

Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

APPLICATION OF ARTIFICIAL INTELLIGENCE TECHNIQUES

TO DATABASE SYSTEMS

By

Michael Stonebraker

Memorandum No. UCB/ERL M82/31

6 May 1982

This research was supported by the National Science Foundation through grant
number 8007683, the Navy Electronics Systems Command through grant number
N00039-81-C-0569, and the Air Force Office of Scientific Research through
grant number 78-3596.

APPLICATION OF ARTIFICIAL INTELLIGENCE TECHNIQUES

TO DATABASE SYSTEMS

by

Michael Stonebraker

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

UNIVERSITY OF CALIFORNIA

BERKELEY, CA.

ABSTRACT

This paper suggests two mechanisms for adding semantic knowledge to a

data manager, namely inclusion of an AI oriented rules system and a par

ticular use of abstract data types.

I INTRODUCTION

Research effort on expert systems by the Artificial Intelligence

(AI) community has largely focused on selecting a domain of discourse

and then attempting to make a computer program competitive with a human

expert in that domain. Systems such as MYCIN [SH0R76] in the domain of

medical diagnosis and PROSPECTOR [DUDA78] in the area of geological

exploration are examples of this approach. As a subsequent step, one

might attempt to broaden the scope of an expert system to other fields.

E-MYCIN is an example of a project with this focus.

- 1 -

On the other hand, database systems strive to be general purpose

and provide limited intelligence in a broad arena. Much of the effort on

DBMS semantics attempts to make a general purpose data manager "smar

ter". This paper discusses two mechanisms along these lines. First, we

will discuss the inclusion of an AI oriented rules system in a data

manager. Then, we will discuss the use of abstract data types (ADTs).

II RULES SYSTEMS

2.1 Introduction

Many services of a database management system (DBMS) can be inter

preted as rules systems. For example, integrity constraints [ST0N75»

HAMM76] specify conditions which must be guaranteed by a data manager.

One such constraint for the relation

EMP(name, age, salary, dept, manager)

is that employee salaries be greater than 1000. It can be expressed in

the current INGRES DBMS [ST0N76, ST0N80] as:

range of E is EMP

define integrity E.salary > 1000

This condition is automatically enforced by modifying each incoming

salary update to one which is guaranteed not to violate the constraint.

For example, the command

range of E is EMP

replace E(salary = .8 * E.salary) where E.name = "Smith"

is changed to

range of E is EMP
replace E(salary « .8 * E.salary) where

- 2 -

E.name = "Smith" and .8 * E.salary > 1000.

The last clause ensures that Smith's updated salary cannot violate the

constraint.

This modification procedure is triggered by an incoming command and

performs a collection of actions which alter the command. Hence, it is

of the form

On condition

Then action

As such, it is a special purpose rules system. In addition, alerters

[BUNN79], triggers [ESWA76], protection services [GRIF76, STON74-], and

support systems for views [CHAM75, ST0N75] follow the same paradigm.

Consequently, they are also rules systems.

Many DBMS implement such database services individually. For exam

ple, INGRES implements integrity control, protection and views with

three independent modules; each of which is a special purpose rules sys

tem. The purpose of this section is to propose a single rules system

which can provide all such database services. In this way only one

mechanism need be implemented, and an economy of database code may

result. Moreover, many rules not possible with existing DBMS services

can also be formulated.

The next subsection indicates our thoughts in this area.

2.2 RAISIN

The language by which a database administrator or user specifies rules

is called RAISIN (Rules from AI Specified for INgres). Its basic struc

ture is a sequence of ON-THEN clauses. That is,

- 3 -

ON (condition) THEN (action)

ON (condition) THEN (action)

For each ON-THEN clause, the condition will specify constraints to be

met by an incoming data manipulation command before the action can be

applied. Moreover, the condition can depend on data in the database sys

tem. The action will be a set of operations to be performed on the com

mand as well as other possibly new operations on the database.

