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ABSTRACT

Using a second-order circuit model the complex dynamical behavior of a

typical Josephson-junction circuit is rigorously analyzed using integral mani

folds. The key idea is to prove that under certain small-parameter assumptions,

the nonautonomous circuit has a stable integral manifold. Moreover this manifold

is doubly periodic so that steady state behavior of the Josephson junction

circuit reduces to the analysis of its dynamics on a torus. Well-known experi

mental phenomena, such as the existence of hysteresis in the dc Josephson

circuit and voltage steps in the ac Josephson circuit, are rigorously derived
and explained
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1. Introduction

Josephson junction devices are used in many applications ranging from super
sensitive detectors to superfast computers [13]. This remarkable 2-terminal

device is imbued with extremely rich dynamics and displays a wide variety of
exotic nonlinear phenomena. For example when driven with dc current source the

device is found to oscillate at extremely high frequencies (GHz range). If we

plot the average value Vdc of the high-frequency voltage versus the dc current
^c'*^ Vdc ' *dc cnaracteristic is f°und to be hysteretic (double-valued). If
we connect a sinusoidal current source in parallel with the dc current source and

repeat the experiment, the resulting Vdc - I. characteristic changes dramatically.
Here discontinuous voltage steps of varying width are observed at rational

number multiplies of some natural frequency. This puzzling voltage-step phenomenon

had been given various intuitive and physical explanations [13,14], A rigorous

explanation using a first order circuit model (C = 0 in Fig. 1) is given in [1].

Unfortunately this first-order model is over-idealized because it fails to

include the effect of junction capacitance C which is always present in non-

negligible amounts in the real device.

A more realistic Josephson junction circuit model is shown in Fig. 1 where

the basic Josephson element is a nonlinear inductor described by

t
where <j> denotes the flux linkage , e denotes the electron charge and h denotes

Planck's constant. The equation governing the second-order circuit in Fig. 1

is given by:

TT
Equation (1.2) can be transformed into the dimensionless form:

Bx + x + sin x = a + e sin cot (1.3)

4ire
The quantity -r- (j> has an important physical interpretation: it represents

the quantum phase difference between the two superconductors which made up the
junction.

1 Several autonomous systems (e.g. pendulum with constant torque and viscous
damping, synchronous motor, rotating disc, etc.) are described by a similar

equation ^-j +a-nr+sinx =b. Indeed, this equation can be transformed into
dt _2

(1.3) with e = 0 by defining t := t/a, a := b, and B := a . (Throughout this

paper, the symbol := denotes a "definition").
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Our objective in this paper is to prove that under certain small-parameter

assumptions, solutions of (1.3) are attracted to a doubly-periodic 2-dimensional

surface. This surface is called an integral manifold because any trajectory

originating from this surface must remain there forever. By identifying

appropriate periodic boundaries, this surface can be represented by a torus.

Consequently the steady state behavior of (1.3) can be derived by studying the

corresponding motion on this torus. This important observation reduces a non-

autonomous second-order differential equation on the plane to an equivalent

nonautonomous first-order differential equation on the torus. Consequently

the same tools as. used in [1] (which is applicable only for first-order

differential equations) can now be used to analyze (1.3).

In order to prove the existence of an integral manifold for (1.3) it is

necessary to analyze the autonomous circuit (e = 0) first. This is summarized

in Section 2 using the analytical method developed by [2]. Unlike the analysis

given [1] which was obtained numerically via computer aided phase-plane analysis,

the analytical approach here is completely rigorous.

Making use of the result in Section 2, the existence of integral manifold

is proved in Section 3.

Although our proof is similar to Hale's [7,9] there is a significant

difference: Hale's integral manifold arises from closed curve, ours from the

curve which is periodic on the plane but is unbounded.

In Section 4 the double periodicity of the unbounded surface derived in

Section 3 is used to transform the surface into an equivalent torus. This

allows us to apply well-known results from [5,12] to derive the qualitative

dynamics of (1.3).

2. D.C. Analysis

In this section we assume that the Josephson junction circuit model in

Fig. 1 is driven by a dc current source so that we can set I,,. = 0 in (1.2),

or e = 0 in (1.3). Defining y := x, (1.3) transforms into the following

autonomous state equation:

(2.1a)

(2.1b)

•

X = y

•

y =

a- sinx -y
e

tM_,Main idea of the proof is due to Krylov-Bogoliubov-Mitropolskii (see [7,9]).
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2.1 Qualitative Properties

The qualitative properties of (2.1) can be derived by physical reasoning

[10,13,14],computer-aided phase-plane analysis [1,6], or by a more rigorous
analytic approach [2,8].

In this section we summarize and interpret geometrically the qualitative

properties derived in [2,8]. This geometrical interpretation will play a
crucial role in our ac analysis in Sections 3 and 4.

Since the right-hand side of (2.1) is 2ir-periodic in x, the phase portrait

will duplicate itself every 2ir intervals. Hence, it suffices to consider only

a vertical strip of width 2ir, say {(x,y) : 0 < x < 2tt, y e R}, instead of the

entire x-y plane. A rigorous analysis of the phase portrait of (2.1) in this

vertical strip can be found in [2,8]. Outline of Andronov's approach and

additional details are given in Appendix A. In particular, it can be shown that

for 3 := RCft > 0 the phase portrait of (2.1) can exhibit only 1_ qualitatively

distinct behaviors, as depicted in Figs. 2(a)-(g) depending on the value of

For simplicity, we assume a > 0 in summarizing the following qualitative

properties. The same properties hold, mutatis mutandis, for a <_ 0.

Case 1. a > 1, 3 > 0 (Fig. 2(a))
4.

System (2.1a) has a unique 2ir-periodic and globally stable trajectory

y = <!>(x), ip(x) > 0, which attracts all other trajectories. There are no

equilibrium points. See Fig. 2(a)
Case 2. 0 <a <1, B>BQ(a) (Figs. 2(b) and (c))
For any a e (0,1] there is a critical value BQ = BQ(a) such that for

B> BQ(a), system (2.1) has a unique 2ir-periodic asymptotically-stable trajectory
y = i|>(x), ty(x) > 0, which attracts all trajectories outside the domain of

attraction of equilibrium points.
IT

For a = 1, the equilibrium points are located at (x,y) = («• + k2ir,0),

k = 0, ±1, ±2,... (Fig. 2(b)). For 0 < a < 1, the equilibrium points located

at (x,y) = (sin" a, 0) are either stable nodes or stable foci. Those located

"^Throughout this section, the 2tt-periodicity is with respect to x. This implies
f2ir dx

that y(t) is also periodic with respect to time (with period T =
Corollary 4.
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at (x,y) = (tt - sin a,0) are saddle points (Fig. 2(c)).

Case 3 0<a<l,0<B< B0(aMFigs. 2(d)-(g))

System (2.1) has no periodic solution.1* For B<BQ(a) (Figs. 2(f) and (g)),
the trajectories tend, either (for. a = 1) toward the unstable points located at

(x,y) = {j + k2ir,0) or (for 0<a< 1) toward stable equilibria at (x,y)
= (sin" a + 2kir,0) (except for a pair of trajectories converging toward each
saddle). For B= BQ(a) (Figs. 2(d) and (e)), the trajectories connecting
unstable points form a separatrix. Trajectories originating above the separatrix

tend toward it. Trajectories originating below it behave as in the case

B< BQ(a).
It can be shown that the "critical value" BQ = B0(a) is a continuous and

one-to-one function of a over the interval 0 < a_< 1 [8]. Since
2 4ireB := RC-^ Ic depends only on device parameters and is therefore fixed for a

given Josephson junction*it is more natural to refer to the inverse function

a =an(B) which is defined over the interval BQ(1) £ B<°° (Fig. 3(a)). Since
the phase portrait in Fig. 2(f) includes the range B< 3gO) when a= 1, let us
extend the domain of a =cu(B) over the interval 0< B<°° by defining a0(B) =1
for 0< B£ BqO). This extended function is shown in Fig. 3(a) for future
reference.

Comparing Figs. 2 and 3(a) we note that for each fixed B = B, we can read off

the critical value aQ(B) such that (2.1) has a 27r-periodic trajectory y =iJj(x)
if a>aQ(B),and no such trajectory if a<aQ(B) ++ The phase portrait for the
special case a =aQ(B) is given by Fig. 2(d) if B=BqOK pi9. 2(e) if
B>B0(D, and Fig. 2(f) if B<BqO).1'1*1'
The following properties of the critical function <*g(3) are proved in

Appendix A:

Property 1 (See Fig. 3(a)).

a = cu(B) is a continuous function defined for B > 0 and satisfying:

t
In this case, except for constant solutions corresponding to equilibrium

points, y(x) is not a periodic function of time.

