

Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

CRASH RECOVERY IN

A DISTRIBUTED DATABASE SYSTEM

by

M. D. Skeen

Memorandum No. UCB/ERL M82/45

19 May 1982

Crash Recovery in a Distributed

Database System

Copyright © 1982

by

Marion Dale Skeen

CRASH RECOVERY IN A DISTRIBUTED DATABASE SYSTEM

by

Marion Dale Skeen

Memorandum No. UCB/ERL M82/45

19 May 1982

ELECTRONICS RESEARCH LABORATORY

Abstract

Consistency in a distributed database system is based upon the

notion of a transaction, a distributed atomic action. This disserta

tion investigates t*.emmit. protocols for preserving transaction atomi

city (and hence consistency) in the presence of failures. Herein* we

(1). Introduce a formal framework for reasoning about the. crash

recovery problem.

(2) Show fundamental limitations on the fault-tolerance of commit

protocols.

(3) Derive sufficient* and in many cases necessary* properties for a

protocol to provide maximum fault-tolerance to various classes

of failures•

(4) From the above properties* derive families of fault-tolerant

protocols.

Two failure classes are studied in detail: site failures and network

partitioning•

In designing a commit protocol* the primary and overriding

objective is to guarantee atomicity; the secondary objective is to

maximize availability of the database. Since availability is limited

if pending transactions must block (suspend execution) on failures*

our focus is on nonblocking protocols.

The formal model introduced is based on nondeterministic finite

'state automata with failures viewed as a distinguished type of state

transition. The model is used both in determining bounds on fault

tolerance and in specifying and verifying the protocols summarized

below.

Concerning site failures* we prove the Nonblocking Theorem*

yielding necessary and sufficient conditions for a commit protocol to

be nonblocking. From this result* we derive a family of protocols*

the three-phase protocols> that never require an operational site to

block on failures by other sites* even if the transaction coordinator

fails. Centralized* hierarchical* ring* and decentralized three-

phase protocols are illustrated. These protocols are compared with

existing commit protocols.

Concerning site recovery* we conclusively prove the nonexistence

of nonblocking site recovery protocols. We then study the (poten

tially catastrophic) special case when all sites inopportunely fail

and derive sufficient conditions for safe recovery.

Concerning network partitioning* we again prove nonexistence of

nonblocking solutions and then proceed to derive a family of proto

cols tunable toward maximizing the expected number of nonblocking

sites. These protocols are extremely resilient — resilient when the

cause of the failure or even its presence is in doubt.

'/9-.-ZJ>. J
Michael Stonebraker

Chairman of Dissertation Committee

Ackaovledgemeats

Many individuals have made this thesis a reality.

I would like to thank first and foremost Mike Stonebraker* who

introduced me to the area of distributed databases and provided sup

port and direction. I would also like to thank the other members of

my reading committee* Larry Rowe and Richard Barlowe.

I would like to thank all of the members of Project INGRES for

providing a rich* stimulating* and enjoyable research environment.

In particular* I would like to thank Gene Wong and Corcky McCord for

many meaningful discussions on subjects varying from query processing

to Bangkok.

I am greatly indebted to my friends at Berkeley for providing

encouragement and the necessary diversions for maintaining ones per

spective. The entire list is too long to include here* but I would

like to mention Ken B.» Ken K.» Norma* and Richard.

Finally* special thanks goes to Tandy* a dear friend without

whose help this thesis would never have materialized.

Research sponsored by NESC grant N00039-81-C-0569 and AFOSR grant 78-3596.

Table of Contents

1 • Introduction •••••••••••• 1

1.1. Failures , 4

1.2. Scope of Thesis 8

1.3. Outline of Thesis 9

2• Background • 12

2.1. Local Crash Recovery • • • 14

2.2. Distributed Recovery • 18

2.3. Classes of Protocols ••••••••••• 21

2.3.1. Centralized Protocols •••••••••• •••••• 21

2.3.2. Decentralized Protocols 25

2.4. Existing Literature •• • 27

2.4.1. The Two Generals* Problem 27

2.4.2. K-resiliency 29

2.4.3. The Two Phase Commit Protocol 29

2.4.4. The Four-Phase Commit Protocol 31

2.4.5. Spooling of Messages • • •• 34

2.4.6. Majority Consensus Approaches •••••••• • 35

2.4.7. Logging 37

2.4.8. Crash Recovery in Distributed INGRES 38

2.4.9. The SDD-1 Recovery Mechanism 40

2.5. Related Work 41

ii

ill

3. A Formal Model 44

3.1. Specifying a Protocol • 44

3.2. Properties of Local Protocols 48

3.2.1. Well-formed Protocols 48

3.2.2. Equivalence of Local Protocols • • 49

3.2.3. Nondeterminism •••••••••• 50

3.2.4. More Examples of Local Protocols •••••••• 52

3.3. Modeling Global Processing • 53

3.3.1. The Global Transaction State 53

3.3.2. The Concurrency and Sender Sets • 56

3.3.3. Committable States • 57

3.3.4. Causality • • 58

3.4. Site Failures 60

3.5. Previous Work • 64

4. The Existence of Resilient Protocols •••• •• 66

4.1. Independent Recovery •••••••••••••••••••• 66

4.1.1. Failure of a Single Site 68

4.1.2. Two Site Failures 73

4.2. Network Failures ••••••••••••• ••••• • 76

4.2.1. Partitioning With Lost Messages 77

4.2.2. Partitioning with Return of Messages 79

4.2.2.1. Two Site Case 79

4.2.2.2. The Multisite Case 82

IV

4.3. Conclusions •••• 85

5. Processing in the Presence of Site Failures 87

5.1• Commit and Termination Protocols 89

5.2. Properties of Nonblocking Protocols 90

5.2.1 • Definition of Nonblocking • 91

5.2.2. Blocking Protocols: An Example 92

5.2.3. The Fundamental Nonblocking Theorem • 93

5.3. Nonblocking Commit Protocols •••• • 102

5.3.1. A Historical Perspective ••••• •••••••••••• 109

5.4. Termination Protocols • ••••• 110

5.4.1. Central Site Termination •••••••••••••••• 111

5.4.2. Progressive Termination • 113

5.4.3. Electing a New Coordinator •••••••• ••••• 113

5.5. Decentralized Termination Protocol •••••• 115

5.5.1. Enhancements ••••••••• ••••••••••••••••••••• 122

5.6. Cost of Termination • 122

5.7. Minimum Phase Termination Protocol •••••••••••• 125

6. Site Recovery , , # 131

6.1. Recovery and Logging ••••••• 132

6.2. When All Sites Fail 136

6.2.1. Necessary Conditions for Safe Recovery 137

6.2.2. Determining the Last Group to Fail 140

6.2.2.1. Using Complete Information ••••• • ••••• 140

V

6.2.2.2. Using Incomplete Information •••••••••• 145

6.2.3. Recovery Protocols •••• 148

6.3. Alternative Recovery Strategies • • 151

7. Network Partitioning • 153

7.1. Strategies for Recovering from Partitions •••••••• 153

7.2. The Use of Quorums 157

7.2.1. Definition of a Quorum •••••• • 158

7.2.2. Commit Protocols with Quorums • 161

7.2.3• Termination Protocols with Quorums •••••• 164

7.2.3.1. Centralized Termination Protocol 170

7.2.3.2. Decentralized Termination Protocol • 173

7.2.3.3. Alternatives and Enhancements •••• ••••••••••• 173

7.2.4. Performance ••••• ••••••••••••••• 176

7.3. Partial Amnesia • • •••••••••••••• 180

8. Conclusions • • 183

8.1. The Formal Model and Existence Proofs 183

8.2. The Design of Resilient Protocols •••••• •• 186

8.2.1. Nonblocking Protocols 187

8.2.2. Quorum-Based Protocols ••••• • 189

8.2.3. A Comparison •••••••• • • • 191

8.3. The Design Methodology 192

8.4. Further Research 194

CHAPTER 1

Introduction

Recently considerable research interest has been focused on dis

tributed database systems. The advantages of distributed systems

over centralized systems include: increased performance through the

exploitation of parallelism* increased cost effectiveness through the

exploitation of cheap hardware* the ability to incrementally expand

the system* and an increase in fault tolerance and a corresponding

increase in availability. However* distributed systems are much

harder — often by an order of magnitude — to design and implement

than their centralized counterparts.

The usefulness of a distributed system is dependent on its abil

ity to maintain a consistent and accessible copy of the database.

This is accomplished by providing the abstraction of an atomic action

which can span several sites [LOME773. In database terminology*

these actions are called distributed transactions (henceforth* simply

referred to as transactions^ [ESWA76* GRAY79].

Consider a submitted transaction. If the transaction executes

to completion and its effects are installed in the database* then it

is said to be committed. On the other hand* if it can not execute to

completion* then all of its effects are erased from the database and

it is said to be aborted. Although these are not the only possible

outcomes of a transaction* these are the only correct outcomes.

A transaction can be arbitrarily complex. The canonical example

of a transaction is a funds transfer from account A at Site 1 to

account B at Site 2. This is the simplest type of transaction

requiring a single operation at each of two sites. Very complex

transactions can also arise in banking applications. At the end of

each day* the cash flow for each branch and between branches must be

calculated* and tables showing the banks liabilities and assets must

be updated. The complete computation of liabilities and assets can

be viewed as a single transaction.

The purpose Of a transaction management system is to provide an

implementation of transactions where they appear as atomic operations

to the user. The only way to access or modify the database is by

using a transaction. The correctness criteria for a transaction

management system is that the current database state must be deriv

able from the initial state by the serial execution of a sequence of

transactions [ESWA76]. A database is said to be in a consistent

state whenever the above criteria holds; otherwise* it is in an

inconsistent state.

Inconsistency can result from two sources:

(1) concurrently executing transactions read and write the same data

items* or

(2) failures can result in a transaction being partially (or

incorrectly) executed.

The first problem is a generalization of the readers/writers

problem. It has received much attention in the literature where pro

tocols for solving the problem appear under the auspices of "con

currency control." (The interested reader is referred to surveys by

Kohler [K0HL81] and Berstein and Goodman [BERN81]. Over two dozen

papers appear on the subject [K0HL81].)

The second problem is the subject of this thesis. Herein* we

systematically examine the classes of failures that may occur* such

as site failures and network failures* and identify the problems that

each class introduces. Then for each problem area defined* we exam

ine feasible solutions* and where possible* give necessary and suffi

cient properties for preserving consistency. We will then apply

these results to derive families of resilient protocols — protocols

that ensure consistency for a given class of failures.

A vital element of this approach* but by no means the major

result in itself* is the formal model presented in Chapter 3. It is

used both in the specification and verification of protocols and in

the derivation of the necessary and sufficient properties of resi

lient protocols.

Whenever possible* we will restrict our attention to a single

executing transaction and examine the problem of preserving its atom

icity in the presence of failures. Protocols for directing the exe

cution of a single transaction are called rnmmir protocols.

Chapter 1 is divided into four sections. The next section

discusses the of failures that are expected to occur in a distributed

database system. The third section briefly states the goals and the

assumptions of the thesis. The fourth and last section describes the

organization of the remaining chapters.

l.l. Failures

The worst possible effect of a failure is that it results in an

inconsistent database. For most applications* this is intolerable.

Inconsistency is highly undesirable* even if it is detected at a

later time and removed* since the transactions executing after the

inconsistency is introduced will have to be undone.

A tolerable* but undesirable* effect of a failure is that all

transaction processing is blocked until the failure is repaired.

This preserves consistency but reduces the availability (for perform

ing useful work) of the distributed system. In fact* the availabil

ity of the distributed system is lower than that of its weakest com

ponent and* in this sense* it is less available than a centralized

system.

The least harmful effect of a failure is that it renders only

the failed components unavailable. Hence* it will impact only the

transactions which require those components. Since an unfinished

transaction can tie up valuable resources and thus block future tran-

sactions, it is often considered preferable to abort a transaction

rather than allow it to remain pending. Of course* a transaction can

be aborted (or committed) only if it can be shown that the action

will not be inconsistent with the action taken by another site* in

particular* with a failed site. To achieve this* special protocols*

called termination protocols, are used. If a transaction can not be

safely terminated after a failure* then it is said to be blocked. A

protocol that occasionally blocks transactions to ensure data con

sistency is called a blocking protocol.

In any environment* failures can be classified into two disjoint

sets: the expected failures and the unexpected failures. Unexpected

failures either can not occur or occur with such a small probability

that their presence and consequences can be ignored in designing the

system. On the other hand* each expected failure has a nonzero pro

bability of occurring* and must be considered in the design of the

system. A hard disk crash is probably considered to be an expected

failure in most systems; however* two independent hard disk crashes

within a short period of time is an unexpected failure for almost all

systems.

The classes of failures that we expect to occur include: site

failures* lost messages* and network partitioning. The classes have

been listed in increasing order of difficulty. We will discuss them

sequentially.

Site failures are the most frequent failures* and there are two

major facets to the problem. The first one is the correct termina

tion at operational sites of all outstanding transactions.

The second facet concerns failed sites. A failed site must com

plete all transaction outstanding at the time of failure. Protocols

to accomplish this are called recovery protocols. Compounding this

problem is the possibility of a site suffering partial amnesia upon

recovering — that is* it does not remember its exact state at the

time of failure. For example* sending a message and logging it are

separate operations and failures may occur between them; therefore* a

site can not be certain of the last message that it sent. This is

true regardless of the order of logging and message sending.

A special case of site failures occurs when all participating

sites fail. Standard recovery protocols may not perform satisfac

torily in this case.

The second class of failures is lost messages. In many ways*

this class of failures can be handled similarly to site failures*

since a site's messages are lost while it is inoperative. The major

difficulty in designing protocols resilient to lost messages concerns

the uncertainty involved. Absence of a message from a particular

site could mean either that a message was lost or that the site is

down.

Network partitioning* the third class of failures* occurs when

the network is divided into at least two groups (partitions) of

operational sites and no communication is possible between different

groups. A partitioning may result from the failure of one or more

physical communication lines interconnecting the sites* or from the

failure of one or more sites through which all messages from one

group to another must pass.

The partitioning problem does not lend itself to very robust

protocols. Normally* the best achievable protocols allow a single

group of sites to terminate the transaction* while the remaining

groups are forced to block until the failure is repaired. Even this

is not achievable when a site failure occurs in conjunction with the

network partitioning.

The problems introduced by the above failure are compounded when

uncertainty exists in the detection and classification of failures.

A site observes a failure through the absence of an expected message

from a site. As noted before* the absence could be caused by dif

ferent types of failures — in fact all of the above failures first

reveal themselves in this way. The sites can then attempt to deter

mine which type of failure actually occurred. In realistic systems*

no protocol can reduce this uncertainty to zero (although* for many

failures* the probability of misclassifying the failure can be made

arbitrarily small). When necessary* uncertainty can be handled by

taking a pessimistic approach and having transactions block even

though it may be safe to proceed.

The failures that we have mentioned are those that are expected

to occur in any system* even if its software is correct. There are

also failures (or. perhaps more correctly, errors) which can be

caused by aberrant or malicious systems* including spurious messages*

fabricated messages* and garbled messages. We include these in the

set of unexpected failures and do not attempt to handle them. We

also consider a catastrophic site failure, where data is irreparably

lost* to be an unexpected failure.

1.2. Scope of Thesis

This thesis systematically examines each major class of failures

and attempts to answer the following questions.

The first question considered is always: Does a resilient non-

blocking protocol exist for this class of failures? When the answer

is no* we must then identify the realizable recovery strategies for

resilient protocols. Normally* we will be interested in finding the

"best" strategy* where one strategy is considered better than another

if* on the average* it allows safe termination of a pending transac

tion at a greater number of sites.

The next question addressed is: What are the necessary and suf

ficient conditions for a protocol to be resilient to the given class

of failures? We use these results to derive resilient commit proto

cols and resilient recovery protocols. Given sufficient conditions

for resiliency* a family of related protocols can be derived where

protocols within such a family differ in their communication struc

ture (e.g. whether communication is centralized or decentralized).

Given necessary conditions for resiliency* protocols that minimize

message cost or that maximize parallelism can be derived. Many of

the derived protocols are formally verified.

We make the following assumptions about a distributed database

system. A distributed transaction is executed concurrently at a sub

set of the sites* which are known as the participating sites. Each

participant can unilaterally abort the transaction in the early

phases of processing; however* once a site has sent a message to

another site indicating its willingness to process the transaction*

it forfeits its right to unilaterally abort. A distributed transac

tion can be committed only if none of the participants decide to uni

laterally abort it. Furthermore* a commit or abort decision is

irreversible.

Unilateral aborts are allowed for two important reasons:

(1) If a site fails during the initial processing of a transaction*

then this failure can be viewed as a unilateral abort.

(2) A large class of concurrency control protocols can be be used

with a commit protocol allowing unilateral aborts. All con

currency control protocols occasionally detect conflicts that

require the abortion of one or more transactions. If all sites

performing concurrency control tasks are considered participants

in the transaction* then any of them can unilaterally abort the

transaction whenever a conflict is detected.

From the underlying network* we require a point-to-point message

facility. However* we do not require that messages be delivered in

the order sent. We assume that the network experiences no unexpected

failures* including the generation of spurious messages and the

undetected passing of garbled messages. Messages sent to failed

sites are lost.

1.3. Outline of Thesis

This thesis consists of eight chapters* organized as follows.

10

Chapter 2 is devoted to reviewing the current state of the art

in crash recovery for distributed systems. It discusses local crash

recovery, identifying the techniques and results that are applicable

to distributed systems. The bulk of the chapter is a literature sur

vey of proposed protocols. Several classification schemes for proto

cols are discussed* in particular* centralized and decentralized

classes.

Chapter 3 introduces the theoretical framework used in both the

specification and verification of individual protocols. A formal

model for commit protocols is proposed using finite state automata.

The correctness of a protocol is precisely defined. The modeling of

failures is also discussed.

Chapter 4 presents several existence proofs for recovery stra

tegies for site failures and for network partitions. These results

are important for two reasons: (1) they delineate the feasible solu

tion space for recovery protocols* and (2) they illustrate a proof

paradigm that will be used in many subsequent theorems.

Chapter 5 is the first of the two chapters concerned with site

failures. This chapter discusses the role of operational sites and*

in particular* the design of nonblocking protocols. The Fundamental

Nonblocking Theorem (for site failures)* one of the major results of

this thesis* is proved. From this theorem the canonical nonblocking

protocol is derived. This protocol is used to design nonblocking

commit and termination protocols for a variety of different network

environments.

11

Chapter 6 is the second chapter concerned with site failures.

It addresses the problem of recovery of a failed site* using the

existence results of the previous chapters. It also discusses the

case where all sites fail during the execution of a transaction.

Chapter 7 addresses the problems associated with lost messages

and partitioned networks. Since partitioning is the harder of the

two problems* it is emphasized. This chapter also addresses a prob

lem that is of similar complexity as the partitioning problem: uncer

tainty in failure classification. Majority voting schemes* which are

resilient to both partitioning and uncertainty* are developed* and

two resilient protocols are presented. Primary site protocols* an

important limiting case of voting schemes* are also discussed.

Chapter 8 concludes the thesis by restating the major theorems

and their implications, and contrasting the significant protocols.

CHAPTER 2

Background

There are two difficult problems in transaction management: (1)

concurrent execution of transactions and 2) preserving transaction

atomicity when failures occur. Traditionally* issues in fault-

tolerant transaction management have been closely coupled to con

currency control. Only part of this coupling is inherent; some of it

is due to the popular design methodology of designing concurrency

control algorithms first* and adding resiliency in a later design

phase•

The approach in this thesis is to separate the issues of fault

tolerance from concurrency control whenever possible* and concentrate

only on the fault-tolerant issues. We will examine fault tolerance

on a "per transaction" basis - i.e. examine what is needed to make

a single transaction (executing alone) resilient to failures. The

primary rationale for this approach is simple: the mechanisms

required for resiliency in the single transaction case must also be

present when transactions are executing concurrently. Therefore* a

resilient concurrency control algorithm must incorporate these

mechanisms in one form or another.

Separation of issues also leads to a clear* good hierarchical

approach to distributed a transaction management system. We can

design a distributed transaction manager consisting of three layers

12

13

of abstraction* as illustrated in Figure 2.1.

The innermost layer consists of very resilient single site tran

saction manager implementing a local notion of a transaction. Con

currency control and crash recovery for single site transactions are

well understood problems ([LIND79, EDEL74* GRAY79]). The distributed

transaction manager is built on top of this* requiring the notion of

a local atomic action that is provided by this layer.

LTM- Local
Transaction
Manager

Figure 2.1 The architectm-p of a distributed transaction manager,

14

In the layer immediately above the local manager, concurrency

control for distributed transactions is provided. This may be

through locking* timestamps, or some other means. When a deadlock or

a conflict is detected at this level, the concurrency control proto

col will unilaterally abort the transaction and communicate this to

the layer surrounding it.

In the outermost layer, the notion of a resilient distributed

transaction can be implemented. This will consist of a commit proto

col and various types of recovery protocols. To facilitate the

implementation of a concurrency control scheme, this level allows a

transaction to be aborted from a lower level. In addition, the

recovery mechanism may decide to abort during recovery.

Since the resiliency issues in transaction management have been

divorced from concurrency control issues and since the semantics of a

transaction are unspecified* the techniques discussed are applicable

to the implementation of "atomic actions" at any level within a dis

tributed system. For example* the results can be applied to updating

systems tables (e.g. the name table) in a distributed operating sys

tem.

2.1. Local Crash Recovery

Local crash recovery not only provides the basis on which a dis

tributed crash recovery mechanism is implemented* but also contains

many concepts which can be applied at the distributed level as well.

Within this section* we refer to local crash recovery simply as

15

"crash recovery."

All crash recovery schemes must be idempotent — performing

recovery many times yields the same result as performing it once.

Since the system can fail during recovery* it may attempt to recover

a transaction several times.

All recovery schemes require some form of auxiliary data* which

we will collectively refer to as recovery data. The recovery mechan

ism is no more resilient than the storage medium on which the

recovery data resides. The cost of maintaining this recovery data is

by far the major cost of any recovery scheme.

Recovery data must be stored in secondary storage if it is to

survive soft crashes (processor failures). However* secondary

storage is not resilient to hard disk crashes. If resiliency to hard

crashes is desired, then stable storage (as proposed by Lampson and

Sturgis in [LAMP76]) can be used. Stable storage requires that two

copies of each record be stored on disk. A record is modified by

using careful replacement — one copy is updated and verified to be

correct* then the second copy is updated. The scheme assures sur

vival from all single instances of hard crashes.

Throughout this thesis, we will use the term "stable storage" in

a generic sense. It refers to the most resilient online storage

available. (In many systems, it is merely disk storage.)

Local recovery mechanisms present the following view of transac

tion processing. The sequential execution of a single site transac-

16

tion consists of two distinct periods separated by a single cnmm-i t

PQint« If a failure occurs before the commit point is reached, then

the transaction is rolled back (all of its effects are undone). If a

failure occurs after the commit point, then the transaction is rolled

forward (its effects are permanently installed).

Once the commit point is passed the transaction can not be

aborted. Hence, deadlock detection and conflict resolution by the

concurrency control mechanism must occur during the initial period of

transaction processing.

There are two common methods for implementing this abstraction

of transaction processing. One uses logs, the other uses a data

structure called an intentions list. In both schemes, the commit

point corresponds to setting a commit flag in stable storage.

In the first method the recovery data is stored as an incremen

tal log of changes. This allows updating jji place — the affected

data record is updated directly. Each modification generates a log

record containing the old value (called a before imaged of the

updated data record. If a crash occurs before the commit point is

reached, then the log is read and the before images are re-installed.

Writing a log record and updating a data record two separate

operations, and failures may occur in between their executions. The

order in which these operations are performed does affect the resi

liency of the recovery scheme. A modification is "undoable" only if

its log record is stored in stable storage. If an update is made to

a data record before the log record is stored, then there is a window

17

of time in which the occurrence of a failure would render the modifi

cation undoable. The solution is to use a write-ahead log protocol

where the log record is stored in stable storage before the data

record is modified ([GRAY79]).

The second method does not update in place; instead, modifica

tions for an entire transaction are collected into a list called the

intentions list. The records stored in the intentions list are the

after images (updated values) of the modified records. After the

commit point is reached, the modified records in the intention list

are merged into the database. If a failure occurs before the commit

point, then the intention list is simply discarded.

For this method to succeed, the intentions list must be written

to stable storage in its entirety before the commit flag is set, and

the commit flag must be stored in stable storage before the updates

are merged. If any operation is performed out of sequence, then

recoverability is compromised.

Conceptually, the intentions list can be thought of as a large

log record for the entire transaction (in contrast to having one log

record for each data record modified). From this perspective, inten

tions lists obey the write ahead log protocol: the intentions list is

written first before the data is modified. The write ahead log pro

tocol is a simple but important technique. It will also be useful in

designing distributed recovery mechanisms.

18

2.2. Distributed Recovery

A distributed transaction can be viewed as a collection of local

subtransactions (with additional data movement between sites) — one

executing at every participating site. The commit protocol uses the

local recovery mechanisms to resiliently abort or commit each sub-

transaction.

The simplest commit protocol allowing unilateral abort is the

two phase commit protocol, which is illustrated in Figure 2.2 for two

sites ([GRAY79, LAMP763). It is a master/slave protocol — a desig

nated site (Site 1 in the figure) coordinates the execution of sub-

transactions at the other sites. In the first phase of the protocol

SITE 1

(1) Transaction request arrives.
Start transaction is Sent.

(2) The vote is received.
If vote=2£& and Site 1 agrees,

then commit is sent;
else, abort is sent.

SITE 2

Start trans, is received.

Site 2 votes: yes to commit,
H& to abort.

The vote is sent to Site 1•

Either cotmnit or abort is

received and processed.

Figure 2.2 The two phase commit protocol (2 sites).

19

the coordinator distributes the transaction to all sites, and then

each site individually votes on whether to commit (yes) or abort (no.)

it. In the second phase, the coordinator collects all the votes and

informs each site of the outcome. In the absence of failures, this

protocol preserves atomicity.

Subtransaction processing can be decomposed into three sequen

tial intervals (cf. two intervals for a local transaction). as

illustrated in Figure 2.3. The first and last interval are analogous

to the two intervals found in local transaction processing. The

second interval is a period of uncertainty that has no counterpart in

local transactions.

A failure in the first interval causes the subtransaction to be

unilaterally aborted, thus precipitating the abortion of the entire

COMMIT

1 1
1 1

t initial ! uncertain terminating !

* ABORT

*ig»re 2,3 The processing of a distributed transaction at a given
site. (Note: the "uncertainty" period is skipped for a site that
unilaterally aborts.)

