

Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DOCUMENT PROCESSING IN A

RELATIONAL DATA BASE SYSTEM

by

M. Stonebraker, H. Stettner, J. Kalash, A. Guttman
and N. Lynn

Memorandum No. UCB/ERL M82/32

6 May 1982

DOCUMENT PROCESSING IN A RELATIONAL DATA BASE SYSTEM

By

Michael Stonebraker, Heidi Stettner, Joseph Kalash

Antonin Guttman, and Nadene Lynn

Memorandum No. UCB/ERL M82/32

6 May 1982

This research was supported by the National Science Foundation through grant
number 8007683, the Navy Electronics Systems Command through grant number
N00039-81-C-0569, and the Air Force Office of Scientific Research through
grant number 78-3596.

DOCUMENT PROCESSING IN A RELATIONAL DATA BASE SYSTEM

by

Michael Stonebraker, Heidi Stettner, Joseph Kalash,
Antonin Guttman, and Nadene Lynn

Dept of Electrical Engineering and Computer Science

University of California

Berkeley, Ca.

Abstract

This paper contains a proposal to enhance a relational database

manager to support document processing. Basically, it suggests inclusion

of data items which are variable length strings, the notion of ordered

relations, and new operators which concatenate and break apart string

fields.

I INTRODUCTION

Document processing is currently done by text editors with their

own facilities for storage and manipulation of data. It would be desir

able to support document processing in a database manager. In this way,

database services such as concurrency control and crash recovery could

be provided automatically for documents. Also, the access methods and

indexing facilities of a data manager would not need to be duplicated in

a text editor. Lastly, the capabilities of the database query language

can be used to advantage in some kinds of document manipulation. For

-1-

example, if a document is stored in a relation:

CREATE WORD-SENT-DOC (sentence# = i2,
word# = i2,
word = c40)

then the following QUEL [HELD75] command counts the number of words in

the document:

RANGE OP W IS WORD-SENT-DOG

RETRIEVE (word-count = COUNT (W.word))

More generally, the following code produces a histogram of sentence

length.

RANGE OF W IS WORD-SENT-DOC

RETRIEVE INTO TEMP (W.sentence#,
length = COUNT (W.word by W.sentence#))

RANGE OP T IS TEMP

RETRIEVE (T.length,
freq = COUNT (T.sentence# BY T.length))

Hence, many complex document analyses can be performed with simple rela

tional aggregate operators.

Text editors, such as VI [J0Y79]» manipulate documents which effec

tively have the format:

CREATE LINE-DOC (line# = i4i text = c255)

Basically, each line of text is a variable length string with an associ

ated line number. In the above relation this string is limited to 255

bytes. The line# field supports two features of text editors. First,

lines of a document are inherently ordered and this field supports such

an ordering. In addition, many text editors allow one to move the cur

sor to a specific line in a document, neccessitating the use of a line#

field.

-2-

Consequently one can conclude that LINE-DOC is a useful representa

tion for text manipulation while WORD-SENT-DOC is preferred for text

analysis. In order to effectively support both formats and the ability

to transfer a document from one to the other and back, new database

facilities are required. This paper proposes new mechanisms, including:

1) variable length strings
2) ordered relations
5) new substring operators
4) a new break operator
5) a generalized concatenate operator

In the next several sections, we discuss these in turn and give examples

of their utility. The context in which we present our constructs is the

INGRES database system [ST0N76]. However, these features could easily

be applied in most relational environments.

II VARIABLE LENGTH STRINGS

Our first text oriented facility is support for a field which is a

variable length string. The syntax we propose is an extension of the

CREATE statement as follows:

CREATE DOCUMENT (DOC# = i4, TEXT = cO)

Here a document relation would have a document number as the first field

and the text of the document as a second field; cO indicates a variable

length character string field.

There are two possible mechanisms which could be used to store such

variable length fields. The first is to use a database expert [STONSO].

This paradigm supports entering a code for the string in the database

and storing the actual string externally. Any of the popular tactics to

-3-

store and retrieve variable length stings could be used (e.g. first fit,

best fit, cyclic best fit, etc.). Using this technique, the database

manager need never know about variable length data.

The second method is to extend the access methods to allow variable

length strings to • be stored and manipulated directly. This could be

accomplished easily by placing a length descriptor at the front of each

variable length field and another such descriptor at the beginning of

the entire record. This approach has been successfully implemented in

System R [aSTR76].

