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0. Abstract

The area-time complexity of sorting is analyzed under an updated model of

VLSI computation. The new model makes a distinction between "processing"
circuits and "memory" circuits; the latter are less important since they are
denser and comsume less power. Other adjustments to the model make it

possible to compare pipelined and non-pipelined designs.

Using the new model, this paper briefly describes thirteen different designs
for VLSI sorters. (None of these sorters are new. but few have been laid out or

analyzed in a VLSI model.) The thirteen sorting circuits are used to document

the existence of an area*time2 tradeoff for the sorting problem. The smallest
circuit is only large enough to store a few elements at a time; it is. of course,
rather slow at sorting. The largest design solves an JV-element sorting problem
in only 0(lg N) clock cycles. The area'time2 performance figure for all but
three of the designs is close to the theoretical minimum value, Q(N*).

Keywords and phrases: parallel algorithms, area-time complexity, VLSI, sorting,
bubble sort, bitonic sort, heapsort, shuffle-exchange network, mesh-connected
computers.

1. Introduction

Sorting has attracted a great deal of attention over the past few decades of
computer science research. It is easy to see why: sorting is a theoretically
interesting problem with a great deal of practical significance. As many as a
quarter of the world's computing cycles were once devoted to sorting [Khu 73,
p.3]. This is probably no longer the case, given the large number of
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microprocessors running dedicated control tasks. Nonetheless, sorting and
other information-shuffling techniques are of great importance in the rapidly
growing database industry.

The sorting problem can be defined as the rearrangement of N input values

so that they are in ascending order. This paper examines the complexity of the

sorting problem, assuming it is to be solved on a VLSI chip. Much is already

known about sorting on other types of computational structures [Knu 73, pp. 1-

388], and much of this knowledge is applicable to VLSI sorting. However. VLSI is

a novel computing medium in at least one respect: the size of a circuit is

determined as much by its inter-gate wiring as by its gates themselves. This

technological novelty makes it appropriate to re-evaluate sorting circuits and

algorithms in the context of a "VLSI model of computation."

Using a VLSI model, it is possible to demonstrate the existence of an

area*time2 tradeoff for sorting circuits. A preliminary study of this tradeoff is

contained in the author's Ph.D. dissertation [Tho 80a]. in which two sorting

circuits were analyzed. This paper analyzes eleven additional designs under an

updated model of VLSI computation. The updated model has the advantage of

allowing fair comparisons between pipelined and non-pipelined designs.

None of the sorting circuits in this paper is new, since all are based on

commonly-known serial algorithms. All have been proposed before for hardware

implementation. However, this is the first time that most of these circuits have

been analyzed for their area and time complexity in a VLSI implementation. Ten

of the sorters will be seen to have an AT2 performance in the range 0(N2lg2N) to

Q(N2lgsN). Since it is impossible for any design to have an ATZ product of less

than Cl(N2) [Vui 80], these designs are area- and time- optimal to within

logarithmic factors.

A number of different models for VLSI have been proposed in the past few

years [B&K 81, C&M 81, K&Z 81, Tho 80a, Tho 80b, Vui 80]. They differ chiefly in

their treatment of chip 1/0, placing various restrictions on the way in which a

chip accesses its input. Typically, each input value must enter the chip at only

one place [Tho 80a] or at only one time and place [B&K 81]. Savage [Sav 81] has

characterized these as the "semelocal" and "semelective" assumptions,

respectively.

The model of this paper builds on its predecessors, removing as many

restrictions on chip 1/0 as possible. Following Kedem and Zorat, the semelocal

assumption is relaxed by allowing a chip to access each input value from several
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different I/O memories. The intent is to allow redundant input codes: if each
input bit appears in k places, a chip's area*time2 performance may be enhanced

by a factor of A:2 [K&Z 81].

Additionally, the new model is not semelective, for it allows multiple

accesses to problem inputs, outputs, and intermediate results. Here, the intent

is to model the use of off-chip RAM storage; the area of the RAM is not included

in the total area of the sorting circuit. This omission clarifles the area*time2
tradeoff for sorting circuits, since RAM area is involved in an entirely different

form of tradeoff. (The recent work of Hong and Kung [H&K 81] indicates that a

(time * Ig space) tradeoff may describe how local memory affects the speed of a

sorting circuit with fixed I/O bandwidth.) Leaving RAM area out of the new

model permits the analysis of sublinear size circuits. It also makes the model's

area measure more sensitive to the power consumption of a circuit, since

memory cells have a low duty cycle and generally consume much less power per

unit area than a "processing" circuit.

Other authors have used non-semelective models, although none has

elaborated quite so much on the idea. Lipton and Sedgewick [L&S 81] point out

that the "standard" AT2 lower bound proofs do not depend on semelective

assumptions. Hong [Hon 81] defines a non-semelective model of VLSI with a

space-time behavior which is polynomialiy equivalent to that of eleven other

models of computation. His equivalence proofs depend upon the fact that VLSI

wiring rules can cause at most a quadratic increase in the size of a zero-width-

wire circuit. Unfortunately, Hong's transformation does not necessarily

generate optimal VLSI circuits from optimal zero-width-wire circuits, since a

quadratic factor cannot be ignored when "easy" functions like sorting are being

studied.

Lipton and Sedgewick [L&S 81] point out another form of input restriction,

one that is not removed in this paper's model. In most situations it is natural to

restrict one's attention to circuits which produce their outputs at fixed

locations. For example, the most significant bit of the largest output value

might be constrained to appear at I/O port #1, regardless of the problem inputs.

This natural restriction begs an important theoretical question: what is the

hardest part of the sorting problem? Is it determining the rank order of the

inputs, or is it permuting the inputs into sorted order, given their ranks? (A

solution to the first subproblem is all that is required of a "where-oblivious" [IAS

81] sorting circuit.) I hope to be able to evaluate the VLSI complexity of these
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two subproblems in the near future; if you are interested in this problem area,

please give me a call. For the purposes of this paper, however, the sorting

problem will be assumed to include both "ranking" and "permuting" of the input

values.

The catalog of input restrictions is not yet complete. In both Vuillemin's

[Vui 80] and Thompson's [Tho 80b] models of pipelined VLSI computation,

analogous inputs and outputs for different problems must be accessed through

identical I/O ports. For example, input #1 of problem #2 must enter the chip at •

the same place as input #1 of problem #1. While this seems to be a natural

assumption for a pipelined chip, it leads to a number of misleading conclusions

about the optimality of highly-concurrent designs. For instance, the highly

parallelized bubble sort design of Section 3.10 is nearly area*time2 optimal
under the old models, but it is significantly suboptimal under the model of this

paper.

When the restriction on pipelined chip inputs is removed, it becomes

impossible to prove an Q(JV2) lower bound on AT2 performance until the
definitions of area and time are adjusted.

In the new model, the area performance of a design is its "area per

problem," equal to its total area divided by its degree of concurrency. Thus it
does not matter how many copies of a chip are being considered as a single
design: doubling the number of chips doubles both its concurrency and its total
area, leaving its area performance invariant. The old definition of area
performance was the total area of a design, with no correction factor for its
concurrency.

The time performance of a design is newly defined as the delay between the
presentation of one set of problem inputs and the production of the outputs for
that problem. The old definition of time performance was the rate at which a
design accepted input bits. It is easy to see that two sorting chips have twice
the time performance of one. under the old definition. They also have twice the
area. Under the new definition, area and time performances are not affected

when a design is replicated.

