y(s) in (2.9) are given by,

kn p k.u>
B(ai) -Y(ja))/j = k^a) +-2- + I V-2- (2.11)

i=l to +u.

and

K P kiC((o) =B(a))/u) =k^ +-| + I -£-? (2.12)
(0 1=1 0) +0).

It follows from Eqn. (2.12) that the frequency-dependent capacitance C((o)
which is realized by a -LC one-port is non-negative for all real <u values.

However, it is too restrictive to realize an arbitrary frequency-dependent

C(w). For example, C(o>) =Do)4, which corresponds to afifth-order capacitor,
can not be obtained from Eqn. (2.12), i.e., C(to) = Dw can not be realized by

a -LC one-port.

Example 1. Assume that the odd rational function which realizes a given

freuqency-dependent capacitance is,

Z(s) =̂ -<»2-W»2-») (2.13)
3 s(s2-4)

Since Z(s) is in the form (2.10a), it can be realized by a -LC one-port. In

fact expanding Z(s) as,

Tt \ -4 e , 3 . 5s ..-4.3. 1Z(s) =Ts+? +-r-=T +7+r-I
s "4 5 5s

the one-port shown in Fig. 3 is obtained.
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B. Modeling frequency-dependent inductance by -CL one-port

Replacing C. by -C. in Eqn. (2.6) a general expression of the impedance

of a -CL one-port is obtained as follows:

z(8)-L-s+A\LTTrr (2-14)
0 1] _cis C7

Similarly a general expression of admittance becomes,

The frequency-dependent inductance associated with Z(s) given in (2.14) is,

L(«) =Z(J»)/J« =Lw +-±j+j—Ipp (2>16)

Note that L(<o) is non-negative for all to values. However,Eqn. (2.16) is too

restrictive to realize an arbitrary frequency-dependent inductance. For
4 5 (

example L(oj) = <o which corresponds to the fifth-order inductor v(t) = d i(t)/dtN

can not be realized by a -CL one-port.

Note that Eqns. (2.8) and (2.15) have the same form. Hence the following

theorem can be stated.

Theorem 3. An odd rational function H(s) can be realized as the input

admittance of a -CL one-port if and only if H(s) can be realized as the input

impedance of a -LC one-port.

III. REALIZATION OF ARBITRARY ODD RATIONAL FUNCTIONS

Consider a higher-order linear time-invariant inductor defined in [1] as,

•2k+l./.x

^'"•S^11 (3J)
at

and a higher-order linear time-invariant capacitor defined as,

^2k+lw/+,

1w =ml^FiiI (3-2)
at

where m e IRand k is a non-negative integer. Hence, the input impedance

(resp., admittance) of a higher-order inductor (resp., capacitor) is given
2k+l

by F(s) = ms . Its associated frequency-dependent incremental inductance
k 2k

(resp., capacitance) is given by F(ju))/jw = (-1) mto . It follows from

Theorems 2 and 3 that a higher-order inductor or capacitor with k >^ 1 can not
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be realized by a -CL or a -LC one port. In the next section we will show that

any odd rational function, consequently any higher-order inductor or capacitor

can be realized as the input impedance or admittance of a ±L, ±C one-port.

A. Realization of a special type of odd polynomial

First, assume that our frequency-dependent inductance or capacitance is

modeled in a frequency band uk <_ u <_ uu by a polynomial of the following form,

P(s) = I a2.+1 s2i+1 (3.3)
i=0 ^ l

where a2.+, f 0 for i=0,l,2,...,k, i.e., p(s) is an odd polynomial with no
missing terms. In the following we will give a method to realize p(s) as the

input impedance of a ±L, ±C one-port. However, using the same method p(s)
can also be realized as the input admittance of a ±L, ±C one-port.

Consider Y(s) = l/p(s); without loss of generality, let a2k+1 = 1 and
remove the pole of Y(s) at s = 0. Then y(s) can be expressed as,

Y(s) -Jyt Yl(s) (3.4)

where

s^^+a,,, ,s2k"3+...+acs3 +a0s
v t*\ v/e\ 1 -1 - 2k-l a T "3" ,, c\V> -«»> •^ -if s^+a2k_lS^+...+a/+ai (3-5)

From Eqn. (3.4) it is seen that realization of Y(s) is reduced to the realiza

tion of Y^s). Note that if ^(s) =-a-jY^s) is realized then Y^s) can be
realized by impedance scaling.