Ill ORDERED RELATIONS

We first discuss simple one-dimensional ordered relations. Then,

in Section 3*2 we generalize the notion to multidimensional ordered

relations.

3«1 Simple Ordered Relations

In order to support documents which are stored in the format of one

line per record, we need a structure as described above:

CREATE LINE-DOC (LID « i4, text = cO)

Here, we have a line number as the first field followed by the variable

length text for that line. However, one has the problem that adding a

new line in the middle of the document is a tedious task; all the subse

quent lines must be remembered. This problem is also encountered any

time a line or lines are moved within the document or a line is deleted.

A more desirable approach would be to have the database manager

assist with line numbers. The notion of an ORDERED relation, supported

-4-

by a special storage structure is required. An unordered relation R can

be ordered as follows:

ORDER R WITH LID

This conimand would have the effect of discarding any keyed primary

structure which might exist for R (e.g. B-Tree [C0ME79] or ISAM index)

and building in its place the structure shown in Figure 1.

Here we indicate TEXT, an unordered relation with one field, and its

ordered counterpart. Tuples in INGRES have an associated tuple identif

ier (TID) which is not normally visible to users. The auxiliary struc

ture for an ordered relation is a B-Tree containing TIDs as its leaf

TID TEXT

I
I

l4o10|
i-->

2o2o!
I

1 0
I
I-

Four score and seven

years ago our

forefathers brought
forth

on this continent a new

Unordered relation

TID TEXT

•> la b| a 'Four score and seven '
b 1years ago our
c jforefathers brought
d I forth
e Ion this continent a new

.> |c dl

•> Ie

Ordered Relation With Access Path

Figure 1

-5-

node data. These TIDs indicate the the ordering of the tuples within

the relation when traversed in left-to-right order. At higher levels of

the tree pointers to lower tree levels are stored with a count field N

indicating how many TIDS are present in the corresponding subtree. Fig

ure 1 shows higher level blocks as containing either one or two pointers

and associated count fields. Momentarily updating and search mechanisms

for this structure will be discussed.

The user view of an ordered relation R(A, B, C) will have an addi

tional LID field:

R(LID, A, B, C)

This field behaves like an ordinary field most of the time. Hence, one

can use the LID field in a query e.g.:

RETRIEVE (R.ALL) WHERE R.LID = 100

This command will retrieve line 100 of the relation R. By examining the

root node of the B-Tree one can discover in which subtree S line 100

exists by performing the computation:

mm

S

I
-1

sum N(T) j >=100
T<S 1

The computation is repeated at each level, saving along the way the

lowest LID present in the current subtree. At the leaf level, TIDs are

searched sequentially until a count equal to 100 minus the lowest LID on

the block is reached. This is the TID for line 100.

A new line can be inserted as follows:

APPEND TO R (lid = 100, A = value, B = value, C = value)

-6-

This will add a new tuple to R which can be physically located anywhere

in the file containing- this relation. The new TID, t, must then be

inserted in the B-tree. One first finds the 100th line as above, incre

menting by 1 the affected subtree count at each level of the tree. Then

t is inserted befqre the 100th TID. If this insert causes a block

split, the conventional B-tree algorithm is used and the subtree counts

are adjusted as appropriate.

A line can be deleted as follows:

DELETE R WHERE R.LID = 100

First, the 100th line is found and removed from the B-tree. The subtree

counts must be adjusted as the tree is descended. Subsequently, the

tuple with the indicated TID is physically removed from the relation.

Lastly, a line can be moved as follows:

REPLACE R (LID = 50) WHERE R.LID = 100

This is implemented by a line delete followed by an insert if the new

LID is smaller than the old one. If a higher LID is assigned, then the

insert must be done first.

It should be noted that secondary indices can be created for

ordered relations. Moreover, any QUEL commands which do not affect the

LID have the identical semantics as in current QUEL.

One last point is that the LID must be considered the primary key

of an ordered relation. Suppose one allowed an ISAM primary key for an

ordered relation: for example, employees indexed on empname. Then,

assiame one renamed Mr. Aardvark to Mr. Zoom. This will necessitate phy

sically changing the TID of the tuple in question, forcing an auxiliary

-7-

update to the B-tree. Without back-pointers from the relation to the B-

tree, there is no way to do this second update efficiently.

