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Abstract

The symbols produced by a finite Markov source have to be causally
encoded so as to be transmitted through a noisy memoryless channel. The
encoder is assumed to have channel feedback information and the decoder
to be causal.

The feedback information is shown to be useful in general.

Separation results are derived and used to prove that encoding is
useless for a class of symmetric channels.
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1. Introduction

The coding theorem for discrete memoryless channels and ergodic

sources asserts the possibility of reliable communication under the well

known rate constraints (see [1]). This result is made possible by the

observation that long ergodic sequences are asymtotically typical and

can therefore be coded into sequences having the distribution which

achieves the capacity of the channel.

The need for encoding arbitrarily long sequences introduces undesirable

delays in the communication systems. It is an important problem to measure

the trade-off between reliability and excessive delays. One approach is

to consider the rate of decrease of the average probability of decoding

error as the length n of the encoded sequences increases. The usual results

state that this error is bounded by exp {-n E} for some constant E

depending on the channel and source parameters, (see e.g. [2] chap. 5, 6).

These bounds are asymptotically tight but of limited value for short

sequences.

In this paper we adopt a different approach for the problem of reliable

communication with finite delays. Instead of deriving bounds indicating the

improvement obtained by increasing the delays we consider the optimization

of a system with given delays.

In the basic model both the encoding and the decoding have to be

performed causally. This formulation can be motivated by control applications

in which the decoder has to control a system in real time.

Our objectives are to examine the usefulness of the channel feedback

information and the structures of the optimal encoder and decoder.

The structure of real time encoders for a Markov source and a noiseless

channel was discussed by Witsenhausen in [3]. Some properties of the

decoders were analyzed in [4], [5].



The paper is organized as follows. In section 2 the basic model is

introduced. Section 3 discusses two simple examples that will illustrate

some features of those problems. In section 4 the separation results are

established. Those results are applied to a class of symmetric channels in

section 5, where it will be proved that causal encoding is useless for

such channels.



2. Optimal causal coding and decoding

The model under investigation is described below. The situation is

pictured on figure 1.

Definition 2.1

Let {(x , u , y ,z ),n ^ 1} be a stochastic process taking values in

a finite product space X x U x Y x Z.

For n*1, let xn: =(x-j,..., xR) and similarly for un and yn.
Let also zQ = 0 = y = yQ.

The probability law P of the process is assumed to be such that for

n 1 1

P(xn+1|xn, un,yn}--Mn(xn+1|xn),

u^c^.y-1),

zn = hn(zn-l* yn}'
where Q , M are given transition matrices and c , h„ are given functions,

n n n n

The interpretation is that (x ) is a Mcuikcv ioaice with transition

matrices (MR), c = (c ,n* 1) is a cede, and zn is the memory contents

of the receiver at time n. This model of memory updating is borrowed from

[3]. (See also [1], §8.)

Alternatively, one can think of the probability law P as being a

functional of the code c for given source (Mn), channel (Qn) and receiver

(hn). The dependence of Pon c is not indicated explicitly to simplify

the notation.

Definition 2.2

Let N be some fixed integer.

For a given code c and a given sequence of functions d = (dn» n _> 1),

called a decoding *a£e, one defines the cost
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J(c,d) =E Y„(xn, dn(zn)),
n= I

where the real valued functions £-|,..., £N are fixed and E denotes

expectation with respect to P. The functions dn take values in a finite

set D.

A code c* is said to be optunaJt if J(c*, d*) < J(c,d) for some decoding

rule d* and for all (c,d). A decoding rule dQ is optimal for a given code

c if J(c,dQ) < J(c,d) for all d.

Remark 2.1

Since only finitely many values are involved the expectation is

always well defined. Similarly, only finitely many codes and decoding

rules exist so that the optimal c* and dQ always exist.

The cases of perfect receiver memory (z = y ) and that of finite

receiver memory (z = (y(n_m)+«i»,,,,vn^ are covered by the model.

The causality restriction is explicit for the code c and is

reflected in the cost structure for the decoding rule d.