In this section we specify the allowable conditions and actions in

RAISIN. The general form of a condition is the following:

ON command(s)
TO relations(s)
AFFECTING field(s)
QUALIFYING field(s)
BY user-name(s)
DURING time-range
FOR day-range
WHERE qualification

Hence a condition is a collection of terms, each of which is a keyword

followed by a parameter. We give a few examples of conditions then

explain the general syntax.

ON replace
TO EMP

ON replace
TO EMP

AFFECTING salary
WHERE EMP.name = "Smith"

ON append, replace
TO *

BY Jones

DURING 8:00-17:00

- 4 -

FOR mon-fri

The first condition applies to all replace operations to the EMP rela

tion while the second applies to a salary update 'for an employee named

Smith. Lastly, the third condition applies to all database modifica

tions made by Jones during normal working hours.

It should be noted that all terms in a condition except the first

are optional and the wild card "*" is a valid parameter standing for

"always". The TO clause specifies a list of relations in the current

database to which this rule applies while the AFFECTING term indicates

what fields must be updated for the condition to apply. Moreover, the

QUALIFYING clause indicates what fields must be present in the qualifi

cation of a user command for the condition to apply. For example, the

command which gave a 20 percent salary decrease to Smith uses name in

the qualification. A rule which included the term

QUALIFYING name

would apply to this update.

The day-range, time-range and user-list constructs are self-

explanatory. Lastly, the WHERE clause qualifies data to which the rule

applies. Hence, it should be a valid qualification in a data manipula

tion language. In this exposition, we assume that qualification is a

QUEL WHERE clause modified in one important way. In QUEL, all field

names must have an attached range variable. Hence, E is declared to

range over EMP in the above QUEL example and fields are designated by

E.name and E.salary. In RAISIN qualifications we assume that a relation

name is prepended to a field name instead of a range variable. Hence,

- 5 -

EMP.name and EMP.salary would be valid field names.

For any incoming data manipulation command, the first condition of

any rule is either true or false. If false, the rule does not apply.

However, if true the action part of the rule is executed and the

remainder of the ON-THEN statements (if any) are checked for applicabil

ity. We now turn to the legal actions which can appear in a RAISIN

statement

The action portion of an ON-THEN statement is an ordered collection

of commands from the following list.

1) EXECUTE

The user command is performed automatically as the last action of a

rule. If a user wants the command done earlier, he must use an EXECUTE

statement. Two EXECUTE statements in a row would cause the user command

to be run twice.

2) CANCEL

This action cancels the execution of the user's command.

3) UNDO

This action undoes all changes to the database since the beginning of

the rule. With the inclusion of this action there is the implicit

assumption that transactions are supported.

4) CHANGE relation-1 TO relation-2,..,relation-N

This action will change the scope of the user command from relation-1 to

- 6 -

relation-2,.., relation-N. More precisely, whenever one has

range of var-1 is relation-1

this is changed to

range of var-2 is relation-2

range of var-N is relation-N

Var-2, .., var-N are internally assigned by a RAISIN implementation.

Moreover, for any given field name, F, in relation-1, it is assumed that

only one relation, say relation-j, has a field of the same name. Hence,

var-1.F

is changed to

var-j.F

For example, one can deflect all operations on the EMP relation to the

NEW-EMP relation by the following rule.

ON *

TO EMP

THEN

CHANGE EMP to NEW-EMP

5) RENAME field-1 TO field-2

This action causes all references to field-1 to be changed to field-2.

If, for example, NEW-EMP has a salary field named dollars, the action

statements of the above rule should be extended to the following:

RENAME salary TO dollars
CHANGE EMP TO NEW-EMP

- 7 -

6) MESSAGE JTO user-name} "message text"

A message is returned to the person who issued the command that

activated the rule. If the optional clause TO user-name is included,

the message is directed to another user. The MESSAGE action is useful

when a command must be aborted and an error message returned.

