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ABSTRACT

Two types of longitudinally asymmetric multiple mirrors are explored.

One has sudden magnetic field jumps and the other has smooth jumps in

the field. The changes in magnetic moment and gyrophase are derived for

rightward moving and leftward moving particles for each field type. In

the "smooth" case, there is no difference between right and left. A

difference is found in the "sudden" case. Mapping equations are developed

and trapping probabilities are estimated for this case. If there are no

interparticle collisions, then there is no net flow of particles in

either direction. If interparticle collisions isotropize the distribu

tion to any extent, a net flow is found.

This research is sponsored by the National Science Foundation Grant No.
ECS-8104561 and the U.S. Office of Naval Research Contract No. N00014-79-C-
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INTRODUCTION

In a recent paper , Post and Li showed that if the detrapping

probability in a mirror cell could be made directionally dependent,

particle confinement time in a multiple mirror would be increased. The

authors did not, however, propose a mechanism to achieve this asymmetry.

The purpose of this report is to investigate nonadiabatic scattering of

the magnetic moment, u, in a multiple mirror composed of longitudinally

asymmetric cells as a possible mechanism.

Two models are discussed in this paper. The first, in section I,

is the "sawtooth field" (see Fig. 1). It is physically unrealistic but

mathematically simple and may be considered as the limit of the case

where the magnetic field changes quickly compared to the gyrophase in the

nonadiabatic region. The second, in section II, consists of a generalized

paraxial field where the gyrophase in the nonadiabatic region varies more

rapidly than the field itself. For purposes of calculation, a field con

sisting of back-to-back hyperbolic tangents was chosen (see Fig. 2).

In both models, the field is symmetric about the magnetic axis, so

the canonical angular momentum is constant. Because a static magnetic

field can do no work, energy is conserved as well.

SECTION I

Consider a system where the magnetic field is as shown in Fig. 1.

The slope of the ramp between discontinuities is exaggerated. In fact,

B varies slowly enough that Br can be neglected everywhere except at

the jumps where the change in B is instantaneous. Particle orbits are

approximately helical and the magnetic vector potential may be written

A(r,z) = j Sir 6
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where & = eB /m. In cartesian coordinates this is
z

A =j ^x-

Two systems of canonical coordinates will be used. Cartesian (or

"C" for short) coordinates consist of x, P , y, P , z, P where £ is the
A J tm """

canonical momentum.

Px-vx-J-«y

pz = vz

Note that charge and mass have been set equal to 1. Guiding center (or

"G" for short) coordinates consist of <f>, u, 6 , \p, z, P (see Fig. 3)

where

" -" ir (vxS2)
is the magnetic moment,

<{> =arctan (Vx/-Vy)

is the gyrophase,

*=In(Xg2+Yg2)
is the radial flux coordinate (X„ and Y„ are the x and y coordinates of

9 9 J

the guiding center), and

0g =arctan (Yg/Xg).

The axial distance z and its conjugate momentum P are the same as in

Cartesian coordinates. The angles cj> and 0 are both referenced to the

x axis. Note that u is defined negative. This makes the l!G" coordinates

canonical.
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As mentioned in the introduction, there are two constants of the

motion, total kinetic energy and canonical angular momentum, PQ. These

two constants are used to reduce the problem from 3 degrees of freedom

to 1 degree of freedom. To do this, we must first generate jump condi

tions.

Consider a particle moving an infinitesimal distance in z, across

a magnetic discontinuity. On either side of the jump, the field is well

defined and is in the z direction, at the discontinuity itself, the

field value is undefined, but its direction is known to be radial. In

an infinitesimal distance, the particle location doesn't change. There

fore, x and y are constant across a jump. The fact that the canonical

radial momentum, P = V ,, together with the lorentz force law

V = Vxfi ,

shows that P is constant across a jump. Since P is always constant,
r 6

P and P are constant across a jump. Thus, we see that all perpendicu-
x y

lar cartesian coordinates are constant across a discontinuity.

