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The methodology we propose for medical decision making is based on possibility theory
and fuzzy logic. Three types of imprecise concepts involved in medical diagnosis
processes are taken into account: evaluation of diagnostic indicators, medical
knowledge and computed results. Moreover, this method allows the setting of a
hierarchy among diagnostic indicators by means of what we call the suggestion value and
the disconfirmation value associated with each diagnosis. Two soft deduction rules
are proposed, that, in some sense, may be viewed as extensions of Modus Ponens and Modus
Toll ens. These rules act on fuzzy propositions and yield fuzzy degrees of presence and
absence of a diagnosis which are then simultaneously interpreted. A concrete applica
tion to the classification of hyperlipoproteinemias, currently used in a conversational
mode, is finally described.
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1. INTRODUCTION

In medical reasoning, it is common to encounter
qualitative descriptions of symptoms, diagnoses
and pathological situations. In fact, many
propositions state properties of attributes that
may be viewed as labels of fuzzy sets because
of vague boundaries, subjectivity, linguistic
relationships, approximate descriptions, etc.
Fuzziness appears to be inherent in most concept-
formation and human reasoning processes,
especially in the setting of some classes of
medical diagnoses. Thus,handling of thresholds
in biological tests is a difficult task for, in
automatic procedures, acceptance or disconfirm
ation of a result can be a close decision in
borderline cases. Can one say that a patient
with a glycemia of 1.21 g/£. 1s diabetic and that
he/she is healthy with a glycemia of 1.19 g/Jl?
Another common example of imprecision is a
patient's condition which 1s not either a healthy
or a pathological state; instead there exists a
gradual transition between these two states.

A sentence like "cholesterol 1s slightly
increased" can be considered as a fuzzy
proposition, of the form "X is A", inducing a
possibility distribution Ity = A. The theory of
possibility distributions introduced by Zadeh is
a simple and well adapted tool for handling such
imprecise propositions. We shall widely use it •
in this paper to describe some deduction methods
in fuzzy reasoning.

Our exposition 1s divided into three sections.

Visiting Research Associate, Department of
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First, we propose two soft deduction rules for
inference from fuzzy propositions. These rules
are referred to as "Extended Modus Ponens"
(EMP) and "Extended Modus Tollens" (EMT). Each
is decomposed Into two steps: matching (or not)
of attributes by means of possibility measures,
and final computation of the result by means of
the bounded sum. A basic Idea which we use
throughout this paper Involves the use of a
functional correspondence between numbers in
[0, 1] and possibility distributions of fuzzy
subsets of [0, 1].

Second, the two soft deduction rules are
employed as a basis for a methodology of
computer-assisted medical decision-making. In
particular, two notions of suggestion and
disconfirmation which relate diagnostic
indicatorsand diagnosis are Introduced. These
notions allow the setting of a hierarchy among
diagnostic indicators, which relates to their
importance with respect to the presence or
absence of diagnoses. Suggestion and discon
firmation concepts are treated simultaneously
to obtain a result.

Finally, a concrete application of this method
ology to the classification of hyperlipopro
teinemias is presented,an application which 1s
simple to use with a computer in a conversa
tional mode. Parameters defining fuzzy
membership functions can be easily modified and
the computed results are very informative.

2. SOFT DEDUCTION RULES

Let us first recall two basic concepts and
definitions 1n possibility theory, Zadeh [21],
namely possibility distribution and possibility
measure.



Let X be available which takes values in a
universe of discourse U and let A be a fuzzy
subset of U; then the proposition "X is A"
associates a possibility distribution, IIX, with
X which is postulated to be equal to A.
Instead of the possibility assignment equation
"nx= A", we here simply writell A, i.e.

X is A •* nA,

where, on the right hand side, the variable X.is
implicit, and the symbol "*" indicates that IT
is induced by "X 1s A."

Manipulation of possibility distributions is
then derived from the basic operations in fuzzy
set theory and fuzzy logic, e.g. if B is a
fuzzy subset of U, then

if

AT*
X is A and X is B •*• It

B
X is B * n

tBAssume now that IT is a reference possibility
distribution in the sense that it will serve as
a basis for characterizing a pattern with which
other possibility distributions mav be compared.
Then, the possibility measure, ir(A), of A is
defined as a number in [0, 1J given byU)

it(A) A sup uA(u) auB(u),
u€U

where y. and y« are the respective membership

functions of A and B.

We recall now that tt(A) expresses "the
possibility that X is A given X is B," which we
denote by *(A|B), yielding

tt(A|B) asup n*08,
where, equivalently, the right hand side is
expressed in terms of compound possibility
distributions.