One generalization of simple ordered relations is appropriate. It

would be helpful be able to change an ordinary relation with a user sup

ported sequence field into an ordered relation. As such, the sequence

field should define the ordering and thus should be suppressed as the

same function is supported by an LID. The following sjrntax extension

supports this notion;

ORDER R WITH field-1 = ASCENDING field-2

DESCENDING

For example, one could execute:

ORDER R WITH my-LID = ASCENDING A

This would have the effect of sorting R(A,B,C) by ascending values of A

before building the structure of Figure 1. A would then be discarded as

an attribute of R and would be replaced by an ordering field called my-

LID. Consequently, the structure of R would become:

R(my-LID, B, C)

If a user wished to certain field A in addition to the LID field, he

could execute the following commands:

RETRIEVE INTO R* (R.all)
ORDER R* WITH my-LID

By convention, INGRES creates R' sorted by ascending value of the first

field; hence, R* is sorted on A. Consequently, the ordering command

will add an LID field for the sorted relation. It should be noted that

a sort by" clause as in SQL [CHAM74] would expedite this process.

-8-

The inclusion of ordered relations and variable length strings as

fields allows a relational database system to effectively support docu

ments in the format of LINE-DOC from Section I. We now turn to multidi

mensional ordered relations.

3.2 Ordered Relations in Two Dimensions

Although simple ordered relations are helpful in processing docu

ments, there are cases where a two-dimensional ordering is required. For

example, WORD-SENT-DOC from Section I needs to be ordered by both sen

tence# and by word# within each sentence. Simple ordered relations can

not provide such an ordering. A second example is the application pack

age TIMBER [STON82] which supports placement of icons representing data

from a database on a graphics terminal in a manner similar to that of

SDMS [hEROSO]. These icons have a two dimensional position on the

screen, and panning in both the vertical and horizontal direction is

supported. Again, a two dimensional ordered relation, allowing ordering

by column within each ordered row, is required.

To support such two dimensional structures the ordered relation

concept must be expanded in two different ways. First, one would want

the possibility of having a relation such as WORD-SENT-DOC ordered by

word# for each value of sentence#. The proposed syntax is as follows:

ORDER R BY field-1 WITH field-2 = ASCENDING field-3
DESCENDING

For example, we could perfona the desired ordering on WORD-SENT-DOC as

follows:

ORDER WORD-SENT-DOC BY sentence# WITH LID = ASCENDING word# .

-9-

The BY clause indicates that the ordering is produced for each value of

sentence#. The WITH clause specifies sorting "by ascending word# and

replacing that field with an LIB field. Hence, the user view of WORD-

SENT-DOC becomes:

WORD-SENT-DOC(sentence#, LID, word)

The auxiliary structure for this ordered relation is shown in Figure 2.

Here a form of secondary index is created with one row of an index rela

tion for each possible sentence number. The example in Figure 2 shows

sentences 1 to For each sentence, there is a pointer field to the

root of a B-tree structure of the form of Figure 1. For each sentence#,

an LID of I is assigned to the first word and increases for subsequent

words.

Obvious extensions to the algorithms of Section 3.1 will support

this structure. Hence, on insertion or deletion of new words the LID

field will be dynamically adjusted. However the problem still exists

that sentence# must be a user supported field. Consequently, whenever a

new sentence is added or dropped, the user must adjust his own sentence

numbers.

sentence# pointer

The Auxiliary Structure

Figure 2

-10-

The second syntax extension corrects this deficiency:

ORDER R WITH field-1 = ASCENDING field-2

DESCENDING

,field-3 = ASCENDING field-4
DESCENDING

This syntax allows two ordering fields as follows:

ORDER WORD-SENT-DOC WITH

LID-x = ASCENDING sentence#,
LID-y = ASCENDING word#

This version of the command allows a two dimensional ordering first "by

sentence# and then hy word#. A user how sees the relation:

WORD-SENT-DOC (LID-x, LID-y, word)

The support structure needed is a generalization of Figure 1. The leaf

nodes of the B-tree for LID-x do not contain TIDs of tuples in the rela

tion WORD-SENT-DOC. Instead, each contains a pointer to a second B-tree

as in Figure 2 which supports a LID-y for each value of LID-x. Again

obvious extensions of the algorithms of Section 3«1 will support such a

structure. Lastly, note that this structure can be further generalized

to N-dimensional orderings.

In the next three sections we turn to QUEL extensions useful in

supporting document processing.