To see this fix B = B in Fig. 3(a) and observe that for any-a > ag(B) the
corresponding critical value B0(a) is less than B- Since B> BQ(a) corresponds
to Figs. 2(b) and (c) and hence has a 2ir-periodic trajectory i^(x).

^ In terms of Oq(b) Figs. 2(b)-(g) correspond to:
(b) ct0(B) <a =1 (c) aQ(B) <a <1
(d) a =aQ(B) =1, B= B0(D (e) a =aQ(B) <1 B>B0(D
(f) a =aQ(B), B< BQ(1) (g) 0 <a <aQ(B) (see Fig. 3a)
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(a) a0(8) =1, for 0 <B<Bq(D,
(b) for B> &0O)» aQ(B) is strictly decreasing,
(c) lim an(B) = 0

&**» u

Property 2.

Let ip(x) =^ag(x) denote the 2ir-periodic trajectory corresponding to a
specific parameter values a and B.

(a) For any B-j > B2 >0 and any a >a0(B2)» we have :

^aB ^ >^aB ^' for any X'
(b) For any BQ >0 and any a, >cu >aQ(BQ), we have:

^a B^ >^a B^' for any x#

2.2 Geometrical Interpretation

In the x-x-y space, the 2ir-periodic trajectory y = i|j(x) of (2.1) can be

interpreted as a periodic surface

SQ := {(x,x,y) e R3 : y =̂ (x), xe R, xe R}
as shown in Fig. 4(a). The surface SQ is invariant in the sense that any
trajectory (in x-x-y space) starting from a point (TQ>x0,yQ) on SQ at x = xQ
remains on SQ for all x _> xQ (and x <xQ). Sq is called an integral manifold
of (2.1)»a concept of fundamental importance in this paper [7,9].

Since both SQ and the right-hand-side of (2.1) are 2ir-periodic in x, we can
"chop" Sq into parallel strips {(x,x,y) e SQ :' 2kir <x <2(k+l)ir},
k = 0, ±1, ±2,... and consider all lines x = 2kir, k = 0, ±1, ±2,... as identical.

If we wrap SQ around so that these lines coincide, we would obtain the
cylinder shown in Fig. 4(b).

Since (2.1) is autonomous the cross sections of Figs. 4(a) and (b) taken

at times x = kT,, k = 0, ±1, ±2,... for arbitrary T, are all identical.

Consequently, we can identify these cross-sections and transform the cylinder

in Fig. 4(b) into the torus in Fig. 4(c).

Hence, the integral manifold SQ of (2.1) can be represented geometrically
by Fig. 4(a), (b) or (c).

+Recall that the 27r-periodic solution ty fi does not exist for a<aQ(B).
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It follows from the stability property of \p(x) (See Figs. 2(a), (b), and

(c)), that for a> 1, SQ attracts all trajectories outside of
SQ; for cXq <a <1trajectories outside of SQ are attracted to either SQ or to
stable constant solutions of (2.1). Hence, every nonconstant periodic solution

of (2.1) must lie on the integral manifold SQ.
Given the periodic (in x) trajectory y = ip(x) we can determine the correspond

ing solution waveform x*(x) := x*(x;xq,Xq) by solving the scalar initial value
problem

x•ij>(x), x(x0) = Xq (2.2)

derived from (2.1a). Once x*(x) is found, we can determine y*(x) = iM"x*(x)]
by direct substitution. Note that every solution (x*(t), y*(t)) obtained from

(2.2) lies on the integral manifold SQ, and vice-versa. Hence, if we are
interested only in the nonconstant periodic solutions of (2.1), it suffices to

study solutions on the integral manifold SQ. The transformation from a
2-dimensional problem (2.1) into a 1-dimensional problem (2.2) is in fact the

main motivation for introducing the integral manifold SQ.
Of course ty{x) is seldom available in analytic form. However, we will now

demonstrate that many significant qualitative information concerning (2.1) can

be obtained from the qualitative properties of i|j(x).

Property 3.

For any initial condition xQ, the solution of (2.2) is of the form

x(x) =^x +p(x) (2.3)

where T :=
'2ir dxjj^y and p(x) is T-periodic.

0

Proof: This is a simple consequence of the 2ir-periodicity and positiveness
of i//(x). For details see [12]. n

Corollary 4.

For any initial condition taken on the integral manifold SQ, (2.1) has a
T-periodic solution1* (x(x),y(x)) where x(x) is of the form (2.3) and
y(x) = <f>[x(x)].

Proof: Follows directly from the definition of SQ. n

T (x(x),y(x)) is T-periodic on the cylinder in Fig. 4(b).
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Corollary 5

- The period T depends on a and B (a >aQ, B>0) and decreases when either
a or B increases.

Proof: Follows directly from Properties 1 and 2 and T :=

Corollary 6

1. For any a > 0, T >^ -=£r

2. For any a > 1, T < -=V
J — a-1

Proof: It follows from (2.1) that

dUj . t[x(T)] _ a-sinx-y , Q
dx • *CxJ u

* .i

only on the line y =a - sinx . Since ij;(x) is differentiate, its global *-
maximum and mimimum must lie on y = a - sinx . So a - 1 <_ i|j(x) _< a + 1 and
2tt <- _ f27r dx < 2tt
^1 i0 ^xT1^*
Another important property of an "integral manifold" is that its qualitative

properties are often preserved under small perturbations. In the following

Section 3, we will demonstrate this property by showing that if the right hand

side of (2.1) is perturbed slightly, then the resulting equation would still

possess an integral manifold S which is "near" to SQ. Moreover the qualitative
properties of solutions on S can be derived by analyzing an associated scalar

first-order differential equation.

2.3 Physical'Interpretation

We will now relate the preceding qualitative properties and geometrical

interpretations in terms of the physical behavior of the Josephson-junction

circuit model in Fig. 1 when driven by a dc current source.

Recall that since x is proportional to the magnetic flux (i.e. phase

difference) y = x can be interpreted as a "normalized" terminal voltage correspond- .

ing to the "normalized" dc input current a := I<|C/IC«
The following physical interpretation then follows directly:

1. So long as the dc input current is smaller than the maximal admissible

supercurrent I (I. £ I or a < 1), there exists a constant (in time)
phase-difference $ := sirr""(Id /I )across the junction. Hence v=0, i.e.,
the voltage drop is zero and the junction functions as a superconductor.

^ dx
0 *lx7"
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t 2 4ire
2. For any choice of the parameter B := RCft = R CI -r- , there exists

a critical input current IQ := aQI (See Fig. 3(b)) such that for I . > IQ
(i.e. a >aQ), the phase-difference across the junction assumes the time-
varying form:

<f>(t) :» x(Qt) =y-ftt + p(ftt)

The associated terminal voltage is therefore time-varying and assumes the

form1"1"1*: .

v(t) =RIc*[^nt +p(Ot)]
where ^(x) is a T-periodic function. .In other words, the period of the terminal

voltage is equal to T/ft (where T is a dimensionless constant given in Property 3)

3. Since G is a very large number for Josephson junction devices, the

oscillation frequency is extremely high (in the GHz range). Consequently,

only the average voltage:

vdc * T [Jv(t,dt^if^dt.^«t)RI- fff-llk.^.jLO
0 - ' Jo T 2eT

can be measured experimentally. This average or dc voltage is therefore

proportional to the oscillation frequency y-

4. It follows from Corollary 5 that the dc voltage V. increases with
O A~0 QC

Idc and C.(B =RCG) when Rfl =(TI ^p- is held constant.
Since a constant 1^ and $ result in a constant T, whereas ft increases

with R, it follows that the dc voltage V._ will increase with R when
2 4ttp dcB = R C ^ I is held constant,

n c

5. For Iq <Idc < Ic (i.e. aQ <a <1) both constant and oscillatory
steady states coexist. Therefore the Vdc - Irf characteristic will be a
double-valued function in this interval. This observation has been verified

T Recall that for B£ BqO)» aQ =1. Compare Fig. 3(b) and the discussion in
case 2.

t,,i,

Note that time x := Qt and period T are dimensionless while frequency ft and
time t are physical quantities.

y{Z) 47re dt 4ire dt 4ire "M"t; 4ire ^LXU«;j

=Rl^C^Ot +p(ftt)]
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experimentally [10,13,14] and is reproduced in Fig. 5. Note that for junction
capacitance Csufficiently small (i.e. B<Bq(D), we have IQ =1 (aQ =1)
and the Vdc - Idc characteristic becomes a single-valued function. See Figs. 3
and 5.

