
 

 

 

 

 

 

 

 

 

Copyright © 1982, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



A FORM APPLICATION DEVELOPMENT SYSTEM

by

Lawrence A. Rowe and Kurt A. Shoens

Memorandum No. UCB/ERL M82/38

2 April 1982

ELECTRONICS RESEARCH LABORATORY



To be presented at 1982 SIGMOD Conference

A FORM APPLICATION DEVELOPMENT SYSTEM'

Lawrence A. Row* and Kurt A Shoens

Computer Science Division. EECS Department
University of California

Berkeley. CA 9472C

ABSTRACT

This paper describes FADS - a Form Application Develop
ment System which is an interactive system for the
development of form-based database applications. FADS
reduces the amount of work required to implement a
forms application by suppressing much of the detail
which would be required by conventional tools (e.g., a
screen definition system, a database system, and a pro
gramming language). FADS provides direct access to a
relational database, a standard model of the user inter
face, built-in form constructs, and an integrated
development and debugging environment. Using FADS,
form applications can be developed quickly and the
resulting systems are easy to modify.

A prototype implementation of the FADS kernel has been
completed.

1. DiTRODUCTION

A form application is one in which users interact

with a computer through a form displayed on a video ter

minal. These applications often involve several people

sending and receiving forms to communicate and accom
plish some goal. An on-line inventory control system, a
student enrollment system, a software bug report sys

tem, and a purchase order system are examples of form

applications.

The Form Application Development System (FADS) is
an interactive system for developing form applications.

It provides built-in facilities to display and enter data
through forms and to execute high-level operations
coded in a set-oriented query language. These high-level

operations correspond to the actions that an end-user
performs (e.g.. hire an employee) when using the appli-

t This work was supported by the National Science Foundation
under grant kCS-6006329.

cation. FADS applications are defined by filling in forms

using a similar interface to that seen by a user of an

application. An integrated development environment is

provided that includes an application editor, a screen

layout editor, a relation editor, and a debugger.

The goal of FADS is to shorten the time required to

develop form applications that involve several users.

This goal is accomplished by suppressing the detail that

an application designer must specify, by having the sys

tem automatically fill-in defaults (e.g.. screen layout),

and by providing an interactive development environ

ment similar to that provided for LISP [Teitelman 81].

Previous work on tools for developing form applica

tions can be divided into screen definition systems

[Tandem 80. Hewlett-Packard 79] and office automation

systems [DeJong BO.Luo 81, Zloof 81]. Screen definition
systems such as Screen COBOL [Tandem 80] provide
embedded language constructs to define screen layouts

(i.e.. position of fields on a screen) and display attributes

(e.g.. labels and integrity checks) and to do screen

input/output. However, applications are still coded in a

conventional programming language and the screen

definitions do not access the data definitions stored in

the data dictionary even though the same data is being

described and manipulated. Consequently, changing an

application often requires changes to the screen

definition, the database definition, and the program

which can be time-consuming and error prone.

Interactive screen definition systems, such as

VD3W/30O0 [Hewlett-Packard 79] allow the application

programmer to design and edit screen layouts while they

are displayed on the terminal. These systems provide a

better tool to define screens than embedded languages

because the designer can change the screen while look

ing at it rather than having to compile, link, and run a

program to see what the screen looks like. Nevertheless,

they have the same problems as embedded languages

because they deal only with screen definition. They are



not integrated with the database system and. in some

cases, the interface between the program and the screen

run-time system is not type checked.

Office automation systems address the same kinds

of applications as FADS but they either do not provide a

complete application development environment or were

designed with a different idea of how applications will be

developed. FOBE [Luo 81] is a nonprocedural query
language based on the form data model [Shu Bl] that
was designed to specify office procedures. In contrast to

FADS, it does not have an interactive development

environment and. as described in [Luo Bl], it can not be

used to produce applications that are used interactively

by an end-user.

SBA [DeJong 80] and OBE [Zloof 81] are program
ming systems for end-users who gradually automate

their activities. FADS is designed for programmers who

develop interactive applications for many users. As with

FOBE, SBA and OBE do not provide a complete program

ming environment.

The remainder of this paper is organized as follows.

