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ABSTRACT.

It is shown that a large class of engineering design problems are expressi
ble as nonlinear semi-infinite programming problems. Methods for the solution of
these SIP problems are surveyed.

1. INTRODUCTION.

Many industries are facing rapid growth in the cost of raw materials and energy. More
and more frequently, competitive product design is becoming an ever more time-consuming
and difficult task because design complexity is increasing more rapidly than the number of
design variables. All these factors contribute to increasing costs of design and manufacture.
Computing power is the only important industrial resource which is declining in cost. Not
surprisingly, the engineer is turning more and more frequently to the computer as a way of
coping with his tasks.

The growing importance of computer-based tools for the analysis and design of devices,
structures, machines and systems has resulted in the evolution of a relatively new interdisci
plinary engineering specialty which is commonly referred to as computer-aided design (CAD).
Evolution of the more sophisticated forms of CAD capability requires a team effort involving
engineering design specialists, computer scientists, optimization experts, and numerical
analysts. CAD techniques developed in one area of engineering are often of substantial
relevance to other areas.

Both combinatorial and parametric optimization are used in CAD. The most commonly
occuring parametric optimization problems in engineering design are usually expressed
either as differentiable or as non-differentiable semi-infinite programming (SIP) problems. In
this paper we shall illustrate by example how typical SIP problems arise in engineering design
and survey some of the more promising methods for their solution.

2. FORMULATION OF ENGINEERING DESIGN PROBLEMS IN SIP FORM.

In this section we shall give four examples of engineering design problems which can be
solved in SIP form: one in structural design, one in single-input single-output control system
design, one in multi-input multi-output control system design, and one in electronic circuit
design.

2.1. Seismic Resistant Design of Structures.

One of the conceptually simplest examples of SIP in engineering design is found in the
design of braced frame buildings which are expected to withstand small earthquakes with no
damage and large ones with repairable damage. A simple braced frame is shown in Fig. la,
where the components of the vector design parameter x are the stiffnesses of the members
indicated. The horizontal floors are assumed to be rigid and to concentrate the mass of the
structure. The displacements of the three floors and "roof" form the components of the dis
placement vector y. This lumped parameter model Fig. lb obeys a vector second order
differential equation of the form:



Fig. lb

My(t,x)+D(y ty,x)y(t,x)+K(y,y,x)y(t,x) = F(t) (2.1)

where F(t) represents the seismic forces. For reasonable values of x, when F is small, i.e., it
represents a small earthquake, (2.1) is a linear differential equation, but when F is large, the
bending of steel introduces gross nonlinearities due to its hysteretic behavior. It is common
to consider a whole family of excitatons \Fk\, both large and small in carrying out a design. A
simple cost to minimize is the cross section of the frame members, while the constraints are
introduced to limit the relative floor displacements over the entire duration of a sample
earthquake. Thus, we obtain a SIP of the form

mini/OOl \yt(t,x,F)V"^**^)! * ^(F). Vt e [0,f], (2.2)

j = 1.2,3, VFS \Fhl;x^Ll

In choosing a SIP algorithm for solving structural problems, one must bear in mind that
the differential equations are highly nonlinear and quite difficult to integrate. For example, a
simple four story frame may require several minutes of cpu time using a VAX 11/780 com
puter to simulate, while a quadratic programming search direction finding subprocedure
requires only fractions of a second. Also, since simulation has to be carried out using stan
dard computer codes, one finds that derivatives must be computed by finite differences, mak
ing it difficult to use second order algorithms. The algorithm in (33) was developed with these
problems in mind. For further reading, see (3, 4, 21).

2.2 Design of SISO Control Systems.
Single-input single output (SISO) control systems are particularly easy to design by SIP

techniques. Consider the block diagram of Fig. 2, which shows a plant, with transfer function
P(s) and a compensator, with transfer function C(x,s), where x is a three components vector
of design parameters to be chosen. We assume that this system satisfies the following set of
equations:

y(t,x)+5y(t.x)+ay(t,y)+6y(t,x) =u(t.x) (2.3)

ii(*,x)+30u(*,x) = xle(t,x)+zze(t,x)+xae(t,x) (2.4)

e(t,x) =r(t)-y(t,z) (2.5)



and hence that

r(t)+-,e(t)

Fig. 2

^ru(t)

Fig. 3

P(«)« (s3+5s2+8s+6)

C(x,s) =
x1sz+xzs +xl

s (s +30)

In the simplest case, there are three sets of constraints on the design. First, there are
positivity and boundedness constraints on x:

0 ss x <; b (2.8)

(2.6)

(2.7)

Next, there is a time domain constraint on the step response of the closed loop system
(i.e., on the response y resulting from r(t) = 1 for r & 0 and r(t) = 0 for t <0), as shown in Fig.
3. It has the form

rl{t *£y(t,x)&ru(t)torall te [0,7] (2.9)

where rl(t) and ru(t) are piece-wise constant functions.
Finally, it may be required that the poles (eigenvalues) of the closed loop system lie in a

parabolic region in the complex plane defined by

z+aoo2+c £ 0, (2.10)

where s = z + iw, and a.c ^ 0 (see Fig. 4a). This may be achieved by making use of a modified
Nyquist stability criterion, as follows. We may write P(s) = l/d(s) and C(x,s) = n(x,s)/m(s),
where d, n and m are polynomials in s. Then the characteristic polynomial of the closed loop
system is

X(