20

transaction. Also, during the interval the site can choose to unila
terally abort the transaction for any of the reasons given previ
ous,. The end of this interval is marfced hy aJ^ *-* **^
.. after that point the site can no longer unilaterally abort the
eransaction. Therefore, all local locfcs must have been granted by
that time. This interval corresponds exactly to Phase 1 of the two
phase commit protocol.

j • «.««,*i the neriod of uncertainty, a siteDuring the second interval, the perxoo

nas agreed not to abort the transaction and is waiting to hear fro.
other sites to see if the transaction can be chitted. The interval
ends when the site receives amessage revealing the fate of the tran
saction. If . failure occurs during this interval, then during

(i.e. commit or abort) from one of its fellow participants. Por a
8lave executing the two-phase co^it protocol, this uncertainty

•*. «ends a "yes" decision to the coordinator andperiod begins after it sends a yes
ends when asum* or aha* message is received.

i rtP fate of the transaction has beenOn the third interval the fate or
•vi*«.„ rtf the local recovery. J a it is the responsibility of tnedetermined, and it is cne t« v

onanism to either recoverably roll forward the subtraction or to
roll bac, the subtransaction. Historically, this is called the
n.rite" interval CCKUNG813). because this is normally the first txme
«* transaction's updates are accessible to other transactions. The
actions performed during this interval are irre.er.xble.

21

The "write" step occurs after a commit decision has been

reached; therefore, a concurrency control mechanism cannot choose to

restart (abort) a transaction during this step. In particular, all

deadlock detection must be performed before transaction processing

reaches this stage. In a locking scheme, normally all local locks

are acquired during the first step. Local deadlock detection is also

performed during this step. Global deadlock detection may be per

formed during either the first or second step.

2.3. Classes of Protocols

Protocols can be conveniently classified by their communication

topology. This describes which sites are allowed to send messages to

which other sites in a given protocol and in contradistinction to

network topology, which is independent of the protocol and describes

which sites are capable of sending messages to which other sites. To

a large degree, a protocol1s communication topology determines its

cost, its difficulty to code, and its inherent symmetry (or asym

metry) •

From the myriad of possible topologies there are two important

classes: centralized protocols and decentralized protocols.

2.3.1. Ceatralixed Protocols

We have already seen an example of a centralized protocol — the

two-phase commit protocol. The properties of a centralized protocol

are:

22

(1) There is a distinguished site called the coordinator- The

remaining sites are called slaves-

(2) There is a master/slave relationship between coordinator and

slave.

(3) Communication is solely between coordinator and slave. Slaves

do not communicate with one another.

(4) A phase of a centralized protocol consists of the coordinator

sending a message to all slaves and the slaves responding.

Centralized protocols tend to be considerably more popular than

decentralized protocols because they are easier to conceptualize, to

verify, and require fewer messages than decentralized protocols.

This class of protocols has two major drawbacks. Their primary

disadvantage is their vulnerability to coordinator failures. When

the coordinator fails, slaves normally can not safely proceed until

it recovers. Their second disadvantage is the lack of parallelism

between the coordinator and the slaves. During a phase, the coordi

nator sends a message to the slaves and waits for a response; the

slave sends a response and waits to hear from the coordinator again.

It is normally the case that either the coordinator or the slaves are

waiting.

Generalizing the centralized communication structure to a full

tree, we obtain the class of hierarchical protocols. Again, there is

a single designated site, the coordinator, which is the root of the

tree. As before, a phase normally consists of the coordinator broad-

23

casting a message to all participants and then waiting for their

replies. Unlike the simpler centralized protocol, the responses are

not sent directly to the coordinator, but instead to each site's

immediate predecessor in the tree. A site whose position is an

internal mode in the communication tree collects messages from all

descendants and, based on these messages, will send a single message

to its predecessor. This is called a convergecast.

A hierarchical protocol is we11-suited for large store-and-

forward networks where messages are expensive. A minimal spanning

tree rooted at the coordinator and based on point-to-point message

costs can be constructed ([PARK81]). If the communication topology

of the protocol is defined by such a minimal spanning tree, then the

cost of the broadcast and convergecast is minimized.

Another feature of hierarchical protocols is that they can

exploit parallelism during unilateral aborts. An internal node

learning of an abort can relay it to its predecessor as well as ini

tiating the abort in its subtree.

A subclass of the hierarchical class that merits discussion is

linear protocols ([LIND79]). Linear protocols have a communication

topology that forms a simple linear chain, each site having one

neighbor on the left and one neighbor on the right (except for the

leftmost and rightmost sites which send messages to one neighbor).

In a linear protocol, by the time a message propagates from the coor

dinator to the farthest slave, the message has visited every site.

We can take advantage of this fact to design even simpler protocols

24

than the hierarchical protocols. A phase now consists of propagating

a message from one end to another. The role of coordinator alter

nates between the sites at either end. (In this environment, the

coordinator is the initiator of the next phase.)

As an example, consider the linear two-phase commit protocol

(see [LIND79]). Let the sites be numbered 1, 2, ... N with Site i

communicating with Sites i-l and i+1 (except for the end sites 1 and

N, which communicate with only one other site). For Phase 1, Site 1

is the coordinator; for Phase 2, Site N is the coordinator. The pro

tocol is the following:

Phase 1. Site 1 receives the transaction and, if it decides not to

unilaterally abort the transaction, sends it to Site 2. Site 2

either aborts the transaction or forwards it to Site 3, and so

forth. If any site aborts the transaction, then the site sends

an abort message to its predecessor which in turn will propagate

the abort.

Phase 2* The transaction reaches Site N and is processed and

accepted. Site N then sends a commit message to Site N-l which

in turn will send a commit message to its predecessor until the

message reaches Site 1.

The linear protocol halves message traffic in each phase at the

expenses of decreasing parallelism among the sites. In the original

two-phase commit protocol, all of the slaves process and vote on the

transaction in parallel; in the linear protocol, the sites process

the transaction sequentially.

25

A linear protocol where messages flow in one direction only and

Site N sends messages to Site 1 is called a ring protocol. Concern

ing resiliency issues, ring protocols and linear protocols have the

same advantages and disadvantages; however, ring protocols are more

popular in the literature ([ELLI77a, LELA80]).

The number of messages required in all four centralized proto

cols is a linear function of N, the number of sites. The number of

end-to-end delays, however, varies greatly among the different

classes. For the centralized protocol, it is two delays, while for

the linear and ring protocols it is N.

2.3.2. Decentralised Protocols

While the term "decentralized" is descriptive of a large number

of classes, we are interested in a very specific class. Decentral

ized protocols have the following properties.

(1) Every site communicates with every other site,

(2) Every site participates equally, and

(3) A phase consists of a message round where all sites exchange

messages. A site sends the same message to each of its cohorts

during a round.

Decentralized protocols require a lot of messages - approxi-

2
mately N messages are sent during each round. Therefore, they are

Some of the reasons for the greater popularity of ring protocols
are related to concurrency control issues. For example, ring proto
cols release resources in the same order acquired.

26

primarily suited for network environments where either messages are

cheap or a broadcast facility is available. Fortunately, in many

local networks (e.g. ETHERNET [METC76]) one or both conditions apply.

The primary advantages of decentralized protocols are (1) the

lack of a coordinator, which eliminates one potential bottleneck in

any system, and (2) the exploitation of parallelism. Decentralized

protocols maximize parallel processing among the sites. These proto

cols are completely symmetric which tends to make them simpler and

easier to implement than centralized protocols.

The two-phase commit can be modified to a decentralized proto

col:

Phase 1* The originating site sends the transaction to all cohorts.

Each cohort sends its vote to all the other sites.

Phase 2. Each site waits until it receives votes from all cohorts,

and then it appropriately commits or aborts.

Contrasting the centralized and the decentralized two-phase commit

protocols, we find three striking dissimilarities. The first is the

symmetry of the decentralized protocol. Except that initially a sin

gle site distributes the transaction, the sites in the above protocol

have completely symmetric roles.

The second dissimilarity is along these lines: there is no cen

tral decision maker; each site independently makes a decision based

on the messages it receives. Of course, in the absence of failures,

each site receives an identical set of messages.

27

The third dissimilarity concerns failure. Since the decision

making is decentralized, there are a wider variety of failures that

can adversely affect the protocol. This can be contrasted to cen

tralized protocols where only coordinator failures are difficult to

handle.

2.4. Existing Literature

We now review several mechanisms that have been proposed for

constructing protocols resilient to various classes of failures. We

then discuss how these mechanisms are integrated into two proposed

systems: distributed INGRES ([STON79]) and SDD-1 ([HAMM80]). A sur

vey of a third proposed system, System-R, can be found in [GRAY81].

The specification and verification of protocols is a closely

related area which has been intensely investigated. We review that

literature in the next chapter, where we introduce a formal model for

commit protocols.

2.4.1. The Two Generals" Problem

This is the classic paradigm on the resiliency of commit proto

cols. It is one of the earliest results in this area and, unfor

tunately, it is a negative result.

The problem can be stated as follows ([GRAY80]):

Two generals are situated on adjacent hills. In the valley
between them lies the enemy. The enemy can easily defeat the
army of either general, but not the combined armies. There
fore, for this campaign to be successful, either both gen
erals must attack or both must retreat. The generals can
only communicate through messengers which are subject to get-

28

ting lost or being captured.

This problem is a colorful restatement of the problem of design

ing commit protocols resilient to lost messages. It has been shown

that there exists no finitely bounded protocol which insures success

for the generals. Like many proofs for this type of result, the

proof is by contradiction. We now present it to illustrate its brev

ity and because it is a good paradigm for many proofs on resiliency

results.

Assume that a bounded protocol exists. Let P be such a protocol

of minimum length (in the number of messages). Let M be the last

message sent by P. Since this message can be lost, we may delete it

from the protocol with no loss in resiliency. Let P' be the protocol

that results from deleting M. Now, P' is a bounded protocol shorter

than P, and P* insures success for the generals. This contradicts

our original assumption.

This problem reaffirms our intuition that there exists no (fin

itely) bounded commit protocol using a network that is less than 100%

reliable. Therefore, to build completely reliable commit protocols

on top of unreliable components, we must be willing to tolerate

unbounded protocols. Alternatively, we can a priori bound the number

of failures tolerated by the commit protocol and derive bounded pro

tocols.

In many applications the existence of a finite length protocol

is not crucial. Unlike the attacks by the two generals, the commit-

29

ment of a transaction does not have to occur simultaneously at the

participating sites. Instead, it is sufficient that all sites "even

tually" commit the transaction.

Various extensions of this problem to N generals have been for

mulated in [LAMP80] (this is also referred to as the Byzantine

General's Problem). The case where generals may be traitors or pass

on erroneous or inconsistent information is investigated in [PEAS80].

2.4.2. K-resiliency

A system is K-resilient if it can tolerate arbitrary failures by

K distinct sites. The term was introduced in an early paper by

Alsberg et al. ([ALSB76]), which examined the problem of achieving

K-resiliency in a completely replicated database system. Unilateral

aborts were not allowed in their system.

The paper proposed a one-phase protocol for achieving K-

resiliency using a scheme where a designated single site holds the

p-rima-Ty copy of the database. All transaction requests are forwarded

to the site containing the primary copy, which then serves as tran

saction coordinator. In this capacity, it computes the updates and

distributes them to the other sites. After K acknowledgements have

been received, a "transaction completion" message is sent to the ori

ginating site.

2.4.3. The Two Phase Conit Protocol

n

We have already discussed this protocol extensively - it is the

archetypical" commit protocol. Historically, the first public

30

2
description of the protocol is in [LAMP76], although the protocol

was known before then. It is also discussed in [GRAY79, and LIND79].

The protocol is popular for several reasons. It is the "sim

plest" protocol allowing unilateral aborts — no single phase proto

col allows unilateral aborts by arbitrary sites. A variation of this

protocol called the linear tzo. phase commit ([LIND793) is the

cheapest (in the number of messages) commit protocol. It can easily

tolerate arbitrary failures of slaves.

The protocol is vulnerable to coordinator failures and to net

work partitions that isolate the coordinator. We now discuss these

two problems in turn.

When the coordinator fails in the second phase of the protocol,

it is often impossible for the operational slaves to safely proceed

with the transaction. This is especially true if another slave fails

in conjunction with the coordinator failure. Consider the following

scenario.

(1) The coordinator sends a new transaction to two slaves.

(2) Both slaves send their votes to the coordinator. (Assume that

the second slave voted "yes.")

(3) The coordinator sends a commit (or abort) message to the first

slave and then promptly crashes.

2
The protocol described in [LAMP76] is actually a three-phase pro

tocol. The extra phase describes writing the commit record to disk.
Except for this elaboration, the protocol described is a two-phase
protocol.

31

(4) The first slave receives the message, performs the indicated

action, and then crashes.

Now, the sole operational site, the second slave, cannot safely

proceed. If either the coordinator or the first slave unilaterally

aborted the transaction, then it should abort; otherwise, it should

commit. In either case it does not know the appropriate action.

During a network partition, only the sites in direct communication

with the coordinator can safely proceed in all cases. If the coordi

nator is completely isolated, then none of the slaves can safely

proceed.

Despite its shortcomings, the two-phase commit is very robust

considering its cost. Protocols that protect against coordinator

failures are much more expensive. Such a protocol is discussed next.

2.4.4. The Four-Phase Commit Protocol

To overcome the deficiencies of the two-phase protocol, a four-

phase protocol was introduced in [HAMM80]. It provides K-resiliency

against all types of failures including coordinator failure.

The commit protocol uses K backup coordinators. where each

backup is capable of assuming the role of coordinator. The protocol

extends the two-phase protocol: each phase maps into two phases in

the new protocol, where the first new phase communicates with the

backups and the second new phase communicates with the slaves as

before. The complete four phase protocol is:

Phase 1. The coordinator sends the transaction to each backup and

32

waits for acknowledgements.

Phase 2. The coordinator sends the transaction to each slave, and

then waits for the slaves to vote.

Phase 3. The coordinator sends the commit/abort decision to each

backup and waits for acknowledgements.

Phase 4. The coordinator sends the commit/abort decision to each

slave and waits for acknowledgements.

If the coordinator fails during the protocol, then an election

is held among the backups and, assuming at least one backup is opera

tional, a new coordinator is chosen. Several election protocols are

known (see [GARC80b] for a survey), and they can be made resilient to

failures.

The newly elected coordinator executes a two-phase protocol.

The decision to commit or abort is made solely by the new coordinator

- it will commit if it received a commit message from the previous

coordinator; otherwise, it will abort. Since the new coordinator's

commit decision does not require communication with other sites,

there is no possibility of the protocol blocking. The backup proto

col is essentially the last two phases of the four phase commit. The

protocol is:

Phase 1* The new coordinator sends commit/abort to all operational

backups and waits for acknowledgements.

Phase 2* The commit/abort decision is sent to all slaves. Again,

the backup waits for acknowledgements.

33

If the new coordinator fails before completing the backup proto

col, then a new election is held and the winner re-executes the

backup protocol from the beginning.

Notice that two successive coordinators may disagree on whether

to commit or abort a transaction. However, consistency among the

slaves is still assured because the following invariant holds

throughout the execution of both the commit and the backup protocols:

AQ. Slave i& directed £0. commit ox abort until all operational backup

coordinators hasfi. acknowledged ££ commit (ox abort). Hence, if two

backups disagree on the direction of the transaction, then clearly no

slave has been directed to commit or abort.

When implementing the protocol care must be taken that backup

coordinators are not incorrectly assumed down. If a backup which had

been assumed down by a coordinator is elected as a new coordinator,

then the invariant given in the previous paragraph may be violated

resulting in an inconsistent database. Consider the following exam

ple. Let there be a single backup coordinator. Assume that a net

work partition results in the coordinator and the backup occupying

different partitions. Now, if the backup incorrectly diagnoses the

problem as a coordinator failure, it will assume the role of a coor

dinator and independently make a commit decision that may be dif

ferent from the original coordinator's decision. In particular, the

backup may decide to abort whereas the coordinator may decide to com

mit.

34

2.4.5. Spooling of Messages

Normally messages destined to a down site are spooled (queued)

at the sending site. Therefore, when a site recovers, it will be

able to receive its pending messages only if all of the sending sites

are operational. If the site was down for any length of time, it is

very likely that all sites have spooled messages for it. Hence, if

any other site is down when the site recovers, it will lose some of

its messages (or, alternatively, block until the other site recov

ers).

An alternative approach is to appoint a spooling site (or more

concisely, a spooler) for each failed site. Every message addressed

to a failed site is redirected to its spooler. When a site recovers,

either all of its pending messages are available, or none, depending

on the state of its spooler. However, the probability that all the

messages will be available is much greater in this scheme than in the

other scheme (assuming that spooling sites are judiciously chosen)•

Of course, this scheme can be more robust by assigning & spoolers for

each failed site. Now, to have even a single message unavailable

requires the failure of K sites.

A mechanism very similar to this has been implemented in the

SDD-1 Recovery Manager ([HAMM80]). Each site is statically assigned

a set of sites for which it will act as a spooler. When a sending

site discovers that the intended recipient is down, it resends the

message to all of the recipients & spoolers. This redirection is

expensive, hence it is not used for all types of messages. In

35

particular, a message that has been redirected to a spooler is not

redirected further if the spooler is down.

Powell has suggested dedicated "passive" spoolers for ETHERNET-

like networks ([P0WE81]). With such a network, a site hears all mes

sages but saves only those addressed to it. K sites could be

assigned the task of spooling (or logging) all of the messages on the

network. This activity would be completely transparent to the other

sites, except during site recovery. Since the bandwidth of such a

network approaches memory to disk bandwidth, spoolers would have to

be dedicated sites.

Spoolers are used in [LISB81] to achieve a "reliable broadcast."

3
A broadcast message is circulated in a virtual ring of spoolers

before it is sent to any of its recipients. If a recipient is down,

then the message is available from one of the spoolers when it recov

ers.

2.4.6. Majority Consensus Approaches

Majority consensus protocols have been proposed to solve two

distinct problems:

(1) the synchronization of updates in a completely replicated data

base ([THOM79, GIFF79]), and

(2) resiliency against failures, especially network partitioning

([STON79]).

A virtual ring is a set of sites that communicate using a ring
protocol.

36

We are concerned primarily with the second problem, although majority

consensus solutions to the first problem are also very resilient as a

natural consequence of the approach ([THOM79]).

Resilient protocols based on this approach require that a major

ity of the sites agree to an irreversible action (e.g. a commit)

before any site proceeds with the action. The majority consensus

requirement ensures that two groups of sites do not act indepen

dently. Hence, a majority consensus approach is the obvious solution

to network partitioning ([STON79] proposes it to handle partition

ing). The approach works even if a partitioning is misdiagnosed as a

collection of site failures. The drawback of this approach is that

sometimes a majority can not be attained, even when it is safe to

proceed.

The simple majority requirement can be generalized to allow the

use of quorums. A qi?f?r?TTl is the minimum number of sites needed to

proceed with an action. It need not be a majority. A quorum size is

determined for each possible action (e.g. commit or abort). To

ensure that two operations are mutually exclusive, the sum of their

quorum sizes must exceed the total number of sites.

An orthogonal generalization is to allow weighted voting.

([GIFF79] describes a quorum-based scheme with weighted voting for

concurrency control.)

37

2.4.7. Logging

Local recovery mechanisms normally log all transactions in some

form. Distributed recovery strategies can be defined to utilize

these logs and, since the information is available anyway, probably

should utilize them. Minimally, only the transaction identification

number and the value of the commit flag (if it is set) are required

by the distributed recovery strategies and this is all that must be

4
stored. Even in local strategies that do not use a log, the commit

flag is still written to disk and this write could just as easily be

directed to a log.

In distributed recovery, the logs provide an alternative to

spooling commit (abort) messages. A recovering site can query the

logs of its cohorts about pending transactions instead of reading

messages from spoolers. This scheme is cheaper than spooling and

requires no special action of the coordinator when a slave fails.

The major weakness of the scheme is that the resiliency to site

failures is now a function of the number of participants - at least K

sites must participate for the protocol to be K-resilient.

4
In fact, even less than this needs to be stored. For example, if

we assume that most transactions are committed, then only the tran
saction number and a binary flag need be stored for "in progress" or
aborted transactions, and nothing need be stored for commit transac
tions. (Here the absence of a stored record for the transaction in
dicates that it was committed.) Normally, much more information is
also stored.

38

2.4.8. Crash Recovery in Distributed UGRBS

The INGRES proposal describes two disjoint sets of protocols:

(1) the performance protocols where resilency is of secondary impor

tance, and (2) the reliable protocols where reliability issues are

seriously addressed ([STON79]). Both approaches are based on the

two-phase commit protocol described earlier.

The INGRES environment supports partially replicated data. A

logical database is partitioned horizontally into fragments and each

fragment may be physically replicated any number of times. Although

a site can store more than one fragment, we will speak as if each

site held exactly one.

In the performance protocols, one copy of each fragment is

designated as the primary copy. A site holding a primary copy is a

primary aixe., the remaining sites are copy sites. Only primary sites

participate in the two-phase commit and they participate as slaves.

(For this exposition, we will assume that the coordinator does not

hold any fragments.) If a primary site fails at any time, then an

election is held among the associated copy sites. The chosen site is

promoted to the role of primary site.

There are two protocols involved in executing a transaction.

First, the standard two-phase commit protocol is executed by the

coordinator and the primary sites (i.e. the slaves). After a primary

site has committed a transaction, the site executes a second protocol

that sends a list of updates to each associated copy site.

39

The performance advantage results from using only primary sites

in the two-phase commit. Fewer participants means that it is less

likely that a slow site will delay the commit, decision. Furthermore,

global deadlock detection involves fewer sites, and hence is cheaper.

Fewer messages are sent both during the commit protocol and during

deadlock detection. Updates to copy sites can be sent and processed

in the background.

Naturally, the protocol exhibits the same deficiencies discussed

in the section on the two-phase commit; specifically, a transaction

is blocked (or lost) when the coordinator fails, and messages may be

lost since they are only spooled at the sending site. There is an

additional deficiency: copies may become inconsistent due to the

failure of a primary site. This will occur when the primary site

commits an update but fails before sending it to the copy sites.

The reliable protocols overcome two of the deficiencies by (1)

spooling messages at K sites, and (2) by having every site containing

a copy participate in the two-phase commit protocol. Hence, there is

no longer any distinction among copies. The reliable protocols are

still vulnerable to a coordinator failure.

In both protocols, network partitioning is handled by a majority

consensus approach. In the performance protocol, a primary site can

be elected only if the majority of the copies are operational and

communicating. Therefore, there can never be two primary copies. A

similar restriction applies to the reliable protocols.

40

2•4*9. The SDD-1 Recovery Mechanism

The "System for Distributed Data-1" (SDD-1) is a distributed

database system implemented by the Computer Corporation of America.

It is a prototype system running on the ARPANET. The SDD-1 recovery

manager is discussed in [HAMM80] and other aspects of the system are

discussed in [ROTH80 and BERN80].

The recovery manager is the most resilient and the most complex

manager in existence today. It is designed to provide K-resiliency

at every level. However* the problem of network partitioning is not

addressed.

At the innermost layer is RelNet ("reliable network"). It pro

vides a guaranteed message delivery service. A guaranteed message

will be delivered regardless of the state of the recipient. For

failed sites, K spoolers are used to assure delivery. The spooling

and redirection of messages is opaque to the above layers.

In addition to guaranteed delivery, this layer also monitors the

status (i.e. up or down) of sites. Whenever a site appears to have

failed - normally because of a timeout - a "you have failed" message

is sent to the site. Upon receipt of such a message, a site will

simulate a failure and initiate a recovery algorithm. Hence, two

message losses (the original message and the "you have failed" mes

sage) must occur before a failure will be incorrectly diagnosed.

The commit protocol is the four-phase protocol described ear

lier. Hence, K+l coordinator failures must occur before a transae-

41

tion is blocked or lost. Messages from the coordinator to the slaves

are sent using the guaranteed delivery facility of RelNet. Once

again, K+l failures must occur before a message loss occurs (i.e. the

recipient and all K of its spoolers must fail).

In addition to RelNet and the four-phase commit protocol, the

SDD-1 recovery manager also provides guardians. A guardian is a site

assigned to detect the failure of its "ward site." It does this by

regularly polling its ward. When a guardian detects the failure of

(one of) its wards, it immediately verifies the failure - by sending

a "you have failed" message - and notifies the other sites.

As expected, the SDD-1 approach is robust but expensive. There

are alternative approaches to providing K-resiliency that may be less

costly. One approach is to do away with RelNet and require backup

coordinators to log each transaction. The backups need only log the

transaction number and commit flag if we allow unilateral abort dur

ing phase two of the four-phase protocol.

2.5* Related Work

Several recent papers discuss reliability issues in distributed

database systems ([GARC80a, LAMP78a SCHA78, SVOB79]). Garcia-Molina

([GARC80a]) considers only a fully replicated database; whereas, the

others concentrate on irredundantly stored data.

Reliability issues in operating systems are closely related to

many of the issues in database systems. For a survey of such issues

in a single site operating system, the reader is referred to

42

[DENN76]. Saltzer considers some of the same issues for a distri

buted environment, albeit in less detail, in his survey ([SALT80]).

However, many operating system approaches are not sufficient for a

database system for the fllowing reasons. In a distributed operating

system, a process is the "atomic unit"; whereas, a transaction is the

"atomic unit" in a distributed database system. Moreover, the notion

of a transaction is a broader concept than that of a process. A pro

cess is normally confined to a single site, and synchronization

between processes is often explicit. A transaction can span many

sites, and synchronization is implicit through common data records.

Except for its fault tolerant aspects, we do not address the

problem of concurrency control. Interested readers are referred to

surveys by Kohler ([K0HL81]) and by Bernstein and Goodman ([BERN81]).

A very general discussion of distributed transactions and the prob

lems of maintaining consistency can be found in [TRAI79]. A discus

sion of related distributed database problems can also be found in a

survey by Rothnie and Goodman ([ROTH77]).

Resiliency issues have been addressed in many concurrency con

trol protocols. Several protocols are resilient to site failures

([ELLI77a, GARC79, MENA80, LECA80, MIN080, ROSE79, THOM79]); whereas,

only a few are resilient to (or even address) network partitioning

([MENA80. MIN080, THOM793). Normally, these protocols include the

commit protocol as part of their definition, but they do not attempt

to solve the general case regarding resilient commit protocols. In

particular, none of the concurrency control protocols allow unila-

43

teral aborts, and two of the protocols ([MIN080, THOM79]) consider

only completely replicated databases.

CHAPTER 3

A Formal Model

In this chapter we introduce a formal model for distributed

transaction processing based on finite state automata (FSA). The

model introduced in this chapter will be used to specify and verify

protocols presented in subsequent chapters and to answer questions

about the existence of resilient protocols. We discuss first the

model in the absence of failures, and then discuss simple extensions

for modeling failures. This chapter concludes with a small bibliog

raphy of formal models for protocols comparing this model to previous

models for commit protocols.

3.1. Specifying a Protocol

Let N be the number of sites. For the present we will assume

that N is fixed and, for simplicity, we will assume that all sites

participate. Sites are uniquely labeled 1, 2, ..., N.

The formal specification of a protocol consists of a collection

of nondeterministic finite state automata — one for each site. The

automaton executing at Site i is called the local protocol for Site

i. The state of this automaton is the local transaction state (or,

more succinctly, the local state) for Site i.

The network is modeled as a completely passive device. It is an

unbounded buffer that serves as a common read/write medium for all

local protocols. A site can read from the network only those

44

45

messages addressed to it; it can write onto the network messages

addressed to any site (including itself).

