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Abstract

It is shown that a number of seemingly unrelated nondifferentiable

optimization algorithms are special cases of two simple algorithm

models: one for constrained and one for unconstrained optimization.

In both of these models, the direction finding procedures use parame

trized families of maps which are locally uniformly u.s.c. with respect

to the generalized gradients of the functions defining the problem.

The selection of the parameter is determined by a rule which is anal

ogous to the one used in methods of feasible directions.
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1. Introduction

A formal extension of a differentiate optimization algorithm

to the nondifferentiable case consists of replacing gradient vec

tors Vf(x), used by the algorithm in solving a differentiable prob

lem, by the vectors h(x) = argmin {ilhll |h e 3f(x)}, wlien applied to

a nondifferentiable problem, with 3fQ0 denoting the generalized

gradient of f(x), see [CI]. Such formal extensions cannot be shown

to converge to stationary points. The reason for this is that

while gradients are usually locally uniformly continuous, generalized

gradients usually are not even locally uniformly upper-semi-continuous,

(u. s. c).

An examination of the nondifferentiable optimization literature,

see e. g. [B2, C3, Gl, G2, L2-L4, Ml, M3, P1-P8], shows that in order

to overcome this lack of local uniform upper-semi-continuity, the search,

direction procedures of nondifferentiable optimization algorithms

invariably replace gradients not by generalized gradients, but by

better behaved supersets which are obtained in a variety of ways.

These supersets reflect the local behavior of the functions in

question. When only local Lipschitz continuity is assumed, the

supersets consist of bundles of generalized gradients which are

generated by exploring a neighborhood about the current iterate,

see e. g. [B2, Gl, P3]. When the problem functions are convex,

subgradient bundles are used as supersets, see e. g. [L2-L4]. When

the problem functions are semi-smooth, a special line exploration

method can be used to eliminate the need for acquiring a bundle of

generalized gradients, see e. g. [Ml, M3, P3, P4]. When the problem

functions are in some sense piece-wise differentiable and allow one

to determine whether one is at a differentiable point or not, the
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need for constructing generalized gradient bundles disappears al

together since much simpler supersets can generally be used, as we

see from [C3, G2, M3, PI, P5, P6].

In [P7], we find a theory dealing with the extension of dif

ferentiable optimization algorithms to the nondifferentiable case.

This theory requires the use of bundles of generalized gradients,

computed in an e. ball about the current iterate, with the value of

e > 0 controlled by a mechanism analogous to the one used in the

Polak method of feasible directions [P9] and in phase I - phase II

methods such as those in [P2]. The theory in [P7] does not contribute

to the understanding or the construction of algorithms, such as those

in [C3, C2, N3, PI, P5, P6], that do not use generalized gradient

bundles, and it leads to implementable algorithms only when all the

problem functions are semi-smooth.

It has generally been thought that the cumbersome algorithms,

which fit within the framework established in [P7], have nothing to

do with the highly specialized algorithms in [C3, C2, P5, P6], which

exploit the properties of such functions as f(x) = max{<j>(x,t) | te T},

with T a closed interval, or f(x) = max eigenvalue (Q(x)) with Q(x)

a differentiable, complex valued Hermitian matrix. It is shown in

this paper that this impression is wrong by showing that both

classes of nondifferentiable'optimization algorithms" can be

seen as special cases of two simple algorithm models: one for con

strained and one for unconstrained optimization. These algorithm

models make use of generalized gradient supersets which are locally

uniformly u. s. c. with respect to the generalized gradients of the

problem functions (a global version of this concept was first used

in [P8]). In particular, it is shown in this paper that both the
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generalized gradient bundles used in [P7] and the supersets used in

the algorithms in [C3, G2, M3, PI, P5, P6] have this local relative

u. s. c. property. The algorithms in [C3, G2, M3, PI, P5, P6] solve

problems involving functions of the form f(x) = <|>(g(x)), where

g: Rn + R"1 is continuously differentiate and <J>: if + R is locally

Lipschitz. It is shown that the supersets used by these algorithms

are the generalized gradients of perturbation functions. Some

rules for the construction of appropriate perturbation functions are

given.

It is to be hoped that as a result of the work reported in this

paper, both the exposition of nondifferentiable optimization algorithms

and the invention of new ones will be considerably simplified.

2. Unconstrained Optimization

In this section we shall consider algorithm models for solving

problems of the form:

min f(x) (2.1)
x€]Rn

where f:R n -»• R is locally Lipschitz continuous. Extensions of our

results to normed spaces are quite straightforward and hence will be left

to the interested reader.

We recall that a locally Lipschitz function f(«) is differentiable

almost everywhere, and that one can define for it a generalized gradient

3f(x) [CI], by

9f(x) = co{lim Vf(x+v.)> (2-2)
i-*»

where the v^ •* 0 as i -»• » are such that Vf(x+v.j) exists and co denotes

the convex hull of the set in question. It is shown in [CI] that the
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map 3f(«) is u.s.c. in the sense of Berge [Bl] and bounded on bounded

sets.