One could have generalized the model by considering randomized

codes or decoding rules. However it is clear that they could not achieve

a lower cost. (See e.g. [6], T. 1.6.)



3. Two Examples

The first example shows that causal coding can be useful; the second

one shows the feedback information can help the encoder and that a one-

step optimal strategy may not be optimal.

Coding a single bit

Definition 3.1

Let x, u, y be {0, 1} - random variables with (see figure 2)

P(x=l) = Ce[0,l],

P(y|u) = Q(y|u) with Q(l|l) = 3=1- Q(0|1), Q(0|0) = a = 1 - Q(1|0),

u = c(x), for some code c: {0,1} -»• {0,1}.

The cost to be minimized is

J(c,d) = P(x f d(u)),

where d: {0,1} -* {0,1} is the decoding rule.

For this problem it is immediate to verify the following facts.

Facts 3.1

a) For an arbitrarily fixed code c the optimal decoding rule dQ is

given by

dn(j) - arg max P(x=i|y=j), for je{0,l},
ie{U,l}

where arg max f(i) denotes an arbitrary i* eS maximizing f: S +1R.
ieS

b) As a consequence,

min J(c,d) = 1-1 max P(x=i, y=j)
d je{0,l} ie{0,l}

= 1 - I max P(x=i)Q(j|c(i)). (3.1)
je{0,l} ie{0,l}

It is then easy to compare the costs corresponding to the four possible

codes c: {0,1} -»• {0,1}. One finds the following conclusions.



Proposition 3.1

a) An optimal code c* is given by

u = c*(x) = /x if (C,a,3)eA

(j-x otherwise,

where (5,a,3)eA if

5>land |a- £| <|3- \\
or

C<} and |a- \\ >|3- \\-
b) There exist some (£,a,3)eA for which J(c*, d*) < J(c,d) for all

d, with c*(x) = 1-x and c(x) = x.

Therefore, coding can be strictly preferable to sending u = x. The result

of this proposition can be understood as follows. If |a - j| > |3 - 5" !»

then the channel is less noisy when its input is the symbol 0 than when

it is 1 (see figure 2). Thus one should code in such a way that P(u=0)

> P(u=l).

Two-step coding

Definition 3.2

Let now (see figure 3) x-j = x2 =x, u1, u2> y-,, y2 be {0,1} valued

andsuch that P(x=l) =£e[0,l], y1 =c^x), P(y1|u1) =Qjy^u.,),

u2 =c^x.y^, P(y2|ur u2, x, y}) =Q(y2|u2),

where Q is as in definition 3.1.

Two cost functions will be considered.

J1 (cr d^ =P(x f d^y^j

J., (c,, c2, d2) =P(x f d2(yv y2)).

The problem is to find the codes and decoding rules minimizing those

costs. Define, for codes c-j and c2,

J-j(Cj) =min J^c^, d-j), J2(c.|,c2) =min J2^CV c2' d2^*
d1 d2

As in the previous example one can check the following fact.



Fact 3.2

J2(cr c2) =1 - i max P(x2=i .y^^y^). (3.2)
j-j,J2 ie{0,l}

This can be used to compare the following codes.

Definition 3.3

The codes c1, i=l,..., 6 are defined by the values

u] =c^x-j) and u2 =c^x^x^y^ given by

(ur u2) = (x-,, y^l-Xg) +(l-y^xg),

(u*. u2) =(xr y^2 +(l-y^O-Xg)),
(ur u2) =(x^ x2), (ur u2) = (x-j, l-x2),

(u^, u2) =(1-x-,, x2), (ur u2) =(1-x.,, l-x2).
Substitutions in (3.1), (3.2) then yield the next conclusions.

Proposition 3.2

a) There is some (£,a,3) such that

J^c1) <J2(c1), i=3,..., 6.
b) There is some (£,a,3) such that

J2(c6) <J^c1'), i=1,..., 4
J^c3) <J^c5).

The first part of this proposition shows that feedback can be strictly

useful. (For c1, i= 3,..., 6 are all the codes which do not use feedback.)