As the particle traverses the slowly varying region (the ramp), its

motion is given by the drift equations. Since we are ignoring Br in

this region, u, 0 and ty are constant. The gyrophase, <j>, varies in a

simple way. If B in this region was included in the analysis, there

would be a small, azimuthal, guiding center drift.

The transformations between "C" and "G" variables are

4> = arctan
-p +\ ax

l

u = - m |Tpx +j ny)2 +(Py -\ nx)*|
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0 = arctan
-px +i "y

♦■a [[px4^2 +(py +rnx^

x=A

Px =

v^U COS <J> + v^ cos 0

«• v^u sin <f> - /f sin 0

y=/I |J^ sin *+^ sin 8g I

Py =/f- Q^vT cos <|» +̂ cos 0gj
In addition,

P0 =* + y.

We normalize these transformations by setting the total velocity V,

and SI (eB /m) equal to 1. Now, 1 <_ Q <_ R where R is the mirror ratio

and the magnetic moment, y ranges from 0 to -1/2.

A particle will reflect from a jump if conservation of energy cannot

be satisfied through the jump. To see how this works, imagine a particle

about to cross a jump. The particle has well defined "G" and "C"

coordinates y, x, y, P , P . The field strength is Si. After traveling
x y

an infinitesimal distance (across the jump), x, y, P , and P are un-
x y

changed but the field strength is now SI. Using the transformation

equations, we get a new magnetic moment, y. If 2Sl|y| >1, then the perpen

dicular energy is greater than the total energy. This is impossible, so

the particle must reflect. Since y is a function of the perpendicular

"C" coordinates and field strength, ]I =]i after a reflection. This
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applies to the other perpendicular "G" coordinates as well (IJfi/j, <JT=<j>,

0_ =0 ), but only y has a role in determining reflection.

Note that z and P have all but disappeared from these calculations.

We will drop them from the "C" and "G" coordinates.

We now develop a mapping from surface-of-section to surface-of-

section. These surfaces are located an infinitesimal distance to the

left of each jump.

We first consider the case of a particle moving through a surface-

of-section in the positive direction (to the right). If the particle

passes (see Fig. 4):

1) Use the "C" coordinates before the jump at ft=l to get the "H"

coordinates after the jump at ft=R. (Point 1 to Point 2)

2) The "G** coordinates, y, ip and 0_ remain constant to the next

surface-of-section. J changes according to a winding function which

will be given explicitly later. (Point 2 to Point 3)

3) Use the "6"" coordinates at the surface-of-section (Point 3)

to get "C."

If the particle reflects, all "C" and "G" coordinates remain cons

tant.

Suppose the particle moves through the surface-of-section in the

negative direction (to the left). If the particle passes (see Fig. 4):

1) y, ty and 0 remain constant on the ramp. <J> changes according
y

to a winding function. Use these "G" coordinates to get the "C" coordi

nates at ft = R (Point 1 to Point 4).

2) After the jump, use "C" to get "G" at ft=l. (Point 4 to Point 5)

If the particle reflects, then y, ^ and 0 remain constant. <f>

changes according to a winding function. All "C" coordinates change.
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In the actual mapping equations, the move from one surface-of-

section to the next will be handled in one step and only guiding center

coordinates will be used.

We will now make explicit the winding function mentioned earlier.

rt
(j, = <j> -

= (j> -

a(*r)dT
0

z sijS)Ar
^Tdco \

= <j>-i

If we take z= 0 at the surface-of-section*

Q(z) =1-^pz
= 1 - az

where d is the (dimensionless) cell length and a«l to insure a gradual

slope. Note that z<0.

Vz(z) = /l+2ft(z)y

If the particle travels a full cell length, the winding function is

I1(u) =3ir(l-l)/TT^I-3lr(R-l)/TT^.