When f(«) is only locally Lipschitz, the ordinary directional

derivative

df(x,h) Alim f(x+^)-f(x) (2#2b)
~ XXO A

may not exist. Instead, see [CI], one defines the generalized directional

derivative of f at x, in the direction h by

df(x,h) ATT^ f(x*y+Ah)-f(x+Y) (2,2c)
0 ~ XM) A

y->0

It was shown in [CI] that

drtf(x,h) = max <£,h> • (2.2d)
0 ^3f(x)

As we recall, given an x. 6 ]Rn the Armijo gradient method [A1,P9], for

differentiable optimization in lRn, first computes the steepest descent

direction

h(x.) A arg min

heFn

= -Vf(V

(2.3a)

next, with a,3 <£ (0,1), computes the step size

X. Amax{3k|k e N+, ftx^B^tx.D-ftx^ <-3kotHh(Xi)il2> (2.3b)

where IN+ = {0,1,2, }; then updates according to
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x1+l =x. +X.h(Xi). (2.3c)

The simplest idea for extending this method (as well as others) to

the nondifferentiable case, consists of replacing (2.3a) by

h(xi) Aarg min {\ llhll2 +dQf(x.,h)}
he]Rn

=-arg min{l llhll2|h e 3f(x.)} (2.3d)

while leaving (2.3b), (2.3c) unaltered.

Unfortunately, because 3f(*) is not locally uniformly u.s.c, such

extensions fail to be convergent. Consequently, many unconstrained

optimization algorithms compute a search direction h(x-) at x- by solving

an auxiliary problem of the form (2.3d), but with d f(x.,h) replaced by

a kind of e-generalized derivative d f(x. ,h), with e _> 0, defined by

d^fU,)!) A max (£,h) (2.3e)
e S€G£f(x)

where for every e >_0, and x G Rn, 3f(x) c G f(x), and the sets G f(x)

are compact, convex and locally uniformly u.s.c, in a sense to be made

clear later, with respect to 3f(«)> thus making up for the lack of local

uniform u.s.c. in 3f(«). We note that because 3f(x) c G£f(x) for all

e >_0, we always have dQf(x,h) < d f(x,h). When this substitution is

made (2.3d) becomes

h(x.) Aarg min{]- iihll2 +d£f(x.,h)}

-arg min{l !lhll2|h e G£fUtD, (2.3f)

In addition, a mechanism must be introduced for driving e to zero. The

Polak method of feasible directions [P9] provides an idea for this purpose
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The commonly utilized properties of the maps G f(x) can be summarized

as follows.

Definition 2.1: We shall say that {G£f(-)}£>0, Gf : IRn -> 2K , is a
family of convergent direction finding (c.d.f.) maps for the locally

Lipschitz function f : lRn •»• IR^if

(1) for all x e ]Rn, 3f(x) =GQf(x);
(ii) for all x e Rn, e < e' => G f(x) CG ,f(x);

(iii) for any e >^0, G£(x) convex, and it is u.s.c. in (e,x), in the

sense of Berge [Bl] at (0,x), for all x e Rn, and bounded on bounded

sets;

(iv) given any xeRn, e>0and6>0, there exists a p > 0 such

that for any x'jX" e B(x,p) A {x|llx-xil < p} and any n' £ 3f(x') there

exists an n" ^ G£f(x") such that On,,-n'B 1 S. " h

We note that property (iv) above was referred to in [P8] as "upper-

semi -continuity of G f(«) with respect to 3f(*)" and was found very
£

useful in establishing optimality conditions for minimizing sequences.

The simplest known example of a family of c.d.f. maps (see [P7])

for a function f(«) are the maps 3 f(x) defined by

3 f(x) A co {3f(x')} (2,4)
£ ~ x!€B(x,e)

It is obvious by inspection that they satisfy the properties (i)-(iv)

in Definition 2.1.

Let v G (0,1), £Q >0, 6 >0 be given. We define the set E by

EA {0} U{e01ve0,v2e0,...} (2.5)

and, given a family of c.d.f. maps {G f(*)} for f(-)» we define the maps
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h£ :Rn x 1R1 +]Rn .and- £;Kn:-t Eas.follows:

h£(x) A-arg min{^-HviF| veG£f(x)} , (2.6)

£(x) Amax{£ e E|!lh£(x)il2 >6e} . (2.7)

The map £(•) has the following important property which is crucial to the

success of our algorithms.

Proposition 2.1: For every x e Rn such that 0 £ 3f(x), there exists a

p > 0 such that e(x) >_ ve(x) > 0 for all x e B(x,p).

Proof: Since G£f(x) is u.s.c in (e,x), at (0,x) for any £ <= Rn, it
follows that Hh£(x)ll is l.s.c. in (£,x) at (0,x). Hence, since

0£GQf(x), £(x) >0, and ["h£(-)(x)ll2 - 6e(x)] >0, so that
[HhV£(£)(x)H - 6v£(x)] >0. It now follows directly by l.s.c. of

[llhV£//v%(x)fl - 6v£(x)] in x that there exists a p >0 such that

e(x) >_ v£(x) for all x € B(x,p). n

We now proceed to state an algorithm model.

Algorithm Model 2.1.

Parameters: 6 >0, £Q (for £(x)); a,3 £ (0,1) (for Armijo step size rule)

A family ^Ge(*)}£>o of c.d.f. maps.