7) ILLEGAL "message text"

This action inspects the current command to see if it is syntactically

valid. If not, it will perform a CANCEL and generate a message. Conse

quently, it has the following effect:

ON syntax error
THEN

CANCEL

MESSAGE "message text"

8) QUEL command

Any QUEL command is a legal action. For example, suppose RULES is a

relation with two fields, a rule number and a count field indicating how

many times any given rule has been executed. The action statement

needed to correctly update this relation for rule number 16 follows.

range of R is RULES

replace R (count = R.count + 1) where R.number = 16

Unfortunately, this action statement must be repeated for each rule

currently being enforced.

One extension is needed to QUEL commands in a RAISIN context. Por

tions of the user command which activated the rule can be substituted

into a QUEL statement which is applied as an action. The following key-

- 8 -

words indicate the needed portions.

qualification - a keyword for the qualification
in the users command

command - a keyword for the whole user
command

new.field-name - a keyword for the value being
assigned to field-name
by the user command.

These can appear where they are semantically valid in a QUEL command.

For example, in the command which gave a 20 percent pay decrease to

Smith, qualification has the value

E.name = "Smith"

while new.salary has the value

.8 * E.salary

9) ADDQUAL qualification

This action will perform query modification [ST0N75] on the current com

mand. Specifically it will add the indicated qualification to the one

specified by the user. This extra qualification follows the syntax of

QUEL WHERE clauses except each field name has a relation name prepended

instead of a range variable. Since the user's command will have a range

variable in front of each field name, the qualification must be prepro-

cessed to find each field name, remove the prepended relation name and

substitute the user's range variable.

For example, we can restrict Jones to the subset of employees under

30 by the following rule:

ON *

TO EMP

BY Jones

- 9 -

THEN

ADDQUAL EMP.age < 30

If Jones issues a query such as

range of E is EMP

retrieve (E.salary) where E.name - "Smith"

then it will be modified to

retrieve (E.salary) where E.name = "Smith"
and

E.age < 30

Notice that EMP.age is preprocessed to E.age before being added to the

command. One other processing step must take place. The keywords noted

in command (8) are also valid here, and the appropriate substitutions

must take place.

2.3 Examples

We indicate the use of RAISIN to accomplish integrity constraints and

protection statements. Additional examples are presented in [ST0N82].

If employees must make more than 1000, then the following integrity con

straint in INGRES expresses this desire.

range of E is EMP
define integrity E.salary > 1000

In RAISIN this rule can be expressed as:

ON replace, append
TO EMP

THEN

ADDQUAL new.salary > 1000

Note that new.salary refers to the value assigned to salary by the user

command.

- 10 -

Suppose Jones is only allowed to update salaries of employees for

whom he is the manager between 8 A.M. and 5 P.M. This can be expressed

in INGRES as:

range of E is EMP
define permit replace of E(salary) to Jones
FROM 800 to 1700 WHERE E.manager » "Jones"

This can also be specified in RAISIN as:

ON replace
TO EMP

AFFECTING salary
BY Jones

DURING 8:00-17:00
THEN

ADDQUAL EMP.manager = "Jones"

2.4 Conclusions

The above section has specified a rules system which can be used to

obtain all popular database services. It is anticipated that this sys

tem can be made as efficient as providing the same database services

with special purpose code. Moreover, a single rules system is easier to

implement than the same collection of services individually.

Three questions remain unresolved. First, storage of rules in a

relational DBMS is not appealing. A storage structure for RAISIN rules

is suggested in [ST0N82]; however, it is neither particularly efficient

nor easy to understand. It is an open question how to extend a rela

tional DBMS to be a more attractive storage system for rules. The same

sort of deficiencies arise in attempting to use a relational DBMS to

store the parsed representation of a program in a general purpose pro

gramming language [P0WE82].

- 11 -

The second question concerns the specification of rules. In gen

eral, integrity constraints, protection statements and view specifica

tions are easier to understand than the comparable RAISIN statements.

Of course, it is a simple matter to internally map these these classes

of statements to RAISIN rules. However, the design of a more appealing

syntax for triggers and alerters should be studied.