6. It follows directly from Property 2 and the phase protrait discussion,
that the critical current IQ is amonotonically-decreasing function of the
junction capacitance C, as shown in Fig. 3. Detailed proof of this relationship
was given in [8] see also Appendix A. The quantitive relationship has been

derived numerically in [1,8] and experimentally in [10].

3. AC Analysis: Existence of Integral Manifold.

3.1 Introduction

Consider now (1.3) which applies when the Josephson junction circuit

model is driven by a sinusoidal current source with normalized amplitude

e := Iac/Ic« Defining y := x, we obtain the following non-autonomous state
equations:

" (3.1a)

(3.1b)

•

x =
y

•

y =

a - sin X -y + e sin 0)X

B

In general we cannot expect the solutions of (3J) to remain close to those

of the autonomous system (2.1) over the infinite time interval, even for small

e. However, we will show in this section that (3.1) has an integral manifold

provided the parameters B and e lie within the shaded region in Fig. 6(a) when

ot < 1 or Fig. 6(b) when a > 1. Moreover, for e sufficiently small, we will

show that the integral manifold S of (3.1) is close to the integral manifold

Sq of the autonomous system (2.1), while for B sufficiently small the integral
manifold S0 is close to the surface

p

{(T,x,y) : y - a - sin x + e sin ujx, x € ]R, x e R}.

Just as in Section 2 the existence of an integral manifold for (3.1) will allow

us to derive a number of important qualitative properties of (3.1) in Section 4

by studying an associated first order differential equation. This order-

reduction possibility is in fact our main motivation for finding integral

manifolds.
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3.2. Integral manifold S associated with small e.

Recall the integral manifold

Sq := {(x,x,y) € R3 : y=ij;(x), xGR.tGR} (3.2)
of the autonomous system (2.1), where y = ip(x) is the 27r-periodic (in x)

trajectory depicted in Fig. 2. Since our objective in this section is to show

the existence of an integral manifold S of (3.1) which is close to SQ, it
is convenient to introduce a new coordinate system (0,p) defined as follows:

x := 6 - i|>'(0')p (3.3a)

y := ip(e) + p (3.3b)

To obtain geometrical interpretation of (3.3), note that when p = 0 we

obtain x = 8andy = i|/(6), which is simply a parametric equation describing

y = i|>(x). For (x,y) sufficiently close to y = i^(x) it can be shown [7] that the

coordinate transformation (3.3) is one-to-one. Hence, to each point

Pq = (x0»y0) near y =tp(x), there correspond a unique pair (0O>PO).
Let us project any point PQ = (x0»y0) near y = \p(x) "orthogonally" onto

the trajectory as shown in Fig. 7. Define 0Q so that the point of intersection
Pq has coordinates xQ = eQ, yQ =^(6).

Observe that the vectors [1,i|>'(0q)] and [-^'(80)flj are just the tangent
and orthogonal vectors to the trajectory at the point PQ = (Xq.Pq). Observe
next that yQ "9Q =- ^.(e )(xQ -xQ). Hence, if we define pQ := yQ -yQ
we get formulas (3.3):

x0 = xo +^'(0q)Pq =e0-*'(e0)p0

^0 =^0 +p0 =*(V +p0
i.e. coordinates 9q, pQ correspond to the point PQ. In terms of the new coordinates
9 and p (3.1) becomes (see Appendix B):

0 = 4>(6) + G(x,0,p,e) (3.4a)

p = A(0)p + F(x,0,p,e) (3.4b)

The following basic theorem shows that for e sufficiently small and for

appropriately chosen initial conditions, (3.4) can be reduced to one scalar

equation.
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Theorem 3.1 [11]

If (2.1) has an integral manifold SQ as defined in (3.2) then for e
sufficiently small, (3.1) has a stable integral manifold

S£ := {(x,x,y) €1R3: x=0-^'(0)h(x,0,e), y=i|>(0) +h(x,0,e),
0 G IR, x e ]R} (3.5)

where the function h(•,♦,•) satisfies the following properties:

(a) h(x,0,e) is smooth and bounded by D where lim D = 0.
e e-K) e

(b) h(x,0,e) is Lipschitzian in 0 with Lipschitz constant A , where

lim A = 0.

e-K) e 2
(c) h(x,0,e) is 27r-periodic in 0 and periodic in x.

Moreover,for any initial condition on S , i.e. for any (x0,x(x0),y(xQ)) e S
the solution of (3.1).has the following form:

x(x) = 0(x) + ip'(0(x))h(x,0(x),e) (3.6a)

y(x) = <K0(*O) + h(x,0(x),e) (3.6b)

where 0(x) is a solution (with initial condition 0(xQ) =0Q) of the scalar
equation:

0 = if>(0) + G(x,0,e) (3.7)

2ir
where G(x,0,e) := G(x,0,h(x,0,e),e) is periodic in x, 2-rr-periodic in 0 and

tends to zero with e.

Remarks: 1. Geometrically speaking Theorem 3.1 asserts that under small

perturbation the surface SQ will not change much. In particular, since
h(x,0,e) + 0 (uniformly) as e+ 0 it follows that S£ tends to SQ as e-*- 0.

2. Since the proof of Theorem 3.1 is very long we will give only main

steps here, with additional details given in Appendix C.

Outline of the proof of Theorem 3.1:

The basic idea of the proof consists of defining a "family of candidates

for integral manifold" together with appropriate transformation which maps this

family into itself. Let H(x,0,e) be such a "candidate".

e'

For our purposes it is enough to require that h(x,0,e) has continuously
different!*able derivatives up to the order 4, with respect to x and 0.
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H HLet 0 (x) =0 (t;xq,0q) denote the solution of the scalar equation

0 = i|i(e) + G(x,0,H(x,0,e),e) (3.8)

with initial condition 0(xo) = 0Q (i.e. solution of (3.4a) with p(t) replaced
by H(x,0,e)).

Consider next the linear part of (3.4b)

p=A(0H(x))p (3.9)

Let y(x,xq) denote the fundamental solution of (3.9), i.e.,

y(x,Xq) := exp[ (T A(0H(t))dt] (3.10)
T0

For any H(x,0,e) define the transformation T as follows:

fi HT[H](xo,0q) := y(s+t0,Xq) • F[s+XQ,0n(s+xo;xQ,0o),
* —oo

H(s+xo,0H(s+xo;xQ,0Q,e),e)]ds (3.11)
Assume that all candidates for integral manifold satisfy hypotheses (a), (b)

and (c) and denote the space of all candidates by C(D ,A ). Our next task is

to show that for e sufficiently small the transformation T maps C(D ,A ) into

itself and is a contraction. It then follows that the sequence of successive

iterates H = TH ,, ne l,2,3,...,Hn € C(D ,A ),converges to the unique fixed
II III \J w C#

point h of T i.e. h = Th. It follows from the definition of T and h that

h(x,0,e) constitutes an integral manifold for (3.4) and that for any 0o»To and
p(tq) = P0 =h(xo,0o), (3.4) is equivalent to:

0 = ip<-e) + G[x,0,h(x,0,e),e] (3.12a)

p(x) = h(x,0,e) (3.12b)

It is natural to ask how the transformation T was found. The following

remarks provide some intuitive explanation (in the case when A is constant see

also p. 235 of [7]). Suppose that (3.4) has an integral manifold S£ in the
(x,0,p)-space and suppose p can be expressed as a function of 0; namely

Intuitive explanation on how the form of T was obtained is given at the end
of the outline. See also [7].
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p=h(x,0,e). If we choose initial condition as Tq,0q,po =h(xQ,0Q,e), then
(3.4) is equivalent to:

0 = ij;(0) + G(x,0,h(x,0,e),e)

-£rh(x,0(x),e) =A(0)h(x,0,e) +F(T,0,h(x,0,e),e)

(3.13a)

(3.13b)

for any xQ, 0Q. Let 0n(x) =0n(x;xQ,0Q) denote the solution of (3.13a).
Viewing (3.13b) as a linear equation with a forcing function eF(•»•,•,•)>we

can write the equation in the integral form:

h(x,0n(x),e) =Y(T,xo)h(xo,0Q,e) +
rX

Y(x,s)F(s,0h,h(s,0h,e),e)ds

Y(To,x)h(x,0n,e) =h(xo,0Q,e) +

0 (3.14)

where y(t,xq) is defined by (3.10). Multiplying both sides of (3.14) by
y(xq,x) we obtain:

Y(To,s)F(s,0h,h(s,0h,e),e)ds.
T0

f2lT
A(0)d0 < 0, we have

0

Assuming that y(tq,x) •+ 0 as x -»• -«>, which holds if
h h

Y(xQ,x)h(x,0 ,e) •* 0 as x •*• -» because h(x,0 ,e) must be bounded. Hence
(—CO

Y(To,s)F(s,0n,h(s,0h,h(s,0h,e),e)ds.
Xn

Changing the dummy variable s to a := s - xQ we obtain
r0 h

Y(To,XQ+a)F(xQ+a,0n(xQ+a;xQ,0o),
o

h(xQ+a,0 (xo+a;xQ,0o),e)da

which is precisely (3.11). n

Theorem 3.1 asserts that, for e sufficiently small, (3.1) has an integral manifold

consisting of a periodic surface S which is close to the integral manifold SQ
of (2.1) as shown in Fig. 8(a). Cross sections of SQ at any time are identical
and described by y = t|>(x). For comparison purposes the curve y = a - sin x

(x = 0) for a > 1 is also shown to emphasize that it need not be close to

y = <J>(x).

h(xQ,0Q,e) =

0n denotes here 0n(s) =0n(s;xo,0o).
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In Section 4, we will show that (3.1) has a periodic solution which lies

on S . This periodic solution however need not be close to the periodic

solution of (2.1) even if S is close to SQ. Before proceding further let us
note that for a € [0,1) (3.1) possess stable periodic solutions which lie

outside of S . More exactly we have:

Theorem 3.2 [4,7]

If a e (0,1) and e is sufficiently small then there exist:

(a) a unique (in xe (0,2tt] strip) asymptotically stable -j- -periodic
solution of (3.1) in a neighborhood of the stable equilibrium point (sin a,0)

of (2.1). Moreover this solution tends to the stable constant (equilibrium)

solutions as e -*• 0.
2ir

(b) a unique (in x e (0,2ir] strip) unstable periodic solution of

(3.1) in a neighborhood of the unstable equilibrium point (ir-sin" a,0) of

(2.1). Moreover this solution tends to the unstable constant (equilibrium)

solution as e -*• 0.

Proof: In a neighborhood of an equilibrium point, equations (3.1) can.

be reduced to p = Ap + F(x,p,e) which is (3.4) with 0 absent and p € JR. The

proof then goes along the lines of the one of Theorem 3.1 [7]. n
Remarks:

1. The constant solutions (corresponding to equilibrium points of (2.1))

are one-dimensional integral manifolds consisting of parallel straight lines as

shown in Fig. 8(b).

2. The periodic solutions in Theorem 3.2 can be interpreted as one

dimensional integral manifolds in the neighborhoods of straight-line manifolds

of (2.1) . See Fig. 8(b).

3. It follows from Theorems 3.1, 3.2 and Fig. 2(c) that for aQ(B) <a<1
(3.1) has atwo dimensional irvtegral manifold S£ as depicted in Fig. 8(a) as well
as_ stable and unstable 1-dimensional integral manifolds as depicted in Fig. 8(b).

3.3 Integral manifold S associated with small B.

The following theorem shows that for sufficiently small B9 the behavior

of (3.1) is similar to that of the "reduced system"

J=y (3.15)
0 = a - sin x - y - e sin wt

obtained by setting B = 0 in (3.1).
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Theorem 3.3 [3,9]

For B sufficiently small (3.1) has a stable integral manifold

Sg ={(x,x,y) : y =a - sin x +e sin tux + f(x,x,e,B), x G JR , x e 1R }
(3.16)

where the function f(•,-,•,•) satisfies the following properties:
(a) f(x,x,e,B) is smooth and bounded by DQ where lim D. = 0.

e B-K) 6
(b) f(x,x,e,B) is Lipschitzian in x with Lipschitz constant Ag, where

lim A = 0.

(c) f(x,x,e,B) is 2ir-periodic in x and — -periodic in x.

Moreover for any initial condition on S0, the solution of (3.1) can be
. p

obtained from the following equivalent system:

x = a - sin x + e sin u>x + f(x,x,e,B) (3.17a)

y = f(T,x,e,B) + a - sin x + e sin wx (3.17b)

Remarks:

1. The proof of this theorem is very similar to that of Theorem 3.1 and

is outlined in Appendix D.

2. If both e and B are small so that Theorems 3.1, 3.2, 3.3 hold

simultaneously and B< BQ(1) (so that aQ(B) = 1) then:
a) for a>aQ(B) both integral manifolds S and S coincide. In this case

y = \\>(x) is close to y = a - sin x.

b) for a < cu(B) i|/(x) ceases to exist and Theorem 3.1 does not apply.

In this case the stable and unstable periodic solutions alluded to in

Theorem 3.2 must lie on the manifold S„ as shown in Fig. 9.
B *

4. AC Analysis: Solutions on the Integral Manifold

4.1 Equation on torus

In this section we will discuss trajectories on manifolds S„ and S0.
£ p

Due to Theorems 3.1 and 3.3, manifolds exist and are (asymptotically) stable.

Hence, asymptotically-stable solutions on the manifold determine the steady
state behavior of our system.

Now solutions on S£ and S are determined by solving the scalar differential
equations (3.7) and (3.17a), respectively. Once the solution corresponding to
a given initial condition is found, the corresponding trajectory on S and S_
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is uniquely specified by (3.6) and (3.17b), respectively. Consequently, it

suffices to study the qualitative behaviors of (3.7) and (3.17a), which we will

henceforth denote by:

♦ -£-f(T,«) (4.D

f(x+ ^,<|>) =f(T,<|>), f(T,4>+2Tr) =f(x,<|>) (4.2)
where <|> denotes 0 in (3.7) and x in (3.17a), and f(x,<|>) denotes the corresponding

expression on the right-hand side of (3.7) and (3.17a).

Since each point (tq,<|>q) uniquely specifies a point on S£ and S- via
(3.6) and (3.17b) respectively, we can use (x,<j>) to set up a coordinate system

on S and S0. In particular, the locus of all points having identical first
e p

(respectively;second) coordinate defines a constant x (respectively constant <f>)

curve as depicted in Fig. 10(a). Hence each point on S„ and Se is uniquely
£ P

identified as the intersection between a constant-<j> curve and a constant-x

curve.

Now consider the "grid" formed by the constant-<j>0 curves $ = <f>Q +m• 2tt
and constant-Xq curves x = xQ +n • 2tt, m,n =0,±1,±2,... where <j>Q, xQ is any
initial point. Since f(x,(|>) is 2-rr-periodic in <j> and -~ -periodic in x we can

identify the constant-4>n curves and represent S and S0 as a cylinder as shown
U £ p

in Fig. 10(b). Likewise, we can identify the constant-xQ curves (circular
cross-sections in Fig. 10(b)) and represent S£ and S as a torus as shown in
Fig. 10(c).

Consequently, the qualitative behavior of (4.1) can be analyzed by the same

technique as in [1].

However, unlike in [1] where f(x,4>) is explicitly given our f(x,<(>) here,

though exist in view of Theorems 3.1 and 3.3 is not available except that it

satisfies (4.2). Fortunately most of the results in [1] depends only on this

property and can be easily generalized.

4.2 Rotation Number \i

Let (|>(x;<J>q) denote any solution of (4.1) with 4>(0;(J>Q) = <j>Q. We define:

t
The following results can be easily generalized to the case when the forcing

2tt
function sin u)t is replaced by any periodic function. However, the results

are not valid for almost-periodic excitations.
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1 $(x;<|>ft)
":= zlim —^r~ <4-3)

as the associated rotation number.

Theorem 4.1: For any doubly-periodic equation (4.1) the rotation number y

defined by (4.3) exists and is independent of <j>Q. Moreover the rotation number
of (3.6) or (3.17a) is, apart from normalization constant, equal to the average

voltage across the Josephson junction.

Proof: The existence and uniqueness of y can be proved as in [5] (see also

[1,12] for a different approach). To prove the average voltage interpretation

consider first (3.6) where <J> := 0. Since both ^'(0(x)) and h(x,0(x),£) are

bounded, (3.6a) implies

lim SilLo lim^-= yu) (4.4)

The same relation holds trivially for (3.17a) where <J> := x. Now since x(x)
++

has been identified in Section 1 as the voltage across the Josephson junction,

the average voltage is:

lim if x(x)dx =lim x-^= y• u> (4.5)
x-*» Jo x-*» T n

Remarks:

1. Existence of average (4.5) is not obvious at all because even a bounded

function may not have an average. For example the function

x(x) = sinUn x), x e [l,+~) (4.6)

shown in Fig. 11 has no average. Indeed, since

q(T) := j f sinUn x)dx =\ [sinUn T) - cosUn T)] +̂ (4.7)

we have for T = e ,

This corresponds to the "turning point" in [1] where w was assumed to be
unity.

n Ml). so v(T/n) =fl MgM.a.(*r-1More exactly v(t) =^P- so v(t/0) =fl ^Sl =q.(JSS.)' i=RIcx.