The old and new definitions of area and time can be contrasted by analyzing

the combined sorting performance of N independent serial processors. As will
be shown in Section 3.1, each one of these processors has an area of 0(lg N) and
each can solve one sorting problem every Q(N lg2N) time units. A collection of
N processors would thus consume input data at the rate of one bit every Q(lg N)
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time units. Their total area is 0(N Ig N). yielding an "impossibly good"

area*time2 performance of Q(N lgaN) under the old definitions of area and time.
Under the new definitions, the total area per problem is just Q(lg N) and the

solution delay is Q(N lg2N). so the AT2 performance is Q(N2lg*N).

This paper is organized in the following fashion: Section 2 discusses the new

VLSI model of computation, then defines it precisely; Section 3 sketches

thirteen different designs for VLSI sorters and analyzes the area-time

performance of each; Section 4 compares the performances of each of the

designs, with some discussion of the "constant factors" ignored by the

asymptotic model; and Section 5 concludes the paper with a list of some of the

open issues in VLSI complexity theory. In an attempt to keep the paper to a

reasonable length, the constructions of Section 3 are described as briefly as

possible. Readers wishing to "fill in the details" will have to follow the

references, where applicable, and then exercise their own ingenuity. This is a

regrettable situation, but an inevitable one since there is no accepted "high-

level design language" for VLSI.

2. Model of VI3I Computation

In all theoretical models of VLSI, circuits are made of two basic

components: wires and gates. A gate is a localized set of transistors, or other

switching elements, which perform a simple logical function. For example, a

gate may be a "j—k flip-flop" or a "three input nand." Wires serve to carry signals

from the output of one gate to the input of another.

Two parameters of a VLSI circuit are of vital importance, its size and its

speed. Since VLSI is essentially two-dimensional, the size of a circuit is best

expressed in terms of its area. Sufficient area must be provided in a circuit

layout for each gate and each wire. Gates are not allowed to overlap each other

at all, and only two (or perhaps three) wires can pass over the same point.

A convenient unit of area is the square of the minimum separation between

parallel wires. In the terminology of [M&C 80], this paper's unit of area is equal
to (4X)2, where Xis a constant determined by the processing technology. Each
unit of area thus contains one» two, or three overlapping wires; or else it

contains a fraction of a gate. The actual size of this area unit becomes smaller

as technology improves. In 197B, it was typically 150 jim2 = 1.5* 10"8 cm2;

eventually, it may be as small as .4 fj.m2 [M&C 80, p. 35].
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The speed of a synchronousVLSI circuit can be measured by the number of
clock pulses it takes to complete its computation. Once again, the actual size of

this time unit is a technological variable. In 1978, a typical MOS clock period

was 30 to 50 ns; and this may decrease to as little as 2 to 4 ns [M&C 80]. For

the superconducting technology of Josephson junctions, a clock period of 1 to 3

ns is achievable today, using a process for which the area unit is 25 jmtti2 [Ket

80].

The speed of a VLSI circuit may be adversely affected by the presence of

very long wires, unless special measures are taken. In many MOS processes, a

minimum-sized transistor cannot send a signal from one end of the chip to the

other in one clock period. To accomplish such cross-chip communication,

special "driver" circuits are employed. These drivers amplify the current of the

signal; 0(lg k) stages of amplification are required to drive a length-fc wire [M&C

80, p. 14]. The use of these driver circuits is reflected in the VLSI model's

"logarithmic delay" assumption, that a length-/: wire has 0(lg k) delay. Each

stage of a driver's amplifier chain is individually clocked, so that the driver

behaves like an 0(lg A:)-bit shift register. Note that this design for long-wire

drivers achieves unit bandwidth. Every wire, even the longest one, has a

throughput of one bit per time unit.

The logarithmic delay assumption is used here because it leads to realistic

circuit designs and time bounds. As it turns out, the time bounds obtained for

VLSI sorting under this assumption are no different from the ones that would be

obtained under a "unit-delay" assumption (in which each gate is able to transmit

its output all the way across the circuit, in one clock period). In the circuits of

Section 3, the delay of the drivers is overlapped with the delays of comparison

operations. The sole effect of the logarithmic delay assumption is thus to ensure

that the VLSI designer strives for such an overlap.

It may be argued that the logarithmic delay assumption is too severe or too

lenient, depending on the technology. The former is currently the case in the

I2L and Josephson junction processes [Eva 79, Ket 80]. As of now, both are really

unit-delay technologies; no drivers are needed for cross-chip communication.

However, the results of this paper still apply if the drivers are omitted from the

circuit constructions of Section 3.

It seems unlikely that the logarithmic delay assumption will ever be too

lenient on synchronous MOS circuits. Seitz [Sei 79] projects a signal

transmission velocity of (1 cm)/(3 ns) in a fully-developed MOS technology. This
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means that a cross-chip communication will only take a few clock periods, even

if the "chip" is as large as a present-day "wafer." In other words, the time

performance of the fully-developed MOS technology is only slightly

overestimated by the logarithmic delay assumption — the true delay would best

be modeled as logarithmic plus a small constant. Modelling delay as a linear

function of distance, as suggested by Chazelle and Monier [C&M 80], would

greatly exaggerate the importance of delay in the determination of the speed of

such circuits.

If circuits ever become much faster or much larger than envisioned today,

the logarithmic delay assumption may become invalid. As a case in point,

consider the Josephson junction circuit assemblies currently built by IBM. They

are 10 cm on a side, and they run on a 1 to 3 ns clock [Ket 80], The wires in
these circuits are superconductors, but of course they cannot transmit
information at a velocity greater than (a fraction of) the speed of light. Right
now, the clock frequency and circuit dimensions are just small enough to allow a
signal to propagate from one side of the circuit to the other in one clock period.
Any increase in either speed or size would make this impossible. The
computational limitations of such enhanced (and hypothetical) technologies
could be analyzed under Chazelle and Monier's linear delay assumption.

Before leaving the subject of wire delay, it should be noted that the model
of this paper makes provision for the "self-timed" regime predicted by [Sei 79].
It may eventually become very difficult to guarantee that all portions of a VLSI
circuit get a clock signal with the correct frequency and/or phase. Fortunately,
it is feasible to have the long-wire drivers include timing information with the
data being transmitted, so that special "receiver" circuits can resynchronize the
data with respect to the local version of the clock. Also, single-stage, unit-delay
"repeater" circuits can be used to avoid driver delays in the interconnection
networks of Sections 3.8 and 3.13.

Thus far in the discussion, only"standard features" have been introduced to
the VLSI model. The interested reader is referred to [Tho 80a] for more details
on the practical significance of the model, and to [Sav 79] for an excellent
introduction to the theoretical aspects ofVLSI modelling.

Amajor distinction between the model of this paper and most previous VLSI
models is the way in which it treats "I/O memory." Here, only a small area
charge is made for the memory used to store problem inputs and outputs, even
if this memory is also used for the storage of intermediate results.
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In the new model, each input and output bit is assigned a place in a A:-bit
"I/O memory" attached to one or more "I/O ports." Two types of access to the
I/O memory are distinguished. If the bits are accessed in a fixed order, the I/O

memory is organized as a shift register and accessed in 0(1) time. If the access

pattern is more complex, a random access memory (RAM) is used. Such a

memory has an access time of Q(lg k) [M&C 80, p. 321]. The random access

time covers both the internal delays of the memory circuit as well as the time it

takes the I/O port to transmit (serially) 0(lg k ) address bits to the RAM.

This paper's serial I/O interfaces may seem a bit artificial. In particular, it

might seem more realistic to involve several I/O ports in a word-parallel

memory interface. Such interfaces are not defined here, in an effort to keep the

paper's model as simple and general as possible. In any event, a parallel

interface could be "simulated" with several serial interfaces at little or no cost

in area and time.