If the particle is moving up a ramp and the magnitude of y is large

enough, it will reflect before it reaches the jump at the top of the

ramp. In this case, the winding function is

The mapping equations will now be presented case by case as in

Fig. 5. The mapping equations have been shown numerically to be area

preserving and give explicit expressions for the .new (barred) variables

in terms of the old (unbarred) ones.

-7-



If the particle moves to the left and passes through the jump, the

equations are

Va W [?R+l)2u-(R-l)2* +2(R2-1) v^cos Og-^^7]
?=^- [(R+l)2^-(R-l)2y-2(R2-l) /^cos^-^)"]

<J) = arctan

e„ = arctan
9

(R+l) /^I slnfa-I,)-(R-l)v^ sin 0

(R+l) /^I cos^-^) - (R-l) /j? cos 0

(R+l) i/f sin 0 - (R-l) i£]I s1n(<fr-I-|)

(R+l) /f cos 0 -(R-l) ^ costo-Ij)

where I, = I,(u). This is case 1 in Fig. 5.

If the particle moves to the left and reflects off the jump, y, 4>,

and 0 are unchanged.

$ « $-21^)

This is case 2.

If the particle moves to the left and reflects before reaching the

jump, y, y\) and 0 are unchanged.

J B<fr-I2(u)

This is case 3.

If the particle moves to the right and reflects, all variables are

unchanged. This is case 4.

If the particle moves to the right and passes through the jump,

the equations are

y=4L- ITR+l)2y-(R-l)V2(R2-l) /=y^ cos(0g-<frT]
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*=1r Rr+D2V»-(R-1)2^ +2(R2-1) /^ cos(0g-<jo]

(J> = arctan

0 = arctan

(R+l) i^y s1n(<fr-Ii) +(R-1) /jTs1n(8 -Ij)

(R+l) /yfcosto-Tj) +(R-1) /p cos(e -Tj)

(R+l) v^ sin 0 + (R-l) /^j sin <f>

(R+l) /jT cos 0 +(R-1) /^y cos <J>

where T, = I-,(y). This is case 5.

Earlier in this section, a degree of freedom (z,P2) was removed

from the problem by using the conservation of energy. The second cons

tant of the motion, P0, will now be used to eliminate y and 0n reducing
o 9

the problem to a non-autonomous system in one degree of freedom. We set

<P = Pe-u>

and redefine <J> as shown in Fig. 6. In addition we multiply y by -2.

The magnetic moment will now range from 0 to 1. The mapping equations

are then as follows:

Case 1)

u=u+2r [UM)2(y+Pe)-(R2-l) /y(y+2Pe) costo-^7]

<j> = arctan
2R /y(y+2PQ) slnfa-^)

(R^+l) ,/y(y+2PQ) cos^-I^ -(IT+l)(u+P8)

Case 2) Trapped because y>l

-9-



Case 3) Trapped because y>l/R

U = ]l

7«4>-I2

Case 4) Trapped because y"> 1/R

Case 5)

v=u+̂r J^-D2(u+Pe) +(R2-1) /y(y+2Pe) cos <f]

<|) = arctan
2R /y(y+2PQ) sin <j>

(R2+l) /y(y+2PQ) cos <{>+(R2-l)(y+Pe)
where

- I.

Note that there are differences between cases 1 and 5.

The mapping equations were numerically integrated. Some-typical

y-<j> phase planes are shown in Figs. 7-10. Each figure consists of two

planes; one for particles crossing the surface-of-section leftward

(V <0), the other for particles crossing rightward (Vz>0). Each phase

plane is then split into passing and trapped orbits. (There are 4 plots

in each figure.) One can see that the two complete phase planes in each

figure are mirror images of each other. It is when each phase plane is
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split in the aforementioned way that the difference emerges.

In figures 7-10, the mirror ratio is 1.33 and the normalized cell

length is 100 (ct= .0033). PQ is varied over the four figures. Since

P9=I (Xg2+Yg2)-^
and the range of y is limited (0 <_ y <_ 1), increasing PQ indicates an

increasing guiding center radius.

