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The treatment of a fuzzy subset as a random subset has been studied by some authors.
This paper contributes a unified framework to this approach. We call those random
subsets of a space 'projectable' if they yield well-defined one point coverage func
tions and, hence, fuzzy subset membership functions. It is shown that this definition
and related ones lend to the property that all projectable random subsets of a given
space form a a-algebra, called the random a-algebra. A generalization, using measure
theoretic results of Goodman's original construction is presented whereby any fuzzy
subset of a given space is shown to correspond to some projectable random subset.
Some characterizations are obtained for simple, i.e., finite-valued, projectable
random sets and simple fuzzy sets. In addition, it is shown that a bijection exists
between all projectable random intervals and all bivariate ordered (increasing)random
vectors. This implies that the membership functions of the correspondong fuzzy sub
sets are computable via simple integration involving bivariate distributions.
Finally, some specialization of these results to fuzzy numbers and corresponding
projectable random intervals is presented.
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1. INTRODUCTION

Zhang Nan-lun presents a set of statistical
data in [11] showing that there exists a stabi
lity in the observation of the frequency of a
movable interval (expressing a fuzzy concept)
that covers a fixed point in the real line IR..
His paper supports L. A. Zadeh's theory in some
respects, and his paper also supports treating
a fuzzy subset as a random subset. Many authors,
especially I. R. Goodman, have either already
studied this or have been embroiled in some
other way in the controversy between fuzzy set
and probabilistic approaches to modeling un
certainties [1,9]. A lot of difficult problems
is still awaiting our solutions.

2. PROJECTABLE RANDOM SUBSETS

Let U be a given base space and B a a-algebra of
subsets of U.

Vu € U, C(u) = filter of B on U

C(u) a1 {B e B|u e Bh
Also, let & = a-algebra generated by
{C(u)|u €U}

8 A a({C(u)|u e U}),

(2.1)

(2.2)
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where a[C) denotes the smallest a-algebra con
taining the class C.

Definition 1. Let(Q,A,P) be a given probability
space. We call (8,8) a projectable measurable
space on U, where B is defined in(2.2), and we
call a mapping

S : Q - B, (2.3)

a projectable random subset of U, if it is

^-measurable, thus inducing the probability
space (8,1,v), where v = P°S . See [4] for
related notions (strong measurability, for
example).

The collection of all projectable random subsets
of U is denoted by S(ft,A,P;U,6,8), or simply S.

Sometimes, the range of the mapping S is not
the whole a-algebra 8, but a subset of it. We
can rewrite

S :fl*l, where L C 8

CL(u) a {B e L\ue B}

8L Aa({CL(u)|u £U})

(2.4)

(2.5)

(2.6)

Lemma 1. The mapping defined in (2.4) is
^-measurable iff it is B\ -measurable.

The proof is trivial. n

Definition 2. Suppose that S is a projectable
random subset of U from a given probability
space(fi,A,P), let § be the fuzzy subset of U
with membership function given by, for all u€U,



Us(u) A P({w|u €S(w)})
= P({u|S(o>) €C(u)»

= v(C(u)) (one point coverage
function of S).

(2.7)

We call § the fuzzy subset projected from S,
see [1] ?or related notions. We write S' - S"
iff S' = S". "~" is an equivalence relation on

S, so that S can be partitioned into different
classes.

Let (Bt»BJteT' be a family of Pr°Jectable
measurable spaces, where T is an arbitrary index
set. When T is finite, supposing that
T = 0,2,...,n}, we set

8TA X 8t ={(B1,...,Bn)|B.S B.(i=l,...,n)}
tGT . (2.8)
M^TMa({V-xpnlpi

€B.(i = l,...,n)» (2.9)

When the index set T is infinite, set

8T A X 8 = {(Bf). eT|Vt 6 T, Bt6 BjT- tGT t ttST t t (2J0)

Li X B+ Aa({P, x X 8. |P,
~~t€T t= J iGT-J i J

SBj, J(finite)c T}) (2.11)

Definition 3. We call (R-,8,) the product

projectable measurable space of (8t,8 ) _.