Data: xQ e Rn.
Step 0: Set i = 0.

Step 1: Compute e(x.) and h. A h / y

If e(x.) = 0, stop.

Step 2: Compute the largest X. = 3 , k. s ]N such, that

fU^X.^.) - f(x.) <-X.a6£(x.) . (2.8)

Step 3: Set x.+, = x. + A*h., set i = i+1 and go to Step 1, n
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Theorem 2.1: Let {x.} be a sequence constructed by Algorithm Model 2.1.

a) If {x.} is finite, with last element x. ,then 0 € 3f(xk). b) If

{x.} is infinite, then for any accumulation point x of {x.},0 £ 3f(x)

holds.

Proof: a) Since £(xk) =0 if and only if 0 <= 3f(xk), this part of the

theorem is clearly true.
K ^

b) Suppose {x..} is infinite and that x. -»- x, with K C{0,1,2,...}

infinite and 0 £ 3f(x). Then by Proposition 2.1 there exists an iQ such

that e(x.) > ve(x) > 0 for all i e K, i > iQ. Since the sets G f(x.) are

bounded on bounded sets and G , \f(x_.) CG f(x_.) by (ii) of Definition
e*V 1 e0 n a 2

2.1, it follows that there exists a b e (0,°°) such that ve(x)6 < IlhJ < b

for all i e K, i >. iQ. Next, by the mean value theorem of Lebourg [LI],

for x > 0,

fU.+xh^ - f(x.) =X<h.,£ix> (2.9)

with £.^ G SfU^+sXh.,.) and s e (0,1). Referring to (iv) in Definition 2.1,

let § = (l-a)[v£(x)62] ' . Then there exists a p>0 such that for all
x',x" e B(x,p), given any n' ^ 3f(x'), there exists an n" GGV£(x)f^x^

such that IItV'-ti'II 1 (l-a)[v£(x)6]1/2. Now let X= 3k < p/2b, so
that if x. e B(x,p/2), then (x^sXh.) e B(x,p) for all s € (0,1).
Then there exists an i, >^ *ig» such that for all i € K, i ^ i,,

f(xi+3khi)-f(xi) =3k <VSix>

-^<hi«51x>+<hlBcu-6u>] (2J0)

with lu e Gv£(^f(x.) c=G£(x)f(x.) such that HCix-lixll <(l-a)(v£(x)6)1/2
< (l-a)(£(x.)6)1/2 < (l-a)Hh.ll. Since <h.,L,> < -Oh J2 by constructi

1 I 1 IA —~ 1

of h.., (2.10) now yields that
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A

< -3kailh.ll2

A

<-3ka6£(xi) . (2.11)
A

k
Hence for all i e K, i ^ i,, we must have X. > 3 and therefore for all

ie K, i > i^

A

f(xi+1) -H^) <-3ka6v£(x). (2.12)

Since {^(x.)}^*sq is amonotonic decreasing sequence by construction, (2.12)

implies that f(x.) -> -« as i -»•<». But by continuity of f(*)» and the

monotonicity of {f(x.)>. Q, we must have that f(x.) -*- f(x) as i-> «>, and
+

hence we have a contradiction, which, completes our proof. «

As we have pointed out earlier, the maps G f(x) A 3£f(x) defined

in (2.4) are c.d.f. maps. Unfortunately, (see [M1,P7]), only when f(-)

is convex or semi-smooth do we know how to construct an adequate

approximation to arg min{llhll|h € 3 f(x)}; consequently implementable

algorithms based on 3£f(x) have been proposed only for these cases.

We now turn to a special class of locally Lipschitz functions f(«)

for which it is easy to determine whether any given point x is a point

of differentiability or not. For such functions, it is possible to

construct much nicer c.d.f. maps than 3 f(x). An examination of the

literature shows that this construction involves the use of the generalized

gradients of locally Lipschitz perturbations functions fv(-).

The class of functions we are about to consider have the form

f(x) = <fr(g(x)) (2.13)
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where g : Rn •*• K is continuously differentiable and <p : Rm -> R is

locally Lipschitz. We note that by the chain rule [CI]

3f(x) CGf0(x) A{5|C =M2j_y,

ye 3(fr(z), z = g(x)} . (2.14)

A

We now introduce the family of perturbation functions {f.,{•)} m>
l veRm

f : Kn * R1 defined by

fv(x) A <j>(g(x)+v) (2.15)

We note that ? (•) is locally Lipschitz and that by the chain rule [CI],

3f (x) CGfu(x) A{5|5.MxLyf
3x

y e 3(j,(z), z = g(x) +v} (2.16)

We will show that there are a number of functions f(«)> of the form

(2.13), for which, given x,£ _>0, it is possible to define vectors v (x)

such that Hv£(x)ll < Ke (with Kfixed) and G£f(x) AGfy (x)(x) are c.d.f.

maps. Clearly, we will need the following hypothesis.

Assumption 2.1: For all xe Rn, GfQ00 = 3f(x).