The major question to be answered is whether the directional

difference shown in figures 7-10 does in fact result in different

trapping probabilities in the two directions.

To estimate the trapping probability, note that in the regime of

interest (ol«1), particles make many gyro-orbits between surfaces-of-

section. The gyrophase may be regarded as random and, therefore, uni

formly distributed. For a«l, the phase plane is predominantly stochastic,

We will assume that the non-stochastic area of the phase plane is unim

portant.

If there are no particle-particle interactions, the distribution in

y is uniform over the entire phase plane. This has been verified

numerically. The trapping probability is then the ratio of "trapped"

phase space area to total phase space area.

Note that a uniform distribution in y does not correspond to a

uniform distribution of pitch angles (an isotropic distribution). The

latter would be a consequence of strong interparticle collisions between

jumps which isotropize the distribution of pitch angles.

We now estimate the trapping probabilities for Vz >0 and Vz<0.

For V positive, we have y>l/R as necessary and sufficient for

trapping. Substituting for y in case 1, we get an equation of the form

C+ D cos <j) > 0
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for trapping, where C and Dare functions of y, Pe, and R. Dis always

non-negative. If |C| >D, then the particle is always trapped or never

trapped depending on the sign of C. If |C| <D, then there are critical

phases given by

<f> =±arc cos(-C/D)

That mark the boundaries between passing and trapped orbits. For a

given R, PQ, and y, the fraction of the phases which are trapped is

<J>(y;P0,R)/ir. For these two cases, denote the fraction of trapped

phases as F+(y;PQ,R).

A similar calculation gives F_(y;PQ,R) for Vz<0.

The relationship between magnetic moment and 6 , the pitch angle at

Sl= 1, is

. 2y = sin 6Q.

To get the total trapping probability for a given P0 and R, we integrate

F+ over y. If there are no interparticle effects, the y distribution

is uniform. The total trapping probability is given by

•1

P+ = F.(y;PA,R) dy
0 - 6

If collisions isotropize the distribution between jumps,

p+ = F+(y;P0,R) -**•
0 - D 2/Hl

By isotropic, we mean a constant number of particles per unit solid angle

in velocity space.

The results of these calculations are shown in figures 11-14. F+

and F_ are numerically evaluated and graphed. P+ and P_ for the collision-

less case are given just beneath the initial conditions. Note that the

-12-



two values are the same for all four examples: .248 for P0 =O, .327

for PQ = 2, .511 for PQ = 10, and .886 for PQ = 50. In the collisionless

case, there is no difference between the two directions.

For the collisional case, the results of Figs. 11-14 are summarized

in the following table.

p0 P+ P_

0.0 .449 .488

2.0 .463 .555

10.0 .568 .680

50.0 .842 .907

Note that P_>P+. In a collisional system, particles will be more likely

to escape out the right end of each cell.

As an aside, note that as P0 increases, so does the total trapping

probability. In the extreme case where

p > 4(R+1)
9~ (R-D2

both P+ and P_ are equal to 1 (regardless of the distribution), and no

particles escape.

SECTION II

In this section, the more common situation where the field changes

slightly during a gyroperiod, will be explored. A calculation of the

type in section I cannot be done. A perturbative approach must be used

instead. The calculation has been done and will be repeated in this

section, following most closely the treatment in References 2 and 3.

We have developed a simple formula for changes in magnetic moment in a
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static, axisymmetric, vacuum field.

Define a normalized magnetic moment

2

y =

B V
- o •*•

BV
(2.1)

where B is the minimum value of the field, and V is the total velocity

(a constant), y ranges from 0 to 1. Using the single particle equation

of motion we get

2 -,
dB.