An example of a local protocol is illustrated in Figure 3.1. It

is the two-phase commit protocol for two sites, where Site 1 is the

co-ordinator and Site 2 is the slave. A state transition consists

of: the receipt of one or more messages, a change in local state, and

the sending of zero or more messages. Messages received during a

state transition are shown above the horizontal line; messages sent

Site I
(co-ordinator)

©
xact request jtart xact
start xact

Site 2
(slave)

Figure 3.1 The local protocols for the two-phase commit protocol
(N=2).

46

are shown below the line.

Both protocols begin processing in their initial states, (q. and

q2). A transaction begins when a request message is received from

the application program. The receipt of the request by the co

ordinator causes a state transition to state w, (the wait state) and

the sending of the transaction to Site 2. Upon receipt of the tran

saction. Site 2 nondeterministicly choses either to reply with a yes

(to accept the transaction) or a an (to unilaterally abort it) and

makes the appropriate state transition. The protocol continues until

both sites occupy final states: either commit (c) or abort (a).

The state diagram of Figure 3.1 illustrates the conventions used

in the thesis. The states for site i are subscripted by i. Final

states are doubly circled.

A state transition from state s. to state t. is said to be

enabled whenever site i is in state s. and all the messages required

for the transition have been sent. If a site has an enabled transi

tion, then it will eventually make a transition. If more than one

transition is enabled simultaneously, then the transition taken is

nondeterministically chosen.

State transitions are assumed to be atomic in the absence of

failures. It is convenient to consider a transition an instantaneous

event and assume that no two transitions occur simultaneously. Tran

sitions among different sites are asynchronous: if transitions are

enabled at more than one site, then it is impossible to predict the

47

order in which the transitions will occur.

The model of a local protocol is an extension of the classical

nondeterministic finite state automaton since (1) it allows multiple

messages to be read and written during a transition, and (2) the ord

ering of messages on the input medium (the network) is irrelevant.

These extensions are more a matter of convenience than necessity

since every "extended" automaton is equivalent to a classical automa

ton.

Formally, a local protocol for site i is defined by a septuple

<Q» 2_, K, 6% q. A, C> where:

Q - a finite set of states

2L - (the input alphabet) a finite set of "recognizable mes
sages" addressed to the site

20 - (the output alphabet) the set of allowable messages sent
by the site

JL JL

6 : (Q,2j.)•*• (Q»2q)- the state transition function

q. € Q - the initial state

This can easily be shown. We assume that the classical automa
ton has exactly one input tape and one output tape, and the input
head can move in either direction. Now we use the following two
rules to convert an extended automaton, E, to a classical automaton,
C.

1. Every state, e» in E is mapped into k distinct states in C where
each state reads and sends exactly one message. If e receives more
messages than it sends, then some states in C will send "null" mes
sages. If e sends more than it receives, then some states in C will
reread the same message.

2. Every state, c, in C has two state transitions that cycle back
into c. One transition moves the read head to the left, the other to

the right. This allows C to nondeterministic choose the next message
to read.

48

A c Q - a set of abort states

C c Q - a set of r.omnnr states

Collectively, A and C constitute the final states,

3*2. Properties of Local Protocols

3.2.I. Well-formed Protocols

In addition to satisfying the formal requirements, a veil-formed

local protocol has the following properties:

(1) A n C = P.

(2) q., k A and q.iC

(3) There are no transitions from an abort state to nonabort state.

Similarly, there are no transitions from a commit state to a

noncommit state.

The first restriction precludes a local state from being both an

abort state and a commit state. The second restriction precludes a

trivial class of protocols. The third restriction corresponds to our

notion that commit and abort are irreversible operations.

Notice that either A or C can be empty. This is reasonable

only if the site contains no local data, but still has a significant

role in the protocol. The backup co-ordinators of SDD-1 are such

sites ([HAMM80]).

Another important property of a protocol is reducibility. A

local protocol is said to be reduced if all of its state transitions

49

require the receipt of at least one message. Intuitively, this

requires that state transition be a reaction to the "global" process

ing environment rather than a reaction to purely local processing.

Reduced protocols can be easily generated from nonreduced protocols.

Throughout this thesis, we assume that a local protocol is

well-formed and reduced. For notational convenience, we will also

assume that any local state transition sends at most one message to

each site. (A protocol containing a transition that sends multiple

messages to the same site can be modified such that the messages are

encoded as one.)

3.2.2. Equivalence of Local Protocols

The formal definitions of local protocols preclude two sites

running identical protocols since 2«» 5Q» and 6* are unique for each

site (because members of each set contain a subscript identifying the

site). However, most protocols consists of a small number (often

less than three) of distinct generic local protocols, where a generic

protocol is derived from a local protocol by stripping away the iden

tifying subscript. We say that two sites execute the same protocol

if their local protocols can be derived from the same generic proto

col by adding the site identification (and possibly renaming the mes-

2\
sages and states ;•

2
Any renaming must be one-to-one and onto.

50

3.2.3• Mondeterminism

Local protocols are nondeterministic: for the same state and the

same set of messages, more than one transition may be enabled. This

is the case in the slave protocol for the two-phase commit (Figure

3.1) where upon receiving the transaction in the initial state, the

site can choose to either accept it or unilaterally abort. This is

one source of nondetexminism in the model: it allows sites to make

local decisions about the transaction based on criteria external to

the model (e.g. the concurrency control mechanism).

There is another source of nondeterminism within local proto

cols: messages can arrive in any order. When two different sets of

outstanding messages enable two different transitions at a site, then

either transition may occur. This source of nondeterminism is not

explicitly illustrated in the state diagram for local protocols.

Both sources of nondeterminism result from the unpredictability

of the external environment (e.g. the concurrency control mechanism

or the underlying communication network). Hence, a local protocol

must perform correctly for all possible execution paths. Local pro

tocols differ from classical nondeterministic automata in this

respect: classical nondeterministic automata require only one execu

tion path to be correct. Nondeterminism in classical automata does

not reflect unpredictability in the external environment, but instead

it allows multiple alternatives that can be explored in parallel.

The difference between the classical nondeterminism behavior and

the nondeterminism behavior of local protocol is a fundamental

51

difference. Fischer [EDEN80] has coined the term, indetermini«m> for

the latter. Within failure prone systems, there is another source of

indeterminism: the indeterminism caused by failures. We explore this

in a later section.

Site i (i= 1,2, ••• n)

xact

yesj,-- yesin

yes|j - yes
ni

Figwre 3.2 The decentralized two-phase commit protocol

52

3.2.4* More Examples of Local Protocols

Figures 3.2 and 3.3 contain two more examples of commit proto

cols. For the first time multisite (>2 sites) protocols are dep

icted: the first is illustrated for n sites; the second, for 4 sites.

Normally, messages are doubly subscripted to indicate the sender

(first subscript) and the receiver (second subscript). However, for

centralized protocols, where all messages involve the coordinator,

the coordinator's subscript is often omitted for convenience (as was

done in Figure 3.3).

The first figure illustrates the local protocol for the decen

tralized two-phase commit protocol. Except for the number of mes

sages sent and received during each phase (message round), its struc

ture is identical to the (centralized) two-phase commit. This is not

coincidental: the two protocols are fundamentally the same except for

their communications topology. In both protocols, the votes (i.e.

acceptance or rejection) of each site must be communicated to every

other site. In the decentralized protocol, the votes are communi

cated directly; whereas, in the centralized protocol all communica

tion is channeled through the coordinator.

Figure 3.3 contains the local protocols for SDD-1's four phase

commit protocol (see chapter 2). This protocol is significantly

more complex than the two-phase protocols, primarily because it con

tains three generic local protocols rather than two. Hence, the

coordinator has two distinct groups to direct and this requires four

phases. The slave protocol for SDD-1 is identical to the slave

53

protocol in the two-phase commit* The backup coordinator differs

from previous local protocols in two ways: it can not unilaterally

abort* and it has no final states* Since the backup does not store

data* its abort and commit states are not irreversible*

3.3. Modeling Global Processing

3.3«1. The Global Transaction State

The global state of a distributed transaction is defined to con

sist of:

(1) a global state vector containing the states of the local proto

cols*

(2) the outstanding messages in the network*

The global state defines the complete processing state of a transac

tion*

A global State transitinn occurs whenever a local state transi

tion occurs at a participating site* Barring site failures* this is

the only time that global state transitions occur* Since we are

assuming that local state transitions among different sites are mutu

ally exclusive in time* exactly one global transition occurs for each

local transition*

If there exists a global transition from global state g to glo

bal State gff* then g* is said to be -Mnniediar.ely reachable from g* A

global state* together with the definition of the protocol* contains

the minimal information necessary to compute all of its immediately

Site I
(co-ordinator)

commit3 coming

Site 2
(back-up)

Figure 3.3 The SDD-1 four-phase commit protocol*

54

55

reachable states* The transitive closure of the immediately reach

able relation yields all reachable states* In Figure 3*4 we illus

trate the reachable global state graph for the two-phase protocol

discussed earlier*

The reachable global state graph is an invaluable tool in

analysis and verification* The graph is easy to generate

Fignre 3.4 Reachable state graph for the two-phase commit proto
col*

56

automatically* but can be quite large (exponential in N, the number

of sites)* Fortunately, a small N usually serves to illustrate a

protocol* and proofs seldom require the generation of the entire

graph*

Within a graph* a terminal state is one with no reachable suc

cessors. Moreover, a path from the initial global state to a termi

nal global state in the reachable state graph corresponds to a possi

ble execution sequence of the protocol*

A global state is said to be a final .&£&££, if all local states

contained in the state vector are final states. A global state is

said to be inconslatent if its state vector contains both a commit

state and an abort state*

A protocol is functionally correct only if its reachable state

graph contains no inconsistent states and all terminal states are

final states* On the other hand* if the graph for a protocol con

tains terminal states that are not final states* then it is possible

for some sites to never commit or abort the transaction* Figure 3.2

verifies that* in the absence of failures* the two-phase protocol is

correct*

3.3.2. The Concurrency end Sender Sets

Two local states are said to be potentially concurrent if there

exists a reachable global state that contains both local states*

We now define two sets that will be used extensively in subse

quent proofs* Both sets are easily constructed from the global state

57

graph.

D«finition. Let s be an arbitrary local state. The con-

currency £££ 0f a local state 3 is the set of all local
«

states that are potentially concurrent with it* We denote

this set by C(s).

From the reachable state graph for the two-phase protocol given in

Figure 3.2* we see that the concurrency set for v. consists of {q_,

a2* w2).

When a site makes a transition from state 8 to state t» it is

convenient to consider the messages received and sent during the

transition as being "received" and •'sent* by state s. For example,

in the two-phase commit we would say that the coordinator's wait

state* v.* sends commit messages that are received by the slaves'

wait states* v.. We are interested in all of the local states that

can send messages which are received by a given state* s.

Definition* Let s be an arbitrary local state* and let M

be the set of messages that are received by s. The sender

££L JLOX &• denoted S(s). is {t |t "sends" m and m in M}.

3.2.4. Conmittable States

A local state is called crnmni»rahlp if occupancy of that state

by any site implies that all sites have voted yea on committing the

transaction (i.e. no site has unilaterally aborted). A state that is

58

3
not committable is called noncommittahle . In the two phase protocol

of Figure 3.2, the only committable state is the commit state (c.);

all Other States are noncommittable.

For most protocols* the classification of local states into com

mittable and noncommittable states is obvious. When it is not obvi

ous* the classification can be deduced from the global state graph*

3.3.4• Causality

Within the model the notion of one event "occurring before"

another event is extremely important. For example* the choice of a

recovery protocol may depend on whether failure A occurred before

failure B. Fundamentally* we are interested in ordering events

insofar as the notion of causality is preserved. Clearly* event A

can affect event B only if A occurs before B.

We now formally define the occurs before relation, denoted by

"•*". The events of interest are local state transitions and failures

(which will be discussed in a later section).

The relation "•*" on a set of transitions is the smallest rela

tion satisfying the following three conditions (these conditions are

taken from [LAMF78b]): (1) if A and B are transitions at the same

site* and A comes before B» then A -*• B* (2) if the transition A sends

a message that is received by transition B, then A •*• B, (3) if A -• B

3
To call nonegarnittable states abortable would be misleading since

a transaction that is not in a final commit state at any site can
still be aborted. In fact* sometimes transactions in cnnm-ft-taMo
(but not commit) states will be aborted because of failures.

59

and B •+• C, then A •+• C* Two distinct transitions A and B are said to

4
be concurrent- if neither A -*• B nor B •*- A.

Another way of viewing the definition is to say that A •*• B means

that it is possible for event A to causally affect B. It is impossi

ble for two concurrent events to causally affect one another*

In the two-phase commit protocol* slave i unilaterally aborting

and slave j unilaterally aborting are concurrent events and hence

there is no causal relationship between the two. However* if only

one unilaterally aborts* say slave i» then this will cause the coor

dinator to abort and eventually slave j will abort upon receiving the

abort message from the coordinator. Slave i's abortion not only

"occurred before" slave j's abortion but in fact caused it.

The relation "occurred before" is a partial ordering and is less

restrictive than the ordering defined by a path through the global

state graph. The latter ordering is a total ordering* imposing an

arbitrary ordering on concurrent transitions. Since concurrent tran

sitions can not causally affect one another* the graph ordering can

not be detected by the participating sites.

The term concurrent may not be the most appropriate term* but
historically it is the term most commonly used. The notion we are
trying to convey is that there is no causal relationship between the
events. Here concurrent is being used in a somewhat different con
text than its use in "concurrent states •" The latter term refers to
states occupied simultaneously by different sites* and there could be
(and often is) a causal relationship between those states*

60

3.4. Site Failures

In this section we discuss ways to extend the model to include

site failures* Models for network partitioning are presented in a

subsequent chapter* where the effects of partitioning are examined in

more detail*

A failure of any type is normally detected by the absence of an

expected message* We assume that each site has at its disposal an

interval timer allowing it to bound the time it waits for the receipt

of a message* When the timer expires* the site is said to have

"timed out" and may take appropriate action* This is modeled by

timeout messages that are received like any other message and can

cause a state transition*

Site failures are modeled by a failure transition, which is a

special kind of local state transition ([MERL76]). Such a transition

occurs at the. failed site the instant that it fails. The resulting

local state is the state that the failed site will initially occupy

upon recovering. A failure transition can move the site to a new

state in the commit protocol or move it to a special recovery proto

col* This model assumes that a site can detect when it has failed*

Let us momentarily assume that state transitions are atomic even

in the presence of failures* Hence* a failure cannot occur during

the middle of a transition and interrupt the sending of messages* In

this case a failure transition can be simply defined — it reads all

outstanding messages and sends a t-imgnnr. message to all participants.

4

61

To illustrate the use of failure and timeout transitions* con

sider enhancing the two-phase commit protocol of Figure 3.1 so that

it will be resilient to failures of the coordinator (Site 1).

Failure transitions must be added to Site 1* and timeout transitions

to slaves. Figure 3.5 illustrates one assignment of these transi

tions that yields the desired resiliency. (Messages have been elided

for clarity.) Since no failure transitions have been added to the

slaves, the behavior of the protocol is undefined when one of them

fails. The correctness of the protocol can be verified by construct

ing the global state graph; however* its correctness is dependent on

atomic state transitions.

The allowable failure transitions for a given protocol is depen

dent on the state information that is available during recovery. For

example* if all state information is kept in volatile storage* then

each failure takes the site back to the initial state* To accurately

model such a system* failure transitions must be constrained to ter

minate at the initial state* On the other hand* if state information

is kept on stable storage* then the state occupied at the time of

failure is available to the recovery protocol and a failure transi

tion can be a function of that state*

If it desirable for more information to be made available to the

recovery protocol* then the implementation can log every message it

sends* Assuming a "write ahead" log is used* the log entry for a

message is written to stable storage immediately before it is sent.

During recovery* only the sending of the latest message is in doubt.

62

Site I Site i (i =2,3,-n)

(co - ordinator) (Slave)

\/\/\/\^ FAILURE

oooooooce* TIME OUT

Figure 3*5 The two-phase commit protocol with failure transitions
added to the coordinator and timeout, transitions added to the slaves.

Since this implementation introduces new and distinct processing

states into the protocols — states that are recognized by the

recovery protocol — the automata should be expanded so that the

63

sending of each message requires a transition into a new state. Fig

ure 3.6 illustrates how this can be done for a single transition

sending multiple messages.

In real systems* state transitions are not atomic and sites can

fail after sending only a few of the messages associated with a tran

sition. This can modeled simply by allowing a failure transition to

send any prefix of the messages normally sent by a valid transition

from the same state. These messages are sent in addition to the

timeout messages sent by the failure transition. We also allow mul

tiple failure transitions from the same state and these may terminate

in different states. This generalization of failure transitions is

sufficiently powerful to accurately model the behavior of any imple

mentation of a FSA.

obc

a. standard transition

b. expanded to include the effects of logging

Figare 3*6 Modeling the effects of logging messages before sending
them.

64

3.5. Previous Work

Models for specifying and verifying protocols have been an

active research topic for the past several years. The vast majority

of the work on modeling protocols has been in the area of network

communication protocols* and in particular* verifying the ARPANET

protocols. Sunshine presents a good survey of this area (CSUNS793).

Most of the models have been extensions of either Petri nets

(CG0ST74. MERL76. MERL78]) or finite state machines ([AH079. BOCH77a,

ZAFI79]). Other models include the UCLA graph model ([P0ST74])* path

expressions ([CAMP74]), language models ([LAMP78a, LELAN783), and a

unified model which augments a finite state model with variables and

programming constructs ([BOCH77b]). In general* the results are only

remotely applicable to our work: from our perspective* these are the

underlying communication protocols which we do not explicitly model.

However* some of the approaches in error modeling are quite general.

Merlin proposed failure transitions in his model using Petri nets

([MERL76]).

Aho* et al. proved some very interesting results concerning the

transmission of error-free messages ([AH079]). They used a deter

ministic finite state automata model to prove the correctness of a

resilient protocol for physically sending bits across a communica

tions line. Their results parallel some of the results presented in

this thesis. One of the main differences between the two approaches

is our use of indeterminism.

65

In the area of transaction management protocols* very little

formal work has been done. The concurrency control protocols of

SDD-1 were formally proved using a graph model ([BERN80]). Issues of

reliability were not addressed in that proof and the proof techniques

are not appropriate for verifying commit protocols. (In SDD-1* the

commit and recovery protocols are entirely disjoint from the con

currency control protocols.) Ellis has a interesting paper using L-

systems to prove the correctness of a concurrency control mechanism

([ELLI77b]). He also proves that the protocol is resilient to site

failures. However his protocols are for completely replicated data

and do not allow unilateral aborts.

Baer et al. ([BAER80]) uses a petri net model to prove the

correctness of the two-phase commit protocol. This paper also demon

strates the difficulty of the approach — the specification of the

protocol alone took two pages and over 60 states.

CHAPTER 4

The Existence of Resilient Protocols

In this chapter we investigate existence questions concerning

resilient protocols for different classes of failures. One interest

ing question is: "Can we design commit protocols (with corresponding

termination protocols) with enough information kept in each site's

local state so that a failed site may recover exclusively on its

local state information?" Another question is: "what is the most

robust protocol in the presence of network partitions?" Current pro

tocols perform poorly under partitioning* which suggests that this

problem is inherently difficult and may not lend itself to robust

protocols.

This chapter answers these questions. The existence (nonex

istence) proofs presented serve as important paradigms for proofs of

similar problems* especially* for network broadcast protocols.

4*1• Independent Recovery

Independent recovery refers to a scheme where a recovering site

makes a transition directly to a final state without communicating

with other sites. Only local state information is used during the

recovery process. Therefore* recovery is independent of any event

after the site's failure.

Independent recovery is interesting for several reasons. First*

it is easy to implement and leads to simple protocols. One need not

66

67

be concerned with messages to a failed site being queued in the net

work or at another site which may be down when the failed site

attempts to recover. This recovery strategy is of theoretic interest

because it represents the most pessimistic recovery strategy: proving

the existence of a class of resilient protocols using independent

recovery implies the existence of resilient protocols in all more

sophisticated strategies of site failures. Its most important prac

tical aspect is that it qualifies the usefulness of local state

information during recovery: if the local state proves to be insuffi

cient for resilient recovery* then operational sites will have to

provide a history of the completed transaction. This history will

have to be maintained indefinitely until all sites have recovered and

completed the transaction. In this regards* independent recovery

provides the only true nonblocking recovery strategy — any strategy

requiring a history mechanism will necessarily block when the history

becomes temporarily unavailable due to failures.

When discussing independent recovery* we will restrict our

attention to the two site case. All of the results are easily

extended to the multisite case. The multisite case is not presented

here because it requires extra notation and the resulting protocols

are of little practical importance.

We will use failure and timeout transitions as discussed in

Chapter 3. By definition* failure transitions in an independent

recovery scheme terminate in a final transaction state. Since we are

dealing exclusively with the two-site case* timeout transitions also

68

will terminate in a final state. (In the multisite case* timeout

transitions would "invoke" a termination protocol.)

4.1.1. Failure of a Single Site

Let us first consider the simple case where at most one site

fails during a transaction. Our goal is to develop rules for assign

ing failure and timeout transitions to existing protocols to form

protocols resilient to single site failures.

Not all protocols can be made resilient as the next lemma demon

strates.

Lesna 4*1 • If a well-formed protocol contains a local

state with both abort and commit in its concurrency set* then

under independent recovery* it is not resilient to an arbi

trary failure of a single site.

Proof. This follows directly from the definition of "con

currency set." Consider a local state* s.» and its con

currency set* C(s.)« Let C(s.) contain both an abort state

and a commit state. Clearly* s. cannot have a failure tran

sition to the commit state* since the other site may be in

the abort state. Similarly* S£ can not have a failure tran

sition to the abort state* since the other site may be in the

commit state. Hence* when Site i is in s^, it can not safely

and independently recover.

69

If a protocol has no local states violating the necessary condition

in the above lemma* then failure transitions can be assigned accord

ing to the following rule.

Rule 1. For every intermediate state* s» in the protocol:

if C(s)* contains a commit* then assign a failure transition

from s to a commit state; otherwise* assign a failure transi

tion from s to an abort state.

The (centralized) two-phase commit protocol does not satisfy the

condition in the lemma: the concurrency set of the slave's wait state

(p2) contains both c. and a,. Notice that p« is the only local state

violating this rule* and this occurs because the coordinator moves

into the commit state before the slave acknowledges committing the

transaction. If instead* the coordinator moves to a prepared state

while it is waiting for the acknowledgement from the slave and moves

into a commit state only after acknowledgement is received* then it

is possible to assign a failure transition to p„. This "extended"

two-phase commit protocol is shown in Figure 4.1 and its (reachable)

global state graph is shown in Figure 4.2. It is easy to verify from

the global graph that the concurrency set for each state* including

the prepared state* contains only one kind of final state. Hence*

failure transitions satisfying Rule 1 can be defined for each state.

The assignment of failure transitions is depicted in Figure 4.3

(timeout transitions* to be discussed below* are also illustrated).

Site I
(co-ordinator)

yes

commit

Site 2
(slave)

Fig»re 4.1 • The extended two-phase commit protocol.

70

Figmre 4*2•
Figure 4.1.

70a

The reachable global state graph for the protocol of

The second rule deals with timeout transitions.

Rule 2* For each intermediate state s.: if t. is in S(s.)
1 j l

(the sender set for s.) and t. has a failure transition to a

commit (abort) state* then assign a timeout transition from

s. to a commit (abort) state.

71

This rule is less obvious than the previous one. A "timeout" can be

viewed as a special message sent by a failed site in lieu of a regu

lar message. Like any other message received by state s.* it must

have been "sent" by a state in the senders set for s.. Moreover* the

failed site* using independent recovery* has made a failure transi

tion to a final state. Hence* the receiving state must make a con

sistent decision.

Timeout transitions for the extended commit protocol are illus

trated in Figure 4.3. By assigning failure and timeout transitions

according to Rules 1 and 2* we have derived a protocol that is resi

lient to a single failure by either site. This can be verified by

examining its reachable state graph. In fact, these rules always

yield a resilient protocol under independent recovery.

Theorem 4*2• Rules 1 and 2 are sufficient for designing

protocols resilient to a single site failure.

Site I
(co-ordinator)

commit

ack

Site 2
(slave)

failure

time out

72

Figure 4-3. The protocol with failure and timeout transitions
obeying Rules 1 and 2.

Proof* Let P be a protocol with no local states having a

concurrency set containing both a commit state and an abort

state. Let Pf be the protocol resulting from assigning

failure and timeout transitions to P according to the above

rules. Now* the proof proceeds by contradiction. We will

assume that P' is not resilient to all single site failures.

Therefore* there must exist a path from the initial global

state to an inconsistent final global state* and this path

contains exactly one failure. Without loss of generality

assume Site 1 fails* and let it fail in state s,. Let the

inconsistent global state contain the final states: f, and

f«. Hence* upon failing* Site 1 made a failure transition

from s. to f. • There are two cases depending on whether Site

2 is in a final state or a nonfinal state when Site 1 fails.

Case 1. Site 2 is in the final state f^. But this implies

that f~ is in £(s,). Therefore* rule 1 is violated.

£&££ 2.. Site 2 is in a nonfinal state. Upon failing Site 1

sends a "timeout" to Site 2 which is received by Site 2 in

state S-. Now* Site 2 makes a timeout transition to f« which

is inconsistent with f, • However* observe that* by defini

tion* s. is in the sender set of s^. Therefore* Rule 2 has

been violated.

73

4«1*2* Two Site Failures

The rules given above are sufficient for protocols resilient to

a single failure; however* such protocols are not necessarily resi

lient to the failure of two sites. This can be demonstrated for the

protocol of Figure 4.3. If double failures occur when Site 1 is in

74

state p^ and Site 2 is in state p2» then an inconsistent final state

results. Furthermore, for this protocol* this is the only possible

assignment of failure and timeout transitions that satisfy both

rules. Hence* this protocol can not be made resilient to two

failures.

Can the protocol be extended to deal with double failures? The

next theorem yields a negative answer.

Theorem 4*3• There exists no protocol using independent

recovery of failed sites that is resilient to two site

failures.

Unfortunately, the results of this theorem not only applies to

the 2 site case* but applies to the multisite case as well. The

proof assumes N sites (N>1)•

Froof• Let P be a protocol that always preserves con

sistency in the absence of failures. Let i and j be two

sites. We will show: for every failure-free execution of P

that commits the transaction* there exists a point in the

execution where a failure of i followed by a failure of j

leads to an inconsistency.

A failure-free execution of P corresponds to a path in the

global state graph* 6o*Gl*****Gm where Gn *s the ^n^-t^-a^ Slo_

bal state and G is a final global state. We are assuming

that Gm is a final commit state. A global state consists of

a local state vector and a network state; however* for the

remainder of this proof* we will ignore the network state.

Hence* we view the global state* G, , as a vector

<8kltSk2,***tSkN>* w^ere 8vi ifl t*le local state for site i

when transaction execution is in state G. • Let f(s) be the

result of making a failure transition while in state s. Now*

let Ffc be equal to G, except that that s,,,. and sv. are
'ki •kj

replaced by f(ski) and f(sj.). Hence. Ffc is the global state

resulting from a failure of i and j when processing is in G. .