The various known rules for constructing the vectors v (x) can be

traced as being derived from those for the function

f(x) A max gJ(x) (2.17)

where mA {1,2,... ,m}. For any x € Rn and £ _> 0, let

I (x) A{j Em|f(x) - gj(x) <£}. (2.17a)
£

Then

-10-



3f(x) = co {Vg1(x)> (2.17b)
jeiQ(x)

and Assumption 2.1 holds. Since for any v e Rm, f (x) = max (gn(x)+vJ),

if we define vJ(x) A(fMVU)) for all j e l£(x) and set vJ(x) =0
otherwise, we find that

Gfv (*)M = co {v9JW} (2.17c)Vx; j€le(x)

and that for all ve Rm such that llvll^ <£, Gfy(x) c Gfy (x)(x). We now
£

consider the class of functions of the form (2.13) for which a similar

fact holds. We shall give some additional examples later.

1
Proposition 2.2: Let f :R -> R be of the form (2.13) and let 1-0 be

some norm on Rm. Suppose that for all xe Rn and e > 0 there exists

m u j-u-j. ii.. f..\n . i £ .11 .. ^ m m

vll < £ we have

a v (x) e Rm such that flv (x)ll < £ and for all v e Rm satisfying

GfvW c&fv (X)M< (2-18)
£V '

A

Then Gf(x) AGfy (x\(x) defines a family of c.d.f. maps.

Proof: We refer to Definition 2.1. Because of Assumption 2.1, it is

clear that 3f(x) =GfQ(x) =GQf(x) for all x€ Rn. (ii) By construction,
see (2.18), it follows that if £' >£ >0 then for any x e Rn,
G f(x) c G 'f(x). (iii) For any £ > 0, G f(x) is obviously convex,

and bounded on bounded sets. We now show that G£f(x) is u. s. c in

(£,x) at (0,x) for any x £Rn. Let x £JRn and § > 0 be given and let

z A g(x). Since 3<j>(-) is u. s. c, there exists a p > 0 such that

3<j>(z) CN6(34>(z)) for all z e]Rm such that Ilz-zll <p, with N^(34»(z)) a
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6-neighborhood of 3<J>(z). Since g(0 is continuous and Hv (x)H ££ for

any x e lRn, it follows that there exists a p > 0 such that with

£ = j- p >0

"g(x) +ve(x) - g(x)il <$ (2.19)

for all x e B(x,p) and £ e [0,£]. Consequently, G f(x) is u.s.c in

(e,x) at (0,x). We now show that property (iv) of Definition 2.1 holds.

Let x e Rn, £ > 0 and 6 > 0 be given. Then, since g(«) is continuous,

there exists a p* > 0 such that for any x',x" € B(x,p*)Jg(x' )-g(x")Ii < e.

Let n' e 3f(x') =G0f(x'), then n' =3g^ y' for some y' e a^CgCx')).
Now, by definition of v^(«)

Gv(x") c Ggf(x") for all IIvll <e . • (2.20)

Letting v* = g(x') - g(x"), we find that

V(x") =£ti|ti =d*lp y, ye 9<j>(g(x") +[g(x')-g(x")])>

- {n|n ^y.ye^tglx'))}, (2.21)

Since ilv*tl <e, for y' e 3(J)(g(x1)) as above, we must have 3^*"' y' e Gv*(x")
CGgf(xH). Now nH ^^x^"^' GG£f(xn) and ""

In'-n"" <"E39^^ - ^Jp- llllly'!1 - (2.21a)

Since 3<f>(•) is bounded on bounded sets and 9gW is uniformly continuous
oX

on B(x,p*), it follows from (2.21a) that there is a p € (0,p*] such that

for any x« ,x" e B(x,p), given an n» e 3f(x») there exists an" e Ggf(x")

such that lln'-ri"N <. 6. This completes our proof. n
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Apart from the function f(x) defined in (2.17) which satisfies the

assumptions of Proposition 2.2, we can cite the following two interesting

examples which also fall within the framework of Proposition 2.2.

Consider the function

f(x) = I |gj(x)| (2.22)

* 1 m

where the gJ : Rn -* F are continuously differentiable. For any v e IR ,

fv(x) 4 I |gJ(x)+vJ| and hence, given any x e Rn and £ >0, if we define

v£(x) =-gJ(x) if |gJ(x)| <£ and set vJ(x) =0 otherwise, we find that
Gfy(x) c Gfy (J)(x) for all v € Rm such that M^ <e. This is clear
from the fact that, with z = g(x),

Gfv(x) = I Vgj(x) + I co{Vgj(x),-Vgj(x)} (2.23)
j£J(z+v) j€j(z+v)

where J(z+v) A {j em[|zJ+v| = 0}.

