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Abstract

We extend the applicability of the global Q-parametrization method

of controller design to a large class of unstable nonlinear plants.

The main result is a two-step compensation theorem analogous to that

of Zames for unstable linear plants -ifP:«£0->JC,isa
eZ el

nonlinear (possibly unstable) plant and F is any incrementally stable

controller such that P1 := P(I-FQ(-P)) is incrementally stable, then

the class of controllers F which yield a f.g. stable closed-loop system

in the unity feedback configuration for P, is globally parametrized by

finite gain stable maps Q: JCel -* jCg2 with F=FQ +Q(I-P1Q)~1.

Research sponsored by the National Science Foundation Grant ECS-8119763,



I. Introduction

The aim of this paper is to extend the domain of applicability of

the Q-parametrization design theorem for nonlinear systems. The well

known Q-parametrization theorem states that for a stable plant P, a

compensator F yields a stable closed loop (see Fig. 1) if and only if

F = Q(I+PQ) for some stable Q. This was proved in the linear case by

Zames [Zam. 1], and used in design by Desoer and Chen [Des. 1], In

the nonlinear case (where one requires in addition that the plant be

incrementally stable) its roots go back to Desoer and Chan [Des. 2], and

it has been stated explicitly by Desoer and Liu [Des. 3], A consequence

of this attractively simple parametrization is extreme efficiency in

design -indeed, the I/O map is PQ. For example, in the linear case,

it has been exploited in [Des. 1] to provide an algorithm for compensator

design in the case of rational transfer function matrices. Further, the

use of this method in an optimization environment permits efficient

design for a closed-loop transfer function which is required to satisfy

various complex a priori inequality constraints [Gus. 1].

The Q-parametrization method requires that the plant be stable. This

is a direct consequence of the algebraic nature of the result — in fact

it can be formulated in an abstract algebraic context [Des, 1], [Des. 4],

[Ana. 1]. Because of the existence of a number of applications where

the plant is unstable (airplanes, chemical reactions, ), it is of

interest to extend the method to a larger class of plants, For linear

plants, results in this direction have been obtained by Zames [Zam. 2]

Zames considers the class of all plants which are stabilizable by stable

compensators. These are the strongly stabilizable ones [You. 1], (It

may be shown by the methods of [Des. 4] that this class includes the

stable plants.) It is shown in [Zam. 2] that by a 2-step compensation

-2-



scheme one may exploit the Q-parametrization results to design for the

closed-loop transfer function for a strongly stabilizable plant.

This paper may be considered the nonlinear version of [Zam. 2].

After defining strong stabillzability suitably in the nonlinear context,

we exhibit how design of the closed-loop system for a strongly

stabilizable nonlinear plant may be carried out by a 2-step scheme,

where the latter employs the nonlinear Q-parametrization result. Some

results pertaining to the robustness of stability of the closed loop,

in the spirit of the model reference scheme results of [Zam. 2], are

also presented.

The organization of the paper is as follows: Section II presents

some standard definitions and notation for the concepts used. The main

results are present in Sec. Ill and proved in Appendix I. Section IV

is a short summary and is followed by the list of references.

II. Preliminaries

a := b means "a denotes b." Let K := the field of real numbers.

We consider systems whose inputs, outputs, etc. are defined on T c IR ,

typically T=R+ or T=7Z.+. For Vany normed space let F := {f:T-*• V}

with norm B-Dp. Typically V=ft". For any xeTand fGF, let ^ eF
be defined by

fT(t) = f(t) if t<t

=0 if t > t

Let I!fO := If IL and P :F-^F be such that P f = f . Using usual
T T F T T T

operations of addition and scalar multiplication, we may define vector

spaces of the type

£e := {f GFIVtST, ||f||T <co}
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Let H : £ , + £ 7. We say H is causal iff Vt e T we have P HP = P H.
ei Qc. T T T

All maps encountered in this paper will be causal.