Allowing more than one I/O port to connect to a single I/O memory makes

it easy to model the use of multiport memory chips. However, a few restrictions

must be placed on their usage, to remove the (theoretical) temptation to use

multiport memories and printed-circuit board wiring as a means of avoiding on-

chip wiring. (Note that a two-port memory provides a communication channel

between its two I/O ports, eliminating any need for an on-chip wire between

them.) All I/O ports connecting to a single memory must be physically adjacent

to each other in the chip layout, to avoid any possibility of "rats-nest" wiring to

the memory chips.

The model makes as few assumptions as possible about the actual location

of the I/O memory circuitry, even though this can have a large effect on system

timing. If the memory is placed on a different chip from the processing

circuitry, its access time is considerably increased. Fortunately, this will not

always invalidate the model's timing assumptions. The Q(lg k) delay already

assumed for a Jfe-bit RAM will dominate the delay of an off-chip driver, if A: is

large enough. Alternatively, if Jb is small, it should be relatively easy to locate

the RAM on the processor chip. As for off-chip "shift register" I/O memories,
there should be no particular difficulty in implementing these in such a way that

one input or output event can happen every 0(1) time units.

As indicated above, time charges for off-chip I/O are problematical and may

be underestimated in the current model. Area charges for I/O are also

troublesome. Here, I/O ports are assumed to have 0(1) area even though they
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are obviously much larger than a unit-areawire crossing or an 0(1) area gate. It
is also assumed that a design can have an unlimited number of I/O ports. In

reality, chips are limited to one or two hundred pins, and each pin should be

considered a major expense (in terms of manufacturing, reliability, and circuit

board wiring costs). An attempt is made in Section 4 to use more realistic

estimates of I/O costs when evaluating Section 3's constructions.

The complete model of VLSI computation is summarized in the following list

of assumptions.

Assumption 1: Embedding.

a. Wires are one unit wide.

b. Two wires may cross over each other at right angles (in one unit square).

c. A logic node occupies 0(l) area. It has 0(l) input wires and 0(1) output

wires, none of which are more than 0(1) units long.

d. Each logic node belongs to a self-timed region. All wires connecting to a

logic node lie entirely within its self-timed region.

e. A self-timed region may be as much as Q(lg N) units wide or long.

f. A driver node with an output wire of length k can be laid out in an 0(1)-

by-O(fc) unit rectangle. Its input wire is 0(1) units long. The output wire

may pass through any number of self-timed regions before it connects to

the input of a repeater or receiver node.

g. A receiver node occupies 0(1) area. Its output wire is 0(1) units long. Its

input wire may be of any length.

h. A repeater node with 0(1) output wires of length at most k can be laid

out in an 0(l)-by-0(A:) unit rectangle. Its input wire is at least k/ 2 units

long. (Note that the driver node of Assumption If can be constructed from

a chain of Ig k repeater nodes, each twice the size of the previous one.)

L An I/O memory and its associated I/O ports occupy 0(1) area. Each I/O

port has one input wire and one output wire, each of 0(1) length.

j. Two nodes may cross over each other at right angles, but their

intersection area does not count toward the required area for either node.

(The crossover region is full of wires, so there is no room for transistors.)
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Assumption 2: Problem, definition.

a. A chip has degree of concurrency p if it solves p problem instances

simultaneously.

b. Each of the N input variables in a problem instance takes on one of M

different values with equal likelihood.

c. M = JV1+e. for some fixed e > 0. Furthermore, a nearly non-redundant

code must be used, so that input and output values are represented as

0(lg N) bit words. (This assumption makes it possible to express area and

time bounds in terms of N alone.)

d. The output values of a problem instance are a permutation of its input

values into increasing order.

Assumption 3: Timing.

a. Wires have unit bandwidth. They carry at most one bit of information in

a unit of time.

b. Logic nodes, repeater nodes, and receiver nodes have 0(1) delay.

c. The driver node for a wire of length k has 0(lg k) delay.

Assumption 4: Transmission functions.

a. A deterministic finite-state automaton (FSA) is associated with each

node. The "state" of a node is a bit vector encoding the current state of its

FSA. There is a fixed mapping between the (single-bit) signals appearing on

the input and output wires of a node, and the inputs and outputs of its FSA.

b. The state of a node is changed every time unit, i.e. its FSA undergoes

one state transition per time unit.

c. Logic nodes, repeater nodes, and receiver nodes are limited to 0(1) bits

of state.

d. Driver nodes have Q(lg k) bits of state, one bit for each stage in their

amplification chain.

e. The state vector of a "A:-bit" I/O memory contains one bit for each of its

assigned problem input and output bits. The assignment of problem bits to

memories is one-to-one and is not data-dependent.
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f. There are 0(lg k) bits in the state vector of each I/O port attached to a

A:-bit memory; at most 0(1) I/O ports can be attached to each memory.

The state vectors are used to address specific memory bits, as explained in

Assumptions 4g and 4h. Two different ports may not access the same bit

simultaneously.

g. "RAM-type" fe-bit I/O ports run a memory cycle every Q(lg k) time units.

During the first Ig k time units of a cycle, the port receives a bit-serial

address on its input wire. The next input signal is interpreted as a

read/write indicator. If a write cycle is indicated, the following input signal
is written into the addressed bit. During the last time unit of a memory
cycle, the value of the addressed bit is available on the I/O port's output
wire.

h. "Shift-register-type"' I/O ports run a memory cycle every 0(1) time
units. During the first time unit of a cycle, the value of the currently-
addressed data bit is available on the port's output wire. In the last time

unit of a cycle, the signal appearing on the port's input wire is written into

this data bit, then the port's address register is incremented (mod k).

Assumption 5: Area, time performance.

a. The total area of a chip is the number of unit squares in the smallest
enclosing rectangle.

b. The area performance A of a chip is its total area divided by its degree
of concurrency p. See Assumption 2a.

c. The time performance T of a chip is the average number of time units it
takes to solve any one of its p problem instances.

3. Circuit Constructions

This section presents thirteen constructions for sorting chips. Each will be
briefly described in its own subsection. First, however, we present a few useful
building blocks.

Aserial comparison-exchange module can be built of 0(1) gates [Mor 79] in
0(1) area. It has two bit-serial data inputs, A and B, and two bit-serial data
outputs, max(i4,i?) and mm(A,B). These inputs and outputs are serialized in a
binary code, most-significant bit first.

In some applications, two control lines are added to the comparison-
exchange module. The four control states are: 1) unconditionally "pass-through"
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the two inputs; 2) unconditionally "swap" the two inputs; 3) send the larger of its

two inputs to output #1; 4) send the smaller of its two inputs to output #1. These

more complex modules can still fit in 0(1) area and produce two output bits

every 0(1) time units.

Comparison-exchange modules may be pipelined, as illustrated in Figure 1

for the case of seven-bit words. Pairs of input values enter the module from the

top, and move downwards through the array at the rate of one row per time unit.

In each row, the circular element performs a comparison-exchange operation on

one bit of the inputs; the square elements pass their inputs through unchanged.

Information about the "direction" of the comparison-exchange for each pair of

input values travels diagonally through the array, from one circle to the next.

A pipelined comparison-exchange array for 0(lg jV)-bit words complete

comparison-exchange operations in T = 0(lg N) time units. The total area of

the array as drawn is Q(tg2N), and its concurrency is Ig N, giving it an area

performance of A = Q(lg N). However, in most applications the square boxes

can be deleted, since the input and output data is already "staggered." The

total area of the circles is only Q(lg N), so that the area performance of the

pipelined comparison-exchange module can be as good as that of the non-

pipelined module, A = 0(1).