This fact can be contrasted with the well known fact that feedback cannot

increase the capacity of a memoryless channel and is, in that sense, useless

in the classical information theoretic formulation, (e.g. [2], p. 520).

The second part shows that c-j(x-|) = x-, can be optimal for estimating

x1 on the basis of y, alone, while c-jUj) = l-x1 is better for estimating

x1 on the basis of y1 and y2- This shows that one step optimality is not

optimal. In the same line of ideas one can construct examples in which



c1 ix1 j=x, maximizes max P(x, =d,(y,)) but does not maximize max P(x2 =d^y-,))
d, d2

Thus, improving the knowledge about the initial state of a Markov" chain may

not improve the Knowledge about subsequent states, a somewhat a priori

counter-intuitive fact.

The above negative results motivate the next section which attempts

to characterize the usefulness of the available information.



4. Separation results

The model is that of section 2 (figure 1).

Observe that z •, is available to the encoder at time n(n >_ 1).

Theorem 4.1

There is an optimal code c* of the form

C* (xn, y""1) -Yntvz^-i), "I1- (4J)
Proof: Fix an arbitrary decoding rule d. Then tne process ^vn = (xR, Zp.-jN n >_ i)

is conditionally Markov given the u 's» i.e., for n >_ 1,

P{vn+1|v", un} =P{vn+i|vn,un}.
This Markov property implies that

J(c,d) =E{ ZEUn(xn,dn(xn))|zn-|,xn,un]}
n=l

N N

=^WVl^n1 =En^fen(vn'un)'
for some functions k .

Considering the resulting Markovian decision problem of controlling

the transition probabilities of v with complete observation to minimize

an additive cost in (v , u ) then yields the result, q

This result was given in [3] in the case where the channel is noiseless,

i.e., when the entries of the Q are in {0,1}.

The case of perfect receiver memory (z = y )leads to a sharpening

of that result. It is considered next.

Definition 4.1

Let M(X) denote the set of probability measures on X.

For C = (S(x), xeX)e M(x) and n ^ 1 define

an(S) = arg min I £_(x,a)c(x).
n aeD xeX n

For any xeX and n _> 1 let

Ln(x,0 =£n(x,anU)).
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For every code c define the conditional probability of xn given y as

C„(yn)(x) -P{xn=x|yn}, yneYn, xeX.
Let also LQ = lQ =0.

With those definitions one can state the following immediate fact.

Lemma 4.1

Let c be any given code. The optimal decoding rule d for c is

given by

dn(yn) =an(C>n)), n>1.
Theorem 4.2

Assume that z = yn, n >_ 1. Then there is an optimal code c* of

the form

cJtxV"1) -*H(VeS-l(y,"1))-ni1'
* c*for some functions i|* ,where £* = £n .

Proof:

The main idea of the proof is to consider that tne *.ecexA>e4. chooses

the function y ('ty""1) (see (4.1)) to be used next by the encoder. The

receiver is tnen faced with a control problem with partial observation to

which one can apply the dynamic programming techniques.

We now proceed with a formal proof which will be given as a

succession of lemmas.

For £eM(X), xeX, yeY, n > 1 and w: X + U let

Qn(y|w(x))Zx,Mni(x|x»K(x')
Fn(5.y.w)(x) =—^—! X "'. (4.2)
n ^(yKxJJ^.M^^xIxM^x1)

where the sums extend over x'eX and XeX, and MQ is the identity matrix.

Observe that by Theorem 4.1 one can restrict attention to codes c of

the form

cn(xn,yn-1) =Yn(xn,yn_1). n> 1. (4.3)

11



Lemma 4.2

Fix an arbitrary code c of the form (4.1). The rule for updating con

ditional probabilities is

cn(yn) =Fn(en_i(*n"1)' yn» Yn(-, y"'1)), n*i.

where £0(y°)(x): =P(xn =x), xeX.