Finally consider the function

f(x) = max c(x,w) (2.24)

nil 1
where z, : IR x IR + IR is continuously differentiable and fl c ]R is a

compact interval. In this case the function g(x)(») A s(x,«) assumes

values not in IRm, but in LOT(f2). For any v € L^ffi), we define

fv(x) =maxfr(xfw) + v(«)] (2.25)

and obtain that

Gffx) = co {V r(x,(o)}, (2.25a)
V o^v(x) x

where fi (x) A {w e ft|f (x) = c(x,uj) + v(co)}. Clearly, if we set

v£(x)(u)) = f(x) - c(x,ai) for all u € Q£(x) A {<d € ft|f(x) - c(x,u>) <£>, and
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v£(x)(u>) =0 for all other co e ft, we find that Gfy(x) c Gfy (x)(x) for

all v e Lift) such that Hvtl < £, This results in

G f(x) = co (V r(x,o))> (2.26)
e u£ft (x) x

£

The above set may have an infinite number of elements and hence is not

a convenient set to use for finding descent directions. Referring to

[G2], we find that when ftQ(x) is afinite set for all xe Rn, it is

possible to use the much smaller set

G f(x) A co {VYdx,a>)> (2.26a)
e u£ft£(x) x

where ft (x) A {co € 5 (x)|co is a local maximizer of c(x,«)}. It is easy

to see that Gf(x) corresponds to the perturbation function fy (x)(*)»

with v (x)(co) = f(x)-c;(x,co) for all co e ft (x) and is arbitrary otherwise

up to the requirement that fty (x\(x) =ft£(x). Quite clearly, G£f(x),

as defined in (2.26a) does not satisfy the assumptions of Proposition 2.2.

However, showing that the maps G£f(»)» defined by (2.26a), are c.d.f.

maps is a great deal simpler than the original proof of convergence

in [G2], as we now show.

Proposition 2.3: Consider the function f(«) defined by (2.24) with

ft =[coQ,cof]. Suppose that for ewery xe lRn cw(xfcS) =0 for at most
a finite number of co e ft and that ^(x.co) f 0 for co e {coq,co^}. Then the

maps {G f(*)}£>0 defined by (2.26a) form a family of c.d.f. maps. «

The proof of Proposition 2.3 requires the following three facts

which we establish first.

Fact 2.1: For any £ > 0»x e lRn, let

ft£(x) ={co € ft£(x)|C00(x,co) =0} U{co0,cof} (2.27)
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V

Then ft£(#) is u.s.c.

V /sProof: Suppose x. + x as i + » and co.. e ft£(xi) are such that to^ -*• to as

i +00. Then (1) f(x.) - ?(x1 ,to.) <£ for all i and hence, by continuity

of f(0 and c(*»')>S eftAx), and (ii) either by continuity of £„(•>')
fc» CO

V AC(x,co) =0 or co e {coQ,cof}. Thus to e ft£(x), which completes the proof. Q

Fact 2.2: Given x e Rn, £ > 0, there exists a p > 0 such that for any

x',x" e B(x,p), ftQ(x') Cft-(X").

Proof: Since ft is compact, there exists a p > 0 such that for any

x' ,x" e B(x,p) if to' G ft is such that

f(x') - cU'.to') = 0 (2.28a)

then

f(x") - c(x",to') < £, (2.28b)

i.e. ftQ(x') c5 (x"). n

The following result is obvious.

Fact 2.3: Let y (x) A meas(ft (x)). Then (i) £' < £" =*yc.(x) < y.„(x),

and (ii) y£(*) is continuous. *

Proof of Proposition 2.3: Referring to Definition 2.1 we find that

(i) 3f(x) = G0(x) and (ii) that £ < £« => G£(x) =>G£,(x), by construction

in (2.26a). (iii) Clearly, G (x) is always convex. Next, let x e R

be arbitrary. Since by assumption the set ft£(x) is finite for all

£ > 0, there exists an £ > 0 such that ftjx) = ft (x) for all £ e [0,e].

It now follows from the u.s.c. of ft (•) that ft_(») is u.s.c. at x
£ c»

for all £ 6 [0,£] and hence, from the continuity of Vx?(#>-)> it follows
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that G£(x) is u.s.c. at (0,x). We now turn to property (iv) in

Definition 2.1. Let x e Rn, 2 > 0 and 6 > 0 be given. Then (a) there

exists a p1 >0 such that for all x1 ,x" e Bfx^.) and to' ,co" e [toQ,cof]

satisfying Ito'-to"! <p-j, we have

IIVxc(x',to') -V?x (x",co")ll <6 . (2.29)

(b) Since ftQ(x) is a discrete set, there exists an £•• e (0,e] such that

P- (x) < 6/2. Hence, by continuity of u (•)> there exists ap0e (0,pn]
1 a 1 2 1

such that y£ (x) < p, for all x e B(x,p2).

(c) By Fact 2.2, there exists ape (0,p2] such that ftQ(x') = ft0(x')

Cftc (x") for all x',x" e B(x,p).
1

(d) Now consider any x',x" e B(x,p). If n' e 3f(x'), then

n' = • I yw V c(x',co») (2.30)
c^eft^x') x

where y03' >0 and 7 yw' =1. By (c) ftn(x') Cft (x") Cft^x")
co'̂ q(x') ° el z

and y (x") < pv Since every disjoint interval of ft^ (x") must contain
e1 - I ^

at least one co" eft (x"), it follows that for every to' eftn(x') there£1 u

exists an to , e ft (x") CftA(x") such that Ito'-to .1 < p-,. Hence the
CO £-t £ ' CO ' — I

vector n" e Ga(x") defined by

n" • I. .. ^ vxc(x,,,toajI) (2.31)
to'eft0(x')

satisfies

to1In"-n,> < I v Ilvxc(x",to,) - vxdx',<o')ll"to'eft^x') x co x

<§ (2.32)

which completes our proof. n
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Next we turn to problems involving eigenvalues of Hermitian matrices,

see e.g. [C3,P6]. We shall consider only one case. Let Q: R + C xC

be a continuously differentiable, complex matrix valued function such that

Q(x) is Hermitian for all x. For any mxm Hermitian matrix M, we denote

its eigenvalues as a][M] >a2[M] ... >am[M] and we consider the case

where

f(x) Aa][Q(x)] (2.33)