A third building block is the programmed control unit, or PCU. A PCU is

used to generate a large number of control signals from a very small area. In

the constructions below, entire sorting algorithms are encoded into 0(1) PCU

instructions. Each instruction is Q(lg N) bits long, and executes in Q(lg N) time

units. The instruction set includes branches, arithmetic operations (shifts,

adds, and negations), tests, and register-register moves. A PCU has 0(1)

different registers. One of these registers is connected to the control lines of a

comparison-exchange module. Another register is used to generate address and

control signals for any I/O ports in the vicinity.

In the constructions below, the term "bit-serial processor" is used to denote

the combination of a PCU, 0(1) I/O ports, and a bit-serial comparison-exchange

module. Each processor can fit into an 0(l)-by-0(Zgr N) unit rectangle, and can

perform one comparison-exchange operation every Q(lg N) time units.

"Word-parallel processors" are used to augment the performance of some of

the designs. A word-parallel processor is constructed from a PCU, a pipelined

comparison-exchange module, and Q(lg N) I/O ports connected to shift-register

memories. There is probably no reason to use a parallel processor with a
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figure 1: A pipelined comparison-exchange module.

random-access memory, under the model of this paper, since the delay of a

serial processor matches the delay of a RAM — any further processor speed is

useless.

A word-parallel processor can perform one comparison-exchange operation

every 0(1) time units, for its inputs are easily "staggered" in the manner

required by its pipelined comparison-exchange module. Finally, a word-parallel

processor fits into an 0(l)-by-0(ig N) units rectangle. It thus occupies the same

area as does a serial processor, to within constant factors.

Now we are ready to examine sorting circuits for VLSI. The designs are

presented in order of increasing parallelism.
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3.1. Uniprocessor Heapsort

This is the smallest sorter imaginable. It has one bit-serial processor

running a standard heapsort algorithm [Knu 73, pp. 145-149] on N words of data.

Each comparison-exchange and each "random" access to the input data takes

0(lg N) time, so a complete heapsort takes T - Q(N lg2N) units of time. The

area performance of this design is A = 0(lg N).

Other fast sorting algorithms, such as mergesort or quicksort, could be

used in a uniprocessor design. However, none would yield a better area*time2

performance, since all require 0(iV Ig N) random accesses to the processor's

I/O memory.

3.2. (Ig //)processor Heapsort

Heapsort can be parallelized on a linear array of Ig N bit-serial processors,

one for each level of the heap [Arm 78] (see Figure 2). The heap operations are

pipelined: during an insertion (or deletion) a data element moves down (or up)

the heap by one level every 0(lg N) time units. The processor at the top of the

heap handles one data element, the smallest one. The fcth processor

(Q&k <lg N) handles 2* elements. Total sorting time is T = 0(JV Ig N), and the

total area is A = Q(lg2N).

3.3. (1+lg JV)-processor Mergesort

The mergesort algorithm, like the heapsort, fits quite nicely on about Ig N

processors [Tod 78]. Two variable-length FIFO queues are associated with each

processor; processor P^ (O^k^lg N) has two 2*-word queues attached to its

output lines.

Referring to Figure 3, processor Pk (k>0) merges sorted lists of length 2*~l

into sorted lists of length 2*. It does this by placing the smaller of the elements

at the head of its input queues onto the tail of one of its output queues. Once an

entire output list of 2* elements is complete, the processor starts filling its

other output queue. This process repeats as long as inputs are presented to the

chip.

Processor PQ is a special case. It performs an especially simple

computation. It merely "splits" its input stream into two, placing alternate

elements onto its left-hand and right-hand output queues. These elements

should be considered sorted lists of length 1, since they are "merged" into
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Figure 2: The (Ig tf)-processor heapsort for N=1G.

sorted lists of length 2 by processor Pv

The FIFO queues must be implemented with random-access memory
circuits, since fixed length shift-register memories will not work properly. First

of all, the FIFOs are variable in length, so special arrangements (and extra time)

would be necessary to "jump over" unused shift-register cells. Furthermore,

elements are not extracted from the FIFOs at a uniform rate. A "pop" operation

occurs on a FIFO queue only when the element at the head of the queue "wins" a

comparison, and is sent on to the next processor in the chain.

Since random-access memory must be used, the best achievable data rate

through a processor is one element every 0(lg N) time units. This allows just
enough time for one bit-serial random access and one bit-serial comparison.
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Figure 3: The (1+lg JV)-processor mergesort for #=8.

(The modules can not be pipelined easily, since there is no way of knowing which

data elements should next be compared until the previous comparison is

completed and the appropriate FIFO is popped.)

The time performance of the mergesorter is limited by the data rate of its

individual processors. It takes Q(N Ig N) time units for all the input elements to

clear the first processor, and another Q(N Ig N) time units for the elements to

percolate through the 0(N) words of internal FIFO storage. Total time for a sort
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is thus T = 0(JV Ig N). The total area of the design is A = Q(lg2N). since each of

the 1+lg N processors fits into an Q(lg N) area rectangle.

3.4. (J^ ^-processor Bitonic Sort

Superficially, this design is very similar to the previous one. Both designs

contain about Ig N processors, and the fcth processor has about 2fc words of

data in a FIFO queue. However, in this case, the k processors are connected in a

"ring" rather than in a simple linear array. Also, the bitonic sort processors do

not require random access into their 1/0 memories: a simple 2*-word FIFO

queue is all that is required. See Figure 4. (This arrangement has been called a

"cascade" when used to perform the FFT [Des 80].)

The processors execute a bitonic sorting algorithm [Knu 73, p. 237]. For

the purposes of this paper, this algorithm can be described as Ig N iterations of:

a distance-1 operation, followed by a distance-2 operation, .... followed by a

distance-2* operation, ..., followed by a distance-///2 operation. The total

number of operations is clearly lg2N.

A distance-2* operation is either a no-op or a comparison-exchange

between all pairs of data whose indices differ only in the fcth bit. Somewhat

fewer than half of the operations are no-ops.

Processor Pk (0£k <lg N) performs only distance-2* operations, pairing up

the appropriate data elements using a 2*-word FIFO queue. Three patterns of

data flow are sufficient. When it uses pattern number 1, processor Pk places the

elements it receives from processor Pk^i onto the back of its FIFO queue, and

sends the elements that come ofi* the front of its queue to processor Pb+v In

pattern number 2, processor Ph does a comparison-exchange on the element at

the front of its queue and the element it receives from processor P^-v sending

the larger of the two to processor Pb+i and placing the smaller on the back of its

queue. Pattern number 3 is the same as pattern number two, except that the

smaller of the two elements is sent to the next processor and the larger is

placed on the back of the queue.

The only remaining problem is to define the control algorithm for setting

the pattern numbers. In general, processor P* executes pattern number 1 on

the first kN elements it encounters. This corresponds to k iterations of the

"no-op" operation on N elements. Next, it alternately fills its queue with new

elements (by executing 2* instances of pattern number 1) then performs

comparison-exchanges (by executing 2* instances of pattern number 2 or 3). It
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executes pattern 2 on the second half of the ;-th set of 2*M elements during the
i-th iteration of its "distance-2*" operation on the N data elements

(O^j <(lg N)/(k+l), Q*ii<lgN) whenever j DIVZi is odd; otherwise it
executes pattern 3 on the second half of this set of elements.

The control algorithm is thus rather simple to program. Processor Pk
requires three counters. The first one counts the iteration number i,

incrementing after every N elements. Pattern number 1 is selected whenever

i<k. The second counter keeps track of the sets of 2fc+1 elements; while the top
bit of this counter is zero, pattern number 1 is selected. The third counter (for
j, above) is incremented whenever the second counter overflows; as long as
pattern number 1 hasn't been selected by the first two counters, the i-th bit of

this third counter determines which of patterns 2 and 3 should be selected.

The total area of the design is A = Q(lg2N), since there are Ig N processors
of Ig N area each. If bit-serial processors are used, a distance-2* operation

takes Q(N Ig N) time. The processors can all work on different operations
simultaneously, so that the Ig N iterations in a complete bitonic sort take just
T = 0(JV lg2N) time.