Removing the pole of 1/Y^s) at «^(s) can be written as,

Vs)=i+oir= ^
s + e2k-l .a c2k-3 . ,a c3.._ .s a2k-l +...+a5s +a3s

(3.6)

From Eqn. (3.6) it is seen that ?2(s) =a-,/Z2(s) is an odd polynomial with no
missing terms, whose degree differs by 2 from that of Y(s). Iterating the
above reduction process, we obtain the following expression for Z(s):
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Z(s) ! (3.7)
"l +

s q3
q,s + — +2 s q5

q4S+T +

' n . .q2k+l
+ q2kS + s

The one-port realizing Z(s) is shown in Fig. 4. The above result can be

stated as a theorem.

Theorem 4. An odd polynomial p(s) = J a-.,^21"1"1 where a. f 0, i=0,l,2,...,k,
i=0 ^ '. 1

can be realized as the input impedance or admittance of a ±L, ±C one-port which
contains 2k+l elements.

Example 2. Consider the polynomial

Z(s) =s7 +s5 +s3 +s. (3.8)
The expression which corresponds to (3.7) is,

Z(s) = 1
1+ ~T~ (3.9)

-s
+ 1 4. 1

-s
s +

1
+ -

1

s
•s +

J_

and the one-port which realizes (3.9) is given in Fig. 5.

B. Realization of higher-order capacitances and inductances

As it is indicated in Theorem 4, an odd polynomial of order 2k+l can be

realized using 2k+l elements if there are no missing terms. Assume that all
2k+l 2k+lthe terms but a2k+ls are missing. Then p(s) = a2k+1s can be considered

as the input impedance (resp., admittance) of an inductor (resp., capacitor)

of order 2k+l. Without loss of generality, assume that aol ., = 1 and
2k+l tK+i

p(s) = s is the input impedance of an inductor. Assume that a ±L, ±C
2k+lone-port realizes Z(s) = s . Then, write the input impedance of the one-port

such that element values are not assigned; the input impedance can be written

as,

a c2k+l+. q2k-l . •

Z(s) = 2k+1 2k ^tz 9lS (3.10)
^ b2kS +b2k-2S +-+bo
v where the coefficients a4 and b. are functions of circuit parameters L. and C.

2k+l ^
Since the one-port realizes Z(s) = s there exists a set of elements values
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such that a2.+, = b = 1 and all other coefficients are equal to zero. Assume ^
that an LC one-port realizing Eqn. (3.10) is the one shown in Fig. 6. Z(0) = 0

implies that there exists at least one L-path between the terminals 1 and V.

On the other hand lim Z(s) = » implies that there can not be a C-path between

1 and V. As a result of these properties there can be only two different

realizations of the impedance

3
a-s +a!S /

z(s)= 3J_ (3.11)
b2s +bo

if (3.11) is to be realized using only three elements. The configurations are

shown in Fig. 7. The input impedance corresponding to the one-port shown in

Fig. 7a is

L^Cs^L^+LJsZ(S) = 12 g ] 2 (3.12)
L2Cs"+l

3
In order to realize Z(s) = s the element values must satisfy the following

equations,

L^gCg =1 (3.13a) ^
L +L2 =0 (3.13b)
L2C =0 (3.13c)

But there exists no solution of Eqns. (3.13).

The input impedance of the one-port shown in Fig. 7b is.

LApCs^s
Z(s) =-J-? V- (3'14)(L^+LgCjs'+l

Again it can be shown that there does not exist a set of element values
realizing Z(s) =s3. Hence, the total number of elements in an ±L, ±C
one-port realizing Z = s must be greater than 3. In the following it is
shown that the total number of elements in a ±L, ±C one-port realizing

Z(s) = s2k+1 is greater than 2k+l for k> 2.
— 2k+l

Assume that there is a realization of Z(s) = s with a ±L, ±C one-port

which contains 2k+l elements. Then the general form of Z(s) is of the form

of Eqn. (3.10). Considering the partial fraction expansion, it is seen that
the one-port must contain k+1 inductors and kcapacitors. Furthermore, there ^
is no loops of inductors only, otherwise s=0would be a pole of Z(s).
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Consequently, a tree of Eqn. (2.2a) contains k+1 elements and a tree of

Eqn. (2.2b) contains k elements, k _> 2.