IV SUBSTRING OPERATORS

4.1 Extended Wild Cards

-11-

A common operation for text editors is the substitution of a second

string for each occurrence of a first string. For example, the text

editor "ex" allows substitution of lower case letters for the first

occurrence of "THE" on each line with the following command:

1,$s/THE/the/

The "1,$" specifies the command is to affect all lines between the first

and last (noted by $) in the document. The command "s/THE/the/" speci

fies substitution of "the" for each occurence of "THE".

It is currently possible to find each tuple of LINE-DOC which has

the string "THE" with the following QUEL command:

RANGE OP L IS LINE-DOC

RETRIEVE (L.all) WHERE L.text = "*THE*"

Here, * is a wild card matching any variable length string. In addition

to *, INGRES currently supports special characters which match any sin

gle character, one of a set of characters, a range of characters, or a

regular expression of the above. Currently, these wild cards can appear

only in the qualification of a QUEL command.

The proposed extension is the inclusion of *i as a "wild card"

which matches any string. Values of i must be between 0 and 9. More

over, *i can also appear in the target list and has the same value for a

tuple as it does in the qualification. Consequently the substitution of

lower case letters for "THE" can be accomplished as follows:

REPLACE L(text = "*1the*2") WHERE L.text = "*1THE*2"

With extended wild cards, we can do other text operations. For example,

to delete a line up to the first instance of "the" we would perform:

-12-

REPLACE L(text = "the*2") WHERE L.text = "*1the*2"

To flip the portion of the line after "the" with the portion before

"the", we would perform:

REPLACE L(text = "*2the*1") WHERE L.text = "*1 the*2"

However, there are a number of operations which are not possible with

extended wild cards. These include deleting the first 10 characters on

each line and changing the 7th word of a line to a specific pattern. To

perform such functions, we require the substring operators as described

in the next subsection.

4.2 Substring Operators

At the present time QUEL provides support for referencing a field

in a relation as:

tuple-variable.field

However there is no way to extract a portion of a field. This section
/

proposes facilities to alleviate this weakness. We propose that a field

can have one of five additional formats:

[i!.!
:51

tuple-variable.field
tuple-variable.field
tuple-variable.field
tuple-variable.field
tuple-variable.field (X, Y)

In all cases a substring of the field will be retained and it will be

delimited by the strings which match the patterns to be specified by X

and Y. The open bracket indicates exluding the string which marks the

boundary of the field to be retained, while a closed bracket means

including it. In all cases X matches the first substring starting from

-15-

the left side of the indicated field while Y matches the first substring

starting from the end of the substring matched by X. For example, if

the text field of a tuple in LINE-DOC has the value;

the fox jumped over the log

then:

L.text ["the"] has value "the"
L.text ["the", "the"] has value "the fox jumped over the"
L.text ("the", "over") has value "fox jumped"
L.text ["over", "fox"] does not have a value

Both X and Y are of the form AB where

A =

B =

"QUEL string"
s

w

c

Both A and B are optional. B can be any valid string in QUEL including

the extended wild cards from Section 4«1. Moreover, s stands for any

sentence, w for any word and c for any character. It may be desirable

to add other options, such as digits, in the future. If B is not speci

fied, the default is "?", the wild card that matches any single charac

ter.

The first portion A can be any integer i indicating the i-th

occurence of a string matching B, or it can be $. The $ deals with

changing the left-to-right search order for matching X and Y and is

illustrated by example. Suppose LINE-DOC has a text field of

the boy and the girl like the man

-14-

The following constructs have the values indicated:

L.text ("the", "the") has value "hoy and"
L.text (l"the",1"the") has value "boy and"
L.text (1"the",2"the") has value "boy and the girl like"

If we did not know how many "the" patterns existed on the line and

wanted the pattern between the last two of them, we would use:

L.text ($"the", $"the")

Here, $ specifies beginning at the end of the line and searching back

wards. If Y has a $ specified, it is matched first and then X is

matched. If neither i nor $.is specified for X and Y, then the default

is i=1.

With these substring operators, we can perform the examples not

possible with extended wild cards. For example, to delete the first 10

characters in every line of LINE-DOC we would:

REPLACE L(text = L.text(lOc,])

In order to change the 7th word on each line to be "tuple" we would:

REPLACE L(text = concat(L.text[,6w]," tuple ", L.text[8w,]))

Hopefully, an improved syntax for the last operation will be found in

the future.