Now* let us examine the sequence FQ F * and in particu

lar* the local states for i and j in this sequence. The pair

(f(sQ^)»f(Sq.)) must be equal to (a.»a.) since a site will

always abort the transaction when it fails in the initial

state. Similarly* the pair (f(s .)»f(s .)) must equal

(c.*c«) since we have assumed that the transaction was com

mitted. Now let k be the smallest k such that either f(s..)

or f(s, .) yields a commit state. This situation is depicted
'kj

below:

Commit Sequence (G-)

0iM"'^01' ***^

k-l»i ,8k-l.j"'#>

'ki' *kj

Global State (Fj) lesultimg
from the Failure of i aud j

^«..*a• *...*a»*...^

^...*a**...*a**...^

F. where either f(a*.) or

75

76

f(8|c*) is a commit state.

<****Smi'****Smi'***> <«»«»c.•••••c*». ••>

Since each global transition reflects one local state transi

tion* two adjacent global states differs by exactly one local

state. Therefore, either s^ i*8^ or s. ^ \=s^ and» thus,

either f(sk_lti)=f(sfei) or f(sk-1 .)=f(8].). Therefore.

f(s^) or f(ski) is an abort state. By assumption, the other

one is a commit state. Hence* F. is inconsistent.

4.2. Network Failures

A network failure results in at least two sites which cannot

communicate with each other. We model such a partition in two ways.

In the first model, all messages are lost at the time partitioning

occurs. In the second, no messages are lost at the time partitioning

occurs; instead, undeliverable messages are returned to the sender.

We define a aimpl e partition as one where all sites are parti

tioned into exactly two sets with no communication possible across

the boundary. Since all partitions can be viewed as one or more

occurrences of a simple partition, we specifically address two

classes of failures: a single occurrence of a simple partition* and

multiple occurrences of a simple partition (or multiple partition for

brevity).

77

We consider a protocol to be resilient to a network partition

only if it enforces the nonblocking constraint, that is, the protocol

must ensure that each isolated group of sites can reach a commit

decision consistent with the remaining groups. Since the commit

decision within a group is reached in the absence of communication to

outside sites* this problem is very similar to the independent

recovery paradigm presented in the previous section.

Throughout this section we will restrict our attention to net

work partitions exclusively and ignore the possibility of site

failures.

4.2.1• Partitioning Vitk Lost Messages

As previously* a site detects the occurrence of a partition by a

timeout and can make a transition on such a message. First* we treat

the two site case.

A network partition is modeled as a special type of global state

transition. Until now all global state transitions were triggered by

one local state transition. However* a network partition is modeled

as a global state transition that erases all outstanding messages and

"timeouts" are sent to all sites.

After a partition has occurred, each site will make a "timeout"

transition. In fact, we have a situation analogous to the double

site failure in the independent recovery model of the previous sec

tion. The difference is: upon double failures, sites make "failure"

transitions; whereas, upon a partitioning, sites make "timeout" tran-

78

sitions. It can be shown that a solution to the double failure prob

lem implies a solution to the simple partitioning problem. An

immediate consequence of this result is is the next theorem.

Theorem 4.4. There exists no two site protocol resilient

to a network partition when messages are lost.

Sketch of Froof. This can be shown using the proof of

Theorem 4.3. as a paradigm. We will restrict our attention

to only two sites. Let f(s) represent the result of a

timeont. transition from state s. Since messages are lost

when the partitions occur, we can ignore the message state

portion of a global state. Let GA, • • • ,G be a
u m

partition-free execution of the protocol that commits the

transaction. Define F^ to be the global state resulting from

a network partition occurring in state G-. Using the nota

tion of the previous theorem, F.=<f(s»,),f(s.«)>. As in

Theorem 4.3, we can find the smallest k such that F, contains
k

a commit state. (Recall that FQ contains only abort states.)

Now, the difference between F. . and F. is one local state.

Therefore, Ffe must contain an abort state as well, which

makes the state inconsistent.

It is straightforward to generalize the theorem to handle the

multisite (N>2) case as we did in the proof of the independent

recovery theorem.

79

4.2.2. Partitioning with Return of Messages

In this situation we assume that the network can detect the

presence of a partition and return undeliverable messages to their

senders. This appears to represent the most optimistic model for

partitions, while loss of messages is the most pessimistic one.

In this case a partition causes a global state transition that

redirects all undeliverable messages back to their senders and writes

timeout messages to the recipients of undeliverable messages. As

before, a site can make a transition on a timeout message. Also, a

site makes a transition when an undeliverable message is returned to

it.

4.2.2.1. Two Site Case

To study this optimistic situation, we now define two design

rules that resilient protocols must satisfy.

Rule 3. For a state s.: if its concurrency set, £(s.)»

contains a commit (abort) state* then assign a timeont tran

sition from s. to a commit (abort) state.

Here site i in state s. was expecting a message when the partition

occurred; instead, it received a "timeout". This site will then make

a decision to abort or commit the transaction consistent with the

state of the site sending the undeliverable message.

The second rule deals with the site sending the undeliverable

message. It must make a commit decision consistent with the decision

80

of the intended receiver.

Rule 4. For state s«: if t. is in £.(s.). the sender set for
J x j

s.» and t. has a timeout transition to a commit (abort)

state* then assign an undeliverable message transition from

s. to a commit (abort) state upon the receipt of an

undeliverable message.

An observant reader will note that these rules are equivalent to

the rules given for independent recovery of failed sites. In fact*

the two models are isomorphic. To illustrate the equivalence* con

sider the information conveyed by a timeout message from a failed

site. The following is true when the operational site* i» receives a

timeout indicating the failure of the other site.

(1) the last message sent by site i was not received (the other site

failed prior to its receipt)*

(2) communication with the other site is impossible (it is down)*

(3) the other site will decide to commit using independent recovery.

Exactly the same conditions hold when an undeliverable message is

returned to site i.

Applying the above design rules to the protocol of Figure 4.3

yields the protocol illustrated in Figure 4.4. As expected* the pro

tocol is identical* to the protocol of Figure 4.3.

In light of this isomorphism* theorem 4.5 is not surprising.

Site 1
(co-ordinator)

commit

ack

Site 2
(slave)

81

last message deliverable

time out

Figure 4.4. The extended two-phase commit protocol (of Figure
4.1b) augmented with timeout transitions and undeliverah1e message
transitions according to Rules 3 and 4.

Theorem 4.5. Design Rules 3 and 4 are necessary and suffi

cient for making protocols resilient to a partition in a

two-site protocol.

82

Sketch of Proof* In light of the aforementioned isomor

phism* we can make use of the proof of Theorem 4.2. In that

proof* substitute "undelivered message" for every occurrence

of "timeout" and substitute "timeout" for every occurrence of

"failure." Finally, substitute "Rule 3" for "Rule 1" and

"Rule 4" for "Rule 2.* The result is a proof for Theorem 4.5.

4.2.2.2. The Multisite Case

In the absence of site failures* the multisite case is very

similar to the two-site case* since preserving consistency within a

connected group of operational sites is not difficult. Thus* design

rules 3 and 4 can be extended to multisite protocols in a straight

forward way. This leads to the following result.

Corollary 4.6. There exist multisite protocols that are

resilient to a simple partition when undeliverable messages

are returned to the sender.

This result is the complement of the results obtained from the

pessimistic model discussed earlier. The models differ in their han

dling of outstanding messages when the network fails: in the pes

simistic model* they are lost; whereas in the optimistic model* they

are returned to their sender. Since this is the only difference

between the two models* the next result is implied.

Corollary 4.7. Knowledge of which messages were

undelivered at the time the network fails is necessary and

83

sufficient for recovering from simple partitions.

We now turn to multiple partitions. Since we are dealing with

an optimistic situation* we assume that timeouts and undeliverable

messages are unaffected by additional partitions. This, in effect,

is an assumption that the network is partitioned into all subsets

simultaneously* and that the process does not happen sequentially.

Even in this (overly) optimistic model* our results are nega

tive* which implies negative results for all realistic partitioning

models.

Theorem 4.8. There exists no protocol resilient to a mul

tiple partition.

In the proof of this theorem we will only consider protocols in which

each state transition reads at most one message (however* a transi

tion can still send an arbitrary number of messages). From the pre

vious chapter* we know that for every protocol* P* there exists pro

tocol P* that satisfies this requirement. Furthermore* P* is no less

resilient than P» because Pv can simulate every timeout or

"undeliverable message" transition made by P. This assumption allows

a simpler proof. The proof follows the same form as previous nonex

istence proofs.

Note that P* will have at least as many local states as P.
Therefore* it is straightforward to show that P' can simulate any
transition made by P. Again* this is discussed in Chapter 3.

Proof* Let P be a three-site protocol that is correct in

the absence of failures. We will assume that P is resilient

to multiple partitions. Let GQ,,..,G_ be a failure free path

in the global state graph for P that commits the transaction.

Now* Gi=(Si*Mi), where S£=<8ii»8i2,8i3> is the vector of

local states and H. is the outstanding messages. We will

consider M. to be the union of three sets: M.,» M.„» and

Mi3* wllere Mt4 *-s the set °f messages addressed to Site j.

Let Gf. be the global state resulting from a partitioning

occurring during the global state G.. Without loss of gen

erality* we assume that all outstanding messages are returned

to their senders. The recipients will receive only timeouts.

Let M*. be the resulting set of messages. Thus*

G,^=(S^,Mf^). Now* let f. denote the transition function

that moves Site j to a final state during a partitioning*

i.e. f.(s..»M*..) is Site i's resulting final state when a
j ij ij

partitioning occurs during G.•

Let k be the smallest k such that a multiple partitioning

occurring while the transaction is in G« still results in the

transaction being committed. Since we have assumed that the

protocol is resilient to such a partitioning* we have

fi^ski,M,ki^ e<luals commit for j=l»2.3. Moreover* by our

judicious choice of k, we have f.(s, , ..M1, , .) equals
J K-JL»j K-1»J

84

85

abort for j=l»2.3. Now from G^ to Gfe one state transition

occurred* and let us assume that Site 1 made that transition.

Furthermore* Site 1 read at most one message and* and if so*

let this be a message from Site 2.

Notice that we have s^ 3=8^ and M'k-1 3=M,k3 since,

between G^ and Gfe* Site 3 did not make a transition and

none of its messages were read. Therefore, fo(sk 1 3»M,k-

1 3^=*3^sk3*M,k3^* But t*1*8 " a contra<liction.

Therefore* even complete information about message traffic during a

partition* and in particular* information about which messages are

undeliverable* is insufficient for recovering from multiple parti

tions.

4.3. Conclusions

The results of this chapter define fundamental limitations on

the robustness of protocols with respect to both site failures and

network partitions* where the measure of robustness is whether a pro

tocol is nonblocking with respect to the studied class of failures.

In general* the results tend to be more illuminating than surprising.

For site failures* the recovery strategy studied was independent

reCQVfiry* where a site recovers using only the local information

available at the time of its failure. The alternative to this stra

tegy is to maintain a history* either of the outcome of the transac

tion at operational sites or of the messages sent to failed sites.

86

Recovery will be based on this information. History-based schemes

are inherently blocking — the components maintaining the history may

fail — and are more costly to implement.

The results show that independent recovery is resilient to a

single failure but not for more than one failure. From the proof of

the theorem for the multisite case* we observe that the most diffi

cult failures to recover from are concurrent failures. In general*

the database is left in an inconsistent state if independent recovery

is attempted on concurrent failures. Since a recovering site can not

deduce from its local state whether another site's failure was con

current with its failure* it is impossible for the site to determine

when it is safe to use independent recovery.

While nonblocking recovery protocols have been examined in

detail in this chapter* nonblocking commit protocols have not. An

important question is whether nonblocking commit protocols exist.

This question is treated in the next two chapters.

The results on robust network protocols are more discouraging

than the independent recovery results. Even under the idealistic

assumption that every site can unmistakenly determine which of its

messages were correctly delivered prior to partitioning* resilient

protocols exist only for simple partitionings. In more realistic

network environments, where a partition can result in lost messages*

there exists no nonblocking protocols — not even for "simple" parti

tions. At best* we can design protocols which allow one group of

sites to continue while the remaining groups block.

CHAPTER 5

Processing in the Presence of Site Failures

When sites fail two different sets of problems must be

addressed: (1) those faced by operational sites and (2) those faced

by failed sites when they attempt to recover. This chapter deals

with the former problems; the next chapter deals with the latter

problems.

The first difficulty an operational site faces is the restruc

turing of the communication topology. For example* when the coordi

nator fails in a centralized protocol* the whole communication struc

ture of the protocol collapses. The slaves'must establish a new com

munication structure before they can continue processing. One way to

do this is to elect a new coordinator; however* this is not the only

course available to them.

The second problem faced by the operational sites is that of

consistently terminating the transaction. Our major concern is that

the transaction can be safely terminated without waiting for the

recovery of failed site(s). Of secondary importance is whether the

transaction is actually committed or aborted.

When the transaction can not be safely terminated* the opera

tional sites must block until some of the failed sites have

recovered. Blocking is undesirable because locks on the database

Actually* there is a second strategy. The operational sites

87

88

must be held while the transaction is pending. A good inverse meas

ure of the robustness of a protocol is the number of global states of

a protocol where site failures can cause it to block. Protocols that

never require an operational site to block are called nonblocking

protocols* and in this sense they are maximally robust.

In this chapter we prove a simple but powerful result: the fun

damental nonblocking theorem. It describes sufficient properties for

designing nonblocking protocols. From this theorem we derive the

canonical three phase commit protocol which is the simplest nonblock

ing protocol. We then give examples of nonblocking protocols* which

are derived from the canonical three phase protocol.

Within this chapter* we make the following assumptions:

(1) State transitions are not atomic. Instead* a site may fail in

the middle of sending the messages associated with a normal

transition. The protocols discussed must deal with this possi

bility. Failures are modeled formally by failure transitions as

described in Section 3.4.

(2) We ignore the possibility of other types of failures (i.e. lost

messages and network partitioning). A subsequent chapter

discusses those failures.

could terminate the transaction* and if at some later time an incon
sistency is discovered at a failed site* steps could be taken to
repair the inconsistencies. Since a major premise throughout this
thesis is that consistency must be conserved at all times* we do not
explore this possibility. Since inconsistencies are, in general*
hard if not impossible to repair* this is not an attractive alterna
tive.

89

5.1. Commit and Termination Protocols

Some site failures are more difficult to handle than others.

For example* the failure of the coordinator in the two-phase commit

protocol is very hard to handle* since all communication involves the

coordinator. Its failure requires the invocation of a special proto

col which establishes communication among the slaves and then

attempts to terminate the transaction (perhaps polling the sites to

reach a commit decision). We reserve the term, termination protocol,

for these special purpose protocols* and use the term* commit proto

col* for the protocol used in the absence of failures. The term*

recovery protocol, (properly* a site recovery protocol) is reserved

for the protocol used by a site while recovering.

In contrast to the failure of the co-ordinator* the failure of a

slave can easily be handled within the two-phase commit protocol and

does not require the invocation of a specialized termination proto

col. If the slave fails before voting* then the transaction is

aborted; otherwise* the transaction is committed or aborted in the

usual way and the slave is told about the decision upon recovering.

This strategy works for a slave because a slave communicates with a

single site* the co-ordinator. As a rule of thumb* the more sites

that a given site communicates with* the harder it is to recover from

its failure.

A nonblocking commit protocol is used in conjunction with a non-

blocking termination protocol to correctly terminate transactions at

operational sites. Given formal properties ensuring nonblocking

90

behavior* a commit protocol and termination protocol can be designed

independently. The design of a termination protocol need only depend

on the formal properties of nonblocking protocols and not on the

characteristics of a particular commit protocol.

Design independence provides for separation of "concerns"

between the two types of protocols. Since the commit protocol is

invoked for every transaction* it should be designed for speed and to

consume a small percentage of the network bandwidth. On the other

hand* the termination protocol is invoked only when a failure occurs

(and this should be rare); therefore* the its design objectives may

be quite different than for those for the commit protocol. For exam

ple* ease of implementation may be a significant factor in choosing a

termination protocol.

This suggests that the commit protocol and termination protocol

can be of different communication topologies. For some network

environments, a centralized commit protocol (which has low message

overhead) could be used with a decentralized termination protocol

(which is easy to implement)•

5.2. Properties of nonblocking Protocols

In the this section we will be interested in defining the pro

perties of nonblocking protocols — properties applying to both com

mit and termination protocols. Throughout the discussion* we will

ignore recovery protocols for failed sites.

91

5.2.1. Definition of nonblocking

Informally, a protocol that is nonblocking ojl site failures

never requires an operational site to wait until a failed site has

recovered. As stated in the introduction to the chapter, only sites

that have never failed during the processing of the transaction are

considered "operational sites."

A protocol is formally defined to be nonblocking (on site

failures) if for all possible executions* including all combinations

of failures: the protocol correctly terminates the transaction at all

operational sites in a bounded number of messages* and it does not

require any messages (except for timeouts) to be sent by a site after

failing. This is a strong notion of nonblocking.

Generally, we will be interested in a weaker notion of nonblock

ing where the protocol is not required to terminate the transaction,

but only to leave it in a state where it can be terminated in a

bounded number of messages from operational sites only. The commit

protocols discussed will be nonblocking in this weaker sense: we do

not require them to terminate in all cases. In contradistinction, a

termination protocol is required to terminate in all cases, hence, by

. . 2
definition* they must be nonblocking in the strong sense.

2
One could argue that a commit protocol and a termination protocol

actually are components of a larger protocol that is nonblocking in
the strong sense. However, we are interested in designing commit
protocols completely independent of any specific termination proto
col; thus, we are interested in what it means to be nonblocking in
the weak sense.

92

A commit protocol is shown to be nonblocking in the weak sense,

if for each of its reachable global states there exists a nonblocking

termination protocol that can be invoked from that state. Of course,

existence is usually demonstrated by giving a protocol, but this is

not necessary. On the other hand, showing that a protocol is a

blocking protocol in the weak sense is often very hard since the

nonexistence of an appropriate nonblocking termination protocol must

be shown. A protocol is shown to be nonblocking (or blocking) in the

strong sense by examining its global state graph.

5.2.2. Blocking Protocols: An Example

Before discussing nonblocking protocols, it will be instructive

to examine why a particular protocol blocks. We will use the (cen

tralized) two-phase commit as an example. Let there be N sites and

let the transaction have progressed to the point that all sites have

voted on the transaction. A slave is aware only of its own vote (as

reflected in its state). Now let the coordinator (Site 1) fail, fol

lowed soon afterward by the failure of the first slave (Site 2). The

remaining N-2 sites communicate among themselves and discover that

all of them voted yes, and none of them received a commit (or abort)

message from the coordinator. The operational sites can not safely

proceed because from their collective local states they can not dis

tinguish the following two sequences of events:

(1) Site 2 unilaterally aborted the transaction, and

93

(2) Site 2 accepted the transaction, the coordinator received the

"yes" vote and failed after sending a commit message to Site 2.

Site 2 received the message, committed and failed.

Notice that the operational sites must block regardless of the state

(c, or w,) the coordinator assumes when recovering.

5.2.3. The Fundamental nonblocking Theorem

In the above scenario, each of the sites was in the wait site

(w.). This state contains insufficient information to allow the

transaction to continue, because its concurrency set contains both

the abort state and the commit state for the failed slave. Clearly,

if the operational sites are to terminate the transaction in a con

sistent state, then one of their local states must preclude either

the abort state or the commit state (i.e. the concurrency set of at

least one state must contain only commit or abort but not both) •

Furthermore, if the abort state is precluded, then at least one of

the operational sites must be in a committable state. (Recall that

the occupancy of a committable state implies that all sites have

accepted the transaction.)

Let us formalize the above observations. First, we must

describe the behavior of failed sites. The state of a failed site is

defined to be abort or commit if the site had aborted or committed

before failing; otherwise, its state is failed. This characteriza

tion of failed sites precludes the use of independent recovery; how

ever, from the previous chapter, we know that independent recovery is

94

not resilient to more than one failure. Instead, we assume that a

recovery protocol requiring communication with operational sites is

used.

We now define the notion of a safe local state. The definition

uses concurrency sets (see section 3.3.2) which are defined over all

possible states, including the failed state.

Definition. A local state, s, is safe if and only if it

satisfies one of the following conditions:

SI: C(s) does not contain a commit state, or

S2: s is a committable state and C(s) does not contain

an abort state.

3
By convention, the "failed" state is safe.

Clearly, for any correct protocol, abort and commit are safe. Intui

tively, an operational site in a safe state can safely make a deci

sion to commit or abort the transaction.

A global state is safe if and only if at least one operational

site is in a safe local state. A global state is completely safe if

A
and only if all sites are in safe states.

3^. . .
This convention is primarily for convenience. It alleviates the

need of saying "either in a safe or the failed state" during our sub
sequent discussions.

4
Notice that a transaction is in a (completely) safe state if all

sites fail during its execution. This is a consequence of our con
vention that the failed state is safe.

95

The term "completely safe" suggests that a transaction can be

safely terminated even in the presence of failures. This is indeed a

correct interpretation as demonstrated by the protocol in Figure 5.1.

This protocol terminates a transaction in a completely safe global

state in a bounded number of messages.

Comment, every site, i, executes the following local protocol.

Let s represent the current local state.

Let 8V represent the local state of the transaction at the time this
protocol is invoked.

if s' is committable

then s := nyes"
else s := "no"

for 1 to N do

if s="yes"
then send "yes" to all sites
else send "no" to all sites

wait for messages from all (including failed) sites

if a "yes" message is received
then 8 := "yes"
else s := "no"

end_for

if s="yes"
then commit the transaction
else abort it

Fignre 5*1 • A protocol for terminating transactions in complete
ly safe states.

96

The protocol is a decentralized protocol consisting of N message

rounds (where N is the number of participating sites). During each

round, a site sends either a yes (to commit) or a m (to abort) or a

tilQfiffllf (if it has failed) to all sites, including itself. For nota-

tional simplicity, failed sites are included in rounds.

Each operational site terminates the transaction according to

the last round of messages it received. A consistent decision is

reached if the local states of the operational sites have converged

by the last round. It is easy to show that N rounds are sufficient

to ensure convergence.

Theorem 5*1 • The protocol of Figure 5.1 correctly ter

minates a transaction in a completely safe global state.

Moreover, termination is achieved in a bounded number of mes

sages.

Proof* Bounded termination is easy to show. The protocol

consists of exactly N rounds. In each round, a site sends N

2
messages. Thus, a round consists of N messages.

Now to show consistency. Note that if all sites fail before

the end of the last round, then consistency is trivially

preserved. Henceforth, we assume that at least one site is

operational. The operational sites will consistently abort

or commit if their state variables converge.

97

Claim 1. If their states during round i converges then they

will converge in round i+1 and, by induction, in all subse

quent rounds converges.

Justification. The messages sent during round i+1 are

dependent solely on the local states set during the previous

round. If the local states are identical during round i,

then all messages sent and received during round i+1 will be

identical, and once again all operational sites will move

into identical states.

Claim 2. If no sites fail during round i, then at the end

of the round all sites move into the same local state.

Justification. In the absence of failures, the sites

receive identical messages, and by symmetry will move into

the same state. (Recall, a site sends a message to itself,

thus in the absence of failures, an identical set of messages

is received by each site).

Since there are N rounds and at most N-l site failures in the

nontrivial case, there must be one failureless round. During

that round the local states of operational sites will con

verge (by note 2) and remain so for the remainder of the pro

tocol (by note 1)•

This protocol is the first example of a termination protocol.

It is a naive and expensive protocol and of little practical impor

tance, but it can be used in proofs requiring the existence of a ter-

98

mination protocol. For this reason, it is interesting. We will use

it when showing that a commit protocol is nonblocking in the weak

sense.

Two corollaries of this theorem are:

Corollary 5.2. If the global state graph of a protocol

contains only completely safe states, then the protocol is

nonblocking.

Proof* The protocol of Figure 5.1 can be invoked at any

time to terminate the transaction.

Corollary 5.3. If every local state in a protocol is

safe, then the protocol is nonblocking.

Proof* If every local state is safe, then every global

state is completely safe. From the previous corollary, the

protocol is nonblocking.

In the blocking scenario above, we showed that some local states in

the two-phase commit protocol are not safe, and thus, some global

states are not completely safe. The scenario describes a blocking

situation that occurred when the sites in safe states failed, leaving

only sites in unsafe states.

Instead of a protocol being completely nonblocking, we may want

to require that it be able to function correctly if only a bounded

99

number, say K, of site failures occur. Let us define K-regiliency to

be the property that a protocol can survive K failures without block

ing ([ALSB76]). The next corollary gives sufficient conditions for

this case.

Corollary 5*4* If every global state in a protocol con

tains R+l safe local states, then the protocol is K-

resilient.

Proof* A modified version of the above protocol can be

invoked at any time and it is guaranteed to terminate the

transaction if no more than K sites fail.

In the modified protocol there are only K+l rounds. Except

for the last round only sites in safe states are allowed to

participate. These "safe sites" execute the first K rounds

of the protocol as before. During the last round they also

send messages to "nonsafe sites" who then commit or abort as

before. (As before, nonsafe sites do not send messages dur

ing this round.) After these K+l rounds, either a round con

taining no failures of safe sites has occurred and their

states have converged, or R+l failures have occurred.

The next theorem describes sufficient conditions for a protocol

to have only safe local states.

Theorem 5*5* (the Nonblocking Theorem). if a protocol

obeys the two rules:

100

(1) if any site has committed, then all operational sites

occupy committable states,

(2) if any site has aborted, then all operational sites

occupy noncommit table states,

then it is a nonblocking protocol.

Proof* The rules guarantee that all local states are safe.

Consider a local state, s, and its concurrency set, C(s). By

the rules given, C(s) can contain an abort state only if it

is noncommittable. Similarly, C(s) can contain a commit

state only if it is committable. By definition, the set of

committable states and the set of noncoinmittable states are

disjoint and include all local states. Therefore, C(s) can

not contain both commit and abort, and s is safe.

Each of the two conditions of the theorem can be decomposed into

two design rules for nonblocking protocols. For the first condition,

these rules are:

(1.1) Before a site can commit, it must verify that all operational

sites are in committable states.

(1.2) A site can move from a committable state to a noncommittable

state, only if there is no possibility of another site

(including a failed site) being in the commit state.

A useful implication of this theorem is the following corollary

on K-resiliency:

101

Corollary 5*6* A protocol is R-resilient if there is a

subset of K+l sites that obey the fundamental nonblocking

theorem.

Until now, we have ignored the state of the network in showing

termination. Hence, the protocols use only a subset of the informa

tion that is available. It is not surprising that the properties in

the above theorems are stronger than necessary (if we are considering

only site failures). For completeness, we will give an example of a

set of weaker properties that utilize messages on the network.