Section 2 describes the primitives on which the FADS

system is based. Section 3 presents an overview of the

application development environment, describes the

interface that the user of a FADS application sees, and

presents an example of application definition. Section 4
describes the application debugging tools. Section 5
describes the current implementation and extensions to

the system. Finally, section 6 summarizes the paper.

The examples below are taken from a bug report

system that keeps track of the bug reports handled by a

software support group. A relational database design for

the system is shown in figure 1. The BUGS relation con

tains a tuple for each reported bug. Bug is a short name

for the bug and is the logical key of the relation. The

PEOPLE relation contains information about the pro

grammers and the BUGASSIGN relation represents the

relationship of bugs assigned to programmers.

The users of the system include a secretary, a

manager, and the maintenance programmers. The
secretary screens incoming bug reports and enters data

about each report into the system (e.g.. who submitted

BUGS (bug, program, version, status. datejubmitted,
submitter, affiliation. date_fixed. description,
response)

PEOPLE (name. job_£itle. ...)

BUGASSIGN (bug, name, date_due, date_assigned)

Figure 1. Bug report system database design.

the report and a description of the problem). The
manager assigns a report to a programmer and sets a
date by which the bug should be fixed. If the program
mer does not complete the investigation by the due date,
first the programmer and later the manager will be
notified. After the bug has been fixed, the report is sent
back to the manager. The manager then passes it back
to the secretary who sends a response to the person who

submitted the report.

2. FADS PRIMITIVES

This section describes the primitives used to define

a FADS application, including: frames, forms, data types,

operations, and roles. The primitive objects that
comprise an application are stored in the data diction

ary.

A FADS application consists of a collection of frames
that the users of the application interact with and move

between. A frame is what a user sees on the terminal

display. It is composed of one or more forms in which
data can be entered or displayed and a list of operations

that a user can execute. Figure 2 shows a frame that

contains one form (a bug report) and five operations

(listed at the bottom of the frame).

A user of this frame can enter a bug report into the

system by entering data into the fields in the form and
executing the enter operation. A conventional data
entry facility is provided in FADS for entering data into a
form. An operation is invoked by typing an escape char
acter and a unique prefix of the operation name.

FADS supports two built-in kinds of forms: tuple and
relation. A tuple form contains one or more fields that
can display a tuple in a relation. The form in figure 2 is a
tuple form with a field for each attribute in the BUGS
relation. This form corresponds to a paper form and is

called the bug report form.

A relation form can display a relation. The tuples in
the relation are displayed in a table format. Each row in

the table corresponds to a tuple in the relation. Figure 3
shows a second frame that contains two forms: a relation

form (labeled "Bug summary") that displays a summary
of a collection of bug reports and a tuple form with only

one field (labeled "bugs").
Tuple and relation forms are primitives that can be

used to define more complex forms. For example, a

master-detail form, such as a purchase order, contains a

tuple form that displays the data about the purchaser
and a relation form that displays the items purchased.
This example illustrates how non-normalized data can be
displayed.



Bug Report System

bug: date submitted: dd/mm/82

program: submitter

version: affiliation:

status: ASSIGNED date fixed dd/mm/82
FDCED

REPORTED

description

response

enter find list modify quit

Figure 2. A frame.

Each field in a tuple form and column in a relation

form has a data type and display attributes. FADS sup
ports a variety of built-in data types including: integers,

reals, fixed and variable length strings, dates, times, and

enumerated types.1 Display attributes describe how the
data should be displayed (e.g., the label, output format,

and display enhancement) and entered (e.g.. edit

checks, default values, data formats, and input masks

such as "dd/mm/82" for dates).8

In addition to the simple data types described

above, FADS supports two structured data types: tuple

and relation. These types describe the values that a

tuple and relation form can hold. In a typical FADSappli

cation, a tuple type is defined for each entity in the

application (e.g., a bug report). This type is then used to
define a relation to store entities in the database and

forms to display the entities. A tuple form is defined to

display a single entity and a relation form is defined to

Aa enumerated type has a fixed number of values that are
represented by identifiers. Far example, the states attribute in the
BUGS relation is an enumerated type with values: REPORTED. AS
SIGNED, and FIXED.

• fa addition to field level edit checks, FADS supports form and
frame lerel integrity checks (e.g., cross fieldchecks).

display several entities. If there is a single type
definition that is shared by the relation and form

definitions, the application designer can add an attribute
to the type definition and FADS will automatically extend
the relation to include the attribute and the form

definition to include an extra field.