The area*time2 performance of the design may be improved by using word-
parallel processors. Now each operation requires only Q(N) time, if Q(lg N)

communication lines are provided between processors. Total time is

T =0(N Ig N); total area is still A = Q(lg2N). Note that this parallelized design
requires Q(lg2N) I/O ports, in order to provide sufficient memory bandwidth to
the FIFO queues. Also, portions of the control algorithm will have to be hard

wired, so that the three counters described above can be incremented in 0(1)

time.

It is interesting that the Ig N processor heapsorter has exactly the same

area and time performance as the Ig N processor bitonic sorter, even though

the heapsorter does not use parallelized comparators. The heapsort algorithm

requires each of the Ig N processors to make "random accesses" to their local

memory. The extra time taken by these slower accesses is exactly balanced by

the greater number of comparison-exchange operations required by the bitonic

sorting algorithm.

(Chung, Luccio, and Wong have also proposed a Ig JV-processor bitonic sort

for a magnetic bubble memory system [CLW 80]. Their algorithm has an inferior

time performance to the one described above, since only one of their processors

is active at any time.)
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Rgure 4: The (Ig JV)-processor bitonic sorter for N=16.
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3.5. 0(^2J\T)-processor Bitonic Sort

This design "unrolls" the Ig ^-processor bitonic sort, so that each

processor is responsible for only one distance-2* operation. Since about half of

the lg2N operations of the bitonic sort algorithm are no-ops, only about
(l/Z)lg2N processors are required in this version of the algorithm. See Figure
5. Each processor fits in an Q(l)~byQ(lg N) unit rectangle, so the entire design
occupies 0(lg3N) area.

A surprisingly large amount of time and FIFO storage area is saved by

eliminating the no-ops when "unrolling" the bitonic sort on Ig N processors.

Since a distance-2' operation is implemented with Zi words of FIFO storage, and
since all but k of the distance-JV/ 2* operations are no-ops, the total storage is
2(Nk/Zk), or a little less than ZN words. The problem solution time is
proportional to the length of this pipeline, or T - 0(N) if word-parallel

processors are used. The area performance is half of its total area, A = Q(lgaN),
because the pipeline stores two problems at a time.

The area*time2 performance of this design is a factor of Ig N better than
that of the previous design. To better understand this phenomenon, it is helpful

to compare the performance of one 0(Zgr2^)-processor bitonic sorter with that of

a collection of Ig N (Ig 7V)-processor bitonic sorters. Both have the same

amount of total area, and both solve Ig N sorting problems in 0(N Ig N) time (if

word-parallel processors are used). However, the 0(Z^2iV)-processor

implementation solves each sorting problem with logarithmically less delay.

3.8. vjv Ig N -processor Bitonic Sort

Chung, Luccio, and Wong have recently proposed implementing a bitonic

sort on y/N Ig N processors in a linear array [CLW 80]. Here, each processor has

y/N/lg N words of shift register storage. It can run a serial bubble sort

algorithm on its local store in somewhat less than Q(N) time, if it uses word-

parallel processors. Working together, the entire array performs an N-element

sort in T = 0(N) and A = 0(Vjv lg3N).

According to the model of this paper, this approach is highly non-optimal in

an AT2 sense. It is no faster, but much larger, than the Jo^tf-processor bitonic
sorting design.
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3.7. (N/ 2)-proc€SSor Bubble Sort

The familiar bubble sorting algorithm can be fully parallelized on a linear

array of N/Z bit-serial (or pipelined) comparison-exchange modules [Muk 72,
CLW 80]. Each module performs the following simple computation: of the two

data elements it receives from its left- and right-hand neighbors, it sends the

smaller to the left and the larger to the right. The array can be initialized in

parallel with zeroes, then serially loaded with N data elements through the left

most module. If it is then "flushed out" by loading maximal elements through

the left-most module, the N data elements will emerge from the left-most

module in 0(N) comparison times.

The total area of the N/ 2-processor bubble sorter is A = 0(N Ig N). When

bit-serial modules are used, each comparison takes 0(lg N) time, so

T = Q(N Ig N). The time performance is improved if word-parallel modules are

used: in this case, T = 0(N). Even so, the combined area*time2 performance of
the design remains dismal. According to the AT2 = 0(N2) lower bound, a sorter
with 0(JV Ig N) area should sort in about 0(V7F) time. The following subsection

describes a sorter that nearly achieves this bound.

3.8. //-processor Bitonic Sort on Mesh

The bitonic sort can be adapted to run very efficiently on N bit-serial

processors connected in a square mesh [N&S 79, Tho 80a]. Word-parallel
connections are used in the mesh in order to speed up the movement of data

over long distances.

The operation of this algorithm is rather complicated and will not be

explained here. It is sufficient to know that the 0(iV lg2N) comparison-
exchanges in the bitonic sort require a total of 0(lg3N) of the N processors'

time. However, it can take as much as 0(vW) time to rearrange the data among

the processors in preparation for the next comparison-exchange step.

Fortunately, only a few of the comparison-exchange operations take this amount

of time, so that the total time to sort N elements is only T = 0(V77).

To achieve the time bound asserted above, it is necessary to move words of

data from one processor to the next in 0(1) time. This is a little difficult to

arrange, since the wires between neighboring processors are 0(lg N) units long.

The driver nodes of Assumptions If and 3c take Q(lglg N) time to amplify a

signal for a wire of this length. However, once a signal has been amplified, it can

travel from one processor to the next along a chain of repeater nodes

_jAssumption In). Using this approach, cross-chip communication takes only
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figure 5: The (l/2)(2gr JV)(1+J^ JV)-processor bitonic sorter for N=Q.
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Q(yfl7) time on an N-element mesh. (An earlier version of the tf-processor

bitonic sort on the mesh [Tho 80a] had a poorer time performance because it

used driver nodes for all interprocessor communication.)

The total area of the design is A = 0(N lg2N). Note that the N processors

take up only 0(N Ig N) area, but the word-parallel data paths between
neighboring processors require more room in the asymptotic limit.

(A more complicated sorting algorithm [Tho 77] will run on the mesh in the
same asymptotic time and area. For large N, it may have a constant factor

advantage in time but a constant factor disadvantage in area, due to the larger
program required to control the processors.)

3.9. TV-processor Bitonic Sort on Shuffle-Exchange Net

Stone notes that the bitonic sort is easily adapted to run on N bit-serial
processors interconnected in the shuffle-exchange pattern [Sto 71]. If bit-serial
interconnections are used, the 0(N lg2N) comparison-exchanges in the bitonic
sort take a total of T = 0(lg9N) time, since N/Z comparisons can be done at a
time. The long-wire drivers and the comparison-exchanges introduce
approximately equal delays into the computation.

Given that this design sorts so quickly, it should not be surprising that it
requires a lot of area. Otherwise, it would be a counterexample to the
AT2 = ^l(I^lg2N) lower bound. An asymptotically optimal embedding of the
shuffle-exchange graph has been recently obtained [KLLM 81, Leig 81a]. It
requires area A = Q(N2/lg2N).

The AT2 performance of this design is a little sub-optimal. Seemingly, the
bitonic sorting algorithm makes too many long-distance data movements on the

shuffle-exchange network. Some of these were avoided in the tf-processor mesh
design, because the "no-ops" were deleted. Perhaps the shuffle-exchange
sorting design can be made more efficient by a similar trick.