Hence the average voltage V = lim j

=RIr 11ml f x(x)dx.

v(t)dt = lim -r
0 t-~> z

-18-
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q(T„) =j [sin(nir) -cos(mr)] +\ em =-\ (-1)" =̂ (4.8)
Now choosing n = 2k and n = 2k + 1 respectively, we find:

lin.q(T2k) =-l+le-2k,r =-l (4.9)

and

lim q(T2k+1) =- \ (-1) +\ e~(2k+1)7T =1 (4.10)
It follows from (4.9) and (4.10) that the average of the bounded waveform in

Fig. 11 does not exist.

2. It was shown in [1,12] that the normalized average voltage y can also

be defined by a Dedekind cut in the set of rational numbers.

3. If we interpret <j>(t) as a trajectory on the toroidal manifold in

Fig. 10(c), then it follows from (4.4) and (4.5) that y can be interpreted as

the average angular velocity in which the trajectory rotates along the

^-direction on the torus. The larger y is the faster the trajectory winds around

the torus (along the <j>-di recti on). This is the reason why y is called rotation

number.

4.3 Poincare Map y

Consider a cross-section Cat some fixed time xQ on the torus of Fig. 10(c).
For any point <|>q on C, define the function

Y(*0) - <Kt0 +^; <J>0) (4.11)
Note that y(<I>q) 1S simply the point where the trajectory starting from (tq,<|>q)
returns and intersects C. For example in Fig. 12, PQ maps into P, and P, maps
into P«. This return map is called the Poincare map.

Higher iterations of Poincare* map can also be similarly defined as follow:

Yn(4>0) := Yfr""1^)] "^o +"*!r; *0} (4J2>
Example 1. $ --* can be considered.as an equation on the torus, where
(t,4>) e [0, -~] x [0,2ir]. Since the solution is given by <{>(x) =f+ <f>0(mod 2ir)
(for Xq =0), the first and second iterations of the Poincare map are given
respectively by Figs. 13(a) and (b); namely

Y(*0) =<fr(0 +~; 4>Q) =4>q +* (mod 2tt) (4.13)
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Y (*0) =*(0 +-f; 4>q) =(J)q +2tt =(J,q (mod 2ir) (4.14)
Example 2. J =sin <J> can be considered as an equation on the torus, where
(x,<j>) e [0,-~] x [0,2ir]. The solutions for this equation are shown in Fig. 14(a).
Note that there are two constant solutions <J>? = 0 and <f>* = ir. The Poincare* map
constructed from these solution is shown Fig. 15(b). Note that y(<J>0) ><f>0 for
<J>q e (o,tt) because the corresponding solutions in Fig. 15(a) are strictly
increasing. On the other hand, y(<J>0) <<j>0 for <J>o e (7r>27r) because the
corresponding solutions are strictly decreasing. Hence, <j>* is an unstable

fixed point whereas §t is a stable fixed point of y(<J>q)«
Remarks:

1. Poincare* map y is continuous and strictly increasing (because trajectories

continuously depend on initital conditions and cannot intersect). Hence, y

preserves the orientation of the cross section C in Fig. 12.

2. A trajectory <|>(x,<f>n) of (4.1) is closed on the torus if and only if,

there exist integers mand n such that <J>(n —, <j>Q) = <j>0 +m2ir, i.e., y (<J>0) =ta
(mod 2ir).

3. The above remarks asserts that a trajectory <|>(x,<J>q) of (4.1) is periodic
on the torus, if and only if, there exists some integer n such that the n-th

iteration of Poincare* map has a fixed point.

4. It can also be shown that

u =1 lim Yn^0)v - u nm—y_ (4.i5)
n-*» n

5. The following statements are easily shown to be equivalent:

a. The rotation number of (4.1) is rational.

b. There exist integer n such that y" has a fixed point.
c. There exists a periodic trajectory on the torus.

6. If Yn(4>0) nas at least one fixed point, and if ^r- y(4>q) i 1at all
fixed points of y (Yq)» tnen a^ periodic solutions of (4.1) are isolated.
Moreover stable and unstable periodic solutions of (4.1) must alternate.

7. If y=£, then the associated periodic trajectory must rotate around
the torus (i.e., in the $ direction) p times before closing upon itself as x

2tt 2ttincreases from xQ to xQ + q—. In other words, <|>(x +q—) =4>M + p2ir. A
trajectory corresponding to p = 3 and q = 1 is shown on the surface S or Sg
in Fig. 15(a) and on the associated torus in Fig. 15(b). Note that the

trajectory winds around the torus 3 times before closes upon itself.
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4.4 Structural Stability

Consider (4.1) and a "perturbed" system

$=f(T,<J>) +fp(x,<j>) (4.16)
where both f(*,-) and fD(#»') are smooth, 2tt periodic in 4> and ~ -periodic in
x. Let y and y denote the rotation number of (4.1) and (4.16), respectively.

Definition [12]: The rotation number y of (4.1) is said to be stable iff it

remains constant for all sufficiently small perturbations f (t,$) i.e.,

y = yD for any f-(*»*) satisfying sup|f (x,<j>)| <£ where £ is "small enough".
p p T,(J> p .

Example 3: Consider Example 2 again. Since all solutions <f> f 0 of <fr = sin <j>

tend to <"> + ir, its rotation number is:

y = lim4ill = lim I=o.
x x

Consider next the perturbed equation

i = sin <f> + Ef (x,<j)) (4.17)

where sup|f (x,4>)| = 1 and f (x,<J>) is 2ir-periodic in <j> and — -periodic in x.
T»* ^ 3Consider the horizontal strip in the (x,<J))-plane bounded by \$\ _< j it. Note

1 *5 1

that for sufficiently small £ (say £ <j) we have <J =- 1 +^A^^j ^) K" J
along the upper boundary <J> =-y. Conversely <j> =1 +efJt.--*-) > j along the

3irlower boundary <f> = - -j- . Hence, all trajectories of (4.17) originating from

points x = 0, - -£ < <J> <-£- can never leave the strip. Consequently, the

rotation number of (4.17) must satisfy |y | =|lim ^iZJ-j <lim ^ =0. Hence
we have y = 0 = y and the rotation number for <$ = sin <j> is stable.

Whether the rotation number of (4.1) is stable or not is specified by the

following result:

Theorem 4.2 [12]

Equation (4.1) has a stable rotation number if and only if, there exist a

pair of integers pand q such that y =p/q and the function h(<J>0) := Yq(<J>0) - <i>Q
changes its sign at the fixed point of y^q)-
Remarks:

2tt
1. Since y = p/q corresponds to a periodic solution with period q

q
(D

it follows that the q-th iterated Poincare map y (<f>g) has a fixed point (J>£
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2. A rational rotation number is not necessarily stable since h(<j>0) may
not change sign at the fixed point <J>£ of Yq(<J>0) (e-9« i =j has rotation number
1 2j which is obviously unstable and h((J>0) := Y (<J>0) - <J>0 =° for all <j>0).

4.5 Steady State Behavior

If we measure the average "dc" voltage V. as a function of the dc input

current Idc for the nonautonomous circuit, the resulting V. - I. characteristic
was found to be step-wise constant and discontinuous as shown in Fig. 17,

moreover each step is equal to a constant times a rational number. This strange

characteristic, which differs drastically from that of Fig. 5 for the autonomous

case, can now be rigorously explained with the help of following result:

Theorem 4.3 AC Steady State Characterization.

Assuming (3.1) can be reduced to the study of an associated scalar

differential equation (4.1) (i.e. either Theorem 3.1 or 3.3 holds) having a

rotation number y, then:

(a) If y = m/n, then the steady state solution of (3.1) satisfies the

following periodicity relationship:

x(T +n^) =x(x) +m2ir (4.18)

y(x +n^) =y(x) (4.19)
27T

Consequents the Josephson junction voltage is periodic with period n — .
2

(b) If y is irrational (and f(x,<|>) is C ) then any solution of (3.1) on

S or SQ can be written in the form:
£ p

x(x) = ywx + g,(ujx,ya>x) (4.20)

y(x) =g2(o)x9yu>x) (4.21)
twhere both functions g,(o>x,yu>x) and g2(u>x,ya>x) are 2Tr-periodic in art and ycox.

Proof:

(a) If y is rational, then it follows from Remark 5 of Section 4.3 that

4.1 has a periodic solution (mod 2tt) satisfying <j>(x + n —) = <|>(x) + m2'ir.