It follows from the above observations that if Z(s) is expressed in the

form of Eqn. (2.1) and all coefficients but those corresponding to a2k+1 and
b in (3.10) are set equal to zero, then 2k equations are obtained with 2k+l

unknowns such that each term in an equation is the multiplication either of k

or k+1 unknowns, i.e., each equation is a multi-variable polynomial of degree

k of k+1.

Let a solution of these equations be x* = [x^,x2,...,x2k+1] . Then,
obviously, kx* is also a solution where k is any real number. Now x. f 0,

i= l,2,...,2k+l by assumption. Hence, if any unknown say x2k+1 is set equal
to 1, then the resulting set of 2k equations which contain 2k unknowns has also

it "k it it T _

a solution x = [x-j.x^,... ,x2k] such that x.. f 0, i= 1,2 2k. However,
x, = x2 = ... = x2. =0 is a solution of the 2k equations. Hence, a solution
x* with x. f 0, i = 1,2,...,2k can not exist.

The preceding analysis shows that any ±L, ±C one-port which realizes

Z(s) = s2k+1 must have at least 2k+2 elements. In the following a realization
of Z(s) =s2k+1 using only the minimal number of 2k+2 elements will be given.

Let

Z^s) As2k+1 -s. (3.15)
Then

Z(s) =Z^s) +s. (3.16)
Therefore realization of Z(s) is reduced to the realization of Z^s). Notice
that the degree of Z,(s) is also 2k+l. If Z-j(s) is realized by a ±L, ±C
one-port with 2k+l elements then Z(s) can be realized with a ±L, ±C one-port

with 2k+2 elements.

Consider,

Y^s) = 1 =—1 (3.17)
1 Zi(SJ s(s^k-D

Removing the pole of Y-j(s) at zero we obtain,

Vs) =:T+ Y2(s) (3,18)
where

2k-l

Vs) =Vs*+1 =7T7 (3-19)
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Now, remove the poles of Y2(s) at s=1and s=-1: ^

Y?(s) =V-+Y,(s) (3.20)
d s -1

where

is s^-I^-V-V..-^)
Y(S)-y,(s) - V---, L_2 2k.4 g-;— (3'21)
3 2 sZ-l (sZ-1)(sZk Z+szlc V..+sz+l)

Factoring out (s -1) in the numerator and cancelling the common factor (s -1),
Y3(s) takes the following form,

=i. <k-i)s2k1t^-2iskT5+(ki)s2k"7+-+3s5+2s3+s (3-22)3 K S +S +...+S +1

Using continued-fraction expansion we obtain,

Vs> =yiT =FT s+Vs> (3-23)
where

I •(j.i)$2(k-J)
- , > k s2k~4+2s2k~6+...+(k-2)s2+k-1 . J=2 ,3,4)z4(s) -^ •(k.1)s^+{k.2)sk-b:<+2S3+s -ty^tt (3,M>

J-1

Then

Y4(s) =U^Ui s♦ Y5(s) (3.25)
where

v #.1 n n s2k"5+2s2k~7+...+(k-3)s3+(k-2)s
Y5(S) ' °-k) * sZk-4+2s2k-6+...+(k-2)sZ+k-l

in short,

s'f (j-2)s2<k^
Y5(S) =°'k) "^ 21HT (3"26)I (j-l)s2lk-J)

j=2

Finally,

Vs>=tWs> (3-27)

-12-
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where

zfi(s> = 2k-s 2k]s = uk "]—;—r (3-28)6 s2k 5+2s2k"6+...+(k-2)s s y (j.2)s2(k-j)
j=3

Now, using (3.15), (3.18), (3.20), (3.23), (3.25), (3.27) and (3.28)
2k+1

Z(s) = s can be expanded as,

Z(s) =s+ f ]
-1 k s

+ ±K +s s^ k s+
k-] (k-1)2,,

s + ..- -I1-k s2k-5+2s2k-7+>--+(k.2)s

(3.29)

and (3.29) can be realized by the one-port shown in Fig. 8.