Let H :£Q^ •*• £^ be causal. We say H is finite-gain stable

(f.g. stable) iff 3y(H) < «> such that

•Hxl < Y(H) llxil , Vt6T, VxSJC .
t — t el

Let H : £ , * £ « be f.g. stable. Then, we say H is incrementally

stable (incstable) iff =]y(H) < °° such that

0Hx-HyiiT < y(H) Bx-yOT Vt €T Vx,y e£^

We consider feedback systems of the type shown in Fig. 1.

The input (output, error) space of such a system, denoted U,(Y,E), is

the Cartesian product of the spaces of the individual inputs (outputs,

errors, resp). We say that a feedback system is well posed iff it

defines causal (closed-loop) maps: HYU :U •*» Y and H-.. :U -»• E. (For

the system 'S(P,F) in Fig. 1, Hyu :(u^Ug) n- (y-jO^) and

HpU : (u,,u2) h- (e,,e2)). We assume throughout that the systems we

consider are well posed.

We say a system is finite gain stable iff Hyy and H£U are f.g.

stable maps.

III. Main results

We first state the Q-parametrization theorem for nonlinear systems.

For a proof see [Des. 3].

Theorem 1 (Global parametrization of I/O maps)

Consider the system *S(P,F) shown in Fig. 1, where P :JCg2 -^g-i*

F :£.->£ 2. Assume 'S(P,F) is well posed. If P is inc. stable then



0 'S(P,F) is f.g. stable (3.1)
o

for some f.g. stable Q :£Q^ + £q2

F=Q(I-PQ)"1 (3.2)

0 Furthermore, in terms of Pand F

Q«Fd+PF)"1 =Hp (3.3)
elul

0 With Up =0

Hy2Ui =PQ. (3.4)

Remarks

0 From (3.3),(I-PQ)_1 =(I+PF) :£Q. +£^y Further, (3.3) shows
that the f.g. stability of 'S(P,F), (Ha ., in particular) requires that

elul
Q be f.g. stable.

(b) The eqn. Hv u = PQ gives a global parametrization of all I/O
JZ 1

maps u, »•»• y« achievable from a given incrementally stable plant P with

the configuration of 'S(P,F). This raises the following fundamental

problem: given the inc. stable map P : £ « •+ £ i write it as the

composition of two maps

v

p = pps

where Ps :£ 2"*" £e2 nas d f-9- stable causal inverse Pi and
v v

P :£Q2 + -C-j. If one could extract from P its "minimal" P, we could

state that all input-output maps achievable from P by the configuration

'S(P,F) are of the form

Vl =™
where M: £Q^ -»• jC 2 is f.g. stable.
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Our next result is a partial extension of the nonlinear Q-parametrization

theorem to f.g. stable, but not necessarily inc. stable plants. It is

essentially a restatements of the small gain theorem (see e.g. [Des. 5])

but has useful design implications. The proof is in Appendix I.

Theorem 2. (Robustness of stability)

Consider the feedback system 'S(Pb ,f), where Pb is inc. stable and

F=Q(I-PbQ)~ for some f.g. stable Q. Consider aperturbation of Pb:

P = Pb + AP, with AP f.g. stable (3.5)

Then

y(AP)y(Q) < 1 (3.6)

=> 'S(P,F) is f.g. stable. (3.7)

Remarks:

0 Thus, for af.g. stable, but not necessarily incrementally

stable nonlinear plant P, design would proceed by first finding a norm-

close incrementally stable approximation Pb and designing for 'S(Pb»F)

with the constraint y(P-P|Jy(Q) < 1 imposed on Q.

0 For aweakly nonlinear f.g. stable plant P, i.e. one having

a norm-close stable linear approximation P., linear design methods could

be applied with the constraint Y(P-PbMQ) < 1on Q.

We next proceed in the spirit of [Zam. 2], to develop a two-step

scheme for the design of closed-loop systems involving a class of plants

larger than the incrementally stable ones.