Proof:

This is a direct consequence of definition 2.1, (4.2) and Bayes' rule, o

For £eM(X) define recursively for n = N+l, N, N-l,..., 1

Vi («>= °

Vl(e) =min V(x){Ln-l(x'5)+IyVFnU,y,wl)ExQn(ylw(J))Hn-l!i!lx)1
w:X-HJ

(4.4)

and denote the minimizer w in (4.4) by i|/*( •,£) and the corresponding Cn by

Lemma 4.3

For any code c of the form (4.3) and any decoding rule d one has

V^l^U,^, djy™))^] ,n-0,....N +l.
m=n

(4.5)

where Ec is the expectation with respect to the law induced by c. (In
N

we define
m=

Proof:

(4.5) we define I I = 0.)
m=N+l m

Assume that (4.5) holds for some n < N + 1 (it trivially does for

n=N+l). We show that it then holds for n-l.

Choosing w(») =Yp^.y""1) and 5=5° ,shows that (4.4) implies

VlO^n-l^Vl^n-l)
+Vn(Cn(yn"1.y))VQn(ylYn(x',yn))Mn_i(x'l*>}-

where we used (4.4). This is
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ViO iJ«Ci(^l».i(^c.i)+ vC[vn(5n)iyn"1-v^p{yn=yivi-x>^
i.e.,

Vl(Cl> 1 ^n-l<*> Ln-l<x'£l> +E^)!/-1]. (4.6)
Now, using definition 4.1 we find that for all aeD

In particular,

£xCl<x> Vl^tl'i^n^Vl" d^Cy"-1))!/"1].
Introducing this inequality in (4.6) gives

v^O i ec[Vi(Vt Vi^"1"+ V^ly""1]-
Substituting this inequality into the induction hypothesis proves that

(4.3) must indeed hold with n replaced by n-l. Q

Similar calculations with inequalities replaced by equalities show

that the definition of ty* and £* yields the following

Lemma 4.4

Vn(£*) =E*[ I Lm(xm,£*)|yn], n=0,..., N+ 1, (4.7)
m=n

where E* is the expectation with respect to the law induced by the code

c*(xn, y"-1) =**(V C^y"'1)).
We now conclude the proof of Theorem 4.2.

Writing (4.5) and (4.7) for n = 0 gives for an arbitrary code c

of the form (4.3) and an arbitrary decoding rule d

VS0> °E*[i1Ln(xn'5n)J "^VVV**))].
V0(50C) i Ec[ " £n(sn, dn(yn),].

n= I
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But £q = £q> the prior distribution of x,.

Therefore

J(c*, d*) s J(c, d),

where

c*y,yn-})=W*n, ^(y""1))
and

d*(yn) =Sn(q (y""1)) .
which completes the proof.

Remark 4.1

If the model of section 2 is modified so that (x , n * 1) is no longer

Markov but (3n = (xn, ..., xn_m), n* 1) is Markov, then similar results

can be established. In the case where z„ = yn, one finds that there is an
n

optimal code c* of the form

c;(xn.yn-1)-*;(xn.c;.1)
n—1

where S? i is now the conditional law of 6 , given y " .
n-i n-l

A separation result such as Theorem 4.2 indicates a recursive way of up

dating the information £* sufficient for the encoder. Indeed, using

Lemma 4.2 shows that

e*(yn) -Fn(cj.1(yn"1), yn. **(•. ^(y"'1))," >l.
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5. Symmetric Channels

Many channel models used in communication theory possess the symmetry

property defined below. It will be shown that causal encoding is useless

for such channels. Again this situation should be compared with the

classical information theoretic formulation.

Definition 5.1

Let U,Y be two finite sets. A transition matrix Q from U to Y is

said to be of type S if it has the following property:

For every f: U -»• U there is a transition matrix A from Y to Y such

that

Q(y|f(u)) =Zyl A(y|y') Q(y'|u) ,u6 U, yeY (5.1)

A memoryless channel will be called symmetric if its transition

matrices Q are of type S for all n > 1.

Examples 5.1

The following transition matrices are easily verified to be of type

S. In these examples Q..: = Q(y = j|u = i)

a)

c)

1 - e

1 - e

3i a« ... a__
i c n

an Vl •*• al

b)
1" el • e2 1

d) r.