By Theorem 4. Zfi(s) can be realized using 2k-5 elements. Therefore,
Z(s) can be realized using 7+2k-5 = 2k+2 elements. Hence we can state the

following theorem.

Theorem 5. A generalized inductor or capacitor of order 2k+l can be realized

by a ±L, ±C one-port which contains 2k+2 elements.

Example 3. Consider,

Z(s) = s7 (3.30)

Then expansion (3.29) takes the following form,

Z(s) =s+ 1 }- (3.31)
-13S 1
s s2.! 3S+ 1

2 4c , . 1
3 s "~T ^T° - — s + —-

2 s s

The ±L, ±C one-port which realizes (3.31) is given in Fig. 9.

C. Realization of any Odd Polynomial

It has been shown that the polynomial given by (3.3) and the polynomial,

p(s) =s2k+1 -s (3.32)
can be realized using 2k+l elements. However, a minimal realization of the

polynomial

p(s) = s2k+1 (3.33)

-13-



requires 2k+2 elements. <-»%

Obviously any other odd polynomial can be expressed as a summation of the

polynomials given by (3.3), (3.32) and (3.33); hence it can be realized as a

driving-point function of a +L, +C one-port.

Example 4. Consider

Z(s) - s7 + s5 + s (3.34)

If Z(s) is written as,

Z(s) =Z^s) + Z2(s) + Z3(s)

where Z-j(s) =s7, Z2(s) =s and Z3(s) =sthen aminimal realization requires
8+6+1 = 15 elements. If Z(s) is written as,

Z(s) = Z^s) + Z2(s)

where Z-j(s) =s7+s5+s3+s and Z2(s) =-s then aminimal realization requires
7+4 = 11 elements. On the other hand, consider the following decomposition of

Y(s) = 1/Z(s),

vm - 1 1 -1.-s5-s3 _1. ]__
Y(s)"^T"7+?+7^ 7+7+7"* -s+^J

s^+7
Using

-1 .1 +4*
s5+s3 s s3

-s

s2+l
=

1

s+-£-
s*-l

+
-s

s2+l

the following decomposition is obtained,

^-h-—r- . -s
-S+ :—- +

S+^#- s2+l
S^-l

which requires 7 elements. Since the degree of Z(s) is seven, a realization

with fewer elements is not possible. Minimal realization of an arbitrary odd

polynomial will not be discussed here.

D. Realization of an odd rational function

Given an odd rational function Z(s), if Z(s) or Y(s) is not a polynomial

then using continued-fraction expansion, realization of Z(s) can always be

-14-
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reduced to the realization of polynomials. However, a decomposition of Z(s)

may not lead to a minimal realization. On the other hand, removal of a simple

pole of Z(s) or Y(s) simplifies the realization and leads to a minimal realization.

This is because after removal of a simple pole (including a pole at «>) if the

remaining impedance (resp., admittance) Zf(s) (resp., Yr(s)) has a minimal
realization then Z(s) (resp., Y(s)) has a minimal realization. Hence, if all

the poles of Z(s) (resp., Y(s)) are simple and if the polynomial part of the partial

fraction expansion of Z(s) (resp., Y(s)) has a minimal realization, then

Z(s) (resp., Y(s)) has a minimal realization. Pole removal from an odd rational

function is discussed in the Appendix.

Example 5. Consider,

-5

z<s) =—?—Sr-? (3.35)
(s2+l)(s4+s2+l)

1 S2The poles are : p1 =j, p2 =-j, p3 =^- +j^ p4 = p3, pg =-p3 and p6 =-p3.
Partial fraction expansion of Z(s) is given by,

Us) =-f- +-f^ \ +I1 ] ,
SN-1 sW+1 S+t- -Us S -1 + 1

s »4
The corresponding realization is given in Fig. 10.

E. A method to approximate a given L(u) or C(co) curve by an odd rational function

In the following approximation of a C(oj) curve will be discussed. However,

the method can also be applied to the approximation of an L(w) curve.

