

Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

EXQUEL: A SEMANTIC EXTENSION TO QUEL

by

E. Wong

Memorandum No. UCB/ERL M82/44

17 May 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

EXQUEL: A SEMANTIC EXTENSION TO QUEL

E. Wong

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT

One of the most natural ways of extending the semantics of a

relational query language is to enhance the data types used in the

domains. This is especially true of QUEL, which makes extensive use

of domain-level operators. In this paper we exploit this approach

in the specific cases of geometric and lexical data.

Research sponsored by the National Science Foundation Grant ECS-8007683,

1. INTRODUCTION

Since it was first proposed [CODD 72] , "relational completeness"

has become the standard by which the semantic power of a relational

query language is measured. As such a measure it is imperfect, for it

fails to consider explicitly the operations that are defined at the

domain level. For example, QUEL [HELD 75] derives a great deal of its

semantic power from operations on numerical domains. These include

arithmetical operators such as multiplication and addition, aggregational

operators such as sum and average, and comparison operators such as = and

<.

The way QUEL embeds domain-level operators provides a general frame

work for semantic extension. The purpose of this paper is to elucidate

this framework, and, using it, to extend QUEL to handle geometric and

lexical data.

Enhancing the semantics of a language through the use of enriched

data types is hardly new. The use of "abstract data types" [ROWE 80]

is precisely such an approach. Yet, what we are proposing is different.

Rather than adding a general facility for handling abstract data types,

we accept the structure of QUEL as it is, and seek to extend its seman

tics through its existing machinery. In so doing, we are motivated by

the consideration that QUEL is already in widespread use, and whatever

now exists should be left undisturbed.

2. DOMAIN LEVEL OPERATIONS IN QUEL

As in any relational query language worthy of the name, the pri

mitives of QUEL are relation-at-a-time operations. How, then, can domain-

level operations be incorporated in such a language? This is done in

QUEL by introducing the construct: "computing a new column," which adds a

-1-

EXQUEL: A SEMANTIC EXTENSION TO QUEL

E. Wong

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT

One of the most natural ways of extending the semantics of a

relational query language is to enhance the data types used in the

domains. This is especially true of QUEL, which makes extensive use

of domain-level operators. In this paper we exploit this approach

in the specific cases of geometric and lexical data.

Research sponsored by the National Science Foundation Grant ECS-8007683.

new many relational operator not present in the "relational algebra"

as originally defined in [CODD.72] . Since new columns are computed

using arithmetical and aggregational operators, these are then propagated

through the language via concatenation of relational operators.

Comparison operators are embedded in the relational algebra via the

selection condition of the operator "restriction." In QUEL the selec

tion condition is known as the "qualification" clause of a query.

Since columns (i.e., attributes) of relations are explicitly mani

pulated in QUEL, a compact notation for them is needed. In QUEL columns

are denoted with the use of range variables. For example, suppose that

employee (eno, ename, byr, dept, salary) is a relation. The declaration

range of e is employee

defines e as a variable that ranges over employee and e.salary denotes

the salary column.

New columns can be constructed in QUEL in two ways:

a) Through arithmetical operators — For example,

e.salary/(1982-e.byr)

defines a new column on employee.

b) Through aggregational operations — For example,

avg(e.salary by e.dept)

defines a new column that gives for each employee the average

salary of her department.

In addition, aggregational operations can be qualified by a selection

condition, e.g.,

avg(e.salary by e.dept where e.byr<1930)

A newly constructed column can be used like any other column.

-2-

Specifically, it can take part in arithmetical operations, in aggrega

tions, and in qualifications. These, in turn, can be used to produce

new columns. Thus, nesting can occur in a number of ways as in the

following examples:

retrieve (e.dept, rate= avg(e.salary/(1982-e.byr) by e.dept))

retrieve (e.dept, var= avg((e.salary-avg(e.salary by e.dept))**2

by e.dept))

retrieve (number = countu(e.dept where

avg(e.salary by e.dept) > 25000))

In summary, domain level operations are absorbed into QUEL in two

ways. First, arithmetical and aggregational operators are embedded

through the construction of new columns. Second, comparison operators

take part in qualifications. Nesting to any level is allowed.