Theorem 5*7* Every nonblocking protocol exhibits the fol

lowing behavior. For every Site i, when Site i makes a tran

sition to a commit (abort) state, then for every Site j, at

least one of the following must hold:

(1) Site j is in a committable (noncommittable) state,

(2) The network contains messages that will unconditionally

move Site j to a committable (noncommittable) state.

(3) Site i sends a message that will unconditionally move

Site j to a committable (noncommittable) state.

Proof* Constraint (1) taken alone is exactly the nonblock

ing theorem. Since only one transition to a final state can

be made, it is not possible for both "unconditional" abort

and "unconditional" commit messages for the same recipient to

be present.

102

We can trivially modify the termination protocol of Figure

5.1 to handle protocols satisfying conditions of the theorem:

the protocol simply waits one end-to-end message delay before

beginning the first round. This allows any outstanding mes

sages that enforce conditions (2) and (3) to be received.

Note that after all outstanding messages have been received,

every site must satisfy condition (1), because either it

satisfied (1) initially or it moved to a final state. How

ever, in a consistent protocol every final state satisfies

(1).

By examining its reachable global state graph, a protocol can be

checked for satisfiability of the theorem. However, unlike the pre

vious theorem, this result requires that the state of the network be

examined in addition to the local state of the participants.

Protocols designed using properties (2) and (3) exhibit

weaknesses which limit the significance of the theorem. They depend

on the existence of certain messages in the network, and therefore,

are not resilient to the loss of an arbitrary message. Furthermore,

they tend to be expensive (requiring 0(lr) messages).

5*3* nonblocking Commit Protocols

As we have demonstrated before, the canonical two-phase commit

protocol is a blocking protocol. In the second phase of this proto

col, sites move directly from the wait state, which is a noncommitt-

able state, directly into the commit state. Until the phase is com-

103

pleted, sites will concurrently occupy the wait state and the commit

state, and this violates the first rule of the nonblocking theorem.

The rule itself implies that the sites must first move into committ

able intermediate states, before moving into the commit states. This

gives rise to the Canonical three phase commit protocol;

Phase 1* Each site learns of the transaction, votes, and moves into

a noncommittable wait state (or unilaterally aborts).

Phase 2* If any site unilaterally aborted or failed before voting,

then all operational sites move directly to an abort state; oth

erwise, all operational sites move to a committable intermediate

Figure 5*2* The canonical three-phase commit protocol.

104

state which we shall call the prepared state (p).

Phase 3* The sites commit the transaction.

The state diagram for the canonical three-phase commit protocol is

given in Figure 5.2.

Notice that it is more expensive to commit (requires three

phases) than to abort (requiring two phases) in this protocol. This

is an inherent property of protocols allowing unilateral abort.

From the canonical three-phase commit protocol, we can derive a

three-phase protocol for each distinct communication topology,

including the central site, the hierarchical, the ring, and the

decentralized topologies. These are illustrated in Figures 5.3

through 5.6. Each protocol exhibits only minor perturbations from

the canonical protocol. In the coordinator protocols (the central

site, hierarchical, and ring), the coordinator moves the other sites

into the prepared state. In the decentralized protocol, the addition

of the prepared state translates into another message round.

For all classes of protocols, the cost of an additional phase is

high. The number of end-to-end message delays increases by 50 per

cent. The number of messages increases by 50 percent for the ring

and decentralized protocols, and a little less (around 40 percent)

for the other protocols.

The semantics of the prepared state is very simple: it is a flag

to indicate that the transaction is committable. No other action is

associated with it. It is important to realize that it is not a com-

Site I

(co- ordinator)

prepare2-- preparen

105

Site i (i = 2, 3-n)

(slave)

Figure 5*3* The central site three-phase commit protocol

xact.

xactsr-xactSK

yessr-yessK

yesp

preparep

prepareS|--* prepare^

acks|-ackSK
ack.

Site i

(i is an internal node)

106

©

Notes:

(I) V is parent of I

t2)"SI,,f—f"SKM are sons of i

(3) The co-ordinator and "leaf"
protocols are isomorphic

to the co-ordinator and

slave protocols in the

centralized protocol.

commitp
commitgi**- commitSK

*ig»re 5*4* The hierarchical three-phase commit protocol.

O
Q

S
it

e
0

S • •
©

9 C
D

re
qu

es
t

/
xo

ct
j

/
•1 G
O

(
w

•

a
b

o
rt

N
-l

a
b

o
rt

)

f
t

t
r

H (D

1

xa
ct

N
_

|
p

re
p

a
re

|

o i r
t

d)
O r
t

p
re

p
a

re
N

_
,

O O o
c
o

m
m

it
I

S
it

e
i

(i
«

l,
2

,-
,N

-l
)

p
re

p
a

re
1.

1
p

re
p

a
re

i+
|

d>
c
o

m
m

it
|-

i

co
m

m
it

(+
|

N
o

te
s
:

(I
)

A
ll

a
ri

th
m

et
ic

is
m

o
d

u
lo

N

o

108

Site i (i=l,2, - n)

yeSj,-- yes

yes,; ... yesni
m

prepare., ••• prepay
in

0
prepare. ••• prepare .

*ig»re 5*7* The decentralized three-phase commit protocol.

109

mit state. Until the completion of the second phase and all sites

are in committable states. a transaction may still be aborted by a

termination protocol. Therefore, locks must be held throughout this

state. Moreover* a site failing in the prepared state can not

independently recover to a commit state.

5*3*1* A Historical Perspective

The centralized three-phase commit protocol was concurrently

discovered by several researchers ([GARC79. SVOB79* SKEE81b] and oth

ers). The decentralized three-phase commit and an early version of

the nonblocking theorem appeared in [SKEE81b]. Even though the

three-phase commit is the cheapest nonblocking commit protocol* it

has yet to be implemented in a database system.

SDD-1's four-phase protocol claims to be K-resilient where K is

a constant that can be adjusted to the desired level of resiliency

([HAMM78]). The protocol was described in Chapter 2 and illustrated

in Chapter 3•

A distinguishing feature of the protocol is the K back-up coor

dinators. We observe that the original coordinator and its backups

move to a committable state during the third phase of the protocol

while the slaves do not commit until the fourth phase (the back-ups

themselves contain no data and hence never commit). A similar state

ment is true for aborted states. Therefore* the protocol satisfies

the nonblocking theorem (for K sites)* and is K-resilient.

110

5*4* Termination Protocols

The primary design criterion for a termination protocol is that

it consistently terminate a transaction that is in a completely safe

state. If we are interested in only K-resiliency* then it need only

terminate when no more than K failures have occurred. Other design

goals include: minimizing the number of messages* minimizing expected

time of termination* or committing the transaction whenever it is

safe to do so. These are conflicting goals; normally* only one can

be achieved.

When discussing termination protocols* the following property of

nonblocking protocols is helpful:

If any operational site is in a noncommittable state* then

the transaction can be safely aborted. Similarly* if any

operational site is in a committable state* then the transac

tion can be safely committed.

This property follows directly from the requirement that a site may

commit (abort) if and only if all currently operational sites are in

committable (noncommittable) states.

To a limited extent a termination protocol can choose whether to

abort or commit a transaction. A protocol that always commits a

transaction when it is safe to do so is described as a progressive

protocol.

Ill

5*4*1* Central Site Termination

The basic idea of the protocol is to choose a hack-up coordina-

£0X from the set of operational sites. The backup coordinator

assumes the role of coordinator and completes the transaction. Since

the backup can fail before terminating the transaction* the protocol

must be reentrant.

The scheme described is similar to the scheme used in SDD-1.

The major difference is that the candidates for becoming backup coor

dinator are not distinguished sites* rather any site may be elected

(the mechanics of election are discussed later). The protocol

requires only that the invoking protocol satisfy the nonblocking

theorem. Any of the three-phase protocols (including the decentral

ized version) can invoke it.

Once a backup has been chosen* it will base the commit decision

only on its local state. It executes the following two-phase proto

col:

Phase 1* Given that the backup is in a committable (noncommittable)

state* it issues a message to all sites to move to a committable

(noncommittable) state.

Phase 2* The backup issues a commit (abort) message to all sites.

(An optimization is to omit Phase 1 when the backup is initially in a

commit or abort state.)

Lemma 5*8* Given that the initial global state of the

transaction satisfies the Nonblocking Theorem* then the

Central Site Termination Protocol preserves the conditions of

the nonblocking theorem.

Proof* Phase I preserves the conditions since it does not

commit or abort but merely moves sites to a state already

occupied by an operational site. At the end of Phase I all

operational sites are in a committable (noncommittable)

state; therefore, Phase II. which commits or aborts the tran

saction* satisfies the properties of the nonblocking theorem.

If Phase II completes, then the transaction has been con

sistently terminated at every operational site.

Theorem 5*9* Given that at least one site remains opera

tional* the central site termination protocol correctly ter

minates a transaction.

Proof* We will assume that a unique backup coordinator can

be elected at each instantiation of the protocol. (This has

been shown by [GARC80b].)

Given that the conditions of the nonblocking theorem hold

when the commit protocol invokes the first instantiation of

the termination protocol* by induction and using Lemma 5.8

the conditions hold for each subsequent invocation. The

recursion terminates either when the backup does not fail and

the current instantiation executes to completion* or when all

sites fail.

112

113

5*4*2* Progressive Termination

One potential disadvantage of the central site termination pro

tocol is that it is a nonprogressive protocol. We can construct a

progressive termination protocol by adding an initial phase and by

slightly modifying the other phases. In the new initial phase the

backup polls the other participants as to their state. If any site

reports a committable state* then the backup moves all sites to a

committable state in the second phase (alias the old Phase I); other

wise* the backup moves all sites directly to the abort state (recall

that all sites currently occupy a noncommittable state). The third

phase (alias the old Phase II) is only executed for committed tran

sactions. It moves all sites to the commit state.

The resulting termination protocol is very similar to the

three-phase commit protocol. The major difference between them is in

the second phase: the commit protocol requires unanimous acceptance

while the termination protocol requires a single positive response

(i.e. a site in the committable state). However* a single committ

able state implies that all sites have previously accepted the tran

saction.

5*4*3* Electing a Mew Coordinator

The central site termination protocol (and its proof) require

the election of a new and unique coordinator. Garcia-Molina

([GARC80b]) surveys several election strategies under various failure

assumptions (including arbitrary site failures) and presents informal

114

proofs of resiliency. We refer the interested reader to this work

for a detailed discussion of election protocols.

We will briefly describe an election protocol that is well

suited to a centralized environment. Since both the central site

commit protocol and a single instantiation of the central site termi

nation protocol exhibit a linear cost (i.e. linear in the number of

sites) message traffic* it is reasonable to require that the election

protocol exhibit linear cost as well. This rules out any brute force

approach.

The protocol we will discuss is implemented in SDD-1 ([HAMM80]).

Sites are assigned a linear order in which they will assume the role

of coordinator. For convenience* we assume that the order is equal

to the site number. Hence* Site 1 is the coordinator* Site 2 is the

first backup* etc.

The protocol makes the operational site with the highest ranking

the new coordinator. The protocol proceeds as follows: Let Site i be

the current coordinator (this occurs only if Sites 1. 2,.... i-1 have

failed). When Site j discovers the failure of the current coordina

tor, it sends an "are you upM message to Site j-1. If this request

times out, then Site j sends the same message to Site j-2. This con

tinues until Site j receives a response, or until Site i+1 is polled

and there is no response.

In the first case* at least one higher ranking site is opera

tional; therefore Site j is not the new coordinator. In the latter

case* Site j is the highest ranking operational site (recall that

115

sites 1 through i-l failed earlier* and Site i has just recently

failed). Hence Site j becomes the new coordinator* and initiates a

new instantiation of the termination protocol. If Site j fails

before initiating the termination protocol* then the other sites will

eventually time out and hold another election.

5*5* Decentralized Termination Protocol

Our primary goal in designing a decentralized termination proto

col is to minimize the number of message rounds. Normally* more than

one round is required* and in the worst case a round is required for

each failure. As a secondary goal* we are interested in finding a

progressive protocol.

During each message round* a site will send the status of its

current state (i.e. committable or noncommittable) to every other

site. We can now apply the nonblocking theorem to derive the proto

col. From the theorem* we know that if all the sites send committ

able (noncommittable) messages during a message round* then it is

safe to commit (abort) the transaction. We still have two cases to

consider concerning the result of a message round: what to do when

both committable and noncommittable messages appear during a round*

and what to do about subsequent site failures.

Let us consider the case of conflicting states first. The tran

saction can not safely be terminated* for then it would violate the

nonblocking rules. In concordance with our progressive criteria* the

state transition rule should be: any site receiving a committable

116

message moves into a committable state. Since the possibility of a

failure occurring during the round exists, another message round is

initiated (see below).

If no additional failures occur during the protocol, then two

message rounds are sufficient to terminate a transaction. The tran

saction is terminated in the first round if all sites are in committ

able states or all sites are in noncommittable states; otherwise, a

second round is needed. In the latter case* where the round contains

mixed messages, all sites move to committable states during the first

round. In the second round, all sites will receive "committable"

messages, and subsequently commit.

A site failure during a round is more difficult to handle, since

the sites no longer receive the same information. If a site fails

while sending messages, some of the sites will receive a message from

the site (and not detect that it has failed), while others will not

receive a message but will detect its failure. In the worst case,

each site failure can precipitate another message round. This is

illustrated in Figure 5.4 for five sites.

This figure illustrates that a given site can not safely abort

the transaction when it detects a (new) site failure during a round

of "uncommittable" messages. It is unsafe because the failed site

may have sent messages to some of its cohorts, changing their states

to committable. The given site must participate in another round of

messages. If two consecutive rounds of nuncommittable" messages

reveal no additional site failures, the transaction can be safely

initial

state

round 1

round 2

round 3

round 4

round 5

SITE 1

committable

(1)

FAILED

FAILED

FAILED

FAILED

MESSAGES RECEIVED

SITE 2 SITE 3

non

(1)

FAILED

FAILED

FAILED

non

-NNNN

-CNNN

(1)

FAILED

FAILED

SITE 4

non

-NNNN

—NNN

—SM

(1)

FAILED

117

SITE 5

non

-NNNN

—NNN

m

QL

£

NOTE: (1) site fails after sending a single message.

Worst case execution of the resilient terminationFignre 5*4*
protocol.

aborted•

On the other hand, it is always safe to commit the transaction

during a round of "committable" messages, even when additional site

failures are detected, because in a progressive protocol an opera

tional site in a committable state never moves to a noncommittable

state. Therefore, a failed site can never influence its committable

cohorts.

The protocol is summarized in Figure 5.5. To commit a transac

tion may take only a single message round; however, to abort a tran

saction normally requires at least two message rounds. The first

message round is required to establish the operational sites because

generally a site is not certain of which sites are currently up. In

First message round:

type of transaction state

final abort state

committable state
all other states

Second and subsequent rounds:

message received from previows round

one or more abort messages
one or more committable messages
all noncommittable messages

118

message sent

abort

committable
noncommittable

message sent

abort

committable

noncommittable

a. Summary of rules for sending messages.

The transaction is terminated if:

condition

receipt of a single abort message
receipt of all committable messages
2 successive rounds of messages
where all messages are noncommittable
and no site failures occur

final state

abort

commit
abort

b. Summary of commit and termination rules.

Figure 5*5 Summary of the resilient decentralized termination pro
tocol.

the first round* the site will detect the failed sites (by the

absence of a message from that site), but generally it will not know

if a site failed before or during the first round. If it failed

119

during the round* then the protocol requires another round. Because

of this uncertainty* two message rounds are usually required.

We now argue that the protocol is correct.

Theorem 5*10* The decentralized termination protocol of

Figure 5.5. consistently terminates a transaction given that

the properties of the nonblocking theorem holds upon its

invocation and at least one site remains optional.

Instead of proving the theorem directly* we will present a

series of lemmas concerning the protocol. Collectively* the lemmas

imply the correctness of the protocol.

Lemma 5*11* A transaction that has been committed by at

least one site at invocation time will be committed by the

termination protocol.

Proof* Since the commit protocol is nonblocking* a commit

at one site implies that all sites are in a "committable"

state. Therefore* all messages sent during round one of the

termination protocol must be committable messages. Hence*

all sites will commit in round one.

Lemma 5*12* A transaction is committed only if at least

one site occupies a committable state at the time the termi

nation protocol is invoked.

120

Proof* Recall from the nonblocking theorem that if any site

occupies a committable state, then the transaction can be

safely committed. We will argue the contrapositive of this

lemma: if no site is in a committable state then the transac

tion is not committed. If no sites occupy a committable

state initially, then no committable messages will be sent.

Hence, no sites will move into a committable state. By

induction, no subsequent rounds can include committable mes

sages. Therefore, the transaction cannot be committed.

Lemmas 5.11 and 5.12 prove that the termination protocol

correctly commits in all cases. This implies that the protocol

correctly aborts in all cases if. it always terminates. We will now

show termination.

Let n be the number of participants at the beginning of the pro

tocol. Let N^(r) be the set of sites sending nnneommittable messages

to site i during round r.

We have:

Lemma 5.13. N^r+1) £ N£(r)

Proof. This follows directly from Lemma 1: for a site to

send a noncommittable message in round r+l, it must have sent

a noncommittable message in round r.

121

Lemma 5.14. If N^r+1) = N£(r) * 0, then all messages

received by site i during both rounds r and r+l were noncom

mittable messages.

Proof* Without loss of generality assume that Site i is

operational. The argument proceeds by contradiction. Let

N^(r+1) = N^(r) and let round r contain messages other than

noncommittable messages. We will only discuss the case where

committable messages appear. There are two subcases depend

ing on the message sent by i during round r:

Case 1. Site i sends a noncommittable message during round

r. In round r+l, it will send a committable message because

it received a committable message during round r (by assump

tion). This contradicts the claim N.(r+1) = N.(r).

Case 2. Site i sends a committable message during round r.

Since Site i did not fail in round r» all sites received a

committable message (from i) during that round. Therefore,

in round r+l all sites will send committable messages. Again

this is a contradiction.

Lemmas 5.13 and 5.14 show that the number of sites sending non

committable messages either monotonically decreases toward zero with

each round, or two rounds will occur with the same number. In the

former case, the transaction will be terminated by the time the

number reaches zero (and this requires at most N rounds). In the

latter case* the transaction will be aborted because of the

122

termination rule.

5.5.1* Enhancements

The above protocol is slow to abort the transaction - even when

there are no sites in committable states and abortion is inevitable.

In the absence of additional site failures, abortion requires two

message rounds, and with site failures, additional rounds are

required.

Abortion can be expedited by the addition of a new message type

to the above protocol. The new message is abort and is sent whenever

a site is in a final abort state (or in the initial state). Upon

receiving an abort message, a site can immediately abort the transac

tion. Notice that the nonblocking theorem guarantees that both an

abort message and a committable message can not be sent during a mes

sage round. This protocol was carefully described and its correct

ness proved in [SKEE81c].

5*6* Cost of Termination

Let us compare the cost of the termination protocols for the two

classes we have discussed. let N represent the total number of

sites, and let p. represent the number of sites currently up (opera

tional)•

A single invocation of the centralized protocol entails electing

a new coordinator and executing the two-phase termination protocol.

An election requires approximately 2(ji-l) messages and two end-to-end

delays. Assuming that all sites remain operational, the two-phase

123

protocol requires 3(ji-l) messages and three end-to-end delays. In

total we have approximately 5(ji-l) messages and 5 end-to-end delays

per invocation.

2
The decentralized termination protocol requires ji messages per

round and experiences one end-to-end delay. For a single failure,

either one or two messages are needed, with two rounds being the most

probable. For each additional failure, at most one additional round

is required.

Thus, for the failure of a single site, which for most systems

is by far the major type of failure, the central site protocol

requires approximately 5N messages and 5 end-to-end delays, as com-

2
pared with approximately 5N messages and one end-to-end delay. For

N-1 site failures (the greatest number of failures any termination

protocol can tolerate) occurring at the worst possible times, the

2
central site protocol would send 5N 11 messages and incurs 5N delays,

3
while the decentralized protocol would send 5N /3 messages and incurs

N delays. It is interesting to note that in the most pessimistic

case, the decentralized protocol sends fewer messages for N<8.

The major advantages of the centralized scheme are:

(1) Fewer messages are sent per invocation (round), and

The calculations assume that operational sites do not send mes
sages to known failed sites. If f(u) is the lumber of messages sent

when u sites are operational, we have computed 2 f(u).
u=l

124

(2) Another invocation is required only if the current coordinator

fails - slave failures can be handled appropriately.

Since the decentralized protocol can require an additional round

if any site fails, the central site protocol is expected to require

fewer invocations than the decentralized protocol requires rounds.

The major disadvantage of the central site protocol is that it

is fairly complex to implement since it requires both an election

protocol and the two or three-phase termination protocol. Another

disadvantage is the number of end-to-end delays incurred per invoca

tion.

The weaknesses of the central site protocol are the strengths of

the decentralized protocol. The decentralized protocol is very sim

ple and straightforward to implement, and this is perhaps its strong

est asset. Therefore, the decentralized protocol is a viable choice

even in network environments where messages are expensive as long as

N is relatively small and failures are infrequent. In this case, the

cost of implementing the central site protocol could outweigh the

savings in execution.

Decentralized protocols are better suited for network environ

ments where broadcasts are cheap. A round in the decentralized pro

tocol requires p broadcast messages where an invocation of the cen

tral site protocol requires 2 broadcast messages (by the coordinator)

and 3 ji point-to-point messages (by the slaves and during the elec

tion protocol).

125

5*7* Minimum Phase Termination Protocol

Notice that both protocols require 0(N) phases in the worst

case. An interesting question is: does there exist a protocol that

terminates in less than N phases in the worst case?

For a central site protocol, it is easy to argue that the number

of elections required in the worst case will always be equal to the

number of failures because of the protocol's vulnerability to coor

dinator failure. Regardless of which site chosen during an election,

that site may be the next one to fail, and thus precipitating a new

election.

For a decentralized protocol, it is not obvious that N phases

are required. Perhaps changing the order in which messages are sent

or adding new types of messages would help. We have tacitly assumed

in previous sections that during a message round, messages are physi

cally sent in the order of the recipient's number (i.e. the message

to Site 1 first, to Site 2 second, etc.). Upon failing, a site may

send out any valid prefix of its intended messages. Therefore, if

any site gets a message from the failing site, it would be Site 1.

One possible alternative to this scheme is to let Site i first

send to Site i+1 modulo N. Does this or perhaps another order for

sending messages speed up the termination protocol? In the worst

case, the answer is nno.n

Observation* For every message sending order, there exists

a worst case execution of the decentralized termination pro-

126

tocol that requires N phases.

For every message order, a worst case scenario like the one displayed

in Figure 5.4 can be constructed. In the figure. Site 1 sends a com

mittable message to Site 2 then crashes; in round 2, Site 2 sends a

committable message to Site 3 and then crashes, and so on. for an

arbitrary message ordering, the worst case example is similar: let

Site 1 send one message and crash. In round two the receiver of Site

l's message will send a message and then crash. The receiver of that

message will send one message and crash in the next round, etc.

Changing the ordering of messages does not speed up the protocol in

the worst case. However, if for each site the probability distribu

tion function for failing is known, then a protocol minimizing the

expected number of rounds can be designed.

The above argument suggests, and this will be proved in the next

theorem, that each site failure can sometimes cause an additional

message round in any decentralized termination protocol. Thus, for

any such protocol, N rounds are required in the worst case. This

implies that the decentralized protocols presented earlier are

minimum cost protocols (in the worst case).

Before stating the theorem, we need the following result. Let

us define a message round as being redundant if elimination of the

round never changes the outcome of the protocol.

Lemma 5*15* A message round where a single but arbitrary

site can fail and not influence the outcome of the round

127

(except at the failed site) is redundant.

Notice that only one site may fail, but the failing site is arbi

trary. The lemma tells us that participation of each site in a non-

trivial message round is significant. We can not tolerate the loss

of an arbitrary site and still expect the result of the round to

always be the same. This can be contrasted with error correcting

codes in some memories where the loss of a single bit can be

tolerated. No such "code" exists here.

Before proving the lemma we need to introduce some terms. Let

*.. indicate that a timeout was received by Site i from Site j.

Define M.(s.»j) to be the set of messages from j that are recognized

by Site i while in state s.. A message m.. is in M.(s.»j) if and

only if it occurs in a state transition from s..

Proof of Lemma 5*15* Let i be an arbitrary site. Let 6,

be the transition function for i, s. the state of Site i at

the beginning of the round, and m.. the message sent from

Site j to Site i during the round. We assume that the opera

tional sites numbered 1 through ji. One of these sites will

fail during the round.

Now 6^. (s.,m, .mj. •••m .) defines the new state after the

round. The lemma assumes that for all j* j*i» we have:

o•(s •tQi • • • • m •. • • • m •) =iN l li ji ill7

o•(s•»nii • • • • *fc •• • • • m .)
iv i li ji ill

That is* the failure of any one site does not change the out

come of the message round. By transitivity of the above

equality* we have:

Si(si.mli ...m'.. ••.m^.) =

o•(8 •,m« • • • m" •• • • • m •)r r li ji pi'

where m'.. and m".. are arbitrary messages in M.(s.,j).
ji ji * 11

Now we can show that for any two arbitrary sets of (recog

nized) messages* m* i^Si * * * m'ui an^ mniimW2i * * * mBjii*

Site i will make the same state transition. Again* using

only transitivity* we have:

o« (s • *m'<• >m'M • • • • m' .)uiv l' li 2i ill'

=o(8i*m»lim'2i • . • m'^)

= ^(s. »ml,1 .mnn. • • • m' .)
i li 2i ill

=6<(8i»mf'liml'2i • • • m".)

Since this state transition always moves i to the same state*

it is redundant. Since Site i is an arbitrary site, all

128

129

sites (except those that fail) will behave similarly and make

redundant transitions. Therefore* the entire round is redun

dant.

Using this lemma* we can derive

Theorem 5*16* Any decentralized termination protocol

requires at least f rounds (in the worst case) where f is the

number of failed sites.

Proof* The proof is by contradiction. Let P be a protocol

that can always terminate the transaction in f rounds where

f < f. Furthermore* let P be a minimum round protocol in

the sense that no protocol can terminate the transaction in

less than f rounds. Clearly* P can have no redundant

rounds; otherwise* we could delete that round and obtain a

protocol with fewer rounds. Since there are less rounds than

there are failures* the last failure could occur during the

last round* and any site could fail. Since some sites may

detect the failure through timeouts and others not (instead*

receiving a message sent before the site failed)* this proto

col must be able to tolerate an arbitrary site failure and

yet give the same outcome. Lemma 5.15 tells us that this

round is "redundant"; thereby contradicting our assumption.

One final question remains concerning both termination proto

cols. Note that they generally require two-phases (rounds) to ter-

130

minate a transaction even if there are no further site failures. Is

it possible to define a termination protocol requiring only one phase

(round) in such cases? If failures are rare and independent events•

such a protocol could halve the expected cost of termination.

The answer is an unequivocal "no." Commit protocols can fail at

any point during the execution* and hence leave the sites in a mixed

transaction state* including both committable and noncommittable

local states. The nonblocking theorem dictates two phases for these

cases: one phases to move all operational sites to the same state*

and a second phase to commit or abort. Furthermore* in the decen

tralized protocol* the first phase (round) identifies the operational

sites so that further site failures can be detected during subsequent

rounds. Often an arbitrary site will not have exact knowledge at the

beginning of the first round of the currently operational sites.