Definition: A nonlinear plant P :£ 2->• X , is said to be strongly

stabilizable if there is an inc. stable FQ :£^ + £^9 such that with

(see Fig. 2a)

pl =W'*0 (-P))-1 (3*8)
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we have

© 'S(P,FQ) is f.g. stable (3.9)

0 P-j is inc. stable. (3.10)

Obviously any incrementally stable plant P is strongly stabilizable.

The proof of the following theorem, which deals with strongly

stabilizable nonlinear plants, may be found in Appendix I.

Theorem 3. (Two-step compensation)

Let the nonlinear plant P :£ 2-*•«£. be strongly stabilizable, and

let FQ :X^ -*• £e2, be inc. stable such that with

pl =PU-iV-P))"1 ^3-8)
the conditions (3.9) and (3.10) hold.

Then, (see Fig. 1(b) and 1(c)),

•S(P,F) is f.g. stable for some F :£,-»• «C 2 (3.11)

'S^.F-Fq) is f.g. stable for some F-FQ :«£,-*- £ 2 (3.12)

there is a f.g. stable Q such that

F-FQ =Qd-P^)"1 (3.13)

yields

2S(P,Fo,F-FQ) is f.g. stable. (3.14)

Remarks

0 The claims of this theorem are.highly non-obvious and interesting

from a design-viewpoint. It says that an^ causal nonlinear controller

F stabilizing a strongly stabilizable nonlinear plant P can be obtained

by a two-step process: First, we use any_ incrementally stable F which
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yields (3.9) and (3.10) for P] := p(i-Fo(-P))-\ Then, using
Q-parametrization, we design the compensator (F-F ) for the inc. stable

Pj. see (3.13).

0 The theorem gives aglobal parametrization of all stabilizing
compensators F for a strongly stabilizable nonlinear plant. Obviously

one needs to build only 'S(P,F) with

F=FQ +Qd-PjQ)"1

where Q ranges over the f.g. stable maps from £ , to £ „.-
e i ez

0 Since we are handling nonlinear systems we have to be very

careful about signs: in general we cannot write

1- Fo(.p) = ! + F()p

This equality holds if F is odd, i.e. if

F0(x) =-F0(-x) Vx 6 £e1

0 This is a powerful generalization of the corresponding linear

theorem of [Zam. 2].

IV. Summary

We point out some of the interesting problems and issues raised by

our results:

0 Given acausal map P:«C 2-»• «£ -i» how does one "factor" it as
P = PP$ where P is causally invertible and P is the minimal "bad" part

of P in some appropriate sense? (This was mentioned in the remarks after

Theorem 3). By analogy with fractional representation theory for linear

plants (both lumped and distributed), P would correspond, very loosely,

to the "unstable zeros" of P, which, as is well known, impose a funda

mental limitation on the class of achievable input-output maps in linear

problems. [Per 1, Che 1].
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0 How does one recognize if agiven P is strongly stabilizable?

For linear time-invariant lumped systems an extremely elegant and easily

verifiable characterization is available in [You 1], the necessary and

sufficient condition for strong stabilizability being that the blocking

zeros and the poles of P on the positive real axis satisfy a "parity

interlacing property". Is a comparably efficient characterization possible

for nonlinear maps? Further, arguing by analogy with the linear case, is

it possible to show that the class of strongly stabilizable plants is generic

in an appropriate sense?

0 Is there any easy way to find some F which works to strongly

stabilize a given map P? Note that it is sufficient that any_inc. stable

F satisfying (3.9) and (3.10) be available — design requirements may be

met subsequently by the use of the Q-parametrization method.