Operations listed at the bottom of a frame are

defined in an extended set-oriented query language. The
language allows a query to access data entered into a

form or to display in a form data retrieved from a data

base. The language also provides statements to call and

return from another frame. Arguments such as the out

put of a query can be passed to a called frame. Lastly,
the language includes statements to alter control-flow

(e.g., a conditional statement).

Form applications often involve several people send
ing forms to each other. The extended query language
does not provide an explicit statement to send data and

a form from one user to another. Communication is

accomplished by sharing access to a database. Data is

entered into the database by the sender and a condition
is set which causes the receiver to retrieve the data. For

example, the secretary enters a bug report with status



Bugs Summaryr

>

program bus status date due

• •

• rigel scalar types ASSIGNED 10/2/82

e_guel attributes REPORTED

c compiler symbol table overflows ASSIGNED 1/3/82

bug:

details return

Figure 3. A frame that contains a relation form.

REPORTED. The manager retrieves all REPORTED bug

reports which effectively sends it from the secretary to

the manager.

Using the database to implement communication

has several advantages. First, only one copy of the bug

report data is maintained which reduces the problem of

maintaining consistent copies. Second, a database sys

tem provides crash recovery and concurrency control

which would have to be implemented for an explicit send

statement. And lastly, by storing all data in the data

base system other tools, such as an ad hoc query

language and report writer can be used to access all

data controlled by an application.

Different users of a form application typically

require access to different data and operations. The
data and operations that a particular user requires are

defined by their role in the organization. For example,

the secretary needs access to the details of all bug

reports and operations to enter and correct reports. In
contrast, the manager is interested only in summary

information (e.g., the number of bug reports assigned to

each programmer) and details about selected reports

(e.g., bugs which have been reported but have not been

assigned to a programmer).

Each user of a FADS application has a role that

determines what frame is displayed when they run the
application. This initial frame is called the user's home
frame. Figure 2 is the secretary's home frame for the
bug report system.

This section described the primitives from which

FADS applications are built. An application is composed
of frames which allow users to enter and display data

stored in a database. Each frame has a list of

operations, specified in an extended query language,
that a user can execute. These operations correspond to

the actions that the user performs as defined by their

role in the organization.

3. APPLICATION DEVELOPMENT

This section describes how a FADS application is

developed. An overview of the application development

environment is given in section 3.1. Section 3.2 shows
how a frame is defined and describes the extended query

language that is used to define operations. Section 3.3
shows how forms are defined.

3.1. Application Development Overview

An application is defined by moving between frames,
filling in forms, and executing operations to define the
objects (i.e., frames, forms, relations, roles, and data



types) that comprise the application. Figure 4shows the
frames in the application development environment (the
boxes) and how the designer can move among them to
define an application (the arrows).

The frame titled application editor is the top-level
description of an application (i.e.. it is the home frame
for appUcation designers). This frame allows the
designer to enter the definition ofanew FADS application
or to modify the definition of an existing appUcation. It
has operations to list the names of objects in this appli
cation, to edit an object, or to enter the debugger to test
the application.

The list objects frame displays the names of all
existing objects. It helps the designer to recall what
objects are defined and it can be used to look up the
name of an object.

The frames provided to edit the different kinds of
objects (i.e.. edii frame, edit form, edit data types
including relations, tuples, and enumerated types, edii
relations, and edit user roles) contain forms to define or
modify a specific object. For example, the frame for
editing frames is used to define the secretary's home
frame shown in figure 2. Examples of defining frames
and forms are presented in sections 3.2 and 3.3.

Since frames contain forms and forms are defined in
terms of the data types they can display, the designer
can move directly from defining a frame to defining a
form, and from there to defining a data type. Objects

can be defined in any order and the system accepts par
tial definitions. For example, if the designer is defining a
frame and specifies that it contains a form which has not
been defined yet. he can either complete the frame
definition and then define the form or suspend work on
the frame definition, define the form, and then complete
the frame definition. A check operation, described in
section 4. is provided so the designer can check the con
sistency of an application (e.g.. that all forms contained
in a frame are defined).