CHAPTER 6

Site Recovery

When a failed site becomes operational again* it must terminate

all transactions outstanding at the time of failure. For each pend

ing transaction* the recovering site will execute a recovery proto-

. 1

In the first part of the chapter* we consider recovery protocols

based on a history mechanism. These protocols ensure consistency if

the "history" is consistent* and they are nonblocking only if the

history is available. Mechanisms for maintaining history are also

discussed.

In the second part of the chapter* we consider recovery from

total site failure — where all sites fail during the processing of

the transaction. With nonblocking protocols the database is left in

a consistent but hard to recover state. A correct strategy is to

block transaction completion until all sites have recovered* but this

is generally unacceptable since the time of recovery for all sites

depends on the recovery time of the least reliable site. Alterna

tively* we are interested in finding sufficient conditions for a

group of sites to safely recover based on their collective state

information and independent of the remaining sites. These conditions

It is convenient to discuss recovery protocols assuming one invo
cation per transaction. Of course* for performance considerations*
one invocation may handle all outstanding transactions.

131

132

can then be used to derive recovery protocols from total failure. At

the crux of all of this lies a subtle and intriguing subproblem:

identifying the last site to fail during the execution of the proto

col.

6.1♦ Recovery and Logging

The policy implemented by the commit/termination protocols in

the previous chapter always allows operational sites to continue with

the execution of the transaction. As a consequence of using non-

blocking commit/termination protocols* recovery protocols can not

base recovery on local state information. Therefore* those sites

terminating the transaction must maintain a history of the outcome of

the transaction for the recovering sites.

The accessibility of the history of the distributed transaction

determines the performance of the recovery protocol. For this reason

it should be maintained at more than one site. Only three values of

the state of the transaction need to be recorded: in, progress-

aborted. p.nmmifcr.pH. (Recall that the local state of any one particu

lar site is insufficient for recovery; therefore* we need not be more

discriminating about nonfinal states than in progress.)

There are three popular history mechanisms:

(1) A (virtual) distributed log as a collection of individual sites'

logs ([ST0N78]). In this scheme* each individual site maintains

a log of transactions executed at that site. The log consists

of tuples of the form: transaction id* partial local state>*

133

where the partial state is one of "in progress*" "aborted*" or

"committed.* The distributed log is a union of all of the indi

vidual logs.

(2) Dedicated logging machines ([LAMP81]). In the simplest case, a

single machine (process) logs the progress of every transaction.

Each participating site sends the outcome of each transaction to

this machine. For resiliency to failures* more than one machine

is normally used. (Logging machines may also serve as arbiters

in conflicts among concurrent transactions.)

(3) Persistent messages ([HAMM80.LISB81]). A persistent message is

guaranteed to be delivered to a failed site. This is imple

mented by spooling the message at several operational sites and

sending it when the failed site recovers.

There is little real difference between (2) and (3) — a logging

machine maintains a log of transaction ids* outcome> pairs; whereas*

a spooler for persistent messages maintains a log of messages. How

ever* (3) is a "read once" log.

Since sites must maintain logs for local crash recovery* the

first scheme is simple to implement and requires no additional

mechanism. It has the disadvantage that the availability of the

"distributed log" is proportional to the number of participating

sites. There is a way to circumvent this by requiring a minimum

number of participants in every transaction. Some participants may

not actively process the transaction* but they do log the state

changes of the transaction. This has the additional advantage of

134

reducing the probability that all sites fail during the processing of
f

the transaction* since this probability is inversely proportional to

the number of participating sites.

The second and third schemes do not suffer from this disadvan

tage since the number of spoolers or loggers is normally fixed. How

ever* they require a significant effort to implement. The logs in

these schemes can be viewed as specialized distributed databases that

must be consistently and resiliently maintained. In essence* we have

embedded a smaller distributed transaction management problem within

the general problem. Observe that in the first scheme* consistency

among the logs is a natural consequence of maintaining consistency in

the database*

In its simplest form, a recovery protocol is a simple loop — it

repetitively queries the history mechanism until it gets a response

which moves it to a final state. If it gets an in. progress response*

it blocks for awhile* and then repeats its query. Eventually* it

will get a commit or abort response* unless all sites have failed

before terminating the transaction.

There is a special case to recovery which can be handled expedi

tiously. If a site fails in the initial state (during the first

phase of the commit protocol and before it votes on committing the

transaction)* it can unilaterally abort the transaction. The commit

protocols require that all sites vote yes before a transaction is

committed. They treat a nonvote like a no vote* and abort the tran

saction. If the recovering site is unsure of its state at the time

1.35

of failing* then it must execute the normal recovery protocol.

A more complicated recovery strategy allows a recovering site to

rejoin the operational sites executing the commit/termination proto

col. If a central site protocol is used* then the recovering site

must find the current coordinator and send its current local state.

The coordinator will respond with a new state for it to occupy.

Until the coordinator responds* the site has not fully recovered and

can not be considered an active partner in the protocol.

If the commit/termination protocol is a decentralized protocol*

then the recovering site must broadcast its state information to all

sites. This will be interpreted as a request to join the protocol by

the operational sites and they will include the recovering site in

the next message round. After hearing from all operational sites in

the next round* recovery is complete and the site may actively parti

cipate in the following rounds.

There is little to be gained by allowing sites to rejoin the

commit/termination protocol. It does reduce the probability of all

sites failing before any terminates the transaction* but the reduc

tion is usually insignificant. Since phases (rounds) tend to be

brief* except for the first* and since the number of phases is

expected to be small* there is little opportunity for a failed site

to successfully/ rejoin•

136

6.2. Vhea All Sites Fail

The recovery protocols discussed in the previous section require

either that a log of distributed transactions be maintained* or mes

sages be spooled for down sites. In this section we want to consider

recovery strategies when all sites involved in a transaction (includ

ing sites spooling messages and logging sites) fail. The term total

failure is used to describe this. Neither the above strategies nor

independent recovery work in this situation. Instead* the sites must

be capable of detecting that a total failure has occurred and ter

minate the transaction as part of the recovery process.

An overriding constraint in defining a strategy for recovering

from total failure is that the strategy impose a negligible overhead

on the commit protocol. Total failures are (or should be) rare

events* hence crash resistance to them must be cheap in order to be

cost effective. We propose a strategy requiring no modifications to

the commit protocol or the termination protocols. It uses knowledge

about the order of failures among the sites. For each site* this

knowledge is maintained in its alive set, which is defined in the

next section. Unlike previous strategies* this one requires exact

knowledge of the local state of the site at the time it failed.

Hence* to use the strategy* a site must record its local state on

stable storage.

To simplify the discussion* we will ignore complex logging stra

tegies and strategies using persistent messages. Instead* we will

assume that the only history of the transaction is maintained in

137

local logs at participating sites. Moreover* we assume that the log

entry for the new state is recorded on stable storage before a state

transition is made. Therefore* a site failing during a state transi

tion will assume the new state upon recovering. Note that some of

the messages normally sent during a transition may not be sent if the

site failed in the middle of the transition.

6.2.1* Reeessary Conditions for Safe Recovery

Termination protocols allow a single operational site to ter

minate a transaction. When all sites fail during the transaction* it

is clear that the last site to fail (or the last group of sites if

several failed concurrently) must recover before the transaction can

2
be safely terminated. Unfortunately* the last site to fail is not

necessarily aware of the status of the transaction at other sites.

Thus* at first glance* it appears that all sites must recover before

it can be discovered that no site terminated the transaction.

Consider the following scenario using the centralized three-

phase commit protocol and the centralized termination protocol. The

coordinator sends a single commit message to the first slave and then

promptly fails. The slave receives this message* commits* and then

promptly fails. Let us suppose that the newly elected coordinator

fails before telling any sites to commit* and the next elected coor

dinator fails before any more commits* and so on. Hence* a single

2
By last failure (or failures) we mean that this failure did not

occur before any other failure. See Section 3.3.4 for a discussion
on the partial ordering of events. Note that last in this sense may
not be the last site to fail according to Greenwich Mean Time.

138

site has committed early in the protocol while all the other sites*

including those that failed at a later time* have not. For each of

the three-phase protocols* a similar scenario can be constructed

where a single site commits (or aborts) early in the protocol.

Nonetheless* the local state of the last failing site is impor

tant. While the last site can not infer from its local state whether

any site terminated the transaction* it can infer which final state

(if any) the other sites must occupy since the concurrency set of its

local state will contain at most one type of final state. Hence* the

last site failing in a committable state (noncommittable state)

implies that no site aborted (committed) the transaction. This is

not necessarily true for a site other than the last failing site.

For example* a slave can fail in the wait state* which is a noncom

mittable state* early in the protocol* but the coordinator may still

commit the transaction.

Before proceeding* we need to develop the concept of concurrent

failures. These failures are a type of "concurrent transitions" as

described in Section 3.3.4. Intuitively, the failures of Sites i and

j are concurrent if Site i fails before observing the failure of j

and j fails before observing the failure of i.

Considering only the case where all sites fail* we now define

the last group £f. sites £o. concurrently fail. A site is a member of

3
A site "observes" a failure by receiving a timeout from the

failed site or by receiving a message from a site that has observed
the failure.

139

this set if and only if its failure was observed by no other site.

Hence* all members of this set must have concurrently failed.

The above observation about the last site to fail can be

extended to all members of the last group.

Theorem 6.1. For a nonblocking protocol* if all members of

the last group of sites to concurrently fail occupied com-

mittable states (noncommittable states)* then the transaction

was not aborted (committed) by any site. If members of the

last group occupied both committable and noncommittable

states* then the transaction was terminated at no site.

Proof: The proof follows directly from these two properties

of nonblocking protocols:

(1) all operational sites are in committable states (noncom-

mittable states) before any site commits (aborts).

(2) once any site has committed (aborted)* transitions to

noncommittable (committable) states are prohibited.

Both of these properties are either stated or directly

inferred from the Nonblocking Theorem.

Let Site i be a site that commits (aborts) and then fails.

Let Site j be a site that does not fail before Site i commits

(aborts). Clearly* if Site j fails while in a noncommittable

(committable) state* then either (1) is violated (in the case

where Site j failed concurrently with Site i) • or (2) is

140

violated (if Site j fails after Site i).

The theorem states that if any member of the last group recov

ers* then its local state can be used to terminate the transaction

safely. Furthermore* the transaction can be safely terminated only

if a member of the last group recovers. Hence* recovering sites must

be blocked until they are certain that such a member has recovered.

6.2.2. Determining the Last Group to Fail
»

The major obstacle to recovery is determining the last group of

sites to fail. This is a nontrivial task: since a site can not

detect concurrent failures* it can not distinguish between concurrent

failures and failures occurring strictly after its own. Hence* a

site can not independently determine whether it is a member of the

last group.

To simplify the discussion we will initially assume that a site

fails at most once during the observation period. Throughout this

section the phrase "Site i failed before Site jw replaces the techni

cally precise phrase "the failure of Site i occurred before the

failure of Site j." Again* "occurred before" is used in the formal

sense defined in Section 3.2.4.

6.2.2.1. Using Complete Information

Let us temporarily assume that a site can maintain a record of

all sites failing strictly before itself and that this record (actu

ally its complement) is maintained in its Alive Set. We will show

141

later that although the complete Alive Set is not maintainable* a

close approximation is.

Definition. The Alive £e£ for Site i* denoted A-» is the

set of all sites whose failure occurred concurrently with or

strictly after i's failure.

Note that a site's Alive Set always contains itself.

From basic definitions we have:

Observation* Assuming that all sites fail during the tran

saction* the intersection of the Alive Sets for all partici

pating sites is the last group of sites to concurrently fail.

Clearly this last group is a subset of every Alive Set. If a failure

is observed by any site* then it is removed from that site's Alive

Set* and subsequently would not appear in the intersection.

The observation suggests the following scheme for determining

this last group. Let Ft act be the last group of sites concurrently

failing. Let R = { r, »r2 r. } be the set of sites which have

recovered and currently are attempting to terminate the transaction.

All other participants are down. Let A^ be the intersection of the

Alive Sets for all the recovering sites* i.e. A_ = n A • Of
^ reR r

course* F.^.. c A_. We have:

Theorem 6.2. If A^ c R, then A^ = F^,^

142

Proof. First we assert that for any Site i» either

i 6 ^last or i fa^ed before some member of FLAST» Consider

the case where i is not in F..-.. Therefore* i failed

before some site i,. Now* either i, e FjAcm or *i failed

before some site i«. In this way we obtain a chain where i

failed before i.» i- failed before i«» and so on. This chain

must terminate because each failure involves a unique site

and there are a finite number of sites. Now* the last site

in this chain* let this be L » must be a member of Ft act

since it failed before no other site. By transitivity* all

sites preceding i. in the chain* including Site i* failed

before L .

The remainder of the proof proceeds by contradiction. Assume

AR c R and AR * ^last* S*nce FLAST *s *n a11 A1*ve Set8» we

know that FjAgm c ap» Therefore* there must exist a site s

such that s £ A^ and s is not in FLAST. However* from the

previous paragraphs* we know that s failed before some member

of Fjact* Now* this site would not have s in its Alive Set*

and therefore s would not be in the intersection of the Alive

Sets* Ap. This contradicts our assumptions.

Let us now consider the following "obvious" implementation of

Alive Sets. Whenever a site receives a timeout from another site*

say j. it immediately deletes j from its Alive Set and then appends

the notice "j has failed" to the next message to each site. The

receiver of such a piggybacked notice first deletes j from its Alive

143

Set and then processes the message. The purpose for piggybacking the

failure notice* rather than sending it first* is to ensure that rout

ing delays does not postpone its arrival until after the arrival of

the main message.

This scheme has a singular deficiency: it does not work when a

site fails after detecting a failure but before forwarding that

information to all of its cohorts. A very simple example illus

trates. Site 1 fails causing Site 2 to fail. Now* Site 3 detects

the failure of 2 but not of 1 (perhaps 3 rarely communicates with 1)*

and then itself fails. Clearly* Site 3's Alive Set should not con

tain Site 1* but it does.

Although such a simple scenario is unlikely to present problems

to a recovery protocol* more complex failure sequences can. An

interesting example is given in Figure 6.1. At the end of the

scenario* all sites are down. Observe that the Alive Set for the

third slave is incomplete since no notice of the first slave's

failure was included in the timeout from the coordinator. The situa

tion is particularly precarious since the coordinator managed to com

mit some of the slaves before failing.

Consider now the consequences of Slaves 1 and 3 recovering

before the others. Intersecting their Alive Sets yields {1*3}. which

satisfies the premise of Theorem 6.2. Of course* basing recovery on

Slave l's local state would lead to inconsistency. Unfortunately*

the information available to the sites does not indicate which of the

sites can be safely used for recovery.

144

Setting. A coordinator (Site 0) and three slaves (Sites 1* 2* and
3) are executing the three-phase commit protocol. In the first
phase all sites agreed to process the transaction. The protocol
is now entering its second phase.

(1) The coordinator sends "prepare to commit" to all slaves.

(2) Slave 1 crashes.

(3) Slaves 2 and 3 receive the message and acknowledge it.

(4) After receiving two acknowledgements and a timeout (the latter
from Slave 1)* the coordinator crashes while in the middle of
sending commit messages. A singular commit message is sent (to
Slave 2) and appended to it is the notification of Slave l's
failure.

(5) Slave 2 receives the message* commits* and then crashes.

(6) Slave 3 "times out" and records the coordinator's failure. It
then initiates a termination protocol and discovers that Slave 2
is down. Finally* Slave 3 fails before discovering the status
of Slave 1.

At this point* the Alive Sets are:

AQ = {0.2.3} A^ = {0.2.3}
A1 = {0.1.2.3} ^ = {1.3}

The transaction states. s.» are:

Sq = ?? s« = commit
s, = wait s~ = prepared

Fignre 6.1. A pathological sequence of failures resulting in in
complete Alive Sets.

The fundamental problem with implementing Alive Sets is that

failure notices can not be piggybacked on top of timeout messages.

Therefore, cascaded failures can not propagate failure information.

145

necessarily leaving the Alive Sets incomplete. Furthermore, deciding

whether a site's Alive Set is complete is inherently as difficult as

determining flaot* Similar problems arise with recovery strategies

based on on logical clocks and timestamps: timeouts do not have

timestamps.

With incomplete Alive Sets, all sites may need to recover before

FTART can be determined* even if the sites in ftacT recovered very

early in the protocol. An alternative strategy to determining the

entire set is to find one member of Ft art' Recall that a single

member is sufficient for recovery protocols. With incomplete failure

information, this is easier than determining the entire set. In con

trast, given complete Alive Sets, testing membership is equivalent to

determining the entire set.

6.2.2.2. Using Incomplete Information

Let a., called the (little) alive set for j. be an implementable

subset of A.. Minimally, we require that a. not contain any site

whose failure was directly observed (through a timeout) by j. Since

a failure of a nonmember of FTAfiT must have been directly observed by

at least one other site, a nonmember will be missing from at least

one alive set. Consequently, the above minimum requirement suffices

to ensure n a. = FT ,„_, where • is the set of sites.
. — 1 LAST

Site j's alive set yields a superset of the sites concurrently

failing with or failing after j. By examining the alive sets of

other sites, j may be able to infer additional sites failing before

146

it. thus reducing its alive set.

Definition. The reduction sL a. aitk respect L£l a jsl&Jl qL

s
sites £. denoted a.» is the set a. minus the sites that can

be shown to have failed before j by examining only the alive

sets of the sites in S.

g
We always assume that jeS. a. can be calculated by the algorithm

given in Figure 6.2. We will primarily be interested in a. where R

g
Comment. Compute a. given j. S. and a. for all ieS.

Declarations•

TRIED - set of sites already used in the reduction.

Algorithm.

S _a. - ajt

TRIED = {j};

while (~a?-TRIED) nS* 4 do
S

choose x from (~a.-TRIED) n S;
S S „ J

a. = a. n a ;

TRIED = TRIED u {x};

end;

S S
(Notation: ~a. is the complement of aO

j j

*ifc»re 6.2. Algorithm for calculating the reduction of a. with
respect to set S. J

147

is the set of recovered sites.

Finally, define ap analogous to A„. that is a„ = n a.. aw con-R ~R R jfiR 3 R

tains the possible candidates for membership in FTAoT«

Theorem 6.3. If reaD and a sR. then r€FTA__.
a. r iiASi.

Let us return to the previous scenario and apply Theorem 6.3.

setting the four sites' (little) alive sets equal to the incomplete

Alive Sets displayed in the figure. Assume once again that Slaves 1

R R
and 3 recover before the rest. Now* a. = {0*1*2*3} and a» = {1*3}.

R R
Since a-gR. Slave 3 is a member of FtacT* Now» ai i-8 not contained

in R* hence we can conclude nothing about it. In particular* from

the available information we can not conclude that Slave 1 is not a

member of FtacT» Notice also that to conclusively determine F-. T

would require the recovery of either the coordinator or the remaining

slave.

The proof of this theorem is remarkably simple. Recall that r

R
must be a member of R; otherwise, a is undefined.

Proof. (By contradiction.) Assume both reaR and a cR. Now.

suppose that r is not a member of ftacT» Therefore, there

exists a j such that the failure of r was directly observed

by j. hence, r is not a member of a.. Clearly, j is not a

member of R; otherwise, we would have r is not a member of

a_» violating our assumption. Since j failed after r, j must

R R
be a member of a*. Consequently, a. is not a subset of R

148

(because j is not a member of R). We have contradicted our

assumption.

Since flacT is always contained in a • all members of F^,.. must

recover in order for the membership test to succeed. Recall that

with complete information, this was sufficient to determine the

entire set FLAgT.

There are several ways to implement alive sets. As stated

before, the minimum requirement is that a site merely record every

timeout it receives by deleting its sender. Although this is suffi

cient, it is probably not desirable since the less complete the alive

sets the larger the expected size of the set of sites required for

recovery. Of course, the implementation for Alive Sets suggested

above is a correct implementation.for (little) alive sets. Moreover,

since it provides maximum propagation of failure information, its

fault tolerance is strictly superior to that in all other implementa

tions •

6.2.3. Recovery Protocols

Once a subset of FLAgT has been determined by applying Theorem

6.3. recovery can proceed safely. The recovery protocol is similar

to a termination protocol* with one important exception. Since the

states of nonmembers of FLAST may be incongruous with the states of

members of FLAgT and, more importantly, with sites that are still

down* the initial phase of the recovery protocol must only use local

state information from sites known to be in Fj^g-,. If a centralized

149

termination protocol is used* then the coordinator must be chosen

from among these sites. If a decentralized protocol is used* then

only these sites can send messages during the first round. However*

in both cases the messages in the first round should be addressed to

all sites. In the second and subsequent rounds* all operational

sites will have received at least one message from a member of FT ART

and may now fully participate.

Until now* we have ignored resetting the alive sets during

recovery. If the sites are to be able to recover from another total

failure* then they must be re-evaluated. However* this can not occur

until the operational nonmembers of ftacT have moved into states that

are known to be consistent with the states of the members of FTARfp.

Let us consider the case where the sites are executing the cen

tralized termination protocol. During the first phase* the newly

elected coordinator will move all the operational sites into the same

local state. At the end of the phase* the coordinator will receive

acknowledgements from all operational sites* and at that time it can

update its alive set. At the beginning of the second phase* the co

ordinator can send its copy of the alive set (which is the only

updated set) to all slaves. The set can be piggybacked to the mes

sage that is normally sent in this phase.

The decentralized protocol can be treated similarly: the opera

tional sites will update their alive sets at the end of the second

round. However* in the decentralized protocol* updating their sets

does not generate any more message traffic (not even piggybacked

150

messages) because each site can update its set from the messages it

normally receives during a phase (round) of the protocol.

The reader should recall that both termination protocols require

only two phases (rounds) to complete in the absence of additional

failures. Also* updating the alive sets requires two phases

(rounds). Thus* there is little to be gained by updating the sets

since the probability that a total site failure will occur between

the time that the sets are updated and the transaction is terminated

is very low. This is especially true for the centralized protocol

where additional messages are required to perform the update. If the

coordinator remains operational during the second phase* then the

transaction will be terminated anyway; on the other hand* if it

fails* then not all of the alive sets will have been updated.

We conclude this section with an interesting observation. When

there are few communication paths between sites* the probability that

a failure will go unobserved increases, and concurrent failures may

span a relatively long interval of time. Hence* the expected size of

FLAST *8 *nf!uence<i by the density of the communication graph for the

commit/termination protocol: the more sparse the graph* the larger

the expected size of FLAST- Of course* the larger F^_ , the longer

the expected wait before the recovery protocol described in this sec

tion can be invoked. Central-site protocols have a sparse graph;

decentralized* a dense graph.

The major weakness of this approach is its vulnerability to

other types of failures. The approach requires that site failures

151

are correctly observed* and even more importantly* that other types

of failures are not mistaken for site failures. It is possible for a

single mistake of the latter type to lead to an inconsistency

(although this is highly improbable).

6.3. Alternative Recovery Strategies

Until now* our assumption has been that operational sites should

not be penalized (by blocking) for the failures of their less reli

able cohorts. Hence in the protocols of the last two chapters*

operational sites are always allowed to independently proceed. This

is a policy decision reflecting our perception of the needs and

demands of the user community.

As a consequence of this policy* a single arbitrary site may

remain operational while all others fail* terminate the transaction*

and then fail. All recovering sites will be forced to block until

this single site has recovered. Furthermore* even if this lone

operational site crashes before terminating the transaction* the

remaining sites will be forced to wait since they will not be able to

detect whether the transaction had been terminated at the lone site.

At the other extreme* when using a central site two-phase commit pro

tocol* sites are vulnerable to failure of the coordinator. In such a

strategy* the coordinator is omnipotent - forcing the slaves to block

on its failure. The protocol is sensitive only to the failure of

this one site; a slave failure can never force another site to block.

152

A compromise policy is to allow a majority of sites to continue

regardless of their failure histories. In the next chapter* we dis

cuss generalized majority voting schemes.

CHAPTER 7

•etvork Partitioning

This chapter is primarily concerned with recovery from network

partitions — a problem much harder than previous problems. In the

first section* we discuss some possible recovery strategies and the

tradeoffs involved. We then develop commit and recovery protocols

for the most promising strategy: the "quorum-based'' protocols. These

protocols are extremely resilient* resilient not only to network par

titioning but also to arbitrary site failures and undetected

failures.

The last section of this chapter is concerned with a problem

arising in the implementation of quorum-based protocols and other

recovery protocols using local state information. This problem*

called partial amneaia. arises because the last action performed by a

transaction is inherently vulnerable to being "forgotten" during a

site failure. The possibility of partial amnesia is unavoidable on

all current systems. A simple strategy that safely handles this is

examined•

7.1. Strategies for Recovering from Partitions

From the results of Chapter 4* we know that there exists no

resilient nonblocking protocols for this problem. Hence* we must be

satisfied either with a blocking protocol that always maintains con

sistency or with a nonblocking protocol that allows the database to

153

154

become inconsistent. As we have done in previous chapt.ers, we will

focus protocols that ensure consistency. We refer the reader to

several recent papers that discuss the latter class of protocols (see

[PARK81, PARK82* DAVI81]).

It is always safe to allow a single partition to terminate all

outstanding transactions and continue processing. The schemes that

we shall discuss differ primarily in how they choose this partition.

The simplest scheme allows only the partition containing a

designated site, called the primary site, to continue. This parti

tion is called the primary partition. The concept of a primary site

is similar to* but not equivalent to* the concept of a coordinator in

a centralized commit protocol. A coordinator can be chosen indepen

dently for each transaction; whereas, the choice for a primary site

must remain constant for all concurrently executing transactions.

This is because a partition can continue processing only if it can

terminate all outstanding transactions. If each transaction had a

different primary site, then the probability that all primary sites

would occupy the same partition after a network failure would be very

low. Normally, it is safe to reassign the designation of a primary

site only if there are no outstanding transactions.

If the coordinator for a transaction is also the primary site*

then the two-phase commit protocol can be used (recall the two-phase

The usual definition of nonblocking applies here — all opera
tional sites (including those in different partitions) are allowed to
terminate an outstanding transaction.

155

protocol blocks only when the coordinator fails or is partitioned

from the remaining sites). On the other hand* if they are different*

then a more complex protocol must be used ~ one that allows the pri

mary site to terminate the transaction during a partitioning. Any of

the three phase protocols suffices.

The choice of a primary site is based on two major criteria: it

should be reliable and it should maximize the expected size of the

primary partition. The last criterion assumes that it is desirable

to have the largest number of sites continue processing after a par

titioning occurs. This precludes choosing a spur* a site that is

connected to the network through a single link* as a primary site

since it is likely to be in a partition consisting only of itself.

The major weakness of this scheme is its vulnerability to a pri

mary site failure. If it can be determined with absolute certainty

that the primary site has failed* a new primary site can be elected.

However* the assumption that failures can be identified with one hun

dred percent accuracy is unrealistic in almost all environments.