If 8fc = 8(t € T), and T = {1,2 n}, we can
write

n v vnBT =8; Bj =8n (2.12)

Lemma 2. Consider (St). €T where Vt e T,
St £ S(ft,A,P;U,8t,8t) and set S, :a + By,
defined by

a, m. Sy(w) A (St(o)))tST, (2.13)
V

then S, is By-measurable.

Proof. If T = {l,2,...,n}, for any V^ e B^
(i = 1,... ,n), we have

S^1(P1xp2x...xpn) =S11(P1)n...ns^1(Pn)e A
(2.14)

(2.15)

so that

.-1Sy'iByJC A .

When T is infinite, we have

l/« .. V % ^ _ .-1Sl1^, x X 8.) = S'^Pje A, (2.16)
T J iST-J 1 J J

where P, e 8,, and

S, : Q-+ Bj,
wr* Sj(w) = (StU))teJ- (2.17)

Then we can get

Sf^LjCA (2.18)
Q

Let (Bt»Bt)tej be a family of projectable
measurable spaces on U, where T is finite or
denumerable, with

8t = 8; Bt =8 (t €T).

We can define two mappings as follows.

Uj. : By -»• 8

(Bt)t€TVsTBti

: &r - 8

<BtW*t£TBf
v

Lemma 3. The mappings LL. andn_ are 8-
measurable.

Proof.

uJ1(C(u)) = u (C(u) x8T,{t}) e BT (2.21)

n"l(C(u)) = n Cte Bj (Ct =C(u)) (2.22)
tST a

(2.19)

(2.20)

Definition 4. The following operations are
defined on S.

u StAU(ST),
t€T z ' '

(2.23)

( U SJ(W) =U (ST(o>)) = U S («);
tST * ' ' t^T l

n stAn(sT),
t€T L~ ' '

( n Sj(aj) =n (s (u)) = n s>)
tST C ' ' tST * (2.24)

where T is finite or denumerable.

From Lemma 2 and Lemma 3, we can see that class
S is closed under the operations u and n.

Complementation is now defined by

(Sc)(u)) A (S(w))c. (2.25)
Obviously, for any fixed element w € n, the
class

S(w) A {S(w)|S e S}

is a a-algebra with respect to the operations
(2.23)-(2.25). The operations discussed are
special cases of compositional set operators [12],
Definition 5. We cal1 S the random a-algebra
related to~operations (2.23)-(2.25).



3. A MEASURABILITY THEOREM.

If a mapping f : X •+• Y is a bijection, then
every a-algebra A on X can be carried by f to
become a a-algebra on Y:

f(A) A {{f(x)|x e A}|A€ A}. '(3.1)
Theorem 1. Let (Q,A,P) be a probability space
and, let (8,8) be a projectable measurable
space on U and (E,E) any measurable space.
Assume that the mapping

t : E h. l

where L C 8, is a bijection. If,

T(E) A{{T(e)|e S a}|a 6 E} 3 (CL(u)|u 6 U},

then, for an E-measurable mapping

£ : n * E,

we have

S A T o ^ es

(3.2)

(3.3)

Proof. T ° £ is T(£)-measurable if/f £ is
E-measurable. From (3.2) we have 8, CT(E), so

that S is 8 -measurable and hence 8-measurable

too. Thus, (3.3) is true. n

Theorem 1 is of many uses. For example,
Goodman's theorem 1 in [1] can be easily proved
using this theorem. We shall rewrite it with
a few changes.

We say that a probability space (ft,A,P) is
sufficient for a given mesurable space (X,B) if
for any probability measure m defined on 8,
there is a 8-measurable mapping £ : ft •*• X such
that m is the induced probability measured by
£, i.e.

m(B) =P(£_1(B)) VB €B (3.4)
Theorem 2. Let (Q,A,P) be a probability space
which is sufficient for (R,8Q), where 8« is the
Bore! field on JR. Let (8,^) be a projectable
measurable space on U. Given a fuzzy subset A
of U, it is always, projected from some
S € S(ft,A,P;U,8,8) provided that u« is

(8»BQ)-measurable.