Given C(u>) a rational function Y(s) can be found such that C(w) and

C(w) A j^j Y(jw) are equal at u).., i=1,2 n. In general Y(s) can be chosen
as any odd rational function,but to simplify the discussion the following general

form will be considered,

s^V1s^V...*-s34*1s
Y(s> " m -2 V1" (3'36>

ams+am-2s +-+a2sS
Then,

CO^) =Cfc^) i = l,2,...,n (3.37)

give n linear algebraic relations among the coefficients a.. Hence choosing m

appropriately the coefficients ai i = l,2,...,n are determined.

-15-



Example 6. Consider the C(w) curves shown in Fig. 11. It is given in [4] as the

frequency-dependent capacitance of a varactor diode biased at 10V and 15V,

respectively.

The 10V bias voltage curve will be approximated using the points corresponding

to (o-j =2tt x460 x106r/s, w2 =2tt x640 x106r/s and w3 =2ir x840 x106r/s.
Choose,

Y(s) =

3
s +a^s

a2$2+a0
Then C(u>) is,

CM --!—
aQ-a2o)

(3.38)

(3.39)

From Fig. 11 it is seen that C(u)-i) = 6.5 pF

C(u)2) = 7.5 pF and C(o>3) = 10 pF.

Scaling frequency by 10 ,C(u^) =0(^0, i= 1,2,3, give the following equation.

(3.40)

-0.065 1 0.0054298" a0 0.083536

-0.075 1 0.0121277 al
= 0.1617

-0.1 1 0.0278559_ La2J _0.27855

Substituting the solution from (3.40) into (3.38) and then using continued-

fraction expansion, we obtain the following approximating admittance:

Y(s) = s°+2.5199s
= 0.01294s +

1 (3.41)
177.27sN-43.9387 39.598s +0j04441s

The denormalized circuit corresponding to (3.41) is shown in Fig. 12.

Although we have matched C(oj) and C(u>) only at 3 points it can be seen that

*C^(Ei"}l -5% in the entire
band of 100 MHz < f < 1000 MHz.

Observe that for this example, which represents a real physical device, all

capacitances and inductance in the circuit model of Fig. 12 are positive. Note

that at low frequencies, L is negligible and the model reduces to a 5.735 pF

capacitance. It is remarkable that although this circuit model was derived

strictly from a black box approach, the elements in the model can actually be

given physical interpretations. Indeed, as is typical in microwave applications,

a "lead inductance" L is generally inserted in series with the "junction

-16-
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capacitance" C-, and the entire model is connected across a "case capacitance"

Cc [10,11].f
F. Modeling frequency and X-dependent capacitances and inductances

Besides being a function of frequency the incremental capacitance or inductance

which is used in the model of a nonlinear device may also be a nonlinear function

of other parameters, such as bias voltage, light intensity, temperature etc.

In such a case the incremental capacitance or inductance can be modeled by a

+L, +C one-port whose elements are X-dependent, i.e., instead of +L, +C one-port,

a + L(X), +C(X) one-port is used. For example, the capacitance of a varactor

diode is a function of both frequency and bias voltage. Then, one way to realize

C(u),V) approximately is to realize C(u),V) for a certain V and repeat the process

for different V values. Another way is to use optimization [12]; once C(w,V) is

realized by a +L, +C one-port for V = V^, changing the circuit parameters in an
optimum way would model C(o),V) for different V values.

The circuit for realizing an arbitrary C(u),X) or L(u>,X) can be found by

repeating the preceding method for each value of the parameter X. Note that the

circuit remains the same. Only the elements are now (generally nonlinear) functions

of the parameter X. In the usual case where X denotes either the driving-point

voltage or current, the resulting circuit model is no longer linear. Rather, it

^ is a time-invariant nonlinear circuit. In this case, it is important to note

that the X-dependent capacitances (resp., inductances) in this model are not

nonlinear capacitors. Rather, they are algebraic 2-ports as defined in [1].