If (3.1) has an integral manifold S (small-e case) then <j> = 0 and (3.6)
e 2ir

holds. Since i^(0), i|>'(0) and h(x,0(x),£) are 2ir-periodic in 0 and periodic

Statement (a) can be considered as a special case of statement (b). Indeed if
y is rational, then the two frequencies w and yw are commensurable and hence
both x(x) - ywx and y(x) are periodic.
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in x, it follows that x(x) and y(x) must satisfy (4.18)-(4.19). Similarly,

if (3.1) has an integral manifold S„ (small-$ case) then <j> = x and (3.17b)
2irholds. Again, since f(x,x,£,$) is 2ir-periodic in 0 and periodic in x,

(4.18)-(4.19) must hold.

(b) Since f(x,<J>) is twice continuously differentiate it follows from

Bohl's theorem in [5, page 414] that there existsa continuous function g(x,<{>)

such that any solution of(4.1) can be written in the form:

<j>(x) =ywx +(J)q +g(x,ywx +<j>Q) (4.22)

2irwhere g(x,<f>) is 2ir-periodic in <J> and periodic in x, and <J>0 is a constant.
Applying once again (4.22) into (3.6) or (3.17b) we obtain (4.20)-(4.21). *

4.6 Explanation of the Voltage-Step Phenomena

Since the rotation number y of (4.1) is equal to the normalized average

Josephson junction voltage (Theorem 4.1), it follows from Theorem 4.2 that

if the average voltage remains constant (as a function of Ij ) for small changes

in I. then it must be equal to w•J (u times some rational number). This
result is consistent"1" with experiment (Fig. 17). Note that only those rotation
numbers p/q which also satisfy the second condition in Theorem 4.2 will give

rise to constant voltage steps.

For example, the periodic solutions of the autonomous system (2.1) do not

give rise to any horizontal voltage steps (Fig. 5). Indeed we can state the

following two corollaries:

Corollary 4.1:

The rotation number associated with the invariant manifold SQ of the
autonomous system (2.1) is always unstable and hence no non-zero voltage can

appear in Fig. 5.

Proof: Substituting £ = 0 in (3.4a) we obtain

0 = 1^(0) (4.23)

where i|>(0) is 2ir-periodic in 0 and strictly positive for all 0, and can be

considers

the form

considered as — -periodic in x, for any oj. Now any solution of (4.23) is of

Rotation number (and an average voltage) is a continuous function of 1^ .
However, the waveforms corresponding to unstable y or "short steps" of y
cannot be observed experimentally. Hence, the experimental characteristics in
Fig. 17 is discontinuous.
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8(t) =y-T + p(x) (4.24)

r2lT dxwhere T := ^-r and p(x) is T-periodic. (Property 3 of Section 2.2). Hence,

the rotation number of (4.23) is

y=llimeixi=2, =2,/f2- dxVl }

Similarly, the rotation number y of the perturbed equation

0 = t(0) + n (4.26)

is given by

^p " 0)
dx \-l

*(x)+nj (4.27)

provided ip(x) + n > 0. It follows from (4.25) and (4.27) that y t y and hence

y of (4.23) is unstable. n.

Corollary 4.2

The rotation number associated with the invariant manifold S_ of the
p

autonomous system (2.1) with sufficiently small 3 is either unstable or zero.

Proof: Substituting £ = 0 in (3.17a) for the small-3 case we obtain

x = a - sin x + f(x,3) (4.28)

where f(x,3) := f(0.x,0,3) is 2ir-periodic in x and bounded by D0 where
p

D0 + 0 with 3 + 0.
p

Now as long as a > 1 + DQ so that (4.28) has no equilibrium point, (4.28)
p

can be analyzed by the same method as (4.23); namely it has a solution of the

form

x(x) =|^x +Pl(x) (4.29)

;2tt dx
where

'o
rotation number of (4.33) is unstable.

f2ir dx
Tl := L a-sin x+f(x,3) and P1(t) 1s TrPeriodic« Hence' the

+For £ =0 f(x,x,£,3) does not depend on x so f(x,x,0,3) = f(0,x,0,3)
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On the other hand if a < 1- Dg and (4.28) has an equilibrium point

xn, i.e., a-sin xn +f(xn,3) - 0then y=1 lim ^^- =- lim -9- =0.
u u u a) x a) x

x*+°°

Note that for a < 1 and 3 small enough (4.28) has always equilibrium

point Xq (since D -*- 0 as 3-*• 0). Hence, y is equal to zero and does not
change under small changes of a (as long as a < 1 and 3 remains small). This

confirms zero voltage-step characteristic in Fig. 5. For |I. |> IQ + "small"
term (what corresponds to a > 1 + Dj, the rotation number is no longer stable

p +

and no voltage step appears in this region.

+

Since 3 must be small in this analysis, Corollary 4.2 does not predict the
hysteresis phenomenon in Fig. 5.
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APPENDIX

A. Outline of phase-plane analysis

We shall briefly discuss the Andronov-Vitt-Khaikin [2] proof of the

existence of a periodic (in x) trajectory y - \\>{x)

of

f
Note that trajectories of (2.1) in the (x,y)-plane coincide with solutions

£ =_a +iL^nx (/u)

The right hand side of (A.l) is 2ir-periodic in x so instead of x-y plane it is

enough to consider only a vertical strip of width 2tt {(x,y) : xQ <x < xQ + 2ir
y e IR} where xQ may be arbitrarily chosen (Fig. Al). Let y(x) := y(x;xQ,yQ)
denote the solution of (A.l) with initial condition y(xQ) =yQ. Note that
for Vq large enough y(xQ+2ir;xQ,y0) <yQ (since -^ <0 for large y).

If we show that for "small" positive yQ ,y(xQ+2Tr;xQ,y0) >y0»then continuous
dependence of trajectories on initial conditions yields existence of yQ such
that y(xQ+2ir;xQ,y0) =yQ. So there existsip(x) := y(x;xQ,yQ) which is 2ir-periodic
in x and stable.

It can be shown [2] moreover, that ty(x) is a unique periodic trajectory

of (2.1) (as a consequence of Bendixon's criterion).

In the case b >1 it is easy to find small yQ >_ 0 for which y(xQ+2ir) >yQ
(it is enough to take 0 <yQ <min(b-sin x) =b - 1). In the case b < 1 we

-1 xchoose Xq = tt - sin b, i.e., the left boundary of the vertical strip passes
through the saddle point (or saddle-node for b - 1). Consider the separatrix

originating from the saddle and going upwards.

Let a be fixed,then for b = 0 the separatrix tends to the stable equilibrium

point (Fig. A.2a) and does not reach the line x = xQ + 2ir. On the other hand,
for b = 1 (Fig. A.2d), the separatrix does cross the vertical line x = xQ + 2tt at a
positive value of y.

+More exactly, for b := a, a = 3" , x =a" t, (A.l) is equivalent to (2.1)
for y f 0; for y = 0, i.e., on x-axis trajectories of (2.1) are vertical.

For b > 0 and a > 0 the periodic trajectory of (A.l) may exist only in the upper
half-plane [2].
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Since trajectories depend continuously on parameters the phase portrait

for small b is similar to that when b = 0 (Fig. A.2a). For b < 1, but close

to 1, we get the portrait shown in Fig. A.2c. Moreover, there exist bQ e (0,1)
such that for b = bQ the separatrix joins two saddles (Fig. A.2b).

Obviously bQ is uniquely defined (for ^ increases with b for any fixed
a > 0, y > 0, x) and does continuously depend on a (for the trajectories

depend continuously on parameters).

To stress the dependence of bQ on a we shall write bQ =bQ(a). So for
any a >0 and b >bQ(a) the system (A.l) (and also (2.1)) passes in x-y plane
the unique 2ir-periodic trajectory y = t|/(x).

Proof of Property 2

Consider (A.l) with b = b,

. b, - sinx

£ =- +-4 (A.2)
and with b = b«

. b0-sinx£L = _a + J (A-3)
dx y

let b2 >b, >bQ(a) and let yab (x;xQ^0). ^(x), and y^tx;^),
^ab ^ denote trajectories of (A.2) and (A.3) respectively. Since b-j >bQ(a)
there exist if; . (x). Consider the trajectory yab (x) of (A.3) starting from

x=Xq, y=̂ab (Xq) (Fig. A3). Since for any x,y >0, a>0,^ is larger for
b =b2 than for b =b1 and since yafa Ug+2Tr;x0,i|>ab (xq)) >^ab (xQ), it follows
that i|;ab (x) must lie above yflb (x) and ty&b (x) >4>ab (x) for any x. In a
similar way we prove that for fixed b and a] >a2, ^ b(x) <i|>a b(x) for any x
if only i|*a b and i|>a b exist i.e., if b >bQ(a,).

12 _o
Finally the transformation a := b, 3 = a yields Property 2.