Proof. Since u. is (8,80)-measurable,

LA CAJXS [0,1]} C8, (3.5)

where

Ax A{u € U|uA(u) > X} is the X-cut of A.
(3.6)

Clearly, if X, > X«, then A. c A . For any

X,u€ [0,1],

X- u iff Ax =A^ (3.7)
"~" is an equivalence relation on [0,1].
Defining E = [0,1]/~, the elements of E are

either singleton sets or intervals in [0,1].
Thus, E has a linear order < :

el 1 e2 °3xi e ei» x2 € e2
such that X, <_ X2« (3.8)

Hence, we can define the interval in E:

[e1,e2] A £e e E|e1 <e <_ e2>.

Set

EAo({[e1,e2]|e1,e2e E}). (3.9)

Set

T : E * L,

(3.10)

T is a bijection.

Moreover, we have

T'\cL(u)) =[O.u^u)] SE, (3.11)
where X is the class containing X in E.
Therefore (3.2) is satisfied.

Because (fi,A,P) is sufficient for (K,8q),
there is a (B.BjO-measurable mapping
£0 :ft -»• [0,1] such that its distribution is
uniform in [0,1], i.e. m. =Po£" ,mQ
Lebesgue measure over [0,1]. Set, for each
wen, £(u>) A (£q(u)). Clearly, £ is
E-measurable. According to theorem 1, we have

S A x o £ e S(fi,A,P;U,B,8).

But

P{w|S((u) S C(u)} = P{w|S(u) e cL(u)}

=P(£e [6,u;(u)])

= P(£0e [0,uA(u)])

= yA(u). «

Does the converse proposition of Theorem 2
hold? We cannot answer this yet. But we
could obtain a partial result here.

Definition 6. A projectable random subset
is called a simple projectable random subset
if its range only contains a finite subclass
of 8. The collection of all simple projectable
random subsets is denoted by S*.

Lemma 4. Suppose that (Q,A,P) is sufficient
for (K,8q), then each simple projectable
random subset of R can be projected into a
simple fuzzy set membership function on
(U,B). Conversely, each simple fuzzy set
membership function on (U,8) is projected from
some S* e 5*.

Proof. For any S* 6 s*, there is a partition
of a : Ai € A (i = l,...,n)

e~ Ae AAx (VX€ e),



and S*(oj) = Bi (Vw £A.) (B^ B) (i = l,...,n).
Then, the membership function of S* is a simple

function on (U,8):

Uc*(u) = T PfA^Xo (u). (3.12)
$ i=l 1 Bi

the converse conclusion is clear from theorem 2.
n

Definition 7. We write S-, C S2 iff S^w)
C S2(w) (Vto e ft), and we write SR ?(V)S iff
Sn(u>) ?(V)S(u>) = u Sn(w) ( n S>))(Vwe q).

n=l n=l

Lemma 5,

Sn?(V)S-us M.»sm)y<

(3.13)

(3.14)

The proof is clear. B

Theorem 3. Suppose that S = S(ft,A,P;U,8,8) is
the smallest closure, containing S*, under the
operations of denumerable union, denumerable
intersection and complement, then for every
S eS, the projected fuzzy subset S is (8,8Q)-
measurable. v

Proof. Clearly, S* is a random algebra, i.e.,
S* is a closed class under the operations of
finite union, finite intersection and comple
ment. As an analogy to measure theory, because
S is smallest a-algebra containing S*, so is
the closure containing S* under the monotonic
limit operations defined in Definition 7.

iU
Set <J> : S - [0,ir

Sh- us
iU *

(3.15)

and let M C [0,l]u be the collection of all
(B,80)-measurable functions which are the
membership functions of fuzzy subsets of U,
i.e.,

M A (y|y :U -* [0,1] &u is (B,80)-measurable}.
(3.16)

Let M* be the simple functions subclass of M,
i.e.,

M* A {u|u € M & y is a simple function}. (3.17)

The mapping <\> conserves the operations of mono-
tonic limits so that <f>(S) is the smallest
closure containing M* under monotonic conver
gence. But M 3 M* and M is a closed class under
monotonic convergence, too, so that <J>(S) c m.

n

4. PROJECTABLE RANDOM INTERVALS

Let 8Q be the Borel field on R ,and let
(8q,8q) be the projectable measurable space on
R, i.e.,

§0 =a({C(x)|x €R &C(x) A(B €8q|x €B}}).
(4.1)

Let

6 A {[x1 ,x2] |x1 ,x2 S IR & x1 <_ x2}. (4.2)

Definition 8. A projectable random subset

S € S(ft,A,P;U,8,B) is called a projectable
random interval if it is interval-valued, i.e.,

range(S) c 5 (4.3)

the class of all of them being denoted by I.