We believe that the answers to questions such as these are of

fundamental importance to the understanding of the behavior of nonlinear

feedback systems from the I/O point of view.
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List of Figure Captions

Fig. 1. a) defines the system !S(P,F).

b) defines the system 1S(P1,F-FQ)
c) defines the system S(P,Frt,F-Fj.

oo

d) interprets the relation between P, and P and F



APPENDIX I

Proof of Theorem 2

The eqns. describing 'S(P,F) read

e-j = u-j - Pe2 (Al)

e2 = u2 + Fe1 (A2)

Now P=Pfa +AP, hence (Al) gives Vt e T, V(u-,,u2) S£^ x £qZ

BeiiT < Hu1Bx + [Y(Pb) +Y(AP)] Be2QT (A3)

Note that, by (3.3), (I-P^)"1 =I +PF :JCel +£qV so define

n := (I-P^r1 e1

and substitute in (Al) and (A2):

(I-PbQ)n =u1 - (Pb+AP)e2 (A5)

e2 = u2 + Qn (A6)

From (A6) we have Vt e T, V(u] ,u2) GjCel x £&2

Be2llT <Qu2Dt +Y(Q) Mt (A7)

Now using (A6) in (A5) we obtain

n =u1 - Pb(u2+Qn) + PbQn - APe2 . (A8)

Hence Vt <= T, V(u],u2) 6 £q} x £q2

lT <llu1tlT +y(Pd) Bu2IIt +y(AP) Be2llT (A9)
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and, using (A7) to eliminate BeJ ,

De20T <y(Q) BUiIIt +[1 +y(Q)-y(Pd)] Bu2Ht +Y(Q) y(AP) Be2«T
(A10)

Thus, using assumption (3.6), y(AP)«y(Q) < 1, we conclude that

Vt6T, V(Ul,u2) €£el x£q2

He2flx <(I-YfQJyfAPjJ^MQ) BUlDT +(1+y(q) y(Pb)) Bu2BT], (All)

thus (u,,u2)H-e2 is f.g. stable. Furthermore (All) and (A3) show that

(upUp) h« e-j is also f.g. stable, hence H is f.g. stable.

Now, since y-. = e2-u2 and y2 = u-j+e,, it follows that H is also

f.g. stable. Thus 'S(P,F) is f.g. stable for all f.g. stable AP

satisfying y(AP) y(Q) < 1. n
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Proof of Theorem 3.

Consider Fig. 1 and write the summing node equations of the systems

diagrammed there

'S(P,F);

e1 =u1 - Pe2 (Bl)

e2 = u2 + Fe1 (B2)

'S^.F-Fq):

e1 =ii1 - ?^e2 (B3)

e2 = u2 + (F-F0)e1 (B4)

where P] := P(I-FQ(-P))"1 (B5)

2$(pt f„. "„)••
A, *• _y\

e-, = u1 - Pe2 (B6)

e2 = u2 + (F-F^e, + F0e3 (B7)

•^ /v _/\

e3 = u3 - Pe2 (B8)

Proof of (3.11)=K3.12)

Suppose we apply u} e £q} and u2 e £&2 as inputs to ,S(P1,F-FQ)

Let e-j and i2 be the resulting errors. We define

ul := "i (B9)

el := h (BIO)

e2 := (I-^f-P))"1^ (BIT)
u2 := "2 +Fo(-pl^2 " Fo("rPl52) (B12)
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Step 1:

We will show that if u^ and u2 (as defined in (B9) and (B12)) are

applied as inputs to *S(P,F), the errors e-j and e2 (as defined in

(BIO) and (Bll)) will satisfy the summing node eqns. of 'S(P,F).

Note that from (B5) and (Bll) we have

Pe2 = P^e2 (B13)

Now, using (BIO), (B3) and (Bll) in succession, we have:

el =*1 ==1 " Pl*2 ="l "Pl(I-Fo(-p))e2

and by (B5) and (B9), the last eqn. reduces to

e1 = u1 - Pe2 . (B14)

whereas, using (B11),, (B4) and (BIO) in succession, we have

(I-FQ(-P))e2 =i2 =u2 + (F-Fq)^ =u2 + (F-F0)ei

hence, by (B12)

(I-F0(-P))e2 =u2 - FQ(-P1)S2 +F0Cu1-P152> +(F-F0)ei

in which we use (B9) and (B13) to get

(I-F0(-P))e2 =u2 - FQ(-Pe2) +F0(urPe2) +(F-F^e,

Finally, (B14) gives

e2 =u2 + Fe1 (B15)

Thus, (B14) and (B15) tell us that the quadruple (e^e^UpUg) ejEfi1

x £ 2 x £ , x £ « as define)

and (B2) describing 'S(P,F)

x £q2 x jeel x £&2 as defined in (B9)-(B12) satisfy the equations (Bl)
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Step 2:

We will now show that the f.g. stability of 'S(P,F) implies that

of 'S(PrF-F0).