In this definition, A and B are fuzzy sets in
the same universe of discourse, U, so that they
can be directly be compared in regard to their
meaning.

Let us now introduce two new deduction rules,
(I) and (II), involving fuzzy propositions.

(^The symbol Astands for "denotes" or
equal by definition to."

•is

(I)

"* p, A X is A

q1 A If X is B then Y is C

^ A Y is D

where X and Y are variables that take values in
the universes of discourse U and V,
respectively; A and B are fuzzy subsets of U;
C and D are fuzzy subsets of V.

Several authors, e.g. Bellman and Zadeh [3],
Mizumoto et al. [11], Baldwin [2], proposed
and investigated methods to handle (I), i.e.
how to derive proposition r, from the knowledge
of propositions p-, and q^. The deduction rules
we present here (see [17] for a more detailed
description) are different; they are in fact
very much oriented towards applications in the
spirit of the one shown at the end of this
paper. They involve normal(2) fuzzy sets either
expressing concepts like "around a" where a is
a number (or an interval), or fuzzy subsets of
the unit interval [0, 1] expressing truth-values.

Strictly speaking, q-i does not correspond to a
logical implication, rather it expresses some
dependence of C from X that emphasizes the
"importance" of "X is B" In connection with a
characterization of Y. For example, q, may
have the form "If X is BY then Y is C«l" which
means "If X 1s B (for a given Y) thenAY is C
(where C is defined in connection with X)."
Further interpretations will be given with an
application in this paper.

Returning now to (I), here is what we require
in the deduction process. If A matches B, in
the sense of n(A|B) = 1 (A not being necessarily
equal to B, instead we may have A C B), then
the inferred D is precisely C. In the particular
particular case where A = B, (I) can be written
as follows:

X is A

If X is A then Y is C

Y 1s C

which explains the reference to (I) as the
"extended Modus Ponens" or EMP, for short.

Before defining C, let us turn to (II) which
will be referred to as "Extended Modus Tollens"
or EMT.

^U fuzzy subset Aof U is said normal iff
sup y«(u) = 1. Moreover, in our examples, the
uSU A
supremum is attained.



(II) (

p2 A X is A

q2 A If Y is C then X is B

L
*2 A Y is D

As in (I), X and Y are variables that take
values in U and V, respectively; A and B are
fuzzy subsets of U; C and D are fuzzy subsets of
V. q? is interpreted in the same spirit as q-j.
But here is now what we required in the
deduction process. If A does not match B, i.e.,
if A is totally disjoint from B (A not being
necessarily related to the complement B' of B)
in the sense of w(A|B) = 0, then the inferred
D in r, is precisely the complement C of C.

In order to define fuzzy sets D in r, and in r2,
let us recall some definitions of fuzzy truth
values.

In fuzzy logic [3], a fuzzy truth value is a
fuzzy subset of [0, 1], where [0, 1] in
association with the logical connectives
constitutes the base logic.

Fuzzy truth values true and false are defined
as follows,Zadeh [20"T7as in the work of Baldwin
[2], Tsukamoto [18].

Vx € [0,1], ytrue(x) =x, yfalse(x) - 1-x.

From these fuzzy truth values, by using
linguistic modifiers such as fairly, very,
other fuzzy truth values are defined. For
example, Vx 6 [0,1],

2 1/2
uvery true*x) s x * yfairly true^ =x »

Vrv false<x> =^^' etc'

Moreover, the fuzzy truth values absolutely true
(t) and absolutely false ($) are defined as:

yT(x) •{:
if x = 1

otherwise ,(x) C
1f x = 0

0 otherwise'

a fuzzy truth value T does not provide a precise
characterization of the truth value of a
proposition; rather it yields a possibility
distribution nT of this truth value, which
allows to take into account the Imprecision 1n'
the assignment of a truth value to a proposition.

In this paper we treat separately two families
of truth values: T associated with TRUTH, and
F associated with FALSEHOOD as illustrated in Fig. 1

When two fuzzy truth values A and B either both
belong to T or either both belong to F, and only
in these two cases, we here use the distance

absolutely
false

absolutely true

Fig. 1. Possibility distributions of fuzzy
truth and fuzzy falsehood values.

d, [10], defined on possibility distributions
as follows.

d(n\nB) =J |yA(x)-uB(x)|dx.

In particular, if A€T, dd^.n1) =J yft(x)dx
=a€ [0,1]; if B€ F, dOl8,^) =f yB(x)dx

J0
* b e [o,l].