3.10. jV-processor Bitonic Sort on CCC

Preparata and Vuillemin [P&V 79] have shown that their "cube-connected

cycles" interconnection pattern can run the bitonic sort algorithm as efficiently
as the shuffle-exchange pattern: A = 0(N2/lg2N). T = 0(lg3N). Their network
has the advantage of having a simple, asymptotically-optimal, layout: the
asymptotically-optimal layout for the shuffle-exchange graph is much less
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0(V77) time on an JV-eiement mesh. (An earlier version of the TV-processor
bitonic sort on the mesh [Tho 80a] had a poorer time performance because it
used driver nodes for all interprocessor communication.)

The total area of the design is A = Q(N lg2N). Note that the TV processors

take up only 0(TV Ig TV) area, but the word-parallel data paths between
neighboring processors require more room in the asymptotic limit.

(A more complicated sorting algorithm [Tho 77] will run on the mesh in the
same asymptotic time and area. For large TV, it may have a constant factor

advantage in time but a constant factor disadvantage in area, due to the larger

program required to control the processors.)

3.9. TV-processor Bitonic Sort on Shuffle-Exchange Net

Stone notes that the bitonic sort is easily adapted to run on TV bit-serial

processors interconnected in the shuffle-exchange pattern [Sto 71]. If bit-serial

interconnections are used, the 0(TV lg2N) comparison-exchanges in the bitonic

sort take a total of T = 0(lg9N) time, since N/Z comparisons can be done at a

time. The long-wire drivers and the comparison-exchanges introduce

approximately equal delays into the computation.

Given that this design sorts so quickly, it should not be surprising that it

requires a lot of area. Otherwise, it would be a counterexample to the

AT2 = Q(TV2i£2TV) lower bound. An asymptotically optimal embedding of the
shuffle-exchange graph has been recently obtained [KLLM 81, Leig 81a]. It

requires area 4 = Q(N2/lg2N).

The AT2 performance of this design is a little sub-optimal. Seemingly, the
bitonic sorting algorithm makes too many long-distance data movements on the

shuffle-exchange network. Some of these were avoided in the TV-processor mesh

design, because the "no-ops" were deleted. Perhaps the shuffle-exchange

sorting design can be made more efficient by a similar trick.

3.10. TV-processor Bitonic Sort on CCC

Preparata and Vuillemin [P&V 79] have shown that their "cube-connected

cycles" interconnection pattern can run the bitonic sort algorithm as efficiently

as the shuffle-exchange pattern: A = 0(N2/lg2N), T - 0(lg3N). Their network

has the advantage of having a simple, asymptotically-optimal, layout: the

asymptotically-optimal layout for the shuffle-exchange graph is much less
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uniform. On the other hand, the bitonic sort algorithm for the CCC is somewhat

more complicated than the bitonic sort on the shuffle-exchange.

3.11. (TV Ig2TV )-processor Bitonic Sort

Batcher's bitonic sorting network [Muk 72, Knu 73, p. 237] can be laid out

explicitly on a VLSI chip. Each of the (l/Z)(lg2N+lg N) parallel comparison-

exchange operations is implemented by a row of N/2 bit-serial comparison-

exchange modules. The bit-serial interconnections between the rows of

comparators require more room than the comparators themselves, at least

asymptotically. The wiring in front of the comparators doing a "distance-2*

operation" takes up a 2* by TV area of the chip; the total area occupied by the

network is TV 2(Nk/Zk) = 0(TV2), since there are k distance-TV/2* comparison-

exchange operations.

The network is naturally pipelined with a concurrency of lgzN% since there
is about a word of storage in the long-wire drivers associated with most of the

Q(lg2TV) rows of comparators. Its area performance is thus its total area divided

by its concurrency, A = 0(N2/lg2N). The delay experienced by each problem is

T = Q(lg*N). Note that this area-time performance is the same as that of the
two previous designs. The additional processors work on different problem

instances, so they cannot speed up the computation of any single instance.

An improvement can be made to the construction outlined above, leading to

a better AT2 performance. There is no need for multiple stages of amplification
at the outputs of the bit-serial comparators if the comparators themselves are

"scaled up" to match the length of their output wires. Now the comparators for

the distance-2* operation will each occupy 0(2*) area. (The transistors in the

comparators should all be oriented in the same direction, so that they have

more current-driving capability when the comparator is "stretched" to fill an

0(l)-by-0(2*) rectangle.) The total area is still 0(TV2): the enlarged comparators

take up the space occupied by the long-wire drivers in the original construction.

However, bits now travel from one row of comparators to the next in 0(1) time.

The network has total delay T = Q(lg2N), concurrency Q(lg TV), and area
performance Q(N2/Ig TV).

Vaughn Pratt recently pointed out to the author that shellsort can be

implemented on either (lg2N) or (TV Zc2TV) processors with the same area*time2

performance as the bitonic sort.
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3.12. TV2-processor Bubble Sort

A final attempt can be made to optimize the bubble sort for VLSI, providing

a different comparison-exchange module for each of the TV2 comparisons in a

bubble sort on N elements [Knu 73, p. 224]. The resulting network is not very

impressive. If built from bit-serial comparators, it occupies 0(TV2) area. Total

delay through the network is T = 0(TV), and TV/ Ig TV problem instances will fit in

it at any given time. Its area performance is its total area divided by its

concurrency, A = 0(TV Ig TV). Note that the same time performance can be

obtained in a small fraction of this area with the £g2TV-processor bitonic sorting

design.

When built of pipelined comparison-exchange modules, the TV2-processor

bubble sorter occupies a total of N2lg2N area. Its concurrency increases to

about TV ig TV, giving it the same area performance as before, A = 0(TV Ig TV). Its

time performance worsens, becoming T = 0(TV tg TV).

3.13. (TV2)-processor Rank Sort

Consider a square array of TV2 processors, interconnected in the following

peculiar way. The N processors in each row are the leaves of a balanced binary

tree; the internal nodes of the "row trees" provide communication paths

between the root of the tree and its TV "leaf" processors. Similarly, a "column

tree" provides connections between the TV processors in each column of the

array. Each processor is thus a leaf node in two orthogonal trees.

This network has been called by various names, including the "Orthogonal

Tree Network" [Nat 81] and the "Mesh of Trees" [Leig 81a, Leig 81b]. Figure 6

illustrates it for the case tf=16.

A brute-force sorting algorithm can be implemented on this network, as

pointed out by the authors cited above. (Muller and Preparata [M&P 75] describe

this algorithm without reference to the natural "shape" of the orthogonal tree

network.) Each of the TV inputs to a sorting problem can be presented to one of

the root nodes of a row tree. The inputs are then broadcast to the leaves of the

*tree, so that each processor in a row has a copy of that row's input. Next, the

column trees come into play: the ^th leaf processor of the jth column tree

sends a copy of its input to its root. This value is broadcast downwards through

the column trees, so that processor (i,j) now contains copies of two input

values, input [i] and input [j ].
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figure 6: The Orthogonal Tree Network for N=16.

The next step in the sorting algorithm is to compute the ranks of the

inputs. The ith row tree evaluates the rank of input i by "summing" the results
of comparing input[i] with input\J], To be more specific, processor (i.j)
compares its two input values, sending a '1' up through its row tree if

•input [i ]< input[j] or if (input [<] = input[j])and(i <j). These values are
summed by the row trees. A moment's reflection should convince the reader

that the sum of the values in row i is the rank of input\i], with ties being broken

by the i < j calculation. The root of each row tree will have a different integer
from the range of possible ranks, [O.N—1].
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The input ranks are next broadcast to the leaf nodes of the row trees.
Finally processor (i,j) sends up the value ofinput [i] through its column tree if
rank[i]=j. (This operation is called a "selection" in the discussion
immediately below.) The sorted values are now available at the roots of the
column trees.