By the assumed f.g. stability of 'S(P,F) and Step 1, we know there

are constants K-j <«, K2 <« , such that V (u-j ,u2) € JCel x £q2 and

Vt €T

Be^ <K1(Bu1llT+nu2BT) (B16)

Be2BT < K2(Bu1DT+0u2BT) (B17)

where (e, ,e2,u-i,u2) are defined in terms of (e-j ,e2,u-| ,u2) by eqns. (B9)-(B12)

Also, from (B12) and the assumed inc. stability of F we have,

Vfu-pUg) € jCgl x£e2 and Vt eT

Bu2HT < Bu2l! +y(Fq) iu1BT . (B18)

Finally by (Bll), (B14), we obtain

e2 = (I-F0(-P))e2 =e2 - FQ(-P)e2 + F0(urPe2)" - F^

and the assumed inc. stability of F gives,

V(u1 ,u2) € jCgl x £g2 and Vt e T

B§2»T < Qe2flT + y(F0) BUlllT +Y(F0) 0eiBT (B19)

We use (B16) and (B18) in eqn. (BIO) to get

BeiBT= "Vt £ K1(iu1iT+iu^iT+ (F0)na1an.)

which, by (B9), gives
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V(uvu2) e £gl x£ and Vt 6 T

Be1BT < K^l + y(Fq)] Iu,! + K1Du2Bt (B20)

From (B16), (B17) and (B19) we have

Be2DT < [K2 + y(Fq) + KlY(F0)] llu-, \ + [K2 + KlY(FQ)] Bu2BT

which from (B9) and (B18) gives

V (UpU^ e£el x £qZ and v tgT

Be2llT < ([K2 + KlY(F0)][l +y(F0)] +y(Fq)) Bu^

+ [K2 +kiY(F0)] «G2"t (B21)

From (B20) and (B21) we see that H~~ :(QpUg) h- (e-j,e2) is f.g. stable.

Since y-j = e2 - u2 and y2 = u-j+e-j, it follows that H~~ is also f.g.

stable. Thus 'S(P-|,F-F0) is f.g. stable whenever 'S(P,F) is.

Proof of (3.12K3.11):

It follows the same lines as the above proof. We apply u-j e jCgl

and u2 €«£e2 to 'S(P,F). Let e-, and e2 be the resulting errors. We

define

Q1 := u,

h := ei

e2 := (I-FQ(-P)) e2

Q2 := u2 - FQ(-P)e2 + F0(urPe2)

Then, assuming the f.g. stability of 'SfP^F-Fg) we establish, as above,

the f.g. stability of 'S(P,F).
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Proof of (3.12M3.13):

Suppose we apply u1 € jC^ ,u2 £ £q2 and u3 € £Q^ as inputs to

S(P,F ,F-FQ). Let e,, e2 and e3 be the resulting errors.

We define

§T := h (B22)

e2 := (I-F0(-P))S2 (B23)

u-j := u1 (B24)

h := "2 + Fo(23"pS2) " Fo(~P)*2 W5)

Step 1:

We will show that if u-j and u2 (as defined in (B24) and (B25) are

applied as inputs to 'S(P.|,F-F0) the errors e1 and e2 (as defined in

(B22) and (B23)) will satisfy the summing node equations of 'S(P.j,F-F0)
From (B8),(B23) and (B5) we have

h ="3 "P*2 ="3 "Pli2 (B26)