What is most convenient in our definition of
a projectable measurable space is that we can
transform a projectable random interval into a
bivariate random vector.

Set

R/ A{(x,y)|x,y G R &x<y}
2 2

Let B« be the Borel field on R . Set

BZf ACDjD SBq &DCIr2}

(4.4)

(4.5)

2 2 2
B, is the restriction of 8« to R ,, so it is a

a-algebra too. Let (ft,A,P) be a given proba
bility space.

Let

VA(£|£ :ft h. R2 &£is (A.By)-measurable},
(4.6)

i.e., 1/ is the set of all bivariate random
vectors over the upper triangular real plane.

Set

t : R, -»• 6,

where

ordered pair (x,y) h- interval [x,y]. (4.7)

Obviously, t is a bijection.

Lemma 6.

xfB2,) D{C5(x)|x e R}. (4.8)
Proof. For any fixed a € R, we have

x_1(C6(a)) ={(x,y)|(x,y) e R2; &x<a<y}

where

= (-«,a] x [a,+~)

=Jae8/> (4.9)

J A(-»,x] x [x,+«), for all x in R. (4.10)
n



Theorem 4. There is a bijection

<|> : 1/ - I (4.11)

Proof. For any £ G I/, define the mapping

*(0 : ft - 6, (4.12)

where for all w € ft, (<M£))U) A t(£(co)).

Clearly, the mapping

ty : V•> 6Q (4.13)
is an injection.

2 2From Theorem 1 (take L= 6, E= R^, E= By and
by Lemma 6), we can see that for any £ e (/,

tJ/(£) is (A,80)-measurable, i.e.,

*(€) 6 I (4.14)

Hence, mapping ^ is an injection from 1/ to T and
we can rewrite ij; in the form:

ty : 1/ * I. (4.15)

We want to prove that 4» is a bijection. This
conclusion will be provided by Lemma 7.

Lemma 7.

t(82) C80 (4.16)
Proof. It is not difficult to prove that

82 =a({(A1 xa2) n ir2 j^,^ € 5})

=a({A1 xAglApAg S6&A1 xA2 CR2}).
(4.17)

For [a-|,bj] x [a2,b2] c R. , we have

[a-pb-j] x [a2,b2] = (—.b^ x [a2,+») - (--.a^

x [a2,+») - (—.b^ x [b2,+«)

= ((--.b^ x [br*°) n (-«,a2] x [a2,+»))

- ((--.a-,] x [ar+«) n (-«,a2] x [a2,+»))

- ((-o-.b^ x [br+«) n (-«,b2] x [b2,+~))

=V V ~VV" VV*
(4.18)

From (4.9) and (4.18) we have

[a^] x[a2,b2] =t"1^^) nC5(a2)

•wnw-wnwj

>0:€ T"1^),
so that i([a1,b1] x [a2,b2]) e 8Q. (4.19)
From (4.17), the Lemma can be proved. «
The next thoerem,will give us a relationship
between S and v-l(S).

Theorem 5. Suppose that £ = (£,,£2) e Vand
S = tp(£), then

ys(x) = P({o)|£(o)>eJx}). (4.20)

Suppose that £ has density p(x, ,x2), then for
any x e R ,

ys(x) =jj pUj.XgJdXjdXg
x

=| (J p{xrx2)dx^)dx2. (4.21)
The proof is trivial.