For example, let C(v^) denotes a capacitance in the circuit which depends on
the driving-point voltage v-j. In order for the circuit model containing this
capacitance to correctly simulate on a computer the measured small-signal capacitance

C-(V^) at each dc bias voltage v, = Vn, it is necessary that the computer be
instructed to describe this element by

ij =̂ (v,) ^ (3.42)
To describe this element as a v-j-controlled nonlinear capacitor,

q3 =|0 W^jA'OVVj) (3.43)
would be incorrect because this would give

"X

The microwave varactor circuit model would also normally include the small
series resistance of the wafer. Since our measured data in Fig, 11 consists
of a frequency dependent capacitance only, the model in Fig. 12 includes only
lossless elements.
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dq, af dv-, dv.

iiW'st-i^sr^iW-d (3-44) ~>
which contains an extra term not present in (3.42). Indeed, this paradoxical

element is actually an (a-.,3-|)-(a2,32) algebraic 2-port (with a-j = 3-|= ^2 =°
and a2 = 1) described by (where j= 2)

^ =0 (3.45a)
dv«

1a • W -ar (3-45b)

Note that the variables associated with port 1 are vi ' AVi and ii ' A i; those
(1) i - i i -

with port 2 are va A dv2/dt and i2.

IV. STABILITY CONSIDERATIONS

It has been shown that any odd rational function can be realized as the

driving-point function of a +L, +C one-port. Hence frequency-dependent inductances

and capacitances can be modeled by +L, +C one-ports. However, the one-port which

approximate L(u>) or C(aj) may have poles and/or zeros in the right-half plane.

Example 7. Consider the C(u>) curve given in Fig. 13(a). Assume that the frequency- *%

dependent capacitance.

C(w) -IM
S

where,

(4.1)

p

Y(s) =s^ -1) (4.2)
4s -2

is equal to C(<d). Hence Y(s) is an exact representation of C(w) but it has a

zero and a pole in the right-half plane. Therefore any one-port realizing Y(s)
is neither open-circuit nor short-circuit stable. However, if a linear time

invariant circuit containing C(o>) is exponentially-stable, then sinusoidal steady

state solution still exists and C(u>) can be represented either by the -LC one-

port shown in Fig.13(b) or by the +R, C one-port shown in Fig. 13(c). In general

an exponentially-stable linear time-invariant circuit may contain unstable

elements. For example, a frequency-dependent negative resistor (FDNR) defined

by,

i(t) =D^4i)- (4-3) ^
dr

-18-
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is not open-circuit stable but it is widely used in active circuit design

provided that the circuit containing the FDNR is exponentially stable. The effect

of some elements on the stability of a circuit can be examined using Nyquist

criterion or other equivalent methods.

Over a given frequency interval, an arbitrary C(o)) or L(w) curve may be

approximated by several different odd rational functions. When Choosing a model

the stability of the circuit should also be taken into consideration.

V. CONCLUSIONS

In this paper modeling of incremental capacitance C(o),X) and incremental

inductance L(u>,X) are considered.

In Section II it has been shown that a -LC (resp. -CL) one-port realizes a

frequency-dependent capacitance (resp. inductance) and a necessary and sufficient
condition for the realization of an odd rational function as the driving-point

function of a -LC (resp. -CL) one-port is given.

In Section III it has been shown that an odd polynomial of order 2k+l given

by Equ. (3.3) can be realized by a ±L, ±C one-port with 2k+l elements. On the
other hand, a minimal realization of the polynomial p(s) = s which corresponds

to a higher-order inductor or capacitor of order 2k+l contains 2k+2 elements. It
has also been shown that any odd rational function can be realized as the driving-

point function of a ±L,±C one-port.

In Section HI.E a method for approximating a given C(u}) or L(to) curve by

an odd rational function is given. Once the rational function is realized by

a ±L,±C one-port, then, using computer optimization [12] the element values can be
adjusted for a better match of the C(u>) curve. Furthermore, the same technique
can be used in the realization of C(oj,X) or L(u),X) by a ±L,±C one-port whose

elements are parametrized by X.
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FIGURE CAPTIONS

Fig. 1. Modeling of a frequency-dependent capacitance.

Fig. 2. Foster type 1 realization of an LC. driving-point function.

Fig. 3. -LC realization of the impedance given by Equ. (2.13).

Fig. 4. Realization of an odd polynomial given by Equ. (3.3).

Fig. 5. Realization of the impedance given by Equ. (13.8).

Fig. 6. LC one-port associated with the impedance given by Equ. (3.10).