It remains to establish the area and time complexity of this sorting
procedure. Since broadcast, summation, and selection operations are involved
on trees with TV leaves, the best possible time performance is T= 0(lg TV). This
performance is in fact achievable, but only with careful design.

Observe that in Figure 6 the wires connecting nodes in the row and column
trees are not all of the same length. The closer one gets to the root, the longer
the wires; the wires double in length from one "level" of the tree to the next.

This means that scaled repeater nodes (Assumptions Ih and 4c) should be used
to form the internal nodes of row and column trees. The repeater node on the
fcth level of a tree (fc=0 for the root) contains 0(1) gates scaled up to occupy an
0(l)-by-0(TV/2*>-unit area. See Figure 7.

rr*

r11^! ("=! rc^h i-c^h

Figure 7: A row tree, internal nodes drawn to scale.

The functionality of the repeater nodes must be such to enable it to

perform the tree operations alluded to above: broadcast, summation, and
selection. These operations produce and consume Ig TV bit numbers; but each
repeater node contains only 0(1) gates. The solution to this design problem is to
use bit-serial logic.

The summation operation is performed by having the internal nodes of the
tree act compute one bit of the sum during each clock period. Each node adds
up the two bits sent up to it by its children, adds the result to the contents of a

local one-bit register "S" (S-Q, initially), and sends the carry bit up to its
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ancestor. The sum bit is retained in each node's "S" register for a fixed amount

of time, as described below. After Ig TV time periods have elapsed, all the

carries have rippled up to the root node of the row tree, so that register "S" of

this node contains the most significant bit of the sum.

The other sum bits are computed by a similar process. The first wave of

carries was initiated by the processors at the leaves of the tree, when they sent

up a 0 or a 1 as the result of their comparison. Assume this occurs at time 7*=0.

A second wave of carries can be initiated at time T=2 by the immediate

ancestors of the leaf processors, if they send up the contents of their "S"

register. Eventually, this will result in the root node being able to evaluate the

second-most significant bit of the sum. (As a matter of fact, this bit will be

available just one time unit after the most significant bit was computed.) In
general, the fcth-most significant bit of the sum is generated at the root of the

tree at time k Hg TV, as a result of the "S" register bits being released at time

T=Zk by the internal nodes at a distance k from the leaf processors.

Of course, the root nodes of the row trees do not have room to store the

entire Ig TV bits of a sum, for they have only 0(1) gates. Fortunately, they are

not required to do so. The purpose of the summation operation is to set the

stage for a "selection" operation on the column trees. The sum bits can thus be

broadcast down through the row trees, as they are computed, so that each
processor is informed of the rank of its input element.

The circuitry for "selection" of one element from a column tree is quite
straightforward. Barring logic errors, only one processor in each column tree

will attempt to send its input value up to the root. It can do so in a bit-serial

fashion; the other processors can send up zeros; and the internal nodes can

compute the "or" of their two inputs.

The entire sorting algorithm can thus be performed in Q(lg TV) time on TV2
leaf processors of 0(lg TV) area, interconnected by orthogonal trees formed from
about TV Ig TV internal nodes of 0(1) gates apiece. Because the internal nodes

must be enlarged as they near the root, each tree occupies 0(TV Ig TV) area. The
total area of the circuit is thus A = 0(N2lg2N). Or is it?

The observant reader will have already noticed that the long repeater nodes
of Figure 7 will intersect each other in Figure 6, when both column and row trees

are considered. This means that the transistors in the repeater nodes can not

be laid out in a contiguous region. In fact, the root nodes of the trees will have

0(TV) units of transistor area which is intersected by 0(TV Ig TV) wires in the
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repeater nodes of the orthogonal trees. With this many crossings, it is inevitable

that individual transistors in the repeater nodes will have to be "broken up" as

they are enlarged for the higher reaches of the tree. The "broken" transistors

willwork in parallel to provide the required increase in current. (Unfortunately,

this fragmentation brings us closer to the limits of the "logarithmic rule" for

wire delay. The period of the system clock will undoubtably be determined by

the performance of these broken transistors. Therefore the true time

performance of this design will be somewhat worse than the 0(lg TV) figure
claimed above, for the length of the clock period will increase as N increases.)

Tom Leighton recently pointed out that it is not really necessary to have

the long repeater nodes intersect each other in an 0(TV2lg2TV)-area layout of the
orthogonal tree network. However, it is necessary to have Q(N2lg2N) wire
crossings in any layout of this network.

4. Comparison of the Designs

The area and time performance of the thirteen sorting circuits is

summarized in Table 1, below. The entries in this table give the area and time

performance of each of the designs of Section 3. As defined in Section 2, the

area performance of a design is its "processing" area divided by its concurrency.

This metric is an indication of the power consumed per sorting problem. The

time performance can be summarized as the elapsed time between the first

input to the circuit and the last output from the chip for each sorting problem.

Table 1 shows that nearly all of the designs considered in this paper are

within a factor of 0(lgkN) of being optimal in an area*time2 sense. The sole
exceptions are the bubble sorters and the VTV Ig TV -processor bitonic sorter.

Table 2 contains additional information about the sorters. The first entry

for each design shows its concurrency, defined as the number of sorting

problems that should be solved simultaneously to achieve the maximum possible

"area performance." The second and third entries indicate the total area

required by each design, broken down into "processor" and "memory"

categories. One bit of memory occupies one unit of area; processor area is

more difficult to characterize —see Section 2. (For the purposes of this paper,

processing circuitry communicates with memory circuitry only through I/O

ports, as described in Assumptions 4g and 4h.)

The final column of Table 2 lists the processor-memory bandwidth in

bits/(unit time). These entries are also equal to the number of I/O ports
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Design Area Perf. Time Perf. Area*Time2

(Lower bound) - - Q(TV2)

Uniprocessor Ig TV TV lg2N N2lg*N

Ig TV - proc, heapsort lg2N TV Ig TV TV2 ^4TV

Ig TV - proc. mergesort lg2N N Ig N TV2 ty4TV
Ig TV - proc. bitonic lg2N N Ig N TV2 lg*N
lg2N -proc. bitonic lg9N TV TV2 *sr3TV

VTV Ig TV - proc. bitonic VTV lg»N TV TV3 Jg^TV

TV/ 2 - proc. bubble Nig TV TV N3lg N
TV - proc. bitonic, mesh Nlg2N Vff TV2 fc2TV
TV - proc. bitonic, S-E N2/lg2N lg*N TV2 Jy4TV
TV - proc. bitonic, CCC N2/lg2N lg*N TV2 lg*N
N lg2N - proc. bitonic N2/lg TV lg2N TV2 Zflr3TV

N2 - proc. bubble TV Ig TV TV N*lg N
N2 - proc. rank sort N2lg2N *9 TV N2lg4N

Table 1: Area-time bounds for the sorting problem-

required by each design. Since problem inputs and outputs must pass through

the processor-memory interface, it should not be surprising that the designs

with high concurrency and/or good time performance must have a large

processor-memory bandwidth. What is a bit surprising is that all designs are

within a factor of Ig TV of making optimal use of their I/O ports. All keep their

I/O ports busy all the time, and all produce at least one bit of problem output

for every Ig TV accesses to the bits in their memory circuits. Another

interpretation of the processor-memory bandwidth figures is that no design

makes tremendous use of its memory for temporary storage.

Of course, a sorting circuit should not be selected just because it is

asymptotically optimal. A circuit designer is interested only in actual speeds

and sizes. Although the model of computation of this paper is not exact enough

to permit such analyses, some statements can be made about the relative sizes

and speeds of the designs.

The smallest design is clearly the 0(lg N) area uniprocessor. Somewhat

surprisingly, this design is nearly area*time2 optimal if it is programmed to use
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Design Concurrency

Total Area

I/O B.W.