Hence* in a realistic network* when the primary site fails* outstand

ing transactions will be blocked. In many networks the probability

of a primary site failure exceeds the probability of a network parti

tioning•

If the protocol is to survive more than a single failure* then
this requires a commit protocol more sophisticated than the two-phase
commit (e.g. the three-phase commit).

156

An ideal scheme for handling partitions is to always allow the

"largest" partition to proceed and require the others to block. The

largest partition could be interpreted as the one containing the most

sites or* more generally* the one where the sum of the weights of the

contained sites is maximal. However* there is a fundamental problem

with the scheme: how does a partition decide if it is the largest?

Since this can not be effectively decided* the ideal is not achiev

able. However* a partition can easily decide if it contains a major

ity of the sites* and clearly it is safe to allow the partition to

proceed in this case. Moreover* if a majority exists* then the

"largest partition" criterion has been satisfied.

Majority-based schemes — those that allow a partition to con

tinue if it contains a majority of the sites — are popular alterna

tives to primary site schemes. Such a scheme does not suffer the

inherent weakness of a primary site scheme: a majority of the sites

must fail before the protocol blocks (compared to a single site for

the primary site scheme). Also* it is unconcerned with the type of

failures that have occurred* it needs only to test whether a majority

of the sites are still in communication. However* it is clearly a

suboptimal solution when there are partitions containing "close" to a

majority* but no partition contains a majority.

In the next section* we develop quorum-based protocols* which

are a generalization of protocols based on a simple majority.

157

7.2. The Use of Qnornas

The quintessence of a majority consensus approach is: before

terminating SL transaction* SL majority o£ the sites must agree on the

direction OL thSL tranaartinn. Note that agreeing to a final State is

not the same as a moving to that final state - and this difference is

crucial. When a majority of the sites reaches a consensus, then the

sites in the minority must conform to the majority.

Voting schemes have been widely proposed for concurrency control

for replicated data. Thomas introduced a majority consensus scheme

in [TH0M78] as a concurrency control mechanism for replicated data

bases. Gifford extends it in [GIFF79] using quorums rather than a

simple majority. The scheme developed herein differs from previous

schemes in the following ways:

(1) It does not require replicated data. The data can be redun

dantly or irredundantly stored.

(2) It is not a concurrency control mechanism. It preserves tran

saction atomicity on a per transaction basis in the presence of

site failures. (However, it can form a basis for a concurrency

control mechanism on replicated data.)

(3) It allows unilateral aborts.

Before proceeding, we need to stress the following "obvious" but

sometimes overlooked point.

Observation. While we can require that a majority of sites

be operational and agree to commit (abort) the transaction

158

before any sites commit (abort)* we can not require that a

majority of the sites remain operational and in communication

long enough to actually commit (abort) it.

Between the time a site agrees to commit and then actually com

mits* it can always fail. Since any number of sites can fail during

this waiting period* there is no way to enforce a commit rule requir

ing a minimum number of communicating sites.

The remainder of this section discusses the integrated design of

commit* termination* and recovery protocols using quorums. While the

design of these protocols is interdependent* we will treat them

sequentially.

In all of these protocols* sites are allowed to unilaterally

abort during the first phase of the protocol* which is an important

feature of the protocol. Traditionally* we have called this the vot

ing, phase* and have referred to the replies sent during this phase as

"votes." In order to avoid confusing this phase with later phases

requiring a majority consensus of the sites* we will simply refer to

it as the "first phase •" It is only during this phase that sites are

allowed to unilaterally abort.

7.2.1. Definition of a Quorum

Let y. be the total number of votes assigned to the participating

sites. Each site is allocated an integral nonnegative number of

votes. (This can be zero* in which case the site is a passive parti

cipant.)

159

A transaction must collect a commit quorum of V- votes before it

is committed by any site. It can be unilaterally aborted during the

first phase of processing; otherwise* it must collect an abort quorum

of V. sites before it is aborted. Of course* 0 < V. V £ v. To
A, G

prevent two groups of sites from independently deciding to terminate

the transaction in opposing states, we must have VA + Vp > V. To
A C

guarantee eventual termination, we should choose the quorum sizes

such that V + V_ = V + 1.
A C

As sites fail and recover, the currently operational sites will

try to form either a commit quorum or an abort quorum. An individual

site cannot arbitrarily attempt to form a given type of quorum (e.g.

an abort quorum); instead, a site's actions must depend on its

current state (i.e. committable or noncommittable), its previous par

ticipation in groups attempting to form a quorum* and communication

with its cohorts. We now state sufficient properties for a quorum-

based protocol to be completely resilient.

Theorem 7.1. (The Quorum Requirement). Let V. Vc* and V.

be as previously defined. A quorum-based protocol is resi

lient to arbitrary sites failures if:

(1) VC+VA>V, where 0*V .V^V

(2) When any site is in the commit state* then at least a

CPlBmit quorum of sites are in committahle states.

(3) When any site is in the abort state, then at least an

abort quorum of sites are in tinneommittahle states.

160

Proof* Inconsistency can arise only if both a commit and an

abort quorum is formed. But, from (1), this requires that at

least one site participates in both quorums. From (2) and

(3), this site must occupy a state that is both committable

and noncommittable. By definition, no such state exists.

The requirements in the Quorum Theorem are very similar to those

for K-resiliency (see Corollary 5.6 and the Nonblocking Theorem).

Both requirements state sufficient conditions for terminating a tran

saction, and in both cases these conditions require that a minimum

number of sites agree a priori before an irreversible decision is

made by any site. Hence, it is not surprising then that a theorem

similar to the Nonblocking Theorem exists for quorums.

The most significant difference between the theorems is that the

conditions of the Nonblocking Theorem apply only to operational

sites; whereas* the Quorum Requirement applies to all sites. How

ever* this is a crucial difference* since it means that the protocol

does not have to distinguish between failed sites and operational

sites that are partitioned from the remainder of the network.

Let us now consider the requirements of Theorem 7.1 in sequence.

Requirement (1) is obvious* and has been mentioned before.

Requirement (2) can be viewed as two subrequirements: (2.1)

Before the first site commits, a commit quorum of sites in committ

able states must be obtained* and (2.2) after any site has committed*

a commit quorum must be maintained. As a consequence of (2.2)* a

161

site can safely move from a committable state to a noncommittable

state if and only if it can be shown that no site has committed the

transaction* or it can be shown that this will not destroy a commit

quorum.

Requirement (3), which concerns abort quorums* is analogous to

(2). Hence* there exists (3.1) and (3.2) which are the analogs of

(2.1) and (2.2).

7.2.2. Commit Protocols with Quorums

Our first observation is that two-phase commit protocols can not

satisfy the requirements of the above theorem: they allow sites to

commit before a quorum of sites are in committable states. (This* of

course* is similar to the reason why two-phase protocols could not

satisfy the Nonblocking Theorem.)

The canonical three-phase commit protocol can be modified to

include quorums (which is not surprising due to the similarity

between the Quorum Theorem and the Nonblocking Theorem). The modifi

cation is straightforward: in the third phase* the protocol blocks

until a commit quorum of sites acknowledge occupying committable

states. The protocol is presented in Figure 7.1.

The quorum-based commit protocol contains the same states as the

regular three-phase commit. All sites move from the initial state to

the wait state* and then either move to the prepared-to-commit state

followed by the commit state, or move directly to the abort state.

Like the three-phase commit protocol, it is a nonretreating protocol:

transition requires a
rcommit quorum (Vc)

162

Figure 7*1 The canonical quorum-based commit protocol.

once it has been determined that the transaction is committable* then

the commit protocol will not abort the transaction (however* it may

block).

Notice that the protocol never verifies that an abort quorum of

sites are in noncommittable states. This is not necessary since* at

the start of phase two, all sites are either in the wait state* a

noncommittable state* or in the abort state. Hence* the current

transaction state trivially satisfies Quorum Requirement (3). This

property will be used by the termination protocols presented in the

next subsection.

163

As a concrete example of a quorum-based three-phase commit pro

tocol, we present the centralized protocol in Figure 7.2 Notice that

the slave protocol is unchanged from the centralized three-phase com

mit protocol (c.f. Figure 5.3a).

COORDIHATOR

(1) Transaction is received.
Subtransactionfl are

sent to each slave.

(2) If all sites respond yes
then

prepare £& commit is sent;
continue to phase (3)

else

abort is sent;
stop.

(3) If the sum of the weights
of the responding sites equals
or exceeds V_

then

send commit to all

else

block until the partitioning
is resolved.

Figure 7*2. The quorum based commit protocol.

SLATE'S RESPONSE

Yes to commit

Htt to abort

Ack

164

In addition to the protocol blocking in phase three* it is also

possible that the coordinator fails or the network partitions before

the protocol terminates. With either type of failure* there will

exist at least one partition without a coordinator. Each leaderless

partition must invoke one of the termination protocols described in

the next section.

7 .2.3. Termination Protocols with Qoonms

In our previous discussion on termination protocols* we com

pletely ignored the issues of site recovery. This was possible

because (by the very nature of nonblocking protocols) only opera

tional sites actively participated in determining the outcome of the

3
transaction. This no longer holds for quorum-based protocols;

instead* recovering sites participate in forming quorums. Hence*

when a site recovers* it will run a simple recovery protocol to re

establish communication with its cohorts and then rejoin the termina

tion protocol. Therefore, the termination protocol must tolerate

sites that repeatedly fail.

Within this section* we will discuss the common characteristics

and requirements of all termination protocols. The requirements are

inferred from the Quorum Requirements and properties of the canonical

three-phase protocol discussed in the last section. In addition* we

also discuss a few design guidelines — some are stronger than

3
Except in the special case where all sites fail before any site

terminates the transaction.
4
Indeed, a quorum may not be possible without -their participation.

165

necessary but greatly simplify the construction of termination proto

cols. Alternatives to these guidelines are presented in a subsection

labeled "Alternatives and Enhancements." From these requirements and

guidelines, we derive in detail two specific termination protocols: a

centralized protocol and a decentralized protocol.

The correctness of a quorum-based scheme is derived from the

restriction that a site can participate in only one kind of quorum

(i.e. either a commit or an abort quorum). Our first observation is

that a site may not know if an attempt at a quorum was successful.

This uncertainty can exist for two reasons:

(1) the site may fail (or become partitioned from the other sites)

after agreeing to participate in a quorum but before it receives

confirmation that a quorum was successfully formed, and

(2) the attainment of a quorum may be recognized by a single site

(e.g. the co-ordinator) that fails before informing other sites

that a quorum had been established.

Hence, even if a quorum is formed, it may be the case that less than

a quorum terminate the transactions. When uncertainty exists about

the success of a quorum in which a given site has participated, then

it is unsafe for that site to attempt to form the opposite kind of

quorum. Since situations involving uncertainty are complex, we will

require all protocols to take a conservative approach: after a site

has agreed to participate in the formation of one type of quorum, it

can no longer participate in the formation of the opposite type of

quorum.

166

To indicate that a site has "taken sides," two local states are

required. We will call them prepared-to-commit (denoted ££. in

diagrams) and prepared-to-abort (denoted £& in diagrams). The

prepared-to-commit state, as its name implies, is similar to the com

mittable, intermediate state present in the nonblocking commit proto

cols and present also in quorum-based commit protocol. The

prepared-to-abort state is a new state; it has not appeared in previ

ous protocols.

The prepared-to-abort state is the noncommittable analog of the

prepared-to-commit state. A site in this state can participate only

in the formation of an abort quorum. In this respect, this state

differs from the wait state, which is also a noncommittable inter

mediate state — the wait state in an "undecided* state which enables

a site to join either type of quorum. An attempt to form a quorum

moves a site from the wait state to the appropriate "prepared" state.

Until now, we have discussed the formation of a quorum in vague

terms. We can now make this more formal.

Definition* A commit quorum exists whenever the sum of the

weights of sites occupying either prepared-to-commit or com

mit states is at least Vg. A abort quorum exists whenever

the sums of the weights of sites occupying either prepared-

to-abort or abort states is at least V.•
A

Since sites in a prepared-to-commit state cannot move to a prepared-

to-abort state, and vice versa, an attempt to form a quorum is aimed

167

at moving sites from the wait state to the appropriate prepared.5

We have discussed five distinct local transaction states in a

quorum-based protocol: initial* wait* prepared-to-commit. prepared-

to-abort, commit, and abort. Figure 7.3 gives the valid local state

transitions. These are the only valid state transitions that can

occur in both commit and termination protocols. The solid lines (-»•)

indicate the sequence of transitions taken when a site participates

in a quorum. The squiggly lines C-^) indicates a unilateral abort.

The dashed line (—0 indicates a transition taken when a site is

informed that: (1) a quorum in which it did not participate has ter

minated the transaction, or (2) the transaction was unilaterally

aborted by another site (in latter case, only the transition from

wait to abort is relevant).

A very conspicuous property of the diagram is its lack of

cycles. Every transition moves the site closer to a final state. If

there is no state which is blocked forever* then the protocol will

eventually terminate. If one assumes that there is a nonzero chance

of recovering from every failure in a finite time* then there will be

no infinite blocking.

We conclude this subsection by describing the rules associated

with state transitions in a "canonical" termination protocol. These

5
We have ignored sites in the initial state. Such sites can be

handled by allowing them to complete the first phase of processing
which will take them into either a wait state or an abort state.

The above commit protocol bypassed the prepared-to-abort state.

iiili^^s^^

168

Fignre 7*3 Valid state transitions in a quorum-based protocol.

rules apply only to state transitions illustrated in Figure 7.3, no

other transitions are allowed. Given that the termination protocol

is invoked by a commit protocol which obeys the Quorum Requirements,

these rules preserve those requirements. Let G be a partition of

operational sites, and let Site i be an arbitrary site in G. The

rules are:

169

(1) Site i can make a transition to the prepared-to-commit state

only if all sites replied "yes" in the first phase or there is a

site in G in a committable state.

(2) Site i can make a transition to the commit state only if a com

mit quorum exists within G or there is a site in G in the com

mit state.

(3) Site i can make a transition to the abort state only if a abort

quorum exists within G or there is a site in G in the abort

state.

(4) Site i can make a transition from the wait state to the

prepared-to-abort state at any time.

The first rule enforces the constraint that all sites must agree to

commit in the first phase. The second and third rules enforce the

Quorum Requirements.

Notice that the first three rules are disjunctions, and further

more, the first term in each disjunction is a restatement of a neces

sary precondition for occupying the specified state. Whenever one of

these preconditions becomes true, it remains true for the remainder

of the protocol. Therefore, the truth of the precondition needs to

be established only once — by the first site to enter the specified

state. The remaining sites need only find a site in that state to

establish the truth of the precondition.

We now discuss the details of two termination protocols that

obey the above rules.

170

7.2.3.1* Centralized Termination Protocol

The centralized termination protocol is invoked whenever a par

tition of sites, G, can no longer communicate with the coordinator

(either it has failed or it is partitioned from G) • There may be

several termination protocols executing concurrently — each in dif

ferent partition.

The termination protocol, which is illustrated in Figure 7.4,

consists of two parts. The first part elects a new coordinator (any

of the protocols discussed in Section 5.4.3 can be used). The second

part consists of a three-phase protocol which enforces the state

transition rules in the previous section.

In the first phase, the coordinator queries the sites as to

their local transaction state. This phase can be omitted if the

coordinator already occupies a final state. The second and third

phases implement the state transition rules. If any site occupies a

final state or if a quorum already exists, then during the

second phase, the coordinator sends the appropriate message, "com

mit" or "abort", to all sites. In this case, no third phase is

required.

If a quorum does not exist and no site occupies a final state,

then the second phase will check whether there is a sufficient number

of sites to form a quorum. If so, an appropriate quorum will be

attempted by sending messages to sites in the wait state. These mes

sages instruct the slaves to move to the appropriate "prepared"

state. If a sufficient number of acknowledgements to these messages

171

are received, then the coordinator sends the appropriate messages

(i.e. commit or abort) during phase three. The coordinator will

block in phase two if there is an insufficient number of available

sites to form a quorum or in phase three if an insufficient number of

acknowledgements are received.

When the protocol blocks, it remains blocked until a failure is

repaired. The recovery process can be viewed as a merger of two or

more partitions forming a new partition. To recover, the newly

formed partition can invoke the termination protocol given above.

However, in this case, the election process can be streamlined, for

example, the new coordinator can be elected from the previous coordi

nators.

Site recovery is a special case of a merger involving a parti

tion containing exactly one site.

The centralized termination protocol in this section ensures

consistency even if several coordinators are elected within the same

partition. Since each coordinator executes the same protocol, they

behave identically in the absence of failures. Thus, it is clear

that consistency would not be compromised in this case. Even if

failures occur causing the coordinators to behave differently, con

sistency is still guaranteed by the state transition rules given

There is an underlying assumption that the repair of a failure is
detectable. Clearly, this is a reasonable assumption for site
failures. For communication link failures resulting in a partitioned
network, we assume that an underlying protocol periodically tests the
link.

172

PART I. A new coordinator is elected.

PART II. The coordinator executes the following 3-phase protocol
(for the protocol executed by the slaves, see note following the pro
tocol).

(1) Request local state.

(2) The slaves' state information is received and the coordinator
responds according to the following table.

8lave responses

£1 "commit"

£1 "abort"

£1 "prepared-to-commit" and
weights of slaves sending "waits"
and "prepared-to-commit" £V_

C

weights of slaves sending "wait"
and "prepared-to-abort" 2tVA

OTHERWISE

coordinator*a actions

send "commit";
commit the transaction

send "abort";
abort the transaction

send "prepared-to-commit";
continue with (3a)

send "prepared-to-abort";
continue with (3b)

block until a merge occurs

(3a) if 2tVc ack«s
then send "commit";

commit the transaction
else block until a merge occurs

(3b) if *VA ack's
A

then send "abort";
abort the transaction

else block until a merge occurs

(NOTE: slaves respond with their local state in Phase 1 and with an
acknowledgement in Phase 2).

Pigare 7.4 The centralized quorum-based termination protocol.

173

above. In this case performance may suffer (certainly more message

traffic would be generated), but consistency is preserved.

7*2.3.2. Decentralized Termination Protocol

The decentralized protocol is essentially the centralized proto

col where the election has been eliminated and each site executes the

coordinator protocol. Of course minor performance enhancements to

the protocol are possible. For example, a site can broadcast its

local state in the first phase instead of waiting for every site to

request it. However, the protocol is fundamentally unchanged.

The decentralized version is given in Figure 7.5. Like its cen

tralized counterpart, it occasionally blocks. Once it blocks, it

will remain blocked until a failure is repaired, whereupon the proto

col is restarted from Phase 1.

7.2.3.3. Alternatives and Enhancements

The largest improvement in the performance of the termination

protocol occurs if each site remembers the state information of all

of its cohorts. In the proposed protocol, quorums consist solely of

sites within the same partition. If it were known that a site in a

different partition had moved to a "prepared" state beforehand, then

that site could safely be counted toward a quorum in this partition.

This observation depends on the property that these protocols are

PQPretrftfltJTlg — once in a "prepared" state, a site will, not retreat

to a wait (state or to a different "prepared").

174

Local Protocol for Site i

(1) Broadcast local state.

(2) Wait until state info is received from all sites, then respond
according to the following table.

meSSagfiS received Site jj s, actions

£1 wcommit" commit the transaction

£1 "abort" abort the transaction

£1 "prepared-to-commit" and prepare to commit;
weights of slaves sending "waits" broadcast "prepared-to-commit";
and "prepared-to-commit" £VC continue with (3a)

weights of slaves sending "wait" prepare to abort;
and "prepared-to-abort" £V. broadcast "prepared-to-abort";

continue with (3b)

OTHERWISE block until a merge occurs

(3a) if £VC "prepared-to-commit"
then commit the transaction
else block until a merge occurs

(3b) if £VA "prepared-to-abort"
then abort the transaction
else block until a merge occurs

Figure 7.5 The decentralized quorum-based termination protocol

For better performance, each site could keep a list of the sites

it knows to be in the prepared-to-commit state, and another list for

sites in the prepared-to-abort state. Each list must be a conserva

tive estimate — sites which have recently moved to a "prepared"

175

state or moved after a network partitioning, may not be on the list.

For the scheme to work, no false entries can appear in either list.

Now, when a list at any site satisfies an appropriate quorum, the

transaction can be terminated.

In a centralized scheme, maintaining the lists is primarily the

responsibility of the coordinator. During every phase the coordina

tor sends its most current version of both lists to the operational

sites. Whenever a newly-elected coordinator queries the slaves con

cerning their states, it can include its lists as part of the same

message. A slave's reply can include additions to the lists if they

differ.

In the decentralized protocol, the lists can be maintained

without additional communication since all operational sites broad

cast messages to one another. However, lists between sites will tend

to diverge slowly over time due to sites failing in the middle of

sending or receiving messages. This divergence does not affect the

resiliency of the protocol, nor is it likely to significantly affect

its performance. (Of course, an alternative is to include the lists

with each interaction.)

The design philosophy of the original protocol was to delay the

movement of a site into a "prepared" state until it was apparent that

a quorum had responded. This philosophy was influenced by: (1) only

sites within the same partition could participate in the formation of

a quorum, and (2) sites in the wait state were free to participate in

either type of quorum. Since a failed site is completely passive, it

176

was not advantageous for it to be in a "prepared" state.

On the other hand, if each site maintains state information

about all of its cohorts (as suggested above), then a failed site in

a "prepared" state can indeed contribute to the formation of a

quorum. Clearly, it is advantageous for a site to occupy a

"prepared" state before failing; therefore, unreliable sites should

move into a "prepared" state early. However, sites that rarely fail

should still defer moving into the "prepared" state until the forma

tion of a quorum appears likely.

7.2.4. Performance

Every quorum-based protocol will occasionally block until a sin

gle site recovers. This occurs in the case of a tie, where every

site, except one failed site, is in a prepared state, but neither

type of quorum is established. However, all known protocols that

allow network partitioning and site failures possess this weakness.

Even the protocol for catastrophic site failures occasionally blocks

for a single failed site.

All of the quorum-based protocols, including commit and termina

tion protocols, are three-phase protocols. Each phase requires

approximately 2N messages for centralized protocols and N messages

for decentralized protocols. In the absence of failures, three

phases is always sufficient to terminate the transaction (sometimes

two suffices).

177

To estimate the cost of the protocols in the presence of

failures, we must first estimate the number of invocations of the

termination protocol. This will be proportional to the number of

failures and "mergers" occurring during the execution of the proto

col. Let us assume that every failure is a simple partitioning (i.e.

a single group of sites is split into two noncommunieating groups).

Let us also assume that each merger merges exactly two partitions.

Hence every failure requires one merger to repair it.

With the above assumptions* consider the worst case cost of ter

minating a transaction when f failures occur. Clearly, this occurs

when all f failures must be repaired before the transaction is ter

minated. In the centralized protocols, every failure will cause an

invocation of the termination protocol (the new partition that is

coordinatorless will invoke it) and every merger will cause another

invocation. Therefore* the worst case cost is (2f)(6N) plus the cost

of 2f invocations of the election protocol. The 12*f*N term dom

inates the cost.

In the decentralized protocols* a failure may causing blocking*

but it never triggers a new invocation. However* a merger requires a

2
new invocation. Thus* f(3N) is the worst case bound for the number

of messages.

It is very difficult to analyze the expected performance of

quorum-based protocols* even if very simple* independent probability

2
f of the 2f total invocations of the election protocol occur dur

ing merging when the election can be very cheaply performed.

178

distribution functions are used to describe site failures. For

nonzero failure probabilities, it is clear that the worst case per

formance is unbounded, which is expected in light of the Two Generals

Problem. However, we have argued that under realistic failure

assumptions the protocol does eventually terminate — there are no

infinite cycles.

There are two sets of parameters that determine the performance

of the protocol in the presence of failures: the weights assigned to

individual sites, and the values for V„ and V..
C A

The assignment of weight is often influenced by policy con

siderations external to the implementation of the system. However,

some factors that are relevant to the implementation issues are per

centage downtime, failure rate, and percentage of data stored at the

site. Perhaps the most intuitive rule is to assign weights inversely

proportional to the percentage downtime. Perhaps a better policy is

to use the rate of failure rather than the actual downtime. The

crashing of a site during a transaction is harder to handle than the

site being down at the onset.

The rationale for assigning weights according to percentage of

stored data can be justified on the principle of "conservation of

9 . .
Assigning weights inversely proportional to the percentage down

time is not equivalent to assigning them proportional to percentage
uptime. Consider two sites, A and B, whose downtimes are 0.2% and
0.1% respectively. Using this to determine weights, a consistent as
signment would give 1 to A and 2 to B. Using uptime, we find A and B
are up, respectively, 99.8% and 99.9% of the time. A consistent
weighting assigns 998 to A and 999 to B.

179

labor" — work should not be discarded needlessly. If the work per

formed by the site is proportional to the amount of data it holds,

then the site should have a larger voice in the outcome of transac

tions.

In choosing quorum sizes, it is not necessary that Vc equal V..

In fact, there are several strong arguments for choosing V > V..

First, commit protocols allow unilateral aborts, and if a significant

number of transactions are unilaterally aborted, then this suggests

using a smaller V.. A second and stronger reason is that most site

failures are expected to occur during Phase 1 of the protocol since

most of the transaction execution time is spent in Phase 1. All of

the data processing takes place during this phase; whereas, Phase 2

and Phase 3 synchronize state information among the sites and require

very little local processing. If sites fail during Phase 1, then the

transaction must be aborted. Hence, it should be easy to abort.

An interesting heuristic for choosing V. is based on a rough

estimate of the failure distribution of the sites. Let P(V.) be the
A

probability that at least an abort quorum is operational. ?(VA) i-8 a

decreasing function in V.. The point is to choose the maximum V. such

that VA £ V_ and P(v.) exceeds a minimum level of desired availabil

ity.

As mentioned before, the weight of a site can be zero, in which

case the site contributes nothing toward forming a quorum. (However,

such a site can still unilaterally abort the transaction.) A zero-

180

weighted site can be eliminated from all phases whose purpose is to

form a quorum. Hence, in the commit protocol, zero-weighted sites

can be omitted from Phase 2. In the extreme case, where only a sin

gle site has a nonzero weight, the quorum based commit protocol

degenerates into the standard two-phase protocol with all of its

disadvantages. Specifically, the slaves normally must block on the

failure of the only nonzero weighted site (i.e. the coordinator).

7.3. Partial Amnesia

An unfortunate truism of current distributed systems is that

sending a message and recording that fact in stable storage can not

be implemented as an atomic action. Consequently, for every message

sent, there exists a window of time in which a failure leaves the

status of the message in doubt: the site can not know whether the

message was sent or not. We call this partial loss of state informa

tion partial amnesia.

Since a state transition which sends one or more messages can

not be implemented atcmically, an interesting question arises: For

maximum resiliency, how should the individual operations constituting

a transition be ordered? On the one hand if a site sends messages

first and fails before changing state, then it has incorrectly

informed other sites about the transition. (Upon recovering, it will

not have changed states.) On the other hand, if the change in local

state occurs first, then the site may fail before informing other

sites of the change.