Moreover, in a RAISIN context it is possible to design applications

with a large collection of triggers. In fact, some applications can be

primarily specified by triggers. An application specified in this

manner will not be particularly easy for a human to understand, debug or

maintain. Office automation languages containing messages, e.g.

[R0WE82] have the same readability problem. It is an open question how

to design a specification system for triggers which is easy to under

stand.

The third issue concerns commands containing a join of a relation

to itself. For example, one can give a 10 percent pay cut to all

employees who earn more than their managers as follows:

range of E is EMP
range of M is EMP
replace E (salary = 0.9 * E.salary) WHERE

E.salary > M.salary AND
E.manager = M.name

The RENAME action can be applied to this command; however it will change

the command so that no employee can possibly qualify. Moreover, the

statement

ADDQUAL EMP.salary > 1000

is ambiguous. One is uncertain whether this qualification applies to

- 12 -

employee salaries or manager salaries. Consequently, application of

rules to reflexive joins is an open issue.

Ill THE USE OF ABSTRACT DATA TYPES

3•1 Introduction

Abstract data types (ADTs) [LISK74, GUTT77] have been extensively

investigated in a programming language context. Basically, an ADT is an

encapsulation of a data structure so that its implementation details are

not visible to an outside client procedure along with a collection of

related operations on this encapsulated structure. The canonical exam

ple of an ADT is a stack with related operations: new, push, pop and

empty.

It has been pointed out that ADTs can be applied in a relational

database context [R0WE79, SCHM78]. Briefly, a relation would be an

abstract data type whose implementation details would be hidden from

application level software. Then, allowable operations would be defined

by procedures written in a programming language that supported both

database access and ADTs. For example, one use of this kind of abstract

data type is suggested in [R0WE79] and involves an EMPLOYEE abstract

data type with related operations hire__employee, fire__employee and

change_salary. This use of ADTs can serve to limit access to a relation

in prespecified ways, thereby guaranteeing a higher level of data secu

rity and data integrity. Also, a view can be defined as an ADT. Conse

quently, the algorithm that transforms updates on views into updates on

base relations can be encapsulated in the ADT and a high degree of data

independence provided in this fashion.

- 13 -

This section presents a different use of ADTs. We will explore

using ADTs for individual columns of a relation. The thrust will be to

extend the semantic power of a data manager by defining new data types

and related new operators on these data types using user written pro

cedures obeying a specialized protocol. These ADTs are a generalization

of database experts [ST0N80a].

We begin with a motivational example of the need for this kind of

ADTs in Section 3»2. Then in Section 3-3 we define our use of abstract

data types. Lastly, Sections 3-4 and 3«5 will close with an implementa

tion proposal and some possible extensions of our definition of ADTs.

3.2 Time as an ADT

One would like to be able to define a column of a relation to have

the data type "time". For example, one might create an event relation

as follows:

create event (ename = c20,
p-cancel - f4,
type « c6
date = time)

Here, an event relation is desired with four fields, the name of the

event as a character string, its probability of cancelation as a float,

its event type as a character string and the date of the event as a time

field.

One would like to add events to this relation, e.g.

append to event (ename = "lunch",
p-cancel = 0,
type = "food",
date = "12:00 - 1:00")

Clearly, all fields can be correctly converted to an internal

- 14 -

representation and stored in a database system with the exception of the

string "12:00 - 1:00". In order to be interpreted as a time, special

recognition code will be required.

Moreover, one would like to use standard DBMS operators on the time

domain, e.g.

range of e is event
replace e (date =» e.date + "1 hour")

where e.ename s "lunch"

Here, one wishes to move lunch forward one hour. Somehow, a data

manager must be instructed concerning the interpretation of addition

between two times.