Proof of Property 1

We have already shown that bQ = bQ(a) 1S a continuous function of aae (0,+°°)
The same reasoning shows that bQ(a) is monotonically increasing. Indeed for
given a, and b=bQ(aJ the separatrix passes as in the Fig. A.2(b). If we
take a2 >a, it will not reach the vertical line x=xQ + 2ir in Fig. A.l(a).
Hence, the crtical value of bfor a2 is larger then DqU-j). i.e., bQ(a2) >b0(a.j).

A-2



The behavior of trajectories yields also inf bn(a) = 0 (since for any b* € (0,1)
a>0 u

we can find a' "small" such that for a = a' and b = b' the phase portrait is as in
the Fig. A.2(c), i.e., bn(a') < b'), sup bn(a) = 1 (for any b" e (0,1) we can

u a>0 u
find a" "large" such that for a = a", b = b", the phase portrait is as in the

Fig. A-2a, i.e., bQ(a") > b"). Since b (a) increases monotonically with a
we get

lim bn(a) = inf bn(a) = 0, lim bn(a) = sup bn(a) = 1
a+0 u u a-*» u u

Hence, Property 1 is proved.

Remark

Note that since the right hand sides of (A.l) and (2.1) are 2ir-periodic, we

can identify in the x-y plane the vertical lines x = xQ + 2kir, k = 0,±1,±2,...;
and instead of the x-y plane, or the vertical strip, we can consider the cylinder

in Fig. A4. The trajectory y = ty(x) which is periodic in x in the plane becomes

periodic also in time when considered on the surface of the cylinder.

Warm*ng. In Section 2 of this paper, we consider another cylindrical surface

Sq of solutions of (2.1) (Fig. 4(b)). This surface SQ (although cylinder)
involves a different concept from the one considered above.
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B. New coordinates

Consider

x = y

3y = a - sin x - y + £q(t)

and introduce new coordinates 0, p

x =: 0 - if>'(0)p

y =: *(8) + p

where ip(6) is 2ir-periodic solution of

(B.l)

(B.2)

^>=-^r W
We shall show that in new variables the equations (B.l) take the form

0 = <J/(e) + pG(0,p) + £P(t,0,p)

p=A(0)p + p2F(0,p) +£Q(t,0,p)

To avoid writing long formulas, let us introduce:

Y(x,y) := ^ [a - sin x-y]

q(t) :=f q(t)

under this notation, (B.l) is reduced to:

x = y

y = Y(x,y) + q(t)

Substituting (B.2) into (B.6), we obtain:

[1-pf O)]0 - V(0)p = *(8) + p

♦*(e) • 0 + i • p = Y(e-p¥'(e),i»(e)+p) + q(t)

Equations (B.7) are linear with respect to 0 and p and its determinant is

given by:

D(0,p) =1+ [*'(0)]2 - P*M(e).
Hence, for small p, D(0,p) > 0. Solving (B.7) we get:

B-l
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0 =O+f1 . Y(0-pi|;1^ +p) +ip1 -q]/D(0,p)

P={[1-P^n] • [Yte-p^.Y+pJ+q] -if;1 • Dp +p]}/D(6,p)
where in the formulas above, we write q, ty, ij/, i{>" instead of q(t), ^(0),

t|>'(0)> ^"(0). Let us develop Y with respect to p:

Y(e-pK>*f!|> +p) =Y- p[Y,1 •V +Y,2] +p2Y,u [Y']2 +0(p3) (B.9)
where

Y := Y(0,i|O =j [a-sin0-ip]

YM =£ Y(x,y)
X=0

y=^

= - — cos 0
p

Y,n =~T
11 3x

Y(x,y) =\ sin 0

Y,2=^Y(x,y)

x=0

y°*

x=0

(B.8)

0(p ) denote the function f(p,...) such that lim >p>'"' is bounded. Applying
p^O p

(B.9) to (B.8) we get:

9={ty+r •Y+p[l -[*']2Y,1 +ip' -Y,2]+O(p2)}/D(0,p) +^py • q(B.IO)
pMY-ili-t' -PC*' +*" •Y+*,Y,1 -Y,23 +p2[*,rY,1-*MY,2 +[*,]2-Y,11]

+O(p3)/D(0,p) +^^J' 5 (B.ll)
Note that ty{B) is solution of (B.3) so:

*(8)*'(e) = Y(0,^(0))

♦•(e) • Y[e,*(e)] = ip(e) • Dj>'(0)]'

and
2/,,,,x2

D-'te.p) ={i +[*']2 - p^T1—L-tJiU-t p<*") , ...
i+[*']2 (l+Dl>']2) Ci-*-C '̂D2)3

So equation (B.IO) can be reduced to

0 = <p(e) + pG(0,p) + £P(t,0,p)

B-2
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where

P(t,0,p) s- I • q(t) lzj£M
e i+DP*(e)]- -p*a(e)

^•"(e) +1- E^,(e)]2Y,1(e,^) +^,(e)Y,«(e,i|;)
6(6,p) := L_ £ + 0(p)

i+[^'(0)r

al^r(9)+|[ '̂(0)]2COS0 - 1- V(Q)
i+[*'(e)]2

Equation (B.ll) can be reduced to:

p=A(6)p +p2F(0,p) +£Q(t,0,p) (B.13)
where

Q(t.6.p) :- 1 • q(t) I^q^
6 i+[<C(e)r-P*"(e)

A(6) : J—! 1
i + iyr

1 +l>']z

2 i+[*'(e.)]z

=- lf»-(e)*l ^"W , [a-sine -»(e)]

F(9,p) := *" ? V• [*' +f • Y+fY,, - Y,„]

+ ] 7 EffY,-, - *"Y., +C*']^,,,] +0(p) = ^"^ 2• A(8)
i + CeT i+Cf'Cejr

l H.'(e)*"(e) £9|_i+ lf(9) +1[*'(9)]V(9)
1+|>'(9)]2 B e

+ 0(p)
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Note that

and

^(6)=^=^[a-sin0-*(e)]

(Y,, +Y,?.^)<J,-<|,' -Y
*"(e) - —J \

=• msr cos e+a"s1n9"I(9) • c«-^ne^B*(8) e[*(e)]2
Hence, for small p, the equations (B.6) are equivalent to

0 = ip(e) + G(t,0,p,£)

p = A(0)p + F(t,0,p,£)

where

6(t,0,p) := pG(0,p) + £P(t,0,p)

F(t,0,p) := p2F(0,p) + £Q(t,0,p)

are small for small p and small e.
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C. Remarks and references for proof of Theorem 3.1

Consider equations

0 = 4»(e) + g(t,0,p,e)

p + A(0)p + F(t,0,p,e)

Step 1 We will outline the proof in 4 steps:

fQ d0
Introduce new variable 0 :=

0 WT

(CD

dS 1
Note that ^ =wTeT and since ^(0) >° for any e» 8(Q) 1s 1:1 function. Let 0(0)
denote its' inverse. Hence, equations (C.l) are equivalent to

0=1+ G(t,0,p,e) (C.2a)

p = A(0)p + F(x,0,p,£) (C.2b)

with

g(Tj§jP'e) := i^(0(0)) G(T'e(§>»P'£>

A(0) := A(0(0)), F(x,0,p,£) = F(x,0(0),p,£)

It follows immediately from Appendix B that for p e [o,v) and v small enough

the functions A(0), G(t,0,p,e), F(t,0,p,£) are:

1) bounded and smooth in all the variables

2) A, G, F are Lipschitzian in 0 with Lipschitz constants A, y(v,£)s and

n(v,£) respectively where y(v,£) n(v,£) are nondecreasing functions of v,£

and n(v,£) •»• 0

3) S, F are Lipschitzian in p with Lipschitz constants M + y(v,£) and

y(v,£) respectively and y(v,£) -> 0 as v,£ -*• 0.