Applying (B22), (B6), (B24) and (B23) in succession

e1 =S1 =Q1 -Pe2 =D1 -P(I-F0(-P))"1e2

So, by (B5)

h = Ql " plg2 (B27)

Now, (B7) gives

h =G2 + FoS3 +(F"Fo)ai
• u2 + F0(u3-Pe2) + (F-F0)ef (by (B8))

=Q2 + Fo("P)S2 + (F"Fo)Sl (b^ <B25»

- Q2 + F0("p)e2 + (F-F0)gl (fay (B22))
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So, by (B23)

e2 = (I-F0(-P))e2 = u2 +(F-F^ (B28)

Thus, (B27) and (B28) tell us that the quadruple (e1,e2,u1 ,u2) e£el * £q2

x £el x£eZ9 as def1ned 1n ((B22J-(B25)) satisfy the eqns. (B3) and (B4)

of 'StP^F-F^.

Step 2:

We will now show that the f.g. stability of 'SfP^F-F )implies that

of 2S(P,FQ,F-F0).
By the assumed f.g. stability of ,S(P1,F-FQ) and Step 1, we know

there are constants M-j <« and M2 <» such that V (u-|,u2,u3) e £^ *jCg2

x jCel and Vt € T

Ile1BT <_ M1[BD1fl + Bu2BT] (B29)

lle2BT < M2[Bu1B + BD2fl ] (B30)

where (e-| ,e2,u-|,u2) are defined in terms of (e-j ,e2,e3,u-|,u2,u3) by

eqns. (B22)-(B25).

From (B25) and the assumed inc. stability of F , we have:

V (u1 ,u2,u3) e £el x£q2 xjCel and Vt eT

aa2nx < dg2bt +y(f0) Bu3bt (B3i)

From (B26) and the f.g. stability of P,, we have

V (Qlsu2,u3) e £el x £q2 x jCel and Vt € T

•e3l < Bu3B + yCPt) "§2«t (B32)
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And since (B23) gives us

e2 =(I-FQ(-P))-1e2 =[I +F0(-P)(I-F0(-P))-1382

= [I + F0(-pi)]§2

we have, by the f.g. stability of F and P,

V (u1 ,u2,u3) s £el x£e2 xjCgl and Vt eT

Be2QT < [1 +y(F0) YtP,)] Be2Bx (B33)

Using (B29) and (B31) in (B22) gives

De1BT =Be1Bx <M1[Bu1BT +Bu^ +?(FQ) BG^]

So, by (B24) we have

V (ulsu2,u3) e £q} x£q2 x£el and Vt gT

Be^ <M^Bu^ + Bu2Bt +y(Fq) Bu3Dt] (B34)

From (B33) and (B30) we have

Be2aT < [i +y(f0) y(p1)]-m2.[Bu1bt + na2DT]

So, using (B24) and (B31) gives

V (uvu2,u3) e £el x £q2 x £el and Vt e T

Be2flT <M2[l +y(Fq) Y(P1)]ra01BT +0Q2Ut +Y(FQ) Bu^] (B35)

Finally, (B32) and (B30) gives

fle3Bx < nG3nT +M2Y(P1)[«a1nT + ia2iT]

which, from (B24) and (B32) gives

-A9-



,/N S\ /S

V (u] ,u2,u3) e jegl x jeg2 x jCel and Vt e T

BS3Bt <M^) [Bu1lT +UG2Ut +y(Fq) BS3Qt] +flu3flT (B36)

From (B34)-(B36) we see that H~ : (uru2,u3) h- (elfe2,e3) is f.g. stable

Since y-, =e2 - u2 - FQe3,y2 =u3 - e3, y3 = FQe3 and FQ is f.g. stable,

we see that H~j is f.g. stable. Thus 2S(P,F0,F-FQ) is f.g. stable
whenever 'S(PpF-F0) is

Proof of (3.13M3.12):

Specializing S(P,

Clearly f.g. stability of the former implies that of the latter.

Specializing 2S(P»F0,F-FQ) by setting u3 =0 gives 'S(P.j,F-F0)
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