In addition, one would like to define new functions on the time

column. Numerical columns have sin, cos, log, etc. defined as built-in

functions. Each of these accepts an integer or float as input and

returns a float. Similarly, one might want to define the length of a

time interval and use it in data manipulation commands, e.g.

retrieve (e.ename)
where length(e.date) < "1 hour"

The problems here are twofold. First, one must actually define to

a database manager the function "length" which accepts a time as input

and returns a time. In addition, one must inform the database system of

the meaning of "<" for the data type "time". Without this added semantic

knowledge, a DBMS cannot know that "59 minutes" is less than "1 hour".

Moreover, one might like to define new comparison operations. For

example, in the time domain, the semantic concept of "contained in"

makes sense, and one might want an operator "j=" defined for this pur-

- 15 -

pose. Then, one could ask if there was any event contained within the

lunch period as follows:

range of e is event

range of f is event

retrieve (f.ename) where f.date '- e.date
and e.ename = "lunch"

Lastly, one would like to be able to define aggregate functions for

the time column. For example, one would like to be able to find the

first future event as follows:

retrieve (e.ename) where
e.date = min (e.date where e.date > "today")

Again, extra semantic knowledge is required to to define the "min" func

tion for this new data type.

Consequently, we require a mechanism that allows a new data type to

be defined with its own particular internal representation. In addi

tion, normal comparison, arithmetic and aggregate operators may be

desired for this new type. Lastly, new operators that obey the syntac

tic conventions of built-in functions, comparison operators, arithmetic

operators and aggregate functions are desired. The next section pro

poses a simple mechanism to support all of the above capabilities.

3-3 ADTs

ADTs are a mechanism for adding procedural knowledge associated

with a column to a data manager. Basically, an ADT consists of a regis

tration process and a collection of functions. These are discussed in

turn.

- 16 -

An ADT is registered with a data manager as follows:

define ADT name

(length = value{, optional-field = value))

Here, an ADT is registered by giving the length of its internal

representation along with a collection of optional fields. For example,

define ADT time (length =32)

will register a time ADT with a 32 byte internal representation.

One implementation [0VER81] used the first 16 bytes as the lower

bound of a time range and the latter 16 bytes as the upper bound. The

coding was:

year: 4 bytes
month: 2 bytes
day: 2 bytes
day-of-week: 1 byte
am/pm: 1 byte
hour: 2 bytes
minute: 2 bytes
second: 2 bytes

The optional fields are useful in query processing heuristics. For

example, suppose one wants to find the names of events that happen at

9:30, i.e.:

retrieve (e.ename) where e.date = "9:30"

Once the string "9:30" is converted to a 32 byte internal representa

tion, a data manager such as INGRES can find qualifying tuples. Suppose

there is a secondary index on the date field. In this case INGRES can

quickly find the tuples which have a date field which matches the 32

byte representation for "9:30". However, it must know that no other

values for the date filed can possibly match "9:30". Without this

- 17 -

knowledge, a complete sequential scan of the events relation is

required. Hence, the first optional field, optl, is set to true if nor

mal equality can be used by INGRES to limit the search space for quali

fying tuples.

The second optional field, opt2, is set to true if the normal mean

ing of "<" and ">" can be use to limit the search for qualifying tuples.

If additional query processing information is useful, more optional

fields may be required.

These hints allow normal index processing to be performed for

secondary indices which contain new data types. Hence, an ADT does not

need to become involved in query processing heuristics.

Once an ADT has been registered, one can define various functions

for it using one of two formats:

define procedure-type operator-name (adt-name)
as procedure-name
returning adt-name

or

define procedure-type adt-name operator adt-name
as procedure-name
returning adt-name

We will now sequence through the various types of procedures:

a) Conversion Routines

In order to process time columns, routines must be provided to con

vert between character string representation and 32 byte internal

representation. For example:

define conversion input (character)
as my-proc-1
returning time

- 18 -

define conversion output (time)
as my-proc-2
returning character

These routines would be called as appropriate to convert lunch between

its 32 byte internal format and the string "12:00 - 1:00". A user can

define any collection of conversion routines to allow transformations of

an ADT field to different data types.