From the applicationeditor frame, the designer can
also call the relation editor or enter the FADS debugger.
The relation editor is a simple form-based query system
in which the designer can examine, modify, enter, and
delete tuples in relations to verify the operations of an
appUcation. The relation editor is also used to set up
test data for an application. The debugger allows the
designer to set breakpoints, to run an appUcation (Le..
call an appUcation frame), to examine the state of arun
ning appUcation. and to switch back and forth between
editing the appUcation and running it. The debugger is
described in more detail in section 4.

AppUcation definitions are stored in systemcatalogs
in the database. This representation enhances the
modularity of an appUcation. For example, type
definitions stored in the system catalogs are used"
throughout the application definition (e.g.. to define the
attributes in a relation and data types of fields in a
form). This representation also encourages the designer

edit

appt icat ion

Figure 4. AppUcation development environment.

edit
enumeration

type



to reuse pieces of an appUcation (e.g., frames and forms)
which provides a more consistent user interface because
information is displayed and entered in the same way

throughout the appUcation. If frames and forms are
reused the size of an application is reduced because

fewer objects are defined.

This subsection presented an overview of the frames

in the appUcation development environment. They allow
a designer to move easily between defining and testing

the frames that comprise an application.

3.2. Frame Definition

This subsection describes how frames are defined.

It also describes the extended query language used to

define the operations in a frame.

A frame is defined by specifying the title, the forms,

and the names and definitions of operations in the

frame. Figure 5 shows an edit frame filled in to define

the bug report frame shown in figure 2. The name of the

frame is bugReport. The frame title is "Bug Report Sys
tem" which is centered on the first Une of the bugReport

frame. The frame contains one form, named bugForm,

which is defined in the next subsection.

Operation definitions are coded in an extended
query language based on QUEL[Held 75]. The language
includes statements to retrieve and update values in

relations, a notation to reference values in forms, and

statements to alter the control-flow of an application

(e.g., to call and return from a frame, to execute a state
ment if a condition is true, and to exit an application).

Edit Frams

Name: bugReport

Title: Bug Report System

enter

find

list

modify

quit

debug

Forms

bugForm

Operations

definition

append BUGS (bugForm.all)

bugForm = retrieve (BUGS.all)
where BUGS.bug = bugFornvbug

CSmFbrmlli (retrieve (BUGS.program. BUGS.bug. BUGS.status.
BUGASSIGN.date_due)

where BUGS.status not= FIXED
andBUGS.bug = BUGASSIGN.bug))

replace BUGS (bugForm.oll) where BUGS.bug =bug.Form.bug

quit

delete enter find form layout modify return

Figure 5. Definition of bug report frame.



The remainder of this subsection illustrates the features
of the language by describing the definitions of the
bugReport frame operations.

The first operation shows how data values in a form
are referenced. The enter operation takes the data
entered into the bugForm form and appends it to the
BUGS relation. The expression "bugForm.all" references
the values entered into the form. Each form holds the
value which has been entered or displayed through it.
Tuple forms hold tuple values and relation forms hold
relation values. Individual fields in a tuple form can be
referenced by using the selection operator (e.g..
"formName.fleldName").

In this example, the fields in bugForm have the
same names as the attributes in the BUGS relation so
the system can determine which field should be assigned
to each attribute in the relation. If the names had been
different, explicit assignments would be required. For
example, suppose the field in the form which contained
the name of the bug was named bugName. The assign
ment of a field in a form to an attribute in a relation
could be specified as foUows

appendBUGS(bug =bugForm.bugName,...)

The second operation shows how queries are
parameterized and how the result of aquery is displayed
in a form. The find operation takes the value entered
into the bug field and retrieves that bug report. The
retrieve-expression onthe right-hand side of the assign
ment returns a tuple which is assigned to. hence
displayed in. the form. The relation attributes are
assigned to the form fields with the same names and are
automaticaUy converted to the appropriate data type
and edited for output as specified for the form field. If
the attribute names and fields were different, explicit
assignments would be required.

In this example, only one tuple could be returned by
the query because bug is the logical key of the BUGS
relation. If the query were different and more than one
tuple were returned. FADS prints a message to that
effect and allows the user to step through the values.
Because this facUity is buUt into FADS, the application
designer does not have to write code to test whether
more than one value was returned and to step through
them.