The next section discusses an operator to break a text field into

all of its component words.

V THE BREAK OPERATOR

The syntax we propose to break apart a text field into its com

ponent parts is the following:

-15-

BREAK tuple-variable.field-1 BY X ASCENDING field-2
DESCENDING

This operator takes the field specified by field-1 and fragments it. The

value of X as described in the previous section determines the endpoints

of these fragments. In order not to lose semantic information, it is

imperative to retain the ordering of the fragments. Consequently,

field-2 represents either an ascending or descending sequence number

specifying this ordering.

An example should clarify this operator. Suppose we wished to

store LINE-DOC in a relation with one word per row. This would be

accomplished as follows:

RETRIEVE INTO WORD-DOC

line# = L.LID,
word = BREAK[L.TEXT BY w ASCENDING word#])

This will create a new relation WORD-DOC with three fields as follows:

WORD-DOC (line#, word, word#)

The field word# is added to the relation and orders the words on a given

line. The field word stores the actual words.

The last operator allows one to concatenate groups of records back

together. In a sense it is the inverse of BREAK.

VI THE CONCAT OPERATOR

The generalized concatenate operator required is the following:

CONCAT [tuple-variable.field-1
BY tuple-variable•field-2
WHERE qualification
WITH ASCENDING tuple-variable.field-3]

-16-

Basically, CONCAT is an aggregate operator and is similar to the other

QUBL aggregate operators such as SUM or AVERAGE. It groups together all

fields which have a constant value for field-2, keeping only those which

satisfy the qualification. However, instead of performing a numerical

computation, the values obtained are sorted on field-3 and concatenated

together.

Both the BY clause and the WHERE clause are optional, as is the

case for aggregates. A few examples will further explain the CONCAT

operator.

Suppose we wanted to restore WORD-DOC back to the original LINE-

DOC. This is accomplished as follows:

RANGE OP W IS WORD-DOC

RETRIEVE INTO LINE-DOC(
W.line#,
text = CONCAT [W.word WITH ASCENDING W.word#])

Now consider the relation WORD-SENT-DOC from Section I. We can form a

relation SENT-DOC with one tuple for each sentence as follows:

RANGE OP W IS WORD-SENT-DOC

RETRIEVE INTO SENT-DOC(
W.sentence#,
text = C0NCAT[W.word

BY W.sentence#
WITH ASCENDING word#])

Application of another CONCAT operator would allow generation of a rela

tion containing the entire document as a single tuple.

RANGE OP S IS SENT-DOC

RETRIEVE INTO DOC(
text = CONCAT[s.text WITH ASCENDING sentence#])

It should be clear that two successive BREAK operators could restore

SENT-DOC and WORD-SENT-DOC respectively.

-17-

VII VIEWS

Some of the representations which we have created for documents are

space inefficient; for example, WORD-SENT-DOC contains both a word

number and a sentence number for each word in a document. However, as

noted in Section I these representations are often easy for an end user

or application program to process.

Consequently, one might like to actually store SENT-DOC (which is

space efficient) and allow the user to manipulate WORD-SENT-DOC. This

requires views involving the extended operators proposed earlier. In

the next several subsections we consider the mapping of each operator in

turn.

7•1 Ordered Views

Since ordered relations are supported by a physical access path,

there is some difficulty with the implementation of ordered views.

Clearly, ordered views for unordered relations cannot be supported.

Moreover, given an ordered relation R(LID, A, B, C) we can define a view

as follows;

DEFINE VIEW V(R.LID, R.B) WHERE QUAL

where QUAL is an arbitrary qualification. If one applies standard query

modification techniques [ST0N75]» one can obtain an LID field for the

view V. A problem arises because V.LID is not orderd sequentially, but

will have gaps when a tuple of R does not satisfy the qualification

QUAL. Defensive programming on the part of the user is required in

order for a program on an ordered relation to work on an ordered view.

In particular, one must not use

-18-

current LID + 1

to obtain the next row of an ordered relation. Rather, one must express

this as:

min (E.LID where B.LID > current LID)

With this proviso, ordered views present no difficulty.

1*2 Substrings

Consider a view which contains a substring from a field in an

existing relation. For example, suppose V is defined as

DEFINE VIEW V (R.A, C = R.C[x,Y])

for some legal values of X and Y. We can map a REPLACE command such as

REPLACE V(C « "new") WHERE QUAL

into the following command:

REPLACE R(C = concat(R.C[,X), "new",R.C(Y,]) WHERE QUAL

Deletes and appends can be analogously transformed.