3. A GEOMETRIC EXTENSION TO QUEL

As the primitive objects of the geometric data types, we propose

the following:

a) atomic objects : point, line (finite oriented line segment)

b) composites: point-group (finite collection of points)

line-group (finite collection of lines)

c) constrained composites:

path = ordered line group U^,^ Jtfj} such

that startU.+,) = end(£.), k=l,...,N-l

polygon = path such that startU-j) = end(JL.)

We distinguish an object from its representation in terms of other objects

For example, a line is uniquely represented by an ordered pair of points,

but a line and its endpoints are different geometric objects. For

-3-

clarity, we shall use the term "type" to denote one of the six possi

bilities: point, line, point-group, line-group, path and polygon.

Collectively, they will be known as the "geometric data types."

Geometric objects are rich in the operations that they accept.

Indeed, in the modern era the very term "geometry" has come to mean the

study of transformations. The following is a list of some familiar

operations, but the list is not intended to be complete in any way:

Unary and Type-Preserving

rigid body motions - translation and rotation

isometries - rigid body motions plus reflection

isomorphic operators - isometries plus scaling

Unary, Not Type-Preserving

connect: point-group *-path

close: point-group ^-polygon

vertices: path or polygon ^point-group

Bi nary

intersection: (path,path) -—*- point-group

common part: (path,path) •line-group

border: (polygon,polygon) *~ line-group

overlap: (polygon,polygon)

Metric

length (line-group)

count (point-group)

area (polygon)

Comparison

equality

congruence

similarity

set inclusion

intersect

enclose

pass-thru

-4-

polygon

An aggregation is an operator on a set. The existing aggregation

operators in QUEL act on sets of values from the database. It is use

ful to generalize these operations to act on sets defined mathematically

rather than by data. For example, "shortest" is an operator on a set of

paths, and the operator "connect" can be expressed as:

connect (point 1,point 2)

= shortest ({path: start(path) = point 1 and end(path) = point 2})

As in the case of existing aggregations, the most interesting thing

about set operators is that they are subject to qualifications. For

example, to find the shortest "route" often means finding not the short

est among all paths connecting two points but the shortest among those

that satisfy some additional condition, e.g.,

shortest ({path: start(path) = pointl and end(path) = point2

and path pass-thru point3})

shortest ({path: start(path) = pointl and end(path) - point2

and polygon3 enclose path})

shortest ({path: start(path) = pointl and end(path) = point2

and path3 not intersect path})

It is not hard to make up examples of set opera1tions in addition

to "shortest." The following examples come readily to mind:

longest - on set of paths

smallest - on set of polygons

largest - on set of polygons

closest to "a" - on set of points

straightest - on set of paths

The set on which these operate can be defined using qualification as in

the case of aggregations in the existing QUEL.

-5-

4. AN ERSATZ IMPLEMENTATION OF GEOMETRIC DATA TYPES

One way of extending QUEL to include new data types is to represent

objects of new types in terms of existing ones. This may not be the

best way in terms of efficiency, but has the advantage of requiring the

least amount of changes to INGRES.

Suppose that we begin by viewing all objects of geometric data

types as entities, and seek to represent all information concerning them

as properties of the entities and interrelationships among them. For

example, each point is an entity and its x and y coordinates are two of

its properties. An oriented line segment is also an entity, with begin

ning-point and end-point as two functions. One consequence of viewing

points and lines this way is that it immediately suggests that points

and lines can be represented as ordinary INGRES relations:

point (pid, xcoord, ycoord)

line (lid, ptl-pid, pt2-pid)

where all domains are of numerical type.

Such a representation of geometric data objects is suggestive of

"views." For example, consider a relation

city (ename, nation, location)

in extended INGRES where ename and nation are of type "character string"

and location is of type "point." It can be represented as a pair of

ordinary INGRES relations:

city (ename, nation, location-pid)

point (pid, xcoord, ycoord)

Now, consider the following query in extended QUEL with an obvious

interpretation:

range of c is city

range of cl is city

-6-

retrieve (c.name) where cl.name="Chicago"

and distance(c.location, cl.location) < 500

If distance is interpreted as euclidean distance, then this query can

be mapped into a query in ordinary QUEL as follows:

range of c is city

range of cl is city

range of p is point

range of pi is point

retrieve (c.name) where cl.name="Chicago"

and p.pid=c.location and pi.pid=cl.location

and sqrt((p.xcoord-pl.xcoord)**2+(p.ycoord-pl.ycoord)**2) < 500

The use of "query-modification" to support extended data types is

very much in the spirit of views, but the current "views" facility of

INGRES (or of any other relational system) is inadequate to support it.