The third operation shows how a frame is called and
a value is passed to a form in the called frame. The list
operation calls the frame shown in figure 3 and passes to
it the bug reports that have not yet been fixed. The
definition of the operation shown in figure 5 calls the

frame named bugSum and passes to it the bug report
data retrieved from the database. The data passed to

the frame is displayed in the form, named sumForm.
which is the relation form in the bugSum frame. Notice
that the retrieve statement includes a join and that data

from both relations is displayed.

The modify operation shows an example of a
replace-statement that updates a bug report and the
quit operation shows the quit-statement that exits the
bug report appUcation.

This subsection showed how a frame is defined and

described the extended query language for defining

operations in frames.

3.3. Form Definition

This section shows how forms are defined. The
definition of the bug report form (bugForm) contained in
the bugReport frame defined in section 3.2 is used as an
example.

A form is defined by specifying the title, the kind of
form it is (Le.. tuple or relation), the data type that can
be entered or displayed through it. and information
specific to each kind of form.

An edit form frame filled in with the definition of
bugForm is shown in figure 6. This form is a tuple form
defined for the data type ougTVpe- BugType is used to
define the relation BUGS and this form.

The form layout (i.e.. the placement and order of
the fields on the terminal display) is defined by a layout
format. In this example, the format is "2 columns"which
indicates that the fields should be arranged into two
columns as shown in figure 2. Other formats provided for
tuple forms are: "packed" (pack as many fields on a line
as possible) and "tabbed" (separate fields bytabs). Rela
tion forms have only one layout format - the table for
mat shown in figure 3.

Layout formats are useful when building a prototype
frame or when a frame wUl only be used a few times
because the forms are easy to specify. A layout editor is
provided that gives complete control over the form lay
out to the application designer. It displays a form or
frame as it would appear on a terminal display and
allows the designer to move fields around and to change
labels and other display attributes. This combination of
layout formats and a layout editor allows the designer to
get a frame running quickly and to have complete layout
control.

The data type bugType that is used to define bug-
Form is a tuple type. A tuple type is defined by



Edit Form

Name bugForm

Title:

Data type: bugType Form kind: tuple
relation

Tuple Form format: 2 columns

Relation form number of rows:

delete enter find la;•out modify return type

Figure 6. Definition of the bugForm form.

specifying the name, type, and display attributes of each

of its fields. Data types are defined by filling in forms in

the same way frames and forms are defined.

Figures 5 and 6 and the bugType data type define

the bug report frame shown in figure 2. BugType is also

used to define the BUGS relation and. in the complete

definition of the bug report system. bugForm would be

used in several different frames.

Section 3 has described the appUcation develop

ment environment for FADS. The development environ

ment includes tools to edit an appUcation definition and

the database on which the application runs.

AppUcation definitions are specified by filling in

frames that describe the frames, forms, data types,

operations, relations, and user roles that make up an

appUcation. Using a form-based interface to define

appUcations makes defining an application easy because

the form indicates to the designer what information is

required and input integrity checks can detect errors

when the definition is entered.

FADS appUcations can be defined quickly because

entering data (i.e., an application definition) into a form
is fast and because the system provides reasonable

defaults for much of the detail that would be required if

the appUcation were coded in a programming language.

For example, default display attributes (e.g., labels, for

mats, and input integrity checks) are supplied for fields

based on the name and type of the field and default

screen layouts are suppUed for forms.

FADS provides a standard frame organization (e.g.,
operations listed at the bottom) and built-in facUities for

recognizing which operation was requested and for cal

ling the appropriate operation definition. These

definitions are coded in a high-level, nonprocedural

query language that does not require redundant declara

tions of the data types, forms, and relations used in an

operation. Because the number of lines of code required

to define an operation is reduced and because the data

types in the form fields are checked against the data

base data dictionary, the operation definitions are

quicker to write, less prone to errors, and easier to

debug when an error is made.

The next section describes the debugging tools for

FADS appUcations.

4. APPUCATION DEBUGGING

This section describes the cnecJfe operation that

checks the semantic consistency of a FADS application

and the debugging frame which is called by the designer

to test an appUcation or by the system when a run-time

error is encountered.

The check operation performs many consistency

checks on an application. It ensures that

• all called frames exist.

• all forms used in frames are defined,

• operations are legal (e.g., form, field, and attribute

names used in an operation are valid), and

• data types used to define forms are defined and vaUd.