From now on, we shall assume that for all
a e [0, 1], there exists one and only one
A 6 T and, one and only one, B € F such that

a-ddrV) »d(nB,n*).
This functional correspondence between numbers in
[0, 1] and possibility distributions in T (or
in F) is a basic assumption in the sequel.
For example, the elements of T (or of F) can be
defined as being generated by powers of true
(or of false) but we do not have to Impose,
here, precise definitions of the elements of
T (or of F).

We are now able to define the fuzzy sets D in
ri (I) and 1n r2 (II). In (I) as well as in
(II) two steps are needed to compute the
corresponding D's. In all cases it is of
course assumed that fuzzy propositions induce
corresponding possibility distributions.

(I) EMP - Step 1. Matching of A and B.

Thus
Define MST such that d(nM,JIT) » l-tr(A|B).
, comparison of A with B by means of a

possibility measure, yields a truth value M in
the family T, as illustrated in Figure 2.



absolutely true

Fig. 2. Illustrative example of matching for A and B

Note that if tt(A|B) » 1, e.g. when A c B, then
M = t, i.e., absolutely true.

(I) EMP - Step 2. Definition of D.

Vv € V, yQ(v) A yc(v) © yM(yc(v)),

where for a and b 1n [0, 1], a ©b = min(a+b,l),
i.e., ©A bounded sum. See in Fig. 3 an illus
tration for the deduction of D in EMP.

Note that in all cases, deduction by EMP yields
a fuzzy set D such that C C D.

Moreover, if A = B then C = D, for when A = B,
tt(A|A) = 1 (recall that fuzzy sets are assumed
to be normal), M»t, yQ(v) =yc(v) ©0
(if yc(v) < 1) or yQ(v) =yc(v) ©1 =1
(if yc(v) = 1).

SPECIAL CASE. When the C's belong to a family

with a structure akin to the families of truth
values, deduction processes can be defined in a
slightly different, but more homogeneous form.
This is the case when Y takes values in [0, 1]
to handle concepts like beauty, pain, etc. All
C's are then generated from a basic term and its
antonym like true and false, for example
handsome and ugly 1n the case of beauty,
presence and absence in the case of pain.
Moreover, all C's are characterized by the
distance of their respective possibility

distributions to the extremal possibility
distribution (nabsolutelv handsome^ for example)
which we generally denote by n . In the
deduction process, first step is unchanged but,
in second step, D, or equivalently nD, is now
defined as follows.

d(nD,nE) »d(nM,nT) ©d(nc,nE).

(II) EMT - Step 1. "Nonmatching" of A and B.

The goal here is to determine to what
extent A does not match B. The result of the
comparison is N e F such that

dOrV) =tt(A|B),
as Illustrated 1n Fig. 4.

Note that if tt(A|B) = 0, then N - *, I.e.,
absolutely false.

(II) EMT - Step 2. Definition of D.

Vv € V, yD(v) Ayc,(v) ©yN(yc(v)),

recall that yCi(v) = l-yc(v)
fed sum. See in Fig. 5 an ill

where we
the bounded sum. See in Fig.
for the deduction of D in EMT.
Note that in all cases, deduction by EMT yields
a fuzzy set D such that C'CD.

and © is
ustration

Fig. 3. Illustrative example for deducing D in EMP.



1 absolutely false 0

Fig. 4. Illustrative example of "nonmatching" for A and B.

1 absolutely 0
false

Fig. 5. Illustrative example for deducing D in EMT.

Moreover, if A is totally disjoint from B, in
the sense of ir(A|B) =0, then N• $, yQ(v)
* yCi(v) ©0 (if yc(v) >0) or yQ(v) =uyc,(v)
©1=1 (if yr(v) = 0, i.e., ur,(v) =1), hence
D»C\ L L

SPECIAL CASE. When the C's belong to a family
with a structure akin to the families of truth
values, deduction processes can again be defined
in a slightly different, but more homogeneous
form. If we still denote by nE the extremal
possibility distribution like in (I), the first
step is unchanged but, in the second step, D,
or equivalently, nD, is now defined as follows.

d(nD,nE) = d(nN,n*) ©d(nc*,nE),

where Vv e [o, 1], yc*(v) =uc(l-v) .

3. MEDICAL DECISION PROCESSES

The methodology we propose for computer-assisted
medical decision making 1s based on the two
soft deduction rules EMP and EMT which we have
Introduced in the preceding section. It can
also be applied 1n other domains to fault
diagnosis or to fuzzy logic controllers, for

example.