Fig. 7. Two different realizations of Z(s) given by Equ. (3.11).
2k+l

Fig. 8. A realization of Z(s) = s .
7

Fig. 9. A realization of Z(s) = s .

Fig.10. Realization of the impedance given by Equ. (3.35).

Fig.ll. Capacitance of a varactor diode as function of frequency for 2 fixed

bias voltages: V = 10V and V = 15V (Taken from [4]).

Fig.12. A realization of the C(w) curve with lOV-bias voltage given in Fig. 11

Fig.13. (a) A given C(<o) curve.

(b) and (c). Two different realizations of the admittance given by

Equ. (4.2).



APPENDIX

Pole removal from an odd rational function

An odd rational function H(s) can be written in the following form,

H(s)=sk$f} (A.D

where k is a non-zero integer and the polynomials N(s) and D(s) contain only even

degree terms.

A. Removal of an imaginary pole

Assume that H(s) has a simple imaginary pole jp. Then -jp is also a pole

and H(s) can be written as,

H<s) =¥s> ^ =4p+I^P +Ms> (A'2)
where,

k=H^jp) 2jp • (A-3>

It follows from (A.l) that H«,(jp) is an imaginary number. Hence, by (A,3) kis
a real number. Therefore, Eqn. (A.2) takes the following form,

H(s) =-|^-+Hr(s) (A.4)

Since the first term in (A.4) is easily realized as the input impedance or

admittance of a ±L, ±C one-port, the realization of H(s) is reduced to the

realization of Hr(s),

B. Removal of a real pole

If H(s) has a simple real pole then jp in (A.2) is replaced by p and (A.4)

is replaced by

H(s) --l^+ys) (A.5)
s -p

where k e R. Therefore the realization of H(s) is reduced to the realization of

Hr(s)

C. Removal of a complex pole

Assume that H(s) has a simple complex pole p = a+j3, a,3 f 0. Then, p, -p 1

and -p are also poles of H(s). Therefore (A.2) is replaced by

A-l

/«%

>*%



h(s) =Ms) -j—t-t\—nrz ^<6)p, ' s4+2(6 -a2)sZ+(a2+B2)2
which can be expanded as follows:

H(S) = Ur- + -U-- + _,_ f•„ + A .„ + H (s). (A.7)
v ; s-a-jB s-a+je s+ct+j3 s+a-j$ rv ' v '

Since p is simple,

kl =(s-°-Je) H(s)|g=a+;jB =H, (a+j6) ^ ^ ^ (A.8)
and

k2 =Hl(-a"^) -2a-2jg ^cT^2j3 (A#9)

Since H-j(s) is an odd function of s,

H(-a-je) = -H(a+jB)

It follows from Eqns. (A.8) and (A.9) that,

k2 = k-j A k=x+jy (A.10)

f* substituting (A.10) into (A.7) we obtain

H(s) =Y3+H**f"2f2;2r)S] »Ms> <*•">
s4+2(B2-a2)s2+(a2+B2)Z r

The first term in (A,11) can be written as,

a0s +a,s
^(s) -4 1 (A.12)
1 s^+bgS^+bQ

We will now show that H-j(s) can be realized using 4 elements. Without loss of
generality, assume that H-j(s) is an input impedance.
Case 1. a3 = 0, a-j $ 0.

Assume that a-j = 1. Otherwise use impedance scaling. Then Z(s) k H-|(s)
can be decomposed as

Z(s) =5 J ] (A.13)
D0,c3,hc o.__jl__T+s +b2s T + } f 1 -

b
2 h2

-b2s+^2
s

A-2



Obviosuly (A.13) can be realized using 4 elements.

Case 2. a3 f 0, a-| = 0

Assume a =1. Then Z(s) can be expanded as,

Z(s) = U = 1—, (A.14)
b,s£+bn s+ !

S+V J-s+ "b0S

s +

b2 b2s2+bQb2

Again it is seen that (A.14) can be realized using 4 elements.

Cas.e 3. a3 f 0, a-j f 0
Assume a3 =1. Applying continued-fraction expansion, Z(s) can be expressed

as,

Z(s) = \ (A.15)

qls+—}—J
2 q3S

It is easily seen that q^ t 0, i=1,2,3. Therefore (A.15) can be realized ^
using 4 elements.
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