7.3 The BREAK Operator

Consider the view

DEFINE VIEW V (R.A,
c = break[r.c by u ascending j])

Here j is the name of the field added to V to contain the ordering of

the fragments and U is any legal parameter of the BY clause. The update

REPLACE V(C = "new") WHERE QUAL and V.j = k

This would be converted to:

-19-

REPLACE R (C = concat(R.c[,kU),
"new",
H.C((k+l)U,])

WHEHG QUAL

As long as the value k is explicitly stated in the qualification, the

above semantics work correctly. If multiple values are specified, e.g.

V.J < k

or if a comparison is made to another field, e.g.

V.j « P.H

for some field H in another relation, then there is considerable diffi

culty.

Basically, we have a non-functional update [ST0N76] in which we are

attempting to update the same tuple several times in a single command.

One would have to set up a collection of QUEL updates and loop through

them to handle this case.

7*4 The CONCAT Operator

Lastly, consider the view

DEFINE VIEW V (R. B
c =» concat[r.c by r.b ascending r.a])

and the update

REPLACE V (C = "new") WHERE QUAL and V.B = k

To support such a command we require the following algorithm. Let n be

the number of bytes in the fixed length field C. Moreover, let !x! be

the smallest integer greater than x.

For i = 0,..., Iwidth ("new" / n)!
DO

-20-

RETRIEVE (R.all) WHERE R.A = i
if a tuple is returned then

REPLACE R(C = "new"[(i-1)*n,i*n]) WHERE R.A =i

else

APPEND TO R(C = "new"[(i-1)*n, i*n], A = i)

ENDO

Unfortunately, there is no single command which can perform this update,

so a collection of commands is required.

It is evident that this view is more difficult to map than previous

ones. However, one would expect users to want views with data broken

apart into component pieces more frequently than they would want con

catenated views. Hence, it is possible that one would choose not to

support views involving the CONCAT command.

The conclusion of this section is that under many circumstances

support for views containing our extended operators is possible. All

that is required is defensive programming on the part of the user to

avoid the commands which cannot be successfully transformed.

IX CONCLUSIONS

This paper has proposed a small collection of facilities including

ordered relations, substring operators, CONCAT and BREAK. These allow a

relational database system to be useful for text processing by support

ing ordered documents and the ability to compose and decompose text

fields.

It is expected that these facilities are straight-forward to add to

a system like INGRES and will result in little, if any, performance

degradation.

-21-

REFERENCES

[aSTR76] Astrahan, M. M. et. al., "System R: A Relational Approach to

Database Management," TODS 2, 2, June 1976.

[CHAM74] Chamberlin, D. and Boyce, R., "SEQUEL: A Structured English

Query Language," Proc. 1974 ACM-SIGPIDET Workshop on Data

Description, Access and Control, Ann Arbor, Mich., May 174.

[C0ME79] Comer, D., "The Ubiquitous B-Tree," Computing Surveys, June

1979.

[hELD75] Held, G. et. al., "INGRES: A Relational Database System,"

Proc. 1975 National Computer Conference, Anaheim, Ca., May

1975.

[HEROSO] Herot, C., "SDMS: A Spatial Data Base System," TODS, December

1980.

[J0y79] Joy, W., "The Text Editor, vi," (unpublished working paper)

[ST0N75] Stonebraker, M., "Integrity Constraints and Views by Query

Modification," Proc. 1975 ACM-SIGMOD Workshop on Management of

Data, San Jose, Ca., May 1975.

[sT0N76] Stonebraker, M. et. al., "The Design and Implementation of

INGRES," TODS 2, 3, September 1976.

[STONBO] Stonebraker, M. and Keller, K., "Embedding Experts and

Hypothetical Data Bases in A Relational Data Base System,"

Proc. 1980 ACM-SIGMOD Conference on Management of Data, Santa

Monica, Ca., May 1980.

-22-

[ST0N82] Stonebraker, M. and Kalash, J., "TIMBER; A Sophisticated Rela

tion Browser," Electronics Research Laboratory, University of

California, Berkeley, Ca., Memo 82/17, January 1982.

-23-

	Copyright notice 1982
	ERL-82-32