Within a given pathology we consider a set of
diagnostic indicatorsor symptoms and a set of
diagnoses (or groups, or types, or syndromes,
etc.). Fuzziness will be considered in the
three domains of evaluation of diagnostic
Indicators,medical knowledge representation,and
computation of results.

i) Evaluation of diagnostic indicators.
In most cases, subjectivity and imprecision are
associated with evaluation of diagnostic indi
cators for some of the following reasons.

Difficulty of quantifying
symptoms like "pain" for example.

Errors due to technical measurement
procedures.

Poor conditions of observation.

Change 1n symptoms in the
course of a disease.

In all cases, the imprecision in the evaluation
of a diagnostic indicator will be Interpreted
by means of a fuzzy proposition of the form:
The diagnostic indicator is around a or close to a



where a is a numerical value. A fuzzy set
labeled around a will be denoted by a, and it
will be assumed that fuzzy propositions translate
into corresponding possibility distributions.
For example,

John's triglycerides are 6.3 mmol/J. is
transformed into

Triglycerides (John) = 6.JJ
which translates into a possibility distribution
of the type shown in Figure 9, with a. = 6.3.

ii) Medical knowledge. Three concepts are
taken into account by means of finite matrices
expressing relationships between diagnoses (rows)
and diagnostic indicators (columns).

The pattern matrix G is such that its
entries express the theoretical nature of
diagnostic indicators associated with diagnoses.
For examples, in the case of poorly defined
dosage thresholds, G reflects fuzzy propositions
such as (in the context of a given diagnosis)
diagnostic indicator is slightly higher than ....
or clearly lower than ...

The suggestion matrix H is such that its
suggestive values reflect the subjectivity assoc
iated with each diagnostic indicator in relation
to the corresponding diagnoses. This matrix
allows the setting of a hierarchy among signs to
induce a diagnosis. The entries stand for
properties like high suggestive value or low
suggestion value, etc.

The disconfirmation matrix J is such that
its entries represent how subjectively the
diagnostic indicatorsdisconfirm diagnoses in
order to eliminate them in the deduction process.
This matrix also allows a setting of a hierarchy
among diagnostic indicators, but to reject
diagnoses. Entries are exemplified by trans
lation of properties like low disconfirmation
value ofvery low disconfirmation value, etc.

These matrices, G, H, J, are filled up by
physicians according to their experience and how
subjectively they feel about the different
relationships. They can be modified after some
training and further experience.

iii) Computed results. With the exception
of specific cases, it is uncommon for the
combination of observed diagnostic indicators
over patients and medical knowledge to yield
precise results. The yes-or-no membership of a
patient in relation to a pathological condition
is less often encountered than a graded member
ship which represents a transition stage between
a normal and a pathological condition. Hence,
each patient Is characterized by a graded member
ship in each possible decision which reflects
both suggestion and disconfirmation values.

ALGORITHM. Each observed diagnostic indicator
on a patient is first transformed into a

possibility distribution, and compared with
each entry in G (a possibility distribution) by
means of "the possibility measure which yields
the possibility distributions of matching and
non-matching fuzzy sets, i.e., n" and JIN
respectively. These possibility distributions
— which determine whether or not the patient
matches the theoretical pattern G — are
respectively combined with each entry in the
suggestion matrix H by EMP, and with each entry
in the disconfirmation matrix J by EMT (see
Figure 7). Let us rewrite the deduction rules
in terms suited for medical applications,
assuming that diagnoses are characterized over
[0, 1] (cf. V).

Let Si be a diagnostic indicator or symptom
taking values in a set Uj (usually a real
interval) and let V* be a diagnosis taking
values in V = [0, 1]; S, and Vi are viewed as
variables (cf. X and Y,Jrespectively).

GM A fuzzy subset of Uj expressing a
J ™ (reference) relationship between P^ and

S,; it is the (i,j)-th entry in the

pattern matrix G (cf. B in (I) and (II)).

H,. A fuzzy subset of V expressing how V\ 1s
1J " suggested by Sy it is the (i.j)-th

entry in the suggestion matrix H (cf. C
in (I)).

J,, A fuzzy subset of V expressing how t^ is
disconfirmed by S,; it is the (i.j)-th

entry in the disconfirmation matrix J
(cf. C in (II)).

Assume now that ameasurement of Sj in U- yields
a value "a," which is then transformed into a^
(cf. A in (I) and (II)), expressing "around a."

T

By EMP, a fuzzy subset D}j of V is Inferred
and, by EMT, afuzzy subset dH of Vis also
inferred.