P ^ [j dt " 2B dt
2Bo Pi dVx Vx

and assuming no currents in the plasma,

2B_

y = —5T- J (V[ 4 V/MV^VB) +̂ 7, B+j|j-YA.<V7>i
Let v. - V cos<J> e, - V sin <j> e2 where <j> is the gyrophase and e^ and e2

are right-handed orthonormal vectors perpendicular to the field. Let

(V '7)B = V±B p cos $

where p is the perpendicular field curvature. Then

. x |X~ B
y="y F"u ^2 "b~ y*Vpi cos *

+ terms involving cos(2<j>) and sin(24>)

The equation for the gyrophase is

<J> = -Si

to lowest order. Defining L as a magnetic scale length and Sl0 =eBQ/m,

let

e =V/LaQ . (2.4)

In the limit where e«l, the terms involving cos(2<{>) and sin(2<t>) will

-14-
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be exponentially small and can be dropped. Solving (2.2), we get

f IT" (2-yB/Bj
M=„ $° o p cos *ds (2.5)
» J '^B •1-yB/BQ x

where s is the arc length along a field line. We have assumed that the

changes in y are small enough that y can be considered constant under

the integral. This restricts the validity of the analysis to magnetic

moments greater than some minimum value. We extend the limits of the

integration in (2.5) to +«. This will allow us to obtain the integral

by asymptotic means, but it limits the analysis to fields whose non

adiabatic portions are well separated. In other words, one jump in y

must be finished before the next can begin. Since the jumps are of

short duration (on the order of a gyroperiod), this is rarely a problem,

We change variables in (2.5) from s to <j> and go into the complex <j>

plane to get

ds =- ¥• /l-yB/BQ d<|>
and

fBrt lD Vp
'- = Re II

y

Because the gryomotion is much faster than the magnetic field variation

as seen by the particle guiding center, the integral will be dominated

by the stationary phase points of 4>. From (2.3) these points are seen

to be the complex zeros of B. Since the important contributions to

(2.6) come from places where B*0, (2.6) can be simplified to

^=Re f (uT (2- If >1T•* d* • <">

*-2*-t (£)3/2piLe1*d* (2.7)
y Al

where eis defined in (2.4). The rapid phase assumption puts an energy

-15-



related lower bound on y. A particle must execute many gyroorbits while

traversing a magnetic scale length. If a particle has too much parallel

energy, this condition will not be satisfied.

Solving Eq. (2.3) we get

•s

♦ -♦0-
sQ V /l-yB/BQ

Qds . (2.8)

We will now specialize to axisymmetric fields with no internal

currents. Such fields can be expanded paraxially.

^•= f(z/L) -|f"(z/L) ^ +... (2.9a)

g^= -lf(z/L) £+j^f" (z/L)^ - ... (2.9b)
o L

where a prime denotes differentiation with respect to the argument, and

f(z/L) is the on-axis field. This expansion is good for r«L, and is

also known as the long, thin approximation. We define a stream function,

ip, such that

!?-= L. M (2.10a)
BQ r 3r

!ll= - £*&- (2.10b)
Bn r 3z

o

ip is the radial flux coordinate. Choosing ty specifies a field line (up

to an arbitrary angle). If we assume that a particle guiding center

stays on a given flux surface, then ty is a constant. This is not strictly

true. As in Section 1, PQ, which is a function of y and ip, is the true

constant of the motion. As y varies, so will ip. However, if y doesn't

change much (as in the present case where Ay/y«l), keeping ip constant

is a good approximation, and a great simplification. Solving Eq.'s

(2.10) for ip, we get

-16-



2 4ip =lf(z/D r7 +|g.f-.(z/L) r^+ ...« i

Note that if f(z/L) = constant, ip reduces to that of section 1.

ing the series,

r2 2 f"
lc T 2T

We substitute this into the field Eqs. (2.9) to get

d f"

--''/£♦-

Evaluating p to lowest order in ty we obtain

P, =

•-ir-^ f,2(r)3-
Substituting (2.12) into (2.7), we have

Invert-

(2.11a)

(2.11b)

(2.12)

(2.13)