Thus for any Hermitian matrix Ve Cm x Cm, we define the perturbation
A

function fy(*) by

fy(x) =a1[Q(x) +V] (2.34)

We proceed by analogy with the example in (2.17) in defining a "maximal"

perturbation matrix V£(x). Clearly, there exists a matrix of complex

orthonormal left eigenvectors U(x) such that U*(x) U(x) = I and

Q(x) = .U*(x) Z(x) u(x) (2-35)

where Z(x) Adiag^QU)],... ,am[Q(x)]. Given £ >0, we define V£(x) by

V (x) A U*(x) A (x) U(x) (2.36)
£ = £

where a (x) a diagU^x)), with x](x) =a][Q(x)] -an[Q(x)] for all
£ — £ £

i € I [Q(x)] and x^x) = 0 otherwise, where I [Q(x)] A (i e m|
£ £ £ ~~

a1[Q(x)] - ai[Q(x)] <e}. This choice of V (x) clearly "maximizes" the set

Gfy(x) aco^ly1' =<Uy(x)z, -^f- Uv(x)z>
dx

i = l,2,...,n, llzil = 1} (2.37)

where, given that IQ[Q(x)+V] ={1,2,... ,ky(x)} Uv(x) consists of the first

kv(x) columns of U(x) (see [P6] for a proof that 3f(x) =GfQ(x)). We
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claim that G£f(x) AGfy (x)(x), as defined by (2.36) and (2.37) is a
c.d.f. map, but we omit a proof, which can be constructed by referring

to [P6]. We note that in [P6] a somewhat larger set G f(x) was used so

as to avoid computational difficulties caused by the need to distinguish

between eigenvalues that are very close to being equal. We find that in

[P6], for any £ > 0, x e Rn

k (x) Amax {k+1 jo1 [Q(x).].>. a1+1[Q(x) < £ for all i <k} (2.38a)
£ ~ kQTi -

which leads to the definition

Gf(x) Aco{y|yi =<Up(x)z, iS^n (x)z> ,
e " e 3X1 e

i = l,2,...,n, llzll = 1} (2.38b)

where U! (x) consists of the first k (x) columns of U(x). Since

k (x) >k (x)(x), it is clear that (2.38b) results in a larger set than

(2.37) for V = V (x); however the general properties relevant to

convergence of the two sets are the same.

This concludes our demonstration that a large number of semingly

unrelated algorithms for various unconstrained nondifferentiable

optimization problems can be seen as manifestations of a single relatively

simple principle.

Before proceeding to constrainted optimization problems, it remains

to point out that when f(0 is locally Lipschitz function from a Banach

space Q(into IR, the computation of a descent direction according to

h(x) =arg min {- llhil2 +d f(x,h)} (2.39a)
he c e

may not be a tractable problem. In that case, (2.39a) may be replaced by

h(x) e arg min d f(x,h)
llhlUl e

= arg min max (C»h) (2.39b)
llhtkl £SG£f(x) _18_



where the action of a ? eQ( '̂ the dual of^Y, on an h eQOs denoted by

(£,h). All the proofs in this section remain valid when (2.39a) is

replaced by (2.39b).

3. Constrained Optimization

In this section we restrict ourselves to problems of the form

mi n{f°(x)|fj(x) <0, j em}, (3.1)

where m A {l,2,...,m} and f3 : IRn •*• R , j e {0} u m, are locally

Lipschitz continuous functions.

We shall assume that we have for all the functions fJ, j G {0} u m,

families of convergent direction finding maps {G fJ(«)} >0 (see
Definition 2.1). We define ty : Rn -> R and ^(«)+» as follows

i|;(x) A max fJ(x), (3.2)
j€m

i^(x)+ = max{0,iKx)}. (3.3)

We are about to state a phase I-phase II algorithm of a form quite

similar to the ones treated in [P2,P7]. First, for any x e Rn and

£ >_ 0, we define the £-most violated constraint index set

I£(x) A{j em|fj(x) >i;(x)+-e} (3.4a)

and we set

J£(x) A {0} u l£(x) . (3.4b)

Next, for £ >^ 0 given, we define the phase-I £-search direction at x by
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h,,-(x) Aarg min{i llhll2 + max d fJ'(x,h)}
^e " h 2 j€Ie(x) e