(I) or EMP

SJ is *j

»i 1s Bu

: observed di agnos-
tic indicator

If S, is G<, then Vt is H^ : medical knowledge
3 U 1 U (pattern & .

suggestion)

' fuzzy degree of
presence

dL will be determined by a possibility dis
tribution characterized by the distance

DI.
d(n ij,ITAP) (cf. d(nD,nE)), where AP
A absolutely present, see Figure 6 for
Tllustration.



absolutely
absent

absolutely
present

^- v

Fig. 6. Possibility distributions of fuzzy
presence and fuzzy absence values.

We briefly recall definition of dL, or,
equivalents, its possibility distribution (cf.
special case, in (I)).

d(n°ij,nAP) =O-utajl^j)) ©d(nHiJ,nAS),
where AS A absolutely suggestive

.M „T,(recall that MS T is defined by d(n ,11 )

-1-"(a.lG^)).

(II) or EMT.

si<» -*i
If Pf 1s J,j then Sj 1s S^

P, 1, o\]

observed diagnos
tic indicator

medical know
ledge (pattern &
disconfirmation)

fuzzy degree of
absence

dH will now be determined by the distance

D11.
d(n ^.n**), where AA Aabsolutely absent, see
Figure 6 for illustration.

Let us briefly recall, too, the definition of
dH, or, equivalents, its possibility distri
bution (cf. special case, in (II)).

d(nDij",nM) =1r(a.|Gij)©d(nJ*j,nAD),
where Vv e [0, 1], y,* (v) = y, (1-v) and

Jij ij
AD A absolutely disconfirmed (recall that N 6 F

is defined by d(nN,n<,)) =^(gjlS^)).

For each patient, the entries in the two
computed matrices D1 and Du are fuzzy degrees
of presence (D*) and fuzzy degrees of absence
(D11) for each possible diagnosis P^. The
elements of D1 and D11 are finally combined by
means of aggregation operators whose choice is
application-dependent. Here, we have chosen
the minimum operator acting on possibility
distributions. For each P., then, we obtain two

pi Aipossibility distributions n and n which
express a fuzzy degree of presence and a fuzzy
degree of absence of Pi. They are defined and
combined as follows, [17].

P 01.
d(n i,nAP) Amin d(n 1j,nAP) •c^,
A * d".

d(n i,nAA) Amin d(n ^.n**) •B
J

1"

Suggestion (EMP)

*J

Evaluation
of signs
(patient)

uij
Pattern

Medical knowledge

u1j
Disconfirmation

D11Dij
(EMT)

IComputed results
1by EMP & EMT

Fig. 7. A general schema of medical decision processes.

Final results
(diagnoses)



For each diagnosis P<, the solution R^ is
derived from a simultaneous analysis of the
fuzzy degree of presence and the fuzzy degree
of absence. We express it by the variation
range [1-c^.B.] or [al.6^], when aj £6^, which
is the condition of existence of a solution.
This condition of existence expresses consis
tency and homogeneity in the observed diagnostic
indicators on a patient. Homogeneity depends on
both suggestion diagnostic indicators and dis
confirmation diagnostic indicators in relation
to a diagnosis P...

If condition of existence for a diagnosis P.
is not satisfied, it is defined as a degree
of heterogeneity h^ A a-j-B...

In summary, for each diagnosis P^, we specify
either a variation range [o-,8j] or the value
of B{, associated with a heterogeneity degree

V
4. APPLICATION TO THE CLASSIFICATION OF

HYPERLIPOPROTEINEMIAS

Hyperlipoproteinemias are a major metabolic
perturbation and their etio-pathogenic role on
vascular atherosclerosis has been documented
during the past years. A synthesis of these
abnormalities was first given by Fredrlckson
and, later on, a classification was proposed by
the W.H.O. [22]. This classification relies
upon respective values of lipidemia,
cholesterolemia, triglyceridemia, electrophoresis
and/or electrocentrifugation of lipoproteins.

Description of these abnormalities and criteria
for their classification remain imprecise; they
are expressed by means of propositions such as
"Plasma cholesterol is normal or increased,"
"8-lipoproteins markedly decreased,"
"triglycerides are clearly increased," "broad
band suspected on electrophoresis" [22]. There
is no information on thresholds in these
propositions, which are fuzzy indeed, so that
a wide and subjective interpretation is
permissible.