To solve (2.13), the complex zeros of B, z .must be found.At z=zn,

i> = of2 + f2
2f T

For small i|>, this is a triplet of roots clustered about each root of

f(z/L). We let z be the roots of f, set B~ BQf, and expand B about zn

to obtain

!^f(yD (;-zn)/L (2.14)

-17-



Then (2.13) becomes

M= _3e/T l Re
1

uJ,2(VL)
' (=>r.«* (2.15)

Each element in the sum is a triplet and this accounts for the factor of

3 in (2.15). Using Eqs. (2.8) and (2.14), we relate phase , <J>, to z at z,

1
* - <i>n - - 7 , ,

6 % *^V*o
f(zn/L)

From this, we conclude

B/B

a z-z
n

o dz

L

dz

'^)-4.^Vil(,v-a (2.16)

Let W= i(<j>-<t>n) and substitute (2.16) into (2.15). In the complex W

plane, the contour of integration is the Hankel contour (Fig. 15).

Solving (2.15) we obtain

y 2e / 2y £ exp -Im(<j)n-(j)0)] cosU0 +Re(<J)n-4)0) (2.17)

where

mi yo
- 1

rzn

z0 /Nyf
dtp (2.18)

f(z /L) = 0, and z is some reference point.

As an example, consider the field in Fig. 2, which consists of two

hyperbolic tangents with different scale lengths placed back to back.

Since the magnitude of the change in magnetic moment goes as Exp(-scale),

we consider motion on the "long" tanh to be adiabatic. The on-axis

field of the "short" tanh is

f (z/L) »- (R+l) +\ (R-l) tanh (z/L) (2.19)
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where R is the mirror ratio (see Fig. 16). The complex roots of f are

z =- i- Jin R+i (n-i)TT n =1,2,3,...
n c c

The imaginary parts of these roots are well separated, so the root near

est the real axis, z,, dominates the sum in (2.17). The jump in y will

take place around the point Re(z-j) which is marked with an "x" in Fig. 16

From (2.18)

1 ° 2e/RT ' °

Re(<th-<J> ) is a complicated function of y and R. From (2.17),
'1 *o

?-s-^-E3rl COS (J>0 +Re(c()1-(J)0) (2.20)

Equation (2.20) has been verified by direct integration of the equations

of motion using the particle orbit code,TIBR0, and is in excellent

agreement with the TIBRO results for ij> < .125.

Note that neither (2.17) nor (2.18) have any directional dependence.

So, to first order, the sign of V makes no difference, there is no loss

cone asymmetry. Since we are limited in this case to jumps in magnetic

moment less than 10%, second order effects will be too small to be of any

importance.

CONCLUSION

We have shown that nonadiabatic scattering in static, axisymmetric

magnetic fields will produce a loss cone asymmetry under the following

condi ti ons:

1) The field varies quickly compared to the gyrophase.

2) The plasma is collisonal.

This loss cone asymmetry produces a net flow of particles. All of the
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preceeding calculations are for single particles only. Collective

effects have been ignored.
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FIGURE CAPTIONS

Fig. 1. Sawtooth Field. The dotted lines are surfaces-of-section. The

vertical scale of the upper plot is exaggerated. The arrows on

the plot are Dirac Delta functions.

Fig. 2. On-axis field for the "smooth" case.

Fig. 3. Relationship between Cartesian and Guiding Center Coordinates.

X=±QR2, y= -K2r2.

Fig. 4. To generate the map for passing particles, we start at Point 1

and finish at Point 3 or Point 5.

Fig. 5. The 5 different types of orbit. The dotted lines are surfaces-

of-section. The crosses indicate where the orbits encounter

field discontinuities.

Fig. 6. The redefinition of <j>.

Fig. 7-10. Plots of the y-(j> phase plane. Mirror ratio = 1.33, a = .0033,

P0 * 0.0 in Fig. 7, 2.0 in Fig. 8, 10.0 in Fig. 9, and 50.0 in

Fig. 10.

Fig. 11-14 Trapping possibilities.
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