b) Comparison Routines

Since the 32 byte internal representation for time may use a pecu

liar coding convention, it is necessary to provide procedures to inter

pret the standard INGRES comparison operators {<, <=, =*, >=, !sj. One

can also define new comparison operators which obey the syntactic con

ventions of the normal comparison operators. The syntax is:

define comparison adt-name operator adt-name
as procedure-name
returning adt-name

For example, one could define "<" and "|=" as follows:

define comparison time < time

as my-proc-3
returning boolean

define comparison time i= time
as my-proc-4
returning boolean

Notice that operators can be defined which return other types than their

operands. Moreover, one can define routines which have operands which

are of different types.

c) Arithmetic Operators

- 19 -

In order to use DBMS arithmetic for a new data type, one must be

able to procedurally define the arithmetic operators {+, -, *, **, /,

mod}. Also, one might want to define new operators which obey the syn

tactic conventions of arithmetic operators for the data type "time".

The syntax is the following:

define arithmetic adt-name operator adt-name
as procedure-name
returning adt-name

For example one can define the operator "+" and a new operator "/=\"

which finds the intersection of two time ranges as follows:

define arithmetic time + time

as my-proc-5
returning time

define arithmetic time /s\ time
as my-proc-6
returning time

d) Functions

In order to specify user defined functions on new data types, one

requires routines providing the semantics of such functions. The syntax

is the following:

define function function-name (adt-name)
as procedure-name
returning adt-name

For example, one can define the length of a time interval as follows:

define function length (time)
as my-proc-7
returning time

We can also use this facility to expand the collection of allowable

operations on numeric data types.

- 20 -

e) Aggregate Functions

Currently INGRES supports aggregate functions such as the follow

ing:

avg (e.p-cancel where e.type = "food")
min (e.p-cancel by e.type)
min (e.p-cancel by e.type where e.date > "today")

The first computes the average cancelation probability while the second

computes the minimum cancelation probability for each class of events.

The last aggregate computes the cancelation probability for future

events. We require a mechanism to define such aggregates for user

defined types as well as the ability to define new aggregate operators.

The syntax is the following:

define aggregate agg-name (adt-name)
as procedure-name
returning adt-name

The following examples define the aggregate "min" and a new aggregate

"third from the smallest".

define aggregate min (time)
as my-proc-8
returning time

define aggregate third-low (time)
as my-proc-9
returning time

Using the last aggregate, we can find the third food event in the future

as:

retrieve (e.ename) where
e.date = third-low (e.date where e.type = "food")

Consequently, an ADT is a registration process followed by a col

lection of procedure specifications of the above form. A user need only

- 21 -

know the calling conventions used by the data manager in order to write

an ADT. In the next section we turn to the impact of ADTs on a DBMS.

3.4 Implementation Considerations

Each define command would cause an entry to be inserted into the

following relation

ADT(adt-name = c12,
operator-type = c12,
operator-name s c12,
token-value = i2,
first-operand s d 2,
second-operand = c12,
result-type = c12,
procedure-name - c12)

For simplicity we assume that the names of ADTs are unique. Each opera

tor defined must be assigned a token for use by the parser when

representing user commands as a tree structure. The registration infor

mation concerning the internal length and processing hints can be stored

in the relation which contains column information. In INGRES this is

the ATTRIBUTE relation.

There are two classes of implementation difficulties, parsing and

query processing. We illustrate each by use of the following command:

range of e is event
retrieve (e.ename) where e.time + "1 hour" < "9:15"

and e.time > avg (length (e.time) by e.type)

One must first build a parse tree for this command using standard pars

ing techniques. Then, type mismatches must be resolved. For example,

e.time + "1 hour" requires adding a character string and a time. If

there is an entry in the ADT relation that has input operands of type

time and character string and an operator name of "+", then one can use

- 22 -

the associated procedure to evaluate "+" and return a result for

e.time + "1 hour"

However, suppose no such entry exists and a data conversion must be

attempted. If a conversion routine exists from character string to time,

then "1 hour" can be changed to a time. Supposing that procedures exist

for evaluating "+" and "<" for times, then one can replace the command

with a parsed version of:

range of e is event

retrieve (e.name) where
e.time + input ("1 hour") < input ("9:15")
and e.time > avg (length (e.time) by e.type)

This command has all operands of the same type and is ready for evalua

tion.