Moreover, there exists a hierarchy among the
variables entering in the classification,
according to their degree of importance. For
example, total cholesterol and triglycerides
are basic factors in the definition of what we
call primary classes (they play the role of
"diagnoses" in the general study), i.e. the
"normal" class and classes II , IIb and IV. To
the contrary, the three remaining variables
entering in this classification, i.e., percentage
of b lipoproteins, percentage of pre-B
lipoproteins and total lipidemia, are less
important and their presence confirms membership
of a patient in a class or determines so-called
minor classes, i.e., minor II., minor IIh and
minor IV. a

In the present application, classes I, III, and
V that appear in the international classification

are not introduced since they correspond to
uncommon genetic abnormalities and they are
determined by specific variables, i.e., by the
conjunction of presence, or absence of
chylomicrons and/or broad B lipoproteins-
suspected on electrophoresis. Moreover,
percentage of o lipoproteins is not taken into
account since it follows from the constraint
a + 6 + pre B = 100 and it does not provide
additional information regarding the
classification.

In summary, this application deals only with
seven classes: Normal, IIa, minor IIa, IIb,
minor IIb, IV and minor IV. These classes are
characterized by the variations of five
variables (diagnostic indicators): total lipids,
total cholesterol, triglycerides, B lipoproteins
and pre-B lipoproteins.

In practice, the method runs in a conversational
mode and comprises two stages, initialization and
computation, as follows,.

INITIALIZATION. In this first stage, the three
componentsof the medical knowledge are
determined.

The pattern matrix G reflects the
theoretical description of the W.H.O. classif
ication, derived from fuzzy propositions taking
into account the constructed classes and giving
the possible values of the five biological tests.
Here are some examples of fuzzy propositions,
the corresponding fuzzy sets are to be seen 1n
Table I. "In class IIa (Pj), cholesterol (Si)
is markedly Increased (G^J," "In class minor
IIa, triglycerides are normal," "In class IV,
lipids are very increased." etc. Fuzzy sets in
Table I are built from one of the two types of
parametrized curves shown in Figure 8; they are
derived from the S-membership function [3]
which is piece-wise quadratic.

al Yl a2 . T2

Fig. 8. The two types of curves used in G.



Suggestion matrix H and disconfirmation
matrix J are also specified by the biologist to
introduce the notion of hierarchy into
diagnostic indicators,either to determine the
membership (using H) or the non-membership
(using J) of a patient in a class. Suggestion
and disconfirmation values are, of course,
imprecise and based on the biologist's exper
ience. They reflect fuzzy properties like very
suggestive value or weakly suggestive value,
"by possibility distributions in the universe of
discourse [0, 1]. Such possibility distribu
tions are characterized by their respective
distances to the possibility distribution of
absolutely suggestive. As the suggestion value
increases, the distance decreases and conversely,
so that the biologist determines the suggestion
(and the disconfirmation) values with respect
to the associated distances. Suggestion matrix
and disconfirmation matrix are respectively
reproduced in Table II and Table III where,
for the sake of simplicity, the entries stand
not for the value of a distance but for the
complement of this value. For example, the
higher the suggestion value, the higher the
entry in the matrix (the corresponding distance
has a low value).

Finally, the Imprecision attached to the
result "a*" of a biological test is translated
into fuzzy propositions such as "percentage of
pre-B lipoproteins (Sj is around aj." Every
test performed on a patient will be defined by
a curve, which is a combination of an S and an
S« s (1-S)-membership functions, and which
depends on two parameters a^ (the measured
value) and,b, that depends on!yon the nature

of Sj and not on the measured values, and take
intoJaccount the fuzziness of "around" (see
Figure 9). In our application, the b.'s we use
are reproduced in Table IV.

Fig. 9. Representation of the result of a
biological test S*.

COMPUTATION. The application of the proposed
method to a classification process which depends
on the biological tests performed on a patient
presents no difficulty. It 1s necessary only to
provide the computer with the results of five
tests. The method yields intervals (cf. [aj,
Bj) associated with each of the seven pre
determined classes (the P^s). The boundaries

and the range of the intervals represent the
membership of a patient in a class. If
necessary, heterogeneity degrees are determined
on request.

If the condition of existence of a solution is
satisfied (cf. aj < B^, the variation ranges
are interpreted as follows.

Two bounds close to 1 indicate full member
ship to a group, e.g. [0.9, 1];
Two bounds close to 0 indicate non member
ship to a group, e.g. [0, 0.1];
The narrower the variation range, the more
accurate the result;

The larger the variation range, the more
inaccurate the result (the limit case is
[0, 1]).

An example with some results is shown in
Table V.