The check operation warns the designer of possible



problems, but does not stop him from running the
application. The FADS system is designed to allow appU
cations to be developed incrementally. The purpose of
the check operation is to remind the designer of incom
plete or inconsistent specifications.

If a FADS application is running and an error is
encountered (e.g.. a frame caUed in an operation is not
defined), the system takes different actions depending
on whether the person running the application is a user

or the designer. If it is a user, the system prints an
appropriate error message (e.g., "Error in the operation
definition."), and returns to a consistent state (e.g.
returns control to the user).

If the user is the appUcation designer, the break

frame is called (figure 7). The break frame displays the
error message that caused the break and the list of
active frames. The break frame contains operations to

control subsequent execution of the application, includ

ing breakpoint control; operations to examine or modify
the values in any active frame: and an operation to edit
an active frame with the appUcation editor described in

section 3.

Breakpoints are controlled through a separate
frame, called the breakpoint frame, which contains a

relation form with the breakpoint Ust. Breakpoints can

be set on the execution of a frame or procedure, or on

the access or modification of a relation. A breakpoint is

set by entering a new row in the breakpoint table and

removed by deleting an existing row.

One of the frames in the active Ust can be selected

by entering its name in the "Frame name" field. Then,
the display operation will display the selected frame and

allow the values inside to be modified using the standard

form entry editing functions.

The definition of an active frame can be examined or

modified with the appUcation editor by selecting one of

the frames as for display and executing the edit opera

tion.

The query operation caUs the relation editor

described in section 3 so that the appUcation designer

can examine or modify the contents of the database.

The continue operation resumes the application

after a breakpoint. The restart operation restarts the

appUcation from scratch.

These appUcation debugging facUities aUow the

designer to develop an application incrementally. It is
not necessary to write the entire appUcation before test

ing a portion of it. A piece as small as a single-frame can

be written separately and tested. If the frame refer

ences an undefined object, the definition of the object

can be specified using the edit operation of the break
frame, and the application resumed. This section

Break Frame

AppUcation:

Error Log

Frame Stack

Frame name:

break continue display edit query restart

Figure 7. The break frame.



described the facilities provided for testing and debug
ging a FADS application. These faciUties provide con
venient access to all the tools a designer wUl need: a
relation editor, an application editor, a break point
package, and access to the intermediate values in the
application.

S. CURRENT IMPLEMENTATION AND FUTURE EXTEN

SIONS

This section briefly describes the implementation of
FADS, the current status of the system, and the exten

sions we plan to make to it.

The FADS system runs as two processes: the data
base system (DiGRES) and the FADS kernel. The kernel
has three components: the frame driver, the executive,
and the frame cache. The frame driver uses a terminal
independent abstraction [Arnold 81] which handles all
input/output between a user and a terminal. This
terminal abstraction allows FADS applications to run on

any alphanumeric terminal with cursor addressing. The
frame driver displays frames and the values in the forms

inside, accepts input into forms, and passes operation

requests to the FADS executive.

The FADS executive controls a running application.

It loads and runs frames, executes queries, calls com

piled procedures, and other control flow statments. The
frame cache maintains an in-core copy of object
definitions from the database to improve system perfor

mance.

The system is coded in C (approximately 15,000
Unes) and runs on DEC VAX-ll's [DEC 76] under the Vir

tual Memory UNIX3 operating system [Babaoglu 79]. The
INGRES interface is coded in EQUEL [Allman 76]

The current system has implemented the features

described in the previous sections for running FADS
appUcations. These features include: entering and
displaying data through forms (tuple and relation
forms), executing frames and operations, and executing

the internal representation of an operation (running
parameterized queries, displaying the output of a query
in a form, and caUing frames and procedures with argu
ments). The appUcation development frames have been
implemented and we are currently experimenting with

the system.

The current system can be extended and improved
in three general directions: adding new kinds of forms,

using a personal computer for the user-interface, and
providing more appUcation development tools. These
directions are discussed in the remainder of this section.