=-arg min {i llhll2|h e co {6fj(x)}}, (3.5)
h 2 jeie(x) e

where co denotes the convex hull, and we define the phase-II £-search

direction at x by

h^(x) Aarg min d llhll2 + max d fJ'(x,h)}
f£ " h 2 j^£(x) e

= -arg min {A llhll2|h € Co (GJ^x)}}. (3.6)
h 2 JeJe(x) £

Finally, we define the cross-over function

-yMx),
r(x)Ae + (3.7)

where y > 0 is a parameter. It will become clear shortly that when

^(x) > 0, for appropriate values of £, h. (x) is a descent direction for
^£

4>(x), while when ip(x) < 0, hf£(x) is a feasible descent direction for

f(-). The cross-over from one to the other is incorporated in the

search direction

n (x) a r(x)hf (x) + (l-r(x))h (x). (3.8)
*£

As we have already seen in the preceding section, we need a mechanism

for driving £ to zero. To this end, (cf. (3.13) in [P7]) we define

e£(x) Amax{llr(x) hf£(x)ll2, II(l-r(x))h^(x)ll2} (3.9)

and, with E as in (2.5), and 6 > 0,

e(x) A max{£ e E|6 (x) > 6e] . (3.10)
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Algorithm Model 3.1.

Parameters: 6>0, £Q (for e(x)); a,3 <= (0,1) (for Armijo step size

rule). Families {G£fJ(*)}£>0» Se <0> umof c.d.f. maps.
Data: xQ e Rn.

Step 0: Set i = 0.

Step 1: Compute £(x.j) and h.. 4 h£(x.)(x-j)-

If £(x_-) = 0, stop.

kiStep 2: If iHx.j)+ > 0, compute the largest X.. = 3 ,k. GH +

such that

^(xi+X.h.)-^(xi) <- Xia6£(x.). (3.11)

kiIf ^(xi)+ =0, compute the largest Xi =3 , kj e N+ such that

f0(xi+Xih.)-f0(x.) <-Xia6£(x.) (3.12a)

and

iptx^X^^ <0. (3.12b)

Step 3: Set x.+1 = x. + A»h., set i = i+1 and go to Step 1. n

To ensure that the above algorithm does not jam at an infeasible

point, we must introduce the following commonly used hypothesis:

Assumption 3.1: For every x e ]Rn such that ij>(x) >0, h^(x) f 0. «

To establish the convergence properties of Algorithm Model 3.1 we

shall need the following results.

Lemma 3.1: For every £ >. 0 and any x € Rn

llh£(x)II2 >6e(x). (3.13)
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For a proof of this lemma, see Lemma 3.1 in [P7].

Lemma 3.2: The function 0£(x) defined in (3.9) has the following

properties: a) For any xe Rn, if e" > e' > 0, then 8 „(x) < 9 ,(x).
— £ — £

b) 6£(x) is l.s.c. in (e,x) at any (0,x).

Proof: a) Since e" > e1 implies that I „(x) D I ,(x) and that
£ £

G_,ifJ(x) ^G ,fJ(x), this part is obvious.

b) By definition of c.d.f. maps, G fJ(x) is u.s.c. in (e,x) at any

(0,x), j = 0,1,...,m. Let x e Rn be arbitrary. Then, given £ > 0,

there exists a p >0 such that I (x) c I^(x) c I~(x) for all

(£,x) e [0,£] x B(x,p). Because of this and the u.s.c. of the G fJ(x)

at (0,x), there exist £* e (o,e] and p* e (o,p] such that

co {G fj(x)} C coA{Gfj(x)}CN„( co ^ {Gpfj(x)}) (3.14)
jei£(x) e jeig(x) e 6 j€ig(x) e

where NA') denotes a 6 neighborhood of the set in parentheses.

Consequently, Hh^£(x)ll is l.s.c. in (£,x) at any (0,x). Similarly,

it can be shown that Hnf£(x)H is l.s.c. in (e,x) at any (0,x). Since

r(«) is continuous, it follows that 0£(x) is l.s.c. in (e,x) at any

(0,x), which completes our proof. n

The following result can be established in essentially the same way

as Proposition 2.1 and hence a proof will be omitted.

Corollary 3.1: For every xe Rn such that 9Q(x) >0, there exists a

p > 0 such that £(x) >. ve(x) > 0 for all x € B(x,p). n

Theorem 3.1: Suppose that Assumption 3.1 holds and that {x..} is a

sequence constructed by Algorithm Model 3,1. a) If {x^} is finite, with

last element xk, then ^(xk) <0 and
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Oe co {3fj(xk)} (3.15a)
jeJQ(xk)

b) If {x.} is infinite, then for any accumulation point x of {x..}, we

have iKx) < 0 and

9 € co {3fj(x)> (3.15b)
jeJ0(x)

Proof: a) Suppose that {x.-L.-i is finite. Then, by construction,

£(xk) =0 and hence, by corollary 3.1, 90(xk) =°' so *'iat

r(xk) hf0(xk) = d-r(xk))hl|;0(xk) =0 (3.16)

Suppose now that r(xk) <1, i.e. <Mxk) >0, then (3.16) implies that

h.Q(xk) =0. But this contradicts Assumption 3.1 and hence we must have

iHxk) <0. Since r(xk) =1, hfQ(xk) =0 and hence, since 3fJ(xk)
=G0fJ(xk),j =0,1,..,m, we find that (3.15a) must hold.
b) Suppose that {x.j}~_q has an accumulation point x, i.e., that
x1 + x, with KCJJ+ infinite, that ip(x) <0 and (3.15b) fails to

hold. We consider two cases.