Example 1. Suppose that ru» n2 are independent
random variables which are both distributed
uniformly in [a,b], and set

£=(€r£2) = (min(n1,n2),max(n1,n2))(4.22)

Clearly, £ € v and has the density function:

\- ^ if a <_ Xy x2 <_ b
pf(x,,x2) =<(b"a) (4.23)
^ V. ° otherwise
According to Theorem 5, we have

fX r+"

^ (b-a)2'-Jx Caix^x <b]

•2(x-a)(b-x)

(b-a)2

dx<

if a _< x £ b

otherwise

(4.24)

(see figure 1)

*• x

Example 2. If we wish to describe the following
concepts on [a,B]:

{SHORT.MEDIUM.TALL}

we can point two points £•• and £2 such that

SHORT =[a,^)
MEDIUM = [£r£2)
TALL = [£2,B).



Suppose that £,, £2 are independent random
variables having density functions p^ (x) and

pc (x) that satisfy
£2

pc (x) =0 if x € (a,,b.)
§1
p (x) =0 if x€ (a2,b2),

here a <a, < b, < a2 < b2 < B; then we have

0

fx

(x) = < 1UMEDIUM
rb.

0

if a < x < a,,

pc (u)du if a, < x < b,'

if b, < x £ a2>

p (u)du if a2 < x <_ b2>

if b2 < x < B.
(4.25)

ll;

^short^^C P5l(u,du ifai <xlbi;
if a <_ x <_ a-j;

if b, < x < 3.

(4.26)

if a < x < a2;

Wx) " {T >£ <u>du ifa2 H
a2 < x < b2;

if b2 < x < S.
(4.27)

r\ Pr (")

Figure 2
The method for constructing a membership
function like in this example is called the
Three Phase Method. It is given by Qu Yin-Sheng
rrr—

Note that

wSH0RT(x) + yMEDIUM(x) + yTALL(x) ~ ]
(a < x < 8) (4.28)

5. FUZZY NUMBERS AND THEIR CHARACTERISTIC
CURVES

Let a be a mapping

a :[0,1] - R2
Xh. a(X) = (a.,(X),a2(X))

with o.,(x) <o2(x) (5.1)

Definition 9. We say that the mapping a is a
characteristic curve if a, is monotonic
increasing and a« is monotonic decreasing. The
collection of all of them is denoted by £.
If ae E, then a is 8vmeasurable. Let mQ be
the Lebesgue measure on R,set P^ = mQ <> a ,
i.e.,

Pa(B) =m0({X|o(X) €B}) (VB €B2), (5.2)
P is a probability measure on 8? which is
a /
induced by a from m..

Definition 10. A mapping oei is called the
characteristic curve of a given projectable

random interval S (or of iH(S) or of the
projected fuzzy subset S) if

W =P(SG C(x)) =W1^)6 Jx} =yS(x)*
T5.3)

Obviously, if the characteristic curve exists,
it is the characterization of a class of pro
jectable random intervals having a same pro
jected fuzzy subset.

When a is a fuzzy subset of IR, we call it a
fuzzy number if for any X G (0,1], its X-cut is
always a closed interval:

1 2-ax a{x e IR |ya(x) >x} =[<v<*x]-
We say that a is normal if there exists
x0 e ir such that ya(xQ) = 1.

Theorem 6. Suppose that (ft,A,P) is sufficient
for (IR,B0). For any normal fuzzy number a,
there exists one and only one o e E such that a
is the characteristic curve of a. Conversely,
for any a e Z, there exists one and only one
normal fuzzy number a such that its character
istic curve is a.

Proof. Given a normal fuzzy number a, set

a : [0,1] ^ R
7

a f 1 2,X-> (ax,ax),

(5.4)

(5.5)

where a) and a2 are defined in (5.4). From

Xl <X2=,aX15«x2»



1 2we have a' t and ax *.. Moreover,

Pa(Jx) =m0({x|a(X) e ix» =mQ({X|x 6 «x})

= y (x)
a

(5.6)

so that a is the characteristic curve of a.

Conversely, given a G z, set

Ua(x) 4 P0(JX)

so that y (x) > X
a —

~o(X) £1

PrA> > XOX —

«>a-j(X) < x <_ a2(X)

hence,

ax =[a.j(X),a2(X)],

a is a fuzzy number. Moreover, for

xQ =max(a1(l),a2(l))

we have

so that a is a normal fuzzy number.
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