P M

Uniprocessor 1 ig TV TV Ig TV 1

Ig TV - proc. heapsort 1 lg2N N Ig N ty TV

Ig N - proc. mergesort 1 lg2N N Ig N fe TV

Ig TV - proc. bitonic 1 lg2N N Ig N lg2N
lg2N - proc. bitonic 2

1

lg*N
TV Ig TV

N Ig N

N Ig N

lgsN

Ig TVVTV Ig TV - proc. bitonic

TV/ 2 - proc. bubble 1 Nig N N Ig N iy TV

TV - proc. bitonic, mesh 1 N lg2N N Ig N VF IgN

TV - proc. bitonic, S-E 1 N2/lg2N N Ig N N/lg2N
N - proc. bitonic, CCC 1 N2/lg2N Nig TV N/lg2N

TV lg2N - proc. bitonic Ig TV TV2 Nlg2N TV

TV2 - proc. bubble N/lg TV TV2 N2 TV

TV2 - proc. rank sort 1 N2lg2N N Ig N TV

Table 2: Other performance measures.

any of the 0(TV Ig TV)-step serial algorithms.

If more sorting speed is desired, the (Ig TV)-processor heapsort design

becomes attractive. It requires almost exactly Ig TV times as much area as the

uniprocessor design, since the processors and programs for the two designs are

very similar. The design has the smallest possible delay of any sorter that

receives its inputs in a single bit-serial stream, since the first output is available

immediately after the last input has been received. (The TV/2-processor bubble

sorter is the only other design considered in this paper that has this property.

All others introduce at least an 0(lg TV) delay between the last input time and

the first output time.)

A major drawback of (Ig TV)-processor heapsorter is that it requires Ig TV

independently addressable memories, one for each processor. The total

memory-processor bandwidth increases proportionately (see Table 2) to Ig TV

bits per time unit.
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The (Ig TV)-processor bitonic design has about the same area and time

performance as the (Ig TV)-processor heapsort design. The former has the

advantage of a slightly simpler control algorithm, and it uses the simpler shift-

register type of I/O memory; the latter uses a more efficient sorting algorithm

and hence less memory bandwidth.

The (lflr2TV)-processor bitonic sorter is smaller than either of the (Ig TV)

processor designs, for moderately sized TV. Its control algorithm is extremely

simple, so that a "processor" is not much more than a comparison-exchange

module. Its major drawback is that it makes continuous use of

(1/2)*(Ig N)*(lg TV - 1) word-parallel shift-register memories, of various sizes.

The (VTV Ig TV )-processor bitonic sorter has been entered in Table 2 with a

total area of 0(TV Ig TV), so that there is room on the chip for all of its temporary

storage registers. Otherwise, it would require VTV Ig TV separate I/O memories.

It has the same speed and a somewhat better I/O bandwidth than the (lg2N)-

processor bitonic sorter just discussed. However, the latter's shift registers

could also be placed on the same chip as its processing circuitry, equalizing the

I/O bandwidth for the two designs. When "constant factors" are taken into

consideration, the (VTV Ig N )-processor design is clearly much larger than the

(Jg2TV)-processor design, because it has more processors and a much more

complicated control algorithm.

The (N/ 2)-processor bubble sorter has a couple of significant advantages

that are not revealed in either Table 1 or Table 2. Its comparators need very

little in the way of control hardware, so that at least for small Nt it occupies less

area than any of the preceding designs. Also, it can be used as a "self-sorting

memory." performing insertions and deletions on-line. (The uniprocessor and

the (Ig jV)-processor heapsorter can also be used in this fashion.) However, for

even moderately-sized TV, the bubble sorter's horrible area*time2 performance

becomes noticabie. For example, when TV = 258, the (Zg2.fV)-processor's 36

comparators and 491 words of storage probably occupy less room than the 128

comparators in a bubble sorter. Nonetheless, the bubble sorter always

maintains about a 2:1 delay advantage over the (J<j2TV)-processor bitonic sorter,

when similar comparators are used.

The TV-processor mesh-type bitonic sorter is the first design to solve a

sorting problem in sublinear time. Unfortunately, it occupies a lot of area.

Each of its processors must run a complicated sorting algorithm, reshuffling the

data among themselves after every comparison-exchange operation. Its I/O
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bandwidth must also be large, since it solves sorting problems so rapidly.

However, constant factor improvements may be made to its area and bandwidth

figures, by reprogramming the processors so that each handles several data

elements at a time. Also, large area and bandwidth are not always significant

problems: in an existing mesh-connected multiprocessor, the TV processors are

already in place and the I/O data may be produced and consumed by local
application routines.

The next three designs in Tables 1 and 2 are variants on a fully-parallelized

bitonic sort. The shuffle-exchange processor has a slight area advantage over

the CCC processor, because of its simpler control algorithm. However, the CCC

is a somewhat more regular interconnection pattern, so that it may be easier to

wire up in practice. Both designs are smaller in total asymptotic area than the

(TV i£2TV)-processor bitonic sorter, which solves Ig TV problems at a time.
Nonetheless, the control structure of this last design is so simple that, as a

rough guess, it takes less area than the others for all TV < 220. (Of course, if a

shuffle-exchange or a CCC processor has already been built, the additional area

cost for programming the sorting algorithm is very small)

There seems to be little to recommend the TV2-processor bubble sorter. It

has the same I/O bandwidth, a bit more total area, and a much worse time

performance than the (N i^2TV)-processor bitonic sorter.

Finally, the TV2-processor rank sorter can be characterized as being larger
but not all that much faster than the TV- and (TV Ig TV)-processor bitonic sorters.

Its chief interest is theoretical: it sorts in a minimal number, Q(lg TV), of gate

delays. No other sorting circuit of equivalent time performance could possibly

beat its area performance by more than a logarithmic factor or two, considering

the theoretical limit of AT2 = 0(TV2). However, it remains an open question
whether it is possible to build a 7* = 0(lg TV) sorter that occupies even a little
less area.

5. Closing Remarks

At the time of this writing, there are a number of important open questions

in VLSI complexity theory. A simply stated, but seemingly perplexing problem,

is to find out how much area can be saved when additional "layers" of wiring are

made available by technological advances. It is known that a k -level embedding

can be no smaller than 1/k2 of the area of a two-level embedding [Tho 80a, pp.
36-38], but it is not known whether this bound is achievable. (Some results on
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k-level embedding have been obtained recently [Ros 81].)

A second problem is to derive matching upper and lower bounds for the

area*time2 complexity of the sorting problem. The best upper bound is
AT2 = 0(N2lg2N), achieved by the TV-processor bitonic sort on a mesh. The best
lower bound is Q(TV2) [Vui 80], which leaves a gap of Q(lg TV). The gap can be
closed by adding the assumption that all Ig TV bits of each input value are read
in through a single I/O port [Tho 80a]. (The current model allows the bits of

each input value to be read in through different ports.) It seems probable that
the AT2 = Q(N2lg2N) result for word-oriented I/O can be extended to handle the
less restrictive model of this paper. On the other hand, it is conceivable that

such a bound is impossible because of the existence of some yet-to-be-
discovered sorting circuit with an AT2 performance better that that of the
bitonic sort on the mesh.

Another set of problems is opened up by the fact that the area*time2

bounds are affected greatly by nondeterministic, stochastic, or probabilistic
assumptions in the model. For example, equality testing is veryeasyif one only
requires that the answerbe "probably" correct [Yao 79, L&S 81].

Afinal and very important problem in VLSI theory is the development of a
stable model. Currently there are almost as many models as papers. If this
trend continues, results in the area will become difficult to report and describe.
However, it is far from settled whether wire delays should be treated as being
linear or logarithmic in wire length, and the costs of off-chip communication
remain unknown.
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