On the other hand, suppose there is no routine for converting

between times and character strings. In this case, one must look for

some data type for which there exist conversions routines from both time

and character string fields. If such a unique one exists, it is chosen

as the target type and a conversion of both fields performed. If either

none or more than one is found, an ambiguity exists and an error message

must be issued.

This analysis of types may be very costly. Optimizing the pro

cedure by caching portions of the ADT relation in primary memory should

probably be attempted. Also, built-in rules for the standard types are

probably desirable.

Query processing entails evaluating the parse tree for for database

tuples either by generating code for the tree or interpreting it at run

time. In the former case one must simply generate code to call the

- 23 -

various system and user provided routines at the appropriate times dur

ing tree evaluation, passing arguments from descendent nodes and sending

the result of the procedure call up the tree. Aggregate operators must

be passed the partial result which is being accumulated and the data

element in the current tuple. The routine must then return a new par

tial result. The query processing plans in [L0RI77] appear to have no

difficulty with this added generality.

If the parse tree is interpreted, then the DBMS must hold a pro

cedure library of all possible ADT routines. Otherwise, dynamic linking

to a library of such procedures must be supported. This may lead to a

very large run time system, discouraging user defined types.

3.5 Extensions

3•5•1 Inheritance

It is very useful to specify that a new type inherits all the

operations of an existing type. This concept has been used in generali

zation [SMIT77], classes [MCLE78], and is-a hierarchies [MYL078]. It can

be specified as follows:

define equal adt-name-1 is-a adt-name-2

For example, one might specify:

define equal future-time is-a time

3.5-2 Functions With Multiple Arguments

Certain ADTs may require functions to be defined with multiple

arguments. For example, one might want to create a new time interval

between two other times, i.e.:

- 24 -

make-interval("lunch", "5:00")

The problem is that current relational systems do not support any func

tions with multiple arguments. Hence, there are no query processing

heuristics or parser templates for this sort of operation. It would be

a useful extension for relational systems to support such functions.

3.5.3 New Types of Aggregates

One would also like certain kinds of generalized aggregates. For

example, suppose one wanted the food event that was closest to lunch,

i.e.

retrieve (e.ename) where e.date =
min (abs(e.date - f.date) where e.type = "food"

and f.date = "lunch")

Although this is currently a legal aggregate, assuming that "abs", "-",

and "min" are defined for times, it is clearly an awkward notation. One

would prefer instead:

retrieve (e.ename) where e.date =
closest(e.date TO "lunch" where e.type = "food")

Syntactically "closest" is similar to an aggregate function. The scope

of the column being evaluated is limited by a "where" clause. Also,

"closest" must keep a running tabulation of its answer. The only

difference between normal aggregates and this one is the presence of a

"TO" clause. The specification of more general aggregate operators and

their associated query processing heuristics has yet to be investigated.

IV CONCLUSIONS

This paper has suggested the inclusion of a rules system in a rela

tional data manager and a use of ADTs at the column level of a relation.

- 25 -

With a rules facility one can imagine a sophisticated us«r being able to

extend his application environment with more elaborate integrity con

straints, triggers, alerters, protection statements and view update

algorithms than is possible with current relational systems.

One can also envison libraries of column ADTs and an individual

installation using a subset of them in its run time system. One can

also envison a sophisticated user writing his own ADTs, thereby extend

ing a relational database system with knowledge specific to his domain

of discourse.

Using these two facilities a data manager can be tailored to the

needs of an individual application. It is hoped that other mechanisms

can be discovered which will serve to further augment the power of con

temporary data managers.

ACKNOWLEDGEMENT

This research was supported by the Naval Electronics Systems Command

under Contract N00039-76-C-0022.