5. CONCLUSION

In practive, clinicians and biologists were
substantially satisfied with the classification
of patients in the different classes, and by
now more than a thousand patients have been
examined by means of this methodology. To
summarize, the application of the method to the
classification of hyperlipoproteinemias yields:

A clinician's personal and clearer
perception of the definition of more or less
subjective classes of medical knowledge;

Similar and stable results of the same
tests; this prevents misclassifications due to
a collaborator's lack of experience and prevents
any evolution of the subjectivity inherent to
the interpretation;

A graded classification in many classes
allowing a gradation of lipid analyses. In
particular, the existence of Intermediate
classes allows one to assume, 1n absence of
any prevention or therapy, a final evolution
towards a crisper class. This 1s of great
interest in epidemiologic studies.

Finally, let us mention that, in our Department,
fuzzy set theory has been applied in problems
of thyroid patholody, of cardiac insufficiency
[9], of anemias and of the classification of
some icterias [15], and is now used in the
treatment of diabetes.



Normal

IIa

ml la

lib

mllb

IV

mlV

lipids

(9/1)

cholesterol triglycerides B lipoproteins pre-B lipoproteins

(mnol/1) (timol/1) (%) (%)

5-4^5 68* 3.4 3.6 sTlT 0.5 0I9 1.5 2*1 35 52 60 rf tTS TJTff2.

n' 5 *~ 6^7 876 * 0.5 0.9 1.5 2.1 55 60 70 90 0 1 8 12.5

ix o /n /n\ /n
3 5 9 10 5.2 6.5 7.7 9 0.5 0.9 1.5 2.145 52 62 75 2.5 5 12.5 15

£L/n\ /n
6 115 67 8.5 2 2.4 4.3 6.2 45 60 75 85 16 21 37 42

5 9 U 5.2 6.3 TT9 1.6 2.23.45.7 35 50 70 80 3 5 22 27

8 14 5.2 7.5 10.3 3.4 6.9 25 32 46 54 24 28 44 80

35 1 14* 2.6 3.9 tTTT 1.1 l.*8 3.4 5.7 25 50 60 70 14 18 25 40

Table I. Classification of hyperlipoproteinemias: Pattern matrix G.



Lipids Choi. Trigl. 6-lip. pre-B lip-

Normal 0.7 1 0 0

IIa 0 0 0.9 0

mlla 0 0 0.9 0

lib 0 1 0.8 0.8

ml lb 0 1 0.8 0.8

IV 0.7 0 1 0 0.9

mlV 0.5 0 1 0 0.9

Table II. Suggestion values.

Lipids Choi.

Normal

IIa

ml la

lib

mllb

IV

mlV

Lipids Choi. Trig!. B-lip pre-B lip

0.8

0.5

0.5

0.5

0.5

0.6

0.5

0.9 0.9 1 1

0.8 0.7 0.9 0.6

0.8 0.7 0.9 0.7

0.9 0.8 0.7 0.8

0.9 0.9 0.7 0.7

0.5 0.8 0.6 0.9

0.9 0.8 0.9 0.7

Table III. Disconfirmation values,

Trigl. 6-1ip. pre-6 lip.

1.8 g/S, 1.5 mmol/A 0.6 mmol/J, 10% 10%

Table IV. Fuzziness attached to the
biological tests.

patients 1

1

ipids cholesterol

9 7.5

triglyce

1.6

rides 6 pre-B

75 6

2 12 5.93 3 39 38

3 4.3 3.3 0.6 53 11

4 12 5.93 3 39 42

5 15 7.7 4.8 60 32

patients N

Final f

IIa mlla

tesults

lib ml lb IV mlV

1
6=0.1
h«0.9

[0.8.1] S?-5 8=0.2
h=0.6

6=0.6
h=0.4

[0,0.1]
6=0.2
h=0.8

2
6=0
h=l

[0.1.0.1] J3;f 6=0.2
h=0.8

6=0.3
h=0.7

6=0.2
h=0.7

6=0.8
h=0.2

3 [0.9,0.9]
6=0.2 6=0.2
h=0.3 h=0.7

6=0.1
h=0.5

6=0.1
h=0.7

[0,0.1]
6=0.2
h=0.2

4
6=0
h=l

[o.i.o.i] *:°-j 6=0.2
h=0.8

6=0.3
h=0.7

6=0.2
h=0.7

6=0.5
h=0.5

5
6=0
h=0.1

6=0.3 6=0.3
h»0.6 h=0.7

[0.9,1]
6=0.5
h=0.5

6=0.5
h=0.4

6=0.4
h=0.3

Table V, Examples of Classification.



ACKNOWLEDGEMENT

The authors wish to acknowledge the helpful
comments of Professor L. A. Zadeh on an
earlier draft of this paper.