181

When site recovery is based on a distributed log or a history

mechanism, the ordering of operations within a transition is imma

terial since the local state is not used in making the commit deci

sion. Therefore, the recovery mechanism used with nonblocking proto

cols is resilient in either ordering of operations.

Partial amnesia becomes a crucial issue only when recovering

sites take an active part in determining the fate of the transaction,

as in quorum-based protocols. The consistency of quorum-based

schemes depends on the rule that once in a "prepared" state, a site

cannot retreat to a wait state. The rule is to insure that a site

participates in only one kind of quorum.

Let's explore what may happen when messages are sent before a

change of state occurs. Consider the situation where a site sends

messages to other sites informing them of its transition from the

wait to a "prepared" state, but the site fails before changing its

local state. Upon recovery, the site will still occupy the wait

state. In essence, it has behaved as though it made a transition to

the "prepared" state and then (silently) retreated back to the wait

state, and thus, violating the above rule.

Figure 7.6 illustrates a scenario where Site 3 fails and recov

ers in such a manner, enabling the site to participate in both kinds

of quorums. This leads to inconsistency. Notice that the only site

informed by Site 3 of its willingness to participate in a commit

quorum (i.e. Site 1) is down when Site 3 recovers. Therefore, no

site observes Site 3's traitorous behavior.

182

Sites 1, 2, and 3 are processing a transaction using the centralized
quorum-based commit protocol. Site 1 is the coordinator. Both an
abort and a commit quorum requires, two sites.

The sequence of events are:

(1) Site 1 sends the transaction to 2 and 3.

(2) Site 2 and 3 both reply "accept"; Site 2 fails.

(3) Site 1 also "accepts" and sends out "prepare-to-commit" mes
sages •

(4) Site 3 sends back an "ack", but fails before moving into the
prepared-to-commit state. (Site 3 will not remember sending the
"ack".)

(5) Site 1 receives the "ack" from 3. Sites 1 and 3 constitute a
commit quorum; therefore. Site 1 commits and sends a message to
3 (which is not received)•

(6) Site 1 fails.

(7) Site 2 and 3 recovers. Both sites recover to the wait state.
(NOTE: Site 3 has suffered partial amnesia.)

(8) Site 2 is elected the new coordinator. Since both sites are in
the wait state, an abort quorum is formed and both sites eventu
ally abort.

'ijwe 7.6 A scenario where partial amnesia experienced by recover
ing site (Site 3) results in an inconsistent database.

If a change of state occurs before messages are sent, then the

nonretreating properties of the protocol are preserved, and hence

resiliency is guaranteed. In general, protocols where recovering

sites assume an active role in terminating the transaction, require

that the state change be recorded first. This is similar to the

write ahead log, rule used in local logs. Gray was the first to

observe that it is desirable to apply this rule to distributed logs

183

as well ([GRAX79]).

CHAPTER 8

Conelasion8

The contributions of this thesis consist of complementary

theoretic and applied results. The theoretic results of Chapters 3

and 4 include a formal model and existence (or more accurately,

nonexistence) results for many classes of resilient protocols. The

applied results include a collection of practical commit and

recovery protocols for various failure-prone environments.

8.1. The Formal Model and Existence Proofs

Chapter 3 introduced a powerful, finite state model. The model

was sufficiently abstract to develop the existence results of Chapter

4, yet sufficiently concrete to specify and verify the resilient pro

tocols presented in the later chapters.

Models based on finite state automata have previously been used

in network applications, for example, modeling error-free transmis

sions at the bit level ([AH079]). They are particularly useful for

modeling concurrent processes that: (1) can be characterized by a

small number of states and (2) where the significant events consists

of sending and receiving messages. Commit and recovery protocols are

examples of such processes.

Perhap8 the aspect of distributed processing that is most diffi

cult to model is the physical network and the mechanism of message

passing. For commit protocols we proposed a simple yet novel

184

185

approach, the network is an unbounded buffer that is nondeterministi-

cally read by the automata which are processing at each site.

The existence results in Chapter 4, concerning independent

recovery and network partitioning, were more illuminating than

surprising. In a nutshell, the partitioning results conclusively

showed that any realistic protocol resilient to partitioning must be

a blocking protocol. The independent recovery results, which we will

now summarize, were less pessimistic.

Independent recovery from site failures is attractive for a

variety of reasons; two of the most important ones being: (1) a dis

tributed history of each transaction does not have to be maintained

and (2) a site can always recover even if the network or companion

sites fail. Alternative recovery schemes require some type of dis

tributed history, and necessarily block recovering sites when that

history becomes unavailable due to failures.

The results were positive in the special case where resiliency

to only a single failure is required, but were negative in all other

cases. Furthermore, it is impossible for a recovering site to deter

mine when it is safe to independently recover.

The results in themselves are not as interesting as their impli

cations, particularly in the design of commit protocols. This is

most evident in the design of the nonblocking protocols in Chapter 5.

These protocols were derived directly from the conditions stated in

the Nonblocking Theorem and completely independent of the properties

of any recovery protocol. The resulting nonblocking protocols

186

precluded the use of independent, and hence nonblocking, recovery

protocols. The existence results not only justify this approach,

moreover, they prove that even a more complex commit protocol can not

simplify the required recovery protocols.

The independent recovery results together with the Nonblocking

Theorem demonstrate that a commit/recovery protocol pair can ensure

that one and only one group of communicating sites independently and

consistently terminate the transaction. Although this observation

appears fairly intuitive, its implications may not be so obvious.

For example, we know that it is possible to design protocols where

the coordinator (but no other site) can independently recover — the

two-phase commit is an example of this. Also, we know that it is

possible to design centralized protocols where operational sites can

always continue processing a transaction even in the presence of a

coordinator failure. The three-phase commit in Chapter 5 is such an

example. However, in that protocol the coordinator can not indepen

dently recover. It would be desirable to design a protocol that

allowed both: operational sites can always terminate and the coordi

nator can always independently recovery. However, from the above

observation, we know that no such protocol exists.

The existence results also reveal the limited usefulness of

local state information during recovery. Unless a site is in a final

state, the local state information can not be used, instead, a dis

tributed history of the transaction must be accessed. Therefore,

nonfinal local state information need not survive a processor failure

187

and can be stored in volatile memory. (The only exceptions are

recovery from catastrophic failures and from total failures.)

Finally, as we have previously mentioned, a distributed history

of the transaction is necessary (and sufficient) for recovery proto

cols that are resilient to arbitrary failures.

8.2. The Design of Resilient Protocols

Chapters 5, 6, and 7 dealt with the design of resilient proto

cols, first for site failures and later for network partitioning.

Two major paradigms were presented: the three-phase nonblocking pro

tocols, and the quorum-based protocols. In both paradigms, protocol

design was decomposed into two parts: the design of a protocol that

executes in the absence of a major failure, and the design of a pro

tocol that is invoked after a major failure has occurred. The former

protocol is called a commit protocol, and the latter, a termination

protocol.

For each class of failures we developed two families of proto

cols: a family of commit protocols and a family of termination proto

cols. (Minimally, each family contained a centralized and a decen

tralized protocol.) The families were compatible in the sense that

any termination protocol could be used in conjunction with any commit

protocol. For example, a centralized commit protocol (which has low

message overhead) could be used with a decentralized termination pro

tocol (which is easy to implement)•

188

This approach provides for separation of "concerns" between the

two types of protocols. Since the commit protocol is invoked for

every transaction, it should be designed for speed and to consume a

small percentage of the network bandwidth. On the other hand, the

termination protocol is invoked only when a failure occurs (and this

should be rare); therefore, the objectives for its design may be

quite different than for those for commit protocol. For example,

ease of implementation may be a significant factor in choosing a ter

mination protocol.

We now review nonblocking protocols and quorum-based protocols.

8.2.1. Honblocking Protocols

Nonblocking protocols were presented in Chapter 5. All such

protocols are based on the following rule:

Monblocking Rale. Before any site commits, all opera

tional sites must occupy committable states; and similarly,

before any site aborts, all operational sites must occupy

noncommittable states.

This rule guarantees that a transaction can be safely terminated by

any operational site (see Theorem 5.14). Hence, if at least one site

remains operational during the execution of the protocol, the tran

saction will be correctly terminated. If a designated group of K

sites obey the above rule, then only one of these needs to remain

operational to guarantee correct termination (this property is called

K-regilifmr.y). Despite the rule's simplicity, it is a powerful and

189

very useful result.

The popular two-phase commit protocol does not satisfy the non-

blocking rule; therefore, it occasionally blocks on site failures.

Specifically, it blocks on a coordinator failure. Other two-phase

commit protocols, including the decentralized two-phase commit proto

col discussed in Chapter 2, also fail to satisfy this rule. In fact,

it is easy to argue that no two-phase commit protocol satisfies the

rule.

By adding an extra phase to the two-phase commit, a three-phase

protocol satisfying the nonblocking rule is derived. In its most

general form, the three-phase protocol is:

Phase 1. The transaction is distributed to all sites. All sites

vote on it.

Phase 2. If all sites vote "yes," then all operational sites

move into a committable state (the prepared to rommit state);

otherwise, all operational sites abort, and the protocol ter

minates.

Phase 3. All operational sites commit.

The distinguishing feature of the protocol is the addition of the

prepared La ««'«• state and the requirement that all of the opera

tional sites must enter this state before any site commits. Aborting

a transaction still requires only two phases.

The three-phase commit protocol is substantially more expensive

than the two-phase commit protocol, incurring a fifty percent

190

increase in end-to-end message delays and from a forty to a fifty

percent increase in message traffic. While this is a significant

cost increase, its impact on the performance of a distributed tran

saction management system is unclear since a commit protocol may not

be a significant consumer of resources. One would expect this to be

true in a system where large distributed transactions predominate.

However, for a small transaction, the elapsed execution time may be

dominated by the number of end-to-end message delays, in which case

the elapsed time will increase by almost fifty percent.

Finally, we note that nonblocking protocols are susceptible to a

special kind of "catastrophic" failure — the event that all sites

fail during the processing of the transaction. Such a failure does

not compromise consistency, but it must be detected and recovering

sites must execute a special recovery protocol. In Chapter 6 we pro

posed a detection mechanism based on alive sete. These sets can be

cheaply maintained without additional message traffic. In the same

chapter, the special recovery protocol is described.

8.2.2. Quorum-Based Protocols

The quorum-based protocols discussed in Chapter 7 are resilient

to all failures that leave a site's local state information intact.

They satisfy the following rules.

Qaornm Requirements.

(1) If any site occupies the commit state, then a commit

quorum of sites are in committable states.

191

(2) If any site occupies the abort state, then an abort

quorum of sites are in noncommittable states.

(3) The sum of the votes required for a commit quorum and

those required for an abort quorum must exceed the total

number votes.

Again, no two-phase protocol satisfies these rules; however,

there are three-phase protocol that do. The quorum-based, three-

phase protocol is essentially the three-phase protocol of the previ

ous section, except all state transitions require the consensus of an

appropriate quorum of sites.

The similarity between the quorum-based protocol and the non-

blocking protocol is not surprising due the similarity between the

above rules and the Nonblocking Rule. The major difference between

the two sets of rules is that the Nonblocking Rule is concerned only

with operational sites; whereas, the Quorum Requirements are con

cerned with all sites (even failed ones). In fact, the reason that

quorum-based protocols are more resilient is that they do not distin

guish between operational and nonoperational sites. However, they

are intrinsicly blocking protocols, but this is a necessary property

of any protocol that is resilient to network partitioning.

Another difference between the two types of protocols is that a

separate recovery protocol is not required. A failed site is merely

a passive participant in the commit or termination protocol, and it

becomes an active participant after it recovers. However, unlike

192

nonblocking protocols, local state information must be preserved

aero8s site failures since a failed site will eventually rejoin the

protocol as an active participant. Thus, a site's local state must

be stored in stable storage.

Within this simple recovery scheme, there are no catastrophic

failures and therefore, no special recovery protocols.

8.2.3. A Comparison

Since both the nonblocking protocol and the quorum-based proto

col are three-phase protocols, they have almost identical costs. In

some environments, the quorum-based protocols might be slightly fas

ter, since they require only a quorum of responding sites before

proceeding to the next phase.

The major factor in choosing between the two types of protocols

is whether network partitioning can occur and, if so, whether they

are detectable. If the probability of partitioning is nonnegligible

and it is difficult to distinguish between several site failures and

a partitioning, then a quorum-based protocol should be used. In most

other environments, and especially environments where the probability

of a site failure exceeds that of a partitioning by orders of magni

tude, the nonblocking protocol should be used. However, whenever

there is a possibility that a partitioning has occurred, a nonblock-

ing protocol must block in order to preserve consistency.

Except for failures which destroy local state information.
2
Recall that a "nonblocking protocol" is nonblocking only with

respect to site failures.

193

Hybrid strategies are possible: a transaction management system

could run a nonblocking protocol that obeys the Quorum Requirements

whenever a partitioning is suspected. To ensure consistency, the

size of a commit quorum and an abort quorum should be statically

defined and not depend on the number of sites that is conjectured to

be operational. The protocol for site recovery is complicated since

a recovering site must now determine which rule was used to terminate

the transaction.

8.3. The Design Methodology

In this thesis we adopted a systematic design approach that is

conceptually similar to programming methodologies based on abstract

data types ([LISK77]). Broadly speaking, the approach first derives

the formal properties for commit (or termination) protocols resilient

to a given class of failures, and then develops implementable proto

cols from these properties. In the following paragraphs, we review

the approach in more detail.

For each class of failures, we postulated sufficient conditions

for resiliency. For sites failures, these were the conditions in the

Nonblocking Theorem; for partitioning, these were the Quorum Require

ments. From the sufficient conditions, we then derived a canonical

protOCO1. A canonical protocol differs from a conventional one in

that none of the details of message passing, including the communica

tions topology of the protocol, are specified. The canonical proto

col is an "abstract protocol" where only its formal properties are

developed. From these properties, a state transition diagram is

194

derived. This diagram together with the formal properties is a for

mal specification of the canonical protocol.

The state diagram defines all of the local transaction states

and all possible transitions between those states. The formal pro

perties define the necessary conditions for a local state transition

to occur. These properties are normally expressed as predicates on

the global state of the protocol (see, for example, the Quorum

Requirements which are the formal properties of the canonical

quorum-based commit protocol of Chapter 7).

A "concrete" protocol is derived from a canonical protocol by

specifying, for each transition, an exchange of messages which verify

the truth of the associated condition described in the canonical pro

tocol. In this way a canonical protocol serves as a template for the

derivation of a concrete protocol. By varying, for example, the

specification of the communications topology, many concrete protocols

can be derived from the same canonical protocol. In the thesis, we

developed a centralized and a decentralized protocol from each canon

ical protocol. Hierarchical and ring protocols can be derived like

wise.

This design approach has several advantages. The canonical pro

tocol can be formally verified from the postulated sufficient condi

tions, using the same methods used in the formal verification of con

current processes (CHOAR69.GRIE76]). To verify a concrete protocol,

one need only show that it obeys the properties of a canonical proto

col. This is much easier than verifying a concrete protocol from

195

scratch. Moreover, many concrete protocols can be derived and veri

fied from the same canonical protocol.

8.4. Farther Research

The most important remaining questions are: (1) what impact does

a resilient protocol have on the performance of a real system, and

(2) does the increased resiliency offered by such a protocol justify

its cost? Of course, the answer to the first question requires an

implementation and, with one exception, none of these protocols have

been implemented. The exception is SDD-l's four-phase commit proto

col; however, due to the manner in which the system was implemented,

a meaningful evaluation of performance is difficult.

The answer to the second question depends not only on the

results of the first, but also on the reliability of future systems

and their use. However, it is probably safe to assume that, regard

less of the cost of a given level of resiliency, there will be some

applications that require at least that level.

Another open problem is the complexity of these protocols. In

particular, lower bounds on message passing and the number of end-

to-end delays are needed. We gave bounds only for the decentralized

nonblocking protocols. In that case, the worst-case and best-case

bounds coincided with the bounds of our proposed protocol. In gen

eral, it would be nice to have lower bounds that are independent of

the protocol's communication topology.

REFEftKBCES

[AH079] A.V. Aho, J.D. Ullman, and M. Yannakakis, "Modeling Com

munications Protocols by Automata," 20th Annual Symposium

JUL Foundations &£ Computer Science, Oct. 29-31, 1979, pp.

267-273.

[ALSB76] P.A. Alsberg, G.G. Belford, J.D. Day, and E. Grapa,

"Multi-Copy Resilency Techniques," Center for Advanced

Computation, CAC 202, University of Illinois, Urbana, May

1976.

[BAER80] J.-L. Baer, et al., "The Two-Step Commitment Protocol:

Modeling Specification and Proof Methodology," Univ. of

Washington, 1980.

[BAYE803 R. Bayer, H. Heller, and A. Reiser, "Parallelism and

Recovery in Database Systems," Trans, ^n. Database Systems.

5. 2. June 1980, pp. 139-156.

[BERN80] P.A. Bernstein, and D.W. Shipman, "The Correctness of Con

currency Control Mechanisms in a System for Distributed

Databases (SDD-1)," TrailS. OR Database Systems. 5, 1,

March 1980, pp. 52-68.

[BERN81] P.A. Bernstein, and N. Goodman, "Concurrency Control in

Distributed Database Systems," ACM Computing Surveys. 13,

2. June 1981, pp. 185-222.

196

197

[BOCH77a] G.V. Bochmann, "Finite State Description of Communication

Protocols," Computer 2fe£KarJ&&, 2, 4. October 1977, pp.

361-372.

[BOCH77b] G.V. Bochmann, and J. Gecsei, "A Unified Method for the

Specification and Verification of Protocols," Proc. IFIP

Congress. 1977, pp. 229-234.

[CAMP74]

[DAVI81]

[DENN76]

[EDEL74]

[EDEN80]

R.H. Campbell, and A.N. Habermann, "The Specification of

Process Synchronization by Path Expressions," Proc. Int.

SvjQp.. Hflld At Rocquencourt oji Operating Systems. 1974.

Susan Davidson, and Hector Garcia-Molina, "Protocols for

Partitioned Distributed Database Systems," TR No. 283,

EECS Dept., Princeton University, March 1981.

Peter Denning, "Fault-Tolerant Operating Systems," Comput

ing Surveys. 8, 4, December 1976, pp. 359-389.

M. Edelberg, "Data Base Contamination and Recovery,"

Proceedings Of. Jtflfi. ACM SIGMOD Workshop SUL Data Descrip

tion. Access. £od Control. New York, 1974, pp. 97-147.

"Eden Project Proposal: Research in Intergrated Distri

buted Computing," Department of Computer Science, Univer

sity of Washington, Technical Report 80-10-1, October

1980.

[ELLI77a] C.A. Ellis, "A Robust Algorithm for Updating Duplicate

Databases," Proceedings of. £fce. Second Berkeley Workshop £IL

Distributfid Data Management and Computer Networks. May

198

1977, pp. 146-158.

[ELLI77b] C.A. Ellis, "Consistency and Correctness of Duplicate

Database Systems," Xerox Palo Alto Research Center, Palo

Alto, California, May 1977.

[GARC79] Hector Garcia-Molina, Performance o£ Update Algorithms for

Replicated J2a£a. in. a. Distributed Database. Ph.D. Thesis,

Computer Science Dept., Stanford University, June 1979.

[GARC80a] Hector Garcia-Molina, "Reliability Issues for Completely

Replicated Distributed Databases," TR No. 266, EECS Dept.,

Princeton University, April 1980.

[GARC80b] Hector Garcia-Molina, "Elections in a Distributed Comput

ing System," TR No. 280, EECS Dept., Princeton University,

December 1980.

[GIFF79] David Gifford, "Weighted Voting for Replicated Data,"

Operating Systems Review. 13, 5, December 1979* pp. 150-9.

[GRAY79] J.N. Gray, "Notes on Database Operating Systems," Operat

ing. Systems: An Advanced Course. Springer-Verlag, 1979.

[GRAY813 J.N. Gray, et al., "The Recovery Manager of the System R

Database Manager," A£H Computing Surveys. 13, 2, June

1981, pp. 223-242.

[GRIE76] D. Gries, and S. Owicki, "Verifying Properties of Parallel

Programs: An Axiomatic Approach," £A£M, 19, 5, May 1976.

199

[HAMM80] Michael Hammer, and David Shipman, "Reliability Mechanisms

for SDD-1: A System for Distributed Databases," Trans, on

Database Systems. 5, 4, December 1980, pp. 431-466.

[H0AR69] C.A.R. Hoare, "An Axiomatic Basis for Computer Program

ming," £A£H, 12, 10, October 1969.

[K0HL81] W.H. Kohler, "A Survey of Techniques for Synchronization

and Recovery in Decentralized Computer Systems," ACM Com

puting Surveys. 13, 2, June 1981, pp. 149-184.

[RUNG81] HcT. Rung, and J.T. Robinson, "An Optimistic Methods for

Concurrency Control," Transactions OR Database Systems. 6,

2, June 1981, pp. 213-226.

[LAMP78a] Leslie Lamport, "The Implementation of Reliable Distri

buted Multiprocess Systems," Computer Networks. 2, 2, May

1978.

[LAMP78b] Leslie Lamport, "Time, Clocks, and the Ordering of Events

in a Distributed System," pp. 558-565, Communications af.

£he.A£H» 21, 7, July 1978.

[LAMP80] L. Lamport, R. Shostak, and M. Pease, "The Byzantine Gen

erals Problem," Technical Report 54, Computer Science

Laboratory, SRI International, March 1980.

[LAMP76] B. Lampson, and H. Sturgis, "Crash Recovery in a Distri

buted Storage System Tech. Report," Computer Science

Laboratory, Xerox Pare, Palo Alto, California, 1976.

200

[LAMP81] B. Lampson, "Replicated Commit," Computer Science Labora

tory, Xerox Pare, Palo Alto, California, January 7, 1981.

[LELA78] G. LeLann, and H. LeGoff, "Verification and Evaluation of

Communication Protocols," Computer Networks. 2, 1, 1978.

[LELA80] G. Lelann, "Consistency Synchronization and Concurrency

Control," Distributed Data Bases. I. W. Draffan, and F.

Poole (editors), Cambridge University Press, 1980.

[LIND79] B.G. Lindsay, et al., "Notes on Distributed Databases,"

IBM Research Report, RJ2571, July 1979.

[LISB81] E.T. Lisboa, and P. Penny, "The Communication Manager:

Providing Reliable Communication Mechanisms for Distri

buted Systems," Univ. of Southwestern Lousiana Technical

Report, 1981.

[LISK77] B. Liskov, and S. Zilles, "An Introduction to the Formal

Specification of Data Abstractions," Current Trends in.

Programming Methodology. Volume 1, R.T. Yeh (editor),

1977.

[L0ME77] D.B. Lomet, "Process Structuring, Synchronization, and

Recovery Using Atomic Actions," Sigplan Notices. 12, 3,

March 1977. pp. 128-137.

[LORI773 R. Lorie, "Physical Integrity in a Large Segmented Data

Base," ACH Transactions £n. Data Base Systems. 2, 1, March

1977.

201

[MENA80] D.A. Menasce, G.J. Popek, and R.R. Muntz, "A Locking Pro

tocol for Resource Coordination in Distributed Databases,"

Trans* SR Database Systems. 5, 2, June 1980, pp. 103-138.

[MERL76] P.M. Merlin, "A Methodology for the Design and Implementa

tion of Communication Protocols," IEEE Transactions o£

Communications. COM-24, pp. 614-621, 1976.

[MERL79] P.M. Merlin, "Specification and Validation of Protocols,"

IEEE Transactions OR Communications. COM-27, 1979, pp.

1671-1680.

[MINO80] Toshimi Minoura, "A New Concurrency Control Algorithm for

Distributed Database Systems," Proceedings ojE. the Fourth

Berkeley Workshop an Pi stribnted Data Management aM com

puter Networks. 1980, pp. 221-234.

[PARK81] D.S. Parker, et al., "Detection of Mutual Inconsistency in

Distributed Systems," Proceedings of the Fifth Berkeley

Workshop OR Distributed £a£a. Management .and Computer Net

works. February 1981, pp. 172-186.

[PARK82] D.S. Parker, and R.A. Ramos, "A Distributed File System

Supporting High Availability," Proceedings a£ jjjg. Sixth

Berkfilfiy Workshop qxL Distributed Data Management and Com

puter Networks (£o. appear). February 1982.

[PEAS80] M. Pease, R. Shostak, and L. Lamport, "Reaching Agreement

in the Presence of Faults," Journal af. the ACM. 27, 2,

April 1980, pp. 228-234.

V

202

[POWE81] Michael Powell, private communication, February 1981.

[P0ST74] Jon Postel, "A Graph Model Analysis of Computer Communica

tions Protocols," UCLA-ENG-7410, Univ. of California, Los

Angeles, Ph.D. thesis, 1974.

[RAND78] B. Randell, P.A. Lee, and P.C. Treleaven, "Reliability

Issues in Computing System Design," ACM Computing Surveys.

10, 2, June 1978, pp. 123-166.

[ROSE78] D.J. Rosenkrantz, R.E. Stearns, and P.M. Lewis II, "System

Level Concurrency Control for Distributed Database Sys

tems," ACM Transactions OH Database Systems. 3, 2, June

1978, pp. 178-198.

[RO'D177] J.B. Rothnie, Jr., and N. Goodman, "A Survey of Research

and Development in Distributed Database Management," Proc.

Third Inl. Conf. qjl IfiXy. Large Databases. IEEE. 1977.

[SALT78] J.H. Saltzer, "Research Problems of Decentralized Systems

with Largely Autonomous Nodes," Operating System Reviews.

12, 1, January 1978, pp. 43-52.

[SCHA78] R. Schapiro, and R. Millstein, "Failure Recovery in a Dis

tributed Database System," Proc. 1978 COMPCON Conference.

September 1978.

[STON79] M. Stonebraker, "Concurrency Control and Consistency of

Multiple Copies in Distributed INGRES," IEEE Transactions

or Software, EngjjLeexing, May 1979.

203

[SUNS79] C.A. Sunshine, "Formal Techniques for Protocol Specifica

tion and Verification," IEEE Computer. September 1979, pp.

20-27.

[SVOB79] L. Svobodova, "Reliability Issues in Distributed Informa

tion Processing Systems," Proc. 9th IEEE Fault Tolerant

Computing Conference. Madison, Wise, June 1979.

[THOM79] R.H. Thomas, "A Majority Consensus Approach to Concurrency

Control," Transactions OR Database Systems. 4, 2, June

1979.

[TRAI79] I.L. Traiger, et al., "Transactions and Consistency in

Distributed Database Systems," IBM Research Division,

Report RJ2555(33155), San Jose, California, June 1979.

[VERH78] J.S.M. Verhofstad, "Recovery Techniques for Database Sys

tems," ACM Computing Surveys. 10, 2, June 1978, pp. 167-

195.

[ZAFI79] P. Zafiropulo, et al., "Towards Analyzing and Synthesizing

Protocols," IBM, RZ 963 (No. 33588), July 1979.

	Copyright notice 1982
	ERL-82-45 (1 of 3)
	ERL-82-45 (2 of 3)
	ERL-82-45 (3 of 3)