Case 1: ijj(x.) >0 for all 1 e N+. Then, by (3.11) {^(x^^q is
monotone decreasing, and i|/(x.) •*• i|>(x) by continuity of ^(-). Hence

ip(x.) \ Tp(x) as i + ~. We shall now show that this leads to a contradiction

and in the process also show that this part of the Algorithm Model 3.1

is well defined.

Since ^(x^) >0 for all i, we must have i|;(x) >_ 0 and hence IUq(x)

t 0 by Assumption 3.1. Consequently, 0 (x) > 0 either because r(x) > 0 or
0

because (3.15b) fails, i.e., because r(x) = 0 and hf0(x) ? 0. Thus, by

Corollary 3.1, there exists an iQ such that £(x..) ^ ve(x) >0 for all
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i e K, i >i"q. Since the sets G f^x.) are bounded on bounded sets

and G£(x.)fJ^xi^ CG£ fJ(xi^ by (11) of Definition 2.1, it follows, via
Lemma 3.1, that there exists a b e (0,«) such that

V£(x)6 <£(x.) < llhJI2 <b (3.17)

For all i6'K, i >. iQ. Now, by the mean value theorem of Lebourg [LI],

for j s m

^(x^Xh.) -<Mx.) -[f'tx^ -^(x.)] +X<?j[-,h1>. (3.18)

where ^ eSf^x.+sX^.). Now, for any IeG£(x )fJ(x.), jeI^.)^),
we have by construction that

<h.,C> =r(x.) <hfe(Xi)(x1).5>.

+n-r(x1)]<h1J;e(x.)(xi),5>>r(xi)ahfe(Xi)(xi)»2

+n-r(x1)]»h^(Xi)(x.)D2>«hJ2

Hence, proceeding as in the proof of'Theorem 2.1, we conclude that there
A 1 A

is a A, = 3 , K-. e N+, such that
A A

k k
fj(x.+3 \) - ^(xj) <-3 ^ilh.ll2

A

kl

A

kl
< 3 a6v£(x) (3.20a)

for all j 61 / \(x-), and where we have made use of the fact that
£\Xj) I

f^x..) -i|>(x..) <0. Next, since f°(x.) -iKx^) <-£(xi) <-v£(x) for

all j£ I£/ )(x.j), and since the h.. are bounded for ie K, it follows
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by uniform continuity of fJ, ty on bounded sets, that there exists
A

a 0 < X = 3 <X-j such that

^(x.j+Xh.j) -^(x.) <-Xa6e(x.j) (3.20b)

for all j£ I£, xU^), i<= K,i > iQ. Combining (3.20a) and (3.20b)
' A

we conclude that A. > X for all i <= K, i > i'q and hence that

<Hxi+1) - ip(x.) <-Xa6v£(x) (3.21)

for all i > i*0, ie K. But this contradicts the fact that ip(x.) ^ i|>(x)

and hence we are done.

Case 2: There exists an iQ such that for all i >_ iQ, ^(x^) < 0. If

x^ + x and ip(x) < -£(x), then the theorem follows directly from

Theorem 2.1. Hence we only need to consider the case where iHx) >. -e(x).

Now, for thi£ case, we conclude from Case 1 above that there is an in
k uA M

and a X-j = 3 such that for all i >iQ, i e K
A

kl^(x.+3 \) <0, (3.22)

and from the proof of Theorem 2.1 that there exists an i\ > iQ and a

X=3 < X-j such that (3,12a) is satisfied for all i> i-,, ie k, with
^ A

X.. = X. Hence we must have that X. >_ X and for all i > i-,, i£ K

f°(xi+1) -f°(x.) <-Xa6v£(x). (3.23)

But r^x..) ^f°(x) since x^ •* xand f°(») is continuous, which is
contradicted by (3.23) and hence the proof is complete. »

Since for continuously differentiable functions fJ(«) we may set

G£f (x) =VfJ, it should now be clear that any combination of

differentiable functions and functions such as those defined in (2.21),
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(2.29) and (2.36), (2.37) may appear in the constraints.

Finally, it remains to point out that when the substitute formula

(2,39) is used for problems in Banach spaces, (3.5) and (3.6) become

replaced by

h. (x)€ arg min max d fJ(x,h)
^£ llhlkl j€I£(x) e

= arg min max . (£,h) (3.24)
llhll<l £=co{G£fJ(x)}

jei(x)
and e

hx (x) e arg min max d fJ(x,h)
f£ llhlUl jej£(x) e

= arg min max . (C,h) (3.24)
llhlkl CGco{-G£fJ(x)}

J^Je(x)

respectively. Again, the arg min max may be set valued.

4. Conclusion

We have shown that a rather large number of nondifferentiable

optimization algorithms can be presented and analyzed in a unified way.

We have also shown that for an important class of optimization problems,

defined by composite functions, efficient nondifferentiable optimization

algorithms can be constructed by using the generalized gradients of

perturbation functions. Furthermore we have established rules for the

construction of these perturbation functions.
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