9 UNIX is a trademark of Bell Laboratories.

Many applications have forms which change depend
ing on the data entered into a field. Asimple example is
an employee form with a marital status field. Depending
on the marital status, different information is required

(e.g., for married employees the spouse's name may be
required whUe for divorced employees only the
children's names, if any, are required). Popup forms
which are displayed only if a specified condition is met
(e.g.. status is married) provide good feedback to the
application user indicating what fields require values.
The problem with popup forms is that the frame
definitions which contain them are harder to understand

because the forms displayed vary. Nevertheless, we plan
to experiment with popup forms and frames for display
ing their definitions.

Another kind of form which is currently being added

to the system is graphical forms. These forms allow
graphs, bar and pie charts, and scatter plots to be
displayed. We are using a color graphics terminal so we
wUl also be looking at display enhancements based on

color.

The second set of extensions involves using a per

sonal computer with a bit-mapped display and a mouse
for the user interface. Besides using the mouse to select

operations, values in enumerated type fields, and tuples
in relation forms, we want to aUow more user control of
the amount of screen space used by a field or form. We
also want to move the frame driver component, and pos

sibly the entire FADS kernel described above, into the
personal computer.

The last area to explore is in the development of
more application development tools. Because the appli
cation description is stored in the data dictionary in the
database, it wUl be very easy to develop tools which show
the appUcation at varying levels of detaU. For example,
a graph showing what frames caUwhichother frames can
be displayed. Or, the designer could ask questions like
"what frames have operations which can update relation

R>"

Another possibiUty is to display in real-time where
each entity (e.g., bug report) is in the system. These
higher levelabstractions will make appUcations easier to
write and maintain because the developers wUl not have

to wade through as much detailed code to discover what
the system is doing.

6. SUMMARY

This paper has described the Form Application
Development System and shown how it can be used to
develop interactive, form-based database appUcations



quickly. FADS provides an integrated development

environment that includes an appUcation editor, a

screen layout editor, a relation editor, and an interactive

debugger.

Acknowledgements

We would Uke to thank Joe Cortopassi, Tom Morgan.

John Ousterhout, and Mike Stonebraker for their com
ments on an earUer draft of this paper.

7. REFERENCES

[Allman76] E. AUman, M. Stonebraker. and G. Held.
"Embedding a Relational Data Sublanguage in a Gen
eral Purpose Programming Language." Proc. of a
Conf. on Data: Abstraction, Definition, and Struc
ture, pp. 25-35 SIGPLAN Notices. (March 1976). Spe
cial issue

[Arnold 81] K. Arnold, Screen updating and Cursor
Movement Optimization: A Library Package, Depart
ment Electrical Engineering and Computer Sciences,
U. C. Berkeley (1981).

[Babaoglu79] 0. Babaoglu. W. Joy, and J. Porcarj.
"Design and implementation of the Berkeley virtual
memory extensions to the UNIX operating system,"
In UNIX programmer's manual, seventh edition, U.C.
Berkeley (December 1979).

[DEC 76] DEC. VAX-11/780 Architecture Handbook. Digi
tal Equipment Corporation (1976).

[DeJong 80] S. P. DeJong. "The System for Business
Automation (SBA): A Unified AppUcation Develop
ment System," Informatin Processing, (1980).

[Held 75] G. Held, M. Stonebraker. and E. Wong.
"INGRES — A Relational Data Base System." Proc.
AFIPS 1975NCC44 pp. 409-416 (1975).

[Hewlett-Packard 79] Hewlett-Packard. "HP 3000 Com
puter System VIEW/3000 Reference Manual," 32209-
90001.
Hewlett-Packard (1979).

[Luo 81] D. Luo and S. B. Yao. "Form Operation by
Example —a Language for Office Information Pro
cessing." Proc. SIGMOD Conf., pp. 212-223 (June
1981).

[Shu81] N. C. Shu. V. Y. Lum. F. C. Tung, and C. L.
Chang, "Specification of Forms Processing and Busi
ness Procedures for Office Automation." Research
Report RJ3040. IBM Research Laboratory. San Jose
(February 1981).

[Tandem80] Tandem. "Tandem 16 Pathway Reference
Manual," 82041, Tandem Computers Inc. (February
1980).

[Teitelman 81] W. Teitelman and L. Masinter, "The
InterUsp Programming Environment," Computer
Magazine 14(4)(April 1981).

[Zloof 81] M. M. Zloof. "QBE/0BE: A language for office
and business automation," Computer Magazine
14(5) pp. 13-22(May 1981).


	Copyright notice 1982
	ERL-82-38