4) 5(t,0,O,£), F(t,0,O,e) are bounded with N(e) where N(e)£^ 0

Step 2

Consider the "unperturbed" system (C.2)

i = 1 (C.3a)

p = A(0)p (C3b)

Solution of (C.3(a)) is given explicitly by §(t) = t + <|), where <j> is a constant.
Hence, solution of (C.3b) is of the form
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ft
A(s+(J>)ds

p(t) = p(t;tq,p0) =e 0

Since A(s) = A(0(s)) is T-periodic in s we get:

•T

T,

A(s+<j>)ds =(t-t0)A0 +Q(t)

where

Ao:=
r „

A(s)ds

Q(t

Note that

) := A(s+<j>)ds - (t-Tq)Aq is T-periodic in x
Ta

Ao =H/^^ =Tl/(e(s))ds= SefK&xB
1(T 1+„,.(9(s)) +2f(9(s))f(e(s))^(9(s)) ds „
T J0 S l+IVOfs))]2

=If -*(e(s)) 1 1
6 " T

f2" *'(8) Hfl - 1 f2' »"(e)*'(9)d9
*T9Tde T Jo 1+IV

=- 1 - (1 log x)
y(2ir)

*(0)
- t (log 1 + X)

.Q(t)Define K := sup|ewv ;|, under this notation
T

- uAcfT"T0) 0(t)
e P0I 1K e|p(T,T0,p0)| =|e . k0. ^-w ,k0

Step 3

It can be proved [11] that if conditions 1-4 (step 1) and inequality (C.4)

are satisfied, then equations (C.2) possesses a smooth integral manifold

3£ ={(t,0,p) :p=R(t,0,£)} and for appropriately chosen initial conditions
they are equivalent to:

0=1+ G(T,0,h(T,0,£))

p(t) = h(T,0,s)

C-2

T-T,

3

[*'(e(s))T

r'(2Tr)]'

(C.4)



Step 4

Since the transformation 0 +•* 0 is one-to-one and smooth (for y(0) is a
smooth function) (C.l) possesses an integral manifold

S£ ={(t,0,p) : p =h(T,0,£), TtlR, 0 S 3R}

where

h(x,0,£) := B(T,e(6),e).

Hence, for any initial condition on the manifold, (C.l) is equivalent to:

0 = r(0) + G(T,0,h(T,0,£),£).
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D. Outline of the proof of Theorem 3.3

Introducing new coordinates

x := x

z :=u-a + sinx-£Sina)x

in (3.1a,b) we obtain:

x=y=z+a- sin x + £ sin cox

3z = 3(y - cos x • x eco cos cox) = a - sin x - y + e sin cox

- 3 cos x • y - e3co cos cox

Hence

x = z + a - sin x + e sin tux (D.2a)

z = - -g z - {cos x[z +a - sin x + e sin cox] + eco cos cox} (D.2b)

Similarly as before we introduce function space C(DQ,A0) as "candidates for
p p

manifold". The elements F(t,x,3»£) of C(D0,A0) are smooth, bounded with
2ir & p

0o» £—periodic in x, 2ir periodic and A0-Lipschitzian in x where D„ + 0,
p co p p

A0 -»- 0 as 3 -»• 0.
P p c

Let x (x) =x (x;xQ,xQ) denote solution of

x =F(x,x,3»e) +a - sin x +e sin cot x(xQ) =xQ (D.3)

Define the mapping T :C(Dg,A )-»• C(D ,Ag)

r° I F FT[F](xQ,x0) := ep K[s+xQ,xr(s+xQ),F(s+ xQ,xr(s+ xQ),£,3),3]ds

where

K(x,x,F,3) := cos x[a-sin x +e sin cox + F] - eco cos cox

Applying similar procedure to that of the proof of theorem 3.1 Baris,and Fodchuk [3]

has shown that for 3 sufficiently small, i.e., for 3 satisfying inequalities:

3(2 +a + £ +£co) < D0
— p

3(2+a +£)(l+A$) <Ag

3(2 +a + £) < 1

Equations (3.1) possess an integral manifold S0 as defined in (3.16). Moreover
p

this manifold is smooth and stable.
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List of Figure Captions

Fig. 1. A second order Josephson junction circuit model driven by a dc and

ac current source.

Fig. 2. Phase protraits of (2.1) for various values of a and 3:

(a) a> 1; (b) a= 1, 3>3Q(1); (c) 0<a< 1, 3> 3Q(a);

(d) a = 1, 3=30(D; (e) 0<a< 1, 3= 3Q(a) (f) a = 1, 3< 3Q(1);

(g) 0<a < 1, 3< 30(a)
Fig. 3. (a) The function aQ(3) is defined for all 3> 0. On the a-3 plane

the region above a = 1 corresponds to the phase portrait shown in Fig. 2(a),

the region below the a = ou(3) characteristic corresponds to Fig. 2(g),
the region aQ(3) <a < 1corresponds to Fig. 2(c); the regions
a =aQ(3) = 1; a =aQ(3) < 1; and a = 1, 3> 3Q(1) correspond to the
portraits 2(f), 2(e), and 2(b) respectively; the point a = 1, 3= 3Q(1)
corresponds to the portrait in Fig. 2(d).

(b) Qualitative relationship between critical current IQ and capacitance C
with other parameters held fixed. Here CQ correponds to 30(1).

Fig. 4. Integral manifold SQ of (2.1) represented by:
(a) a periodic surface in (x,x,y)-space,

(b) a cylinder with the lines x = k2ir, k = 0,±1,±2,... identified,

(c) a toroid with the lines x = k2ir and x = £T, k,& = 0,±1 ,±2, —

identified.

Fig. 5. I. - V. characteristic for 3 "large" and 3£ $q(1). For

|IQ| < 11. I<_ 11 |the characteristic is double valued. |Vdc|

increases with |I .| (i.e. with a) and also with 3 (for a fixed).

Fig. 6. Values of parameters e, 3 for which integral manifold exists

(a) a < 1, (b) a > 1.

Fig. 7. For each point with coordinates (x0,yQ) near the curve y=^(x) there
exists a unique pair (0o»Pq) and vice-versa, having the geometrical
relationship indicated. Note that 0Q is equal numerically to the
x-coordinate of the intersection point PQ> and pQ is just the
vertical distance from PQ to PQ.



Fig. 8. Integral manifolds for (3.1) for small e:

(a) for a > 1 the steady state solution lies on a 2-dimensional

surface S
£

(b) for a<1and a<aQ(3) a steady state (periodic) solution
exists in a neighborhood of each equilibrium point of (2.1).

For small 3and a<ciq(3q) only the integral manifold Sg exists.
The doubly-periodic surfaces S„ and SQ in (a) can be represented as a

£ p

cylinder in (b) or as a torus in (c).

A bounded waveform which has no average.

For any point PQ on cross-section C (at xQ) y(Pq) = P-, denotes the
point where the trajectory from PQ first intersects with C. Hence,
Y^) » P2.

Fig. 13. (a) Poincare map for <J =£ . (b) Second iterated Poincare* map for
A - W<P - j -

Fig. 14. (a) Trajectories of i = sin <J>. (b) Poincare* map for 4> = sin cj>.
Fig. 15. (a) A periodic trajectory on S or Sfl having rotation number y = 3

£ P

(p = 3, q = 1).

(b) The corresponding trajectory on the torus.

Fig. 16. All trajectories of (4.17) are trapped within the horizontal strip

Fig. 17. Step-wise discontinuous voltage phenomenon.

Fig . 9

Fig. 10

Fig. 11

Fig. 12



Iacsini/t

a0(/3)--7-d

0 /30(l) (3

-Ir -IC -"-0

y
/

/

Second-order Josephson junction circuit
model

1 ^Ni=Icsin(^p-)db

Vdc

Large /3

^<M)

0 Io Ic dc

Fig. 5



(a) a>|

jr_ \ \ 57T x2 \ 2

(b) a =l,£>/30(l)

/^V^y
_37T V ^ JL \ \ 577" X

-Tr-sin'a sirf'a 7r-sirf'a
(d) a=l,/3=/30(l)

. -i • -i' ' • -i
-7r-sin a sin a 7T-sin a

(c) 0<a<l, £>&>(<*)

(e) 0<a<l,/3=/30(a)

57T X ,! It
~o~ _ .. £i \-|l

-7r-sin 'a sin'a Tf-sin'a

(f) a=l, /3</3o(D (g) 0<a<l,/3</30(a)
Fig. 2



(a)

(b)

r=0 r=T,

(c)

r=0=±^T»

Fig. 4

surface S0

r=2T

x=2tt

x=0=

±27T=.„„



fit

••€

(a) a<\ (b) a>\

Fig. 6

(vR*^f)/>

y= M x)

Xo \r@o

Fig. 7



y=t//(x)

(a) a>l

y=a-sinx >^x

(b) a<l and a<a0(/3)

Fig. 8

stable

=u^i unstable

stable

y=a-sm x^. /^^ZZ7^^-SlQ&e^^. ——STIT

Fig. 9



^o+Zir/-—-

o u>

(a)

90=90+27T

(b)

/90=90+27r

T0=T0* cu

(c)

Fig. 10



X(T)

0 ,7T >zir

Fig. II

(a) (b)
Fig. 13



9*=0(mod 277")

0 JL IE 9
<v u>

(a)
Fig. 14

(b)

90+677Z S€ or S^

(a)
Fig. 15

(b)

Fig. 16



H

n

C
SJ

+x
r
o

<.5
?

ox

XA

O
J

+o
_

*
<

o
X



X0-2tt „q

(a)

X0+27T X0^- X0+2*7T

(b)

Fig. A4

x0= x0±2tt

(b)


	Copyright notice 1982
	ERL-82-46