REFERENCES

[BUNE79] Bunemann, 0. and Clemons, E., "Efficiently Monitoring Rela

tional Databases," TODS, Sept. 1979.

[CHAM75] Chamberlin, D., et. al., "Views, Authorization and Locking in

a Relational Data Base System," Proc. 1975 National Computer

Conference, Anaheim, Ca., May 1975.

- 26 -

[DUDA78] Duda, R. et. al., "Development of the Prospector Consultation

System for Mineral Exploration," SRI International, October

1978.

[ESWA76] Eswaren, K., "Specifications, Implementations and Interactions

of a Trigger Subsystem in an Integrated Database System," IBM

Research, RJ .1820, San Jose, Ca., August 1976.

[GRIF76] Griffiths, P. and Wade, B., "An Authorization Mechanism for a

Relational Data Base System," TODS, 2, 3, September 1976.

[GUTT77] Guttag, J., "Abstract Data Types and the Development of Data

Structures," CACM, June 1977.

[HAMM76] Hammer, M. and McLeod, D., "A Framework for Data Base Semantic

Integrity," Proc. 2nd. International Conference on Software

Engineering, San Francisco, Ca., October 1976.

[LISK74] Liskov, B. and Zilles, S., "Programming With Abstract Data

Types," ACM-SIGPLAN Notices, April 1974.

[L0RI76] Lorie, R. and Wade, B., "The Compilation of a Very High Level

Data Language," IBM Research, San Jose, Ca., RJ2008, May 1977.

[MCLE78] McLeod, D., "The Semantic Data Model and Its Associated Struc

tural User Interface," Laboratory for Computer Science,

M.I.T., October 1978.

[MYL078] Mylopoulis, J., "A Preliminary Specification for TAXIS," CCA,

Cambridge, Mass., January 1978.

[0VER81] Overmeyer, R., "A Time Expert for INGRES," Masters Thesis,

University of California, Berkeley, August 1981.

- 27 -

[P0WE82] Powell, M., private communication.

[R0WE79] Rowe, L. and Schoens, K., "Data Abstraction, Views and Updates

in RIGEL," Proc. 1979 ACM-SIGMOD Conference on Management of

Data, Boston, Mass. May 1979.

[R0WE82] Rowe, L., et. al., "A Form Application Development System,"

Proc. 1982 ACM-SIGMOD Conference on Management of Data,

Orlando, Fla., June 1982.

[SCHM78] Schmidt, J., "Type Concepts for Database Definition," Proc.

International Conference on Data Bases, Haifa, Israel, August

1978.

[SH0R76] Shortliffe, E.,- "Computer Based Medical Consultations: MYCIN,"

Elsevier, New York, 1976.

[SMIT77] Smith, J. and Smith D., "Data Base Abstractions: Aggregation

and Generalization," CACM, June 1977.

[ST0N74] Stonebraker, M. and Wong, E., "Access Control in a Relational

Data Base System by Query Modification," Proc. 1974 ACM Annual

Conference, San Diego, Ca., November 1974.

[ST0N75] Stonebraker, M., "Implementation of Integrity Constraints and

Views by Query Modification," Proc. 1975 ACM-SIGMOD Conference

on Management of Data, San Jose, Ca., June 1975*

[ST0N76] Stonebraker, M. et. al., "The Design and Implementation of

INGRES," TODS 2, 3, September 1976.

[STON80] Stonebraker, M., Retrospection on a Data Base System," TODS,

September, 1980.

- 28 -

[ST0N80a] Stonebraker, M. and Keller, K., "Embedding Hypothetical Data

Bases and Expert Knowledge in a Data Manager," Proc. 1980

ACM-SIGMOD Conference on Management of Data, Santa Monica,

Ca., May 1980.

[ST0N82] Stonebraker, M., et. al., "A Rules System for a Relational

Data Base System," Proc. 2nd International Conference on Data

bases, Jerusalem, Israel, June 1982.

- 29 -

	Copyright notice 1982
	ERL-82-31