REFERENCES

[I] Adlassnig, K.P., (1980), "A fuzzy logical
model of computer-assisted medical
diagnosis," Methods ofInformation in
Medicine, 18, 3, pp. 141-148.

[2] Baldwin, J.F., (1979) "A new approach to
approximate reasoning using a fuzzy logic,
Fuzzy Sets and Systems, 2, 4, pp. 309-325.

[3] Bellman, R.E., and Zadeh, L.A., (1976)
"Local and fuzzy logics, Electronics Research
Laboratory Memorandum M-584, University
of California, Berkeley.

[4] Bonifay, B., (1981), "Approche floue de
caracteVisation des principaux types
d'anemies rencontre's en me"decine interne,
Medical Thesis, Marseille.

[5] Blanc, P., (1981) Presentation d'une
me'thode originale de classification auto-
matique des hyperlipoprote*ine*mies par
1'utilisation de la theorie des sous-
ensembles flous a propos de 1000 bilans
lipidiques, Medical Thesis, Marseille.

[6] Esogbue, A.O., and Elder, R.C., ((1979)
"Fuzzy sets and the modelling of physician
decision processes, part I: the initial
interview-information gathering session,
Fuzzy Sets and Systems, 2, 4, pp. 279-291.

[7] Esogbue, A.O., and Elder, R.C., (1980),
"Fuzzy sets and the modelling of physician
decision processes, part II: Fuzzy
diagnosis decision models, Fuzzy Sets and
Systems, 3, 1, pp. 1-9.

[8] Fredrickson, D.S., (1975), "It's time to be
practical." Circulation, 51, pp. 209-211.

[9] Joly, H., Sanchez, E., Gouvernet, J., and
Valty, T., (1980), "Application of fuzzy
set theory to the evaluation of cardiac
function, Medinfo 80, Tokyo, Proc. North-
Holland I, pp. 91-95.

[10] Kaufmann, A., (1975), Introduction to the
theory of fuzzy subsets, vol. 1,
Fundamental Theoretical Elements, Academic
Press, New York.

[II] Mizumoto, M., Fukami, S. and Tanaka, K.,
(1979), Some Methods of Fuzzy Reasoning,
in Advances in Fuzzy Set Theory and
Amplications, Gupta, M.M., Ragade, R.K.,
and Yager, R.R. (eds.), North-Holland,
Amsterdam, pp. 117-136.

[12] Rescher, N., (1969), Many Valued Logic,
McGraw-Hill, New York.

[13] Sanchez, E., (1979) Medical Diagnosis and com
posite Fuzzy Relations," in Advances in
Fuzzy Set Theory and Applications,
Gupta, M.M., Ragade, R.K., and Yager,
R.R. (Eds.), North-Holland, Amsterdam
pp. 437-444.

[14] Sanchez, E., (1980), "Fuzzy logics with
application to medical diagnosis, Proc.
J.A.C.C, San Francisco.

[15] Sanchez, G., (1982), "Application de la
th€orie des ensembles flous 3 la
classification de certains icteres,
Medical Thesis, Marseille.

[16] Soula, G., Gouvernet, J., Barre*, A., and
San Marco, J.L., (1980) "Application of
fuzzy relations to medical decision
making," Medinfo 80, Tokyo, Proc. North-
Holland II, pp. 844-848.

[17] Soula, G., (1981), Aide a la decision en
logique floue: Application en me*decine
These d'Etat en Biologie Humaine, Faculte"
de Me*decine, Marseille.

[18] Tsukamoto, Y., (1979), "Fuzzy logic based
on Lukaciewicz logic and its applications
to diagnosis and control," Ph.D. Thesis,
Tokyo Institute of Technology.

[19] Zadeh, L.A., (1977), "Atheory of approximate
reasoning (AR)," Electronics Research
Laboratory Memorandum M77/58; University
of California, Berkeley.

[20] Zadeh, L.A., (1975), "The concept of a
linguistic variable and its application
to approximate reasoning, Part I,
Information Sciences, 8, pp. 199-249;
Part II, Information Sciences, 8, pp. 301-
357; Part III. Information Sciences, 9,
pp. 43-80.

[21] Zadeh, L.A., (1978), "Fuzzy sets as a
basis for a theory of possibility,"
Fuzzy Sets and Systems, 1, pp. 3-28.

[22] World Health Organization, (1970),
Classification of hyperlipidemias and
hyperlipoproteinemias, Bulletin WHO, 43
pp. 891-915.

Research sponsored in part by the National
Science Foundation Grants MCS79-06543/IST-
801896.


	Copyright notice 1982
	ERL-82-48