1 - e, - e« ei

a] a2 a3 a4 ag

a2 al a4 a3 a5

-1e) Qwith Q(y|u) = |Y]"1» when |Y| is the cardinality of Y.

It is also clear that, with compatible dimensions, if Q, and Q2 are

of type S, then so are XQ1 + (1 - X) Q2 and [XQ] |(1 - X) Q2] for Xe [0,1]

and Q-|Q2- If Q is noiseless and one-to-one, then it is of type S.
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The channel corresponding to examples a) and b) are respectively called

the binary symmetric channel and the binary symmetric erasure channel.

Consider once again the coding problem of Section 2.

Theorem 5.1

Assume that the channel is symmetric, that X= U and zp = y ,n* 1.

Then

c*(xn, y^1) =x•n>1

is optimal.

Proof

By Theorem 4.1 one can restrict attention to codes of the form

cn(xn, y""1) =Yn(xn, y"'1), ns 1.

Assume that there is some Hq * N such that

Yn(xn, y""1) exn for n>nQ. (5.2)

Define the code c by

Hn(xn, y""1) =(cn(xn, y""1) , nM0
xn , n - n0.

Fix an arbitrary decoding rule d. We will show that there exists a de

coding rule d, possible randomized, such that

J(e, a) = J(c, d). (5.3)

(J(c\ 9) is defined in the obvious way for a randomized 3.) Since

randomizing the decoder cannot possible reduce the optimal cost, this will

show that one can assume that (5.2) holds with nQ replaced by nQ -1. By

induction, this will prove the theorem, since nQ =Ntrivially satisfies (5.2).
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nQ-l
Letting f(u) = y„ (u» y ) in (5.1) shows that there exist matrices

n0
i nn-l nn

A(y |y ;y ) such that, for all (xn ,y ),
n0

Qn (yn |Yn (xn ,yV )) =I,A(y ly'iy"0 )Q (y»|xn ) (5.4)
n0 n0 n0 n0 y 0 n0 n0 0

One then defines the randomized rule d as follows: Let

3n(yn) =dn(yn), n=1.....N,

where, for y £ Y,

~N ,V1 ,
y = (y •y. yn +!• .... yN)

o

with probability

vyivyV1)o o

Observe that this rule is causal (the die is chosen and tossed at time nQ

and its outcome is used only for n * n ).
o

We claim that the law of (x , y ) under c is the same as that of (x , y )

under c*. This will then imply that the law of (x , d-j (y), ..., dN(y )

under c is the same as that of (x , d^ (y.), ..., d^ (y )) under c,

thereby proving (5.3). To establish the claim we notice that (P indicates

the law under c)

PC(xN, yN) =P(xN) n Qjyjc^.y"-1))
n=l

nn-l .

-P(xN) n Q(y |c (x"^""1) xQn (y \y (x ,yV ))
n=l n n n n0 n0 n0 n0

N

X n Qn,(ymlXm)___ .1 m "'m1 m
m=n^+l

o
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Similarly,

V1
P£(xN, yN) - P(xN) n On(yJcn(x , y""1)) xQn (V |x )n=1 n n n n nQ nQ nQ

N

x n QJyJ* )•
0

But, by definition of y ,
n0

Qn (?n lXn '=V Qn WK >An (yn ly'; y° Jn0 n0 n0 y n0 n0 n0 n0

n -1

-% (y„ K (x. y° ))

which concludes the proof.

Remark 5.1

n0 V n0 n0

•

In the case of the binary symmetric channel the above argument shows

that all the codes cn(xn, y"'1) =Yn(xn, y""1) with y„(.. y"" )one-to-one
are equivalent, in the sense that they all achieve the minimum cost. (The

decoders must be chosen accordingly). For other work on comparing experiments

see [7].
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6. Conclusions

Separation results have been obtained for causal coding problems with

channel feedback information. These results were used to show that

causal coding is useless for symmetric channels.

We hope to extend those results to control systems in a subsequent

paper.
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