The big difference is that instead of view-relations, we now have view-

domains and view-operators on such domains. The class of operators that

can be supported through query-modification is of great interest, since

they can be implemented with a minimum change to the existing INGRES.

5. EXTENDING QUEL TO SUPPORT TEXT

Some of the ideas in database management have their origin in

automatic text searching. For example, secondary indexing and query

language were both used in information retrieval long before database

management existed as a technical discipline. Thus, it is ironic to

note that the existing database management systems all handle text

badly. Fundamentally, the problem is that text as data has a semantic

depth far exceeding anything that is recognized in existing systems.

We view "words" as the semantic atoms of text. The semantic com

ponents of text are lexical in nature, and they form a natural

-7-

hierarchy as follows:

words

word-sequences

clause

nested sequences

sentences

text

A word-sequence is an ordered set of words. A clause is a word-sequence

that ends in a punctuation. A nested sequence is an ordered set of

clauses, and a sentence is a nested sequence that satisfies a special

constraint. A text is an ordered set of sentences. Collectively, these

will be referred to as the lexical data types.

The following list constains some examples of natural operations on

lexical objects:

type-preserving

concatenate : (word-sequence,word-sequence)—-word-sequence

combine : (nested sequence,nest sequence) ^nested sequence
root : word •word

synonym : word —-••word

non-type-preservi ng

punctuate: (word-sequence, "symbol") •clause

metric

length (word)

count (word-sequence)

comparison

contain: word-sequence vs. word-sequence

match: word-sequence vs. word

root-equal : word vs. word

equal : word vs. word

-8-

6. LEXICAL PROCESSING USING QUEL

The hierarchical nature of the lexical data types makes them easy

to support in the framework of the existing QUEL. Stripped of the

information used only for display and formatting purposes, a text con

sists of word occurrences and punctuation symbols structured as follows:

text = {sentence}

sentence = {clause}

clause = {word} symbol

Define sno as the numerical order of a sentence within a given text, eno

as the numerical order of a clause within a given sentence, and wno as

the numerical order of a word within a clause. Each sentence in a text

is uniquely identified by its sno, each clause by (sno,eno), and each

word occurrence by (sno,eno,wno). A text, then, can be represented by

two INGRES relations:

text (sno,eno,wno,word)

punctuation (sno,eno,symbol)

The operations in the existing QUEL can be used not only for searches

but also for lexical operations that are statistical in nature. For

example, the following QUEL statement can be used to produce a histo

gram of words:

range of t is text

retrieve into hist (t.word, freq = count (t.wno by t.word))

To find sentences in which the word "data" occurs more than once, we

can write

retrieve (t.sno) where count(t.wno by t.sno where

t.word = "data")>l

Although these examples can be done in INGRES now, storage efficiency

may be poor because the domain "word" in the relation "test" will be

-9-

required to have a fixed length. Changing INGRES to support variable-

width domains will be necessary to support lexical data types efficiently,

Another possible source of efficiency gain is the ability to maintain

ordering in a relation (the "ordered relation" [STON 82]). It may allow

the prefix (sno,eno,wno) to be eliminated or drastically compressed.

7. CONCLUSION

The purpose of this paper is demonstrate that domain-level opera

tions can be incorporated in QUEL using the same vehicle that supports

numerical operations. In so doing, we can achieve a great deal of

semantic enhancement with a minimum of modification to QUEL. This

approach is illustrated in the specific cases of geometric and lexical

data. The possibility of implementing such extensions by extending the

existing "views" facility of INGRES is also briefly explored.

-10-

REFERENCES

[CODD 72] E. F. Codd. "Relational Completeness of Data Base Sub

languages." In Data Base Systems, Courant Computer

Science Symposia Series, vol. 6, Prentice Hall, 1972.

[HELD 75] G. D. Held, M. R. Stonbraker and E. Wong. "INGRES - A

Relational Data Base System." Proc. NCC 44, 1975.

[ROWE 80] L. A. Rowe. "Data Abstraction from a Programming Language

Viewpoint." Proceedings ACM Workshop on Data Abstraction,

Databases and Conceptual Modelling, 1980.

[STON 82] M. R. Stonebraker and J. Kalash. "TIMBER: A Sophisticated

Relation Browser." Proc. 8th VLDB Conference, 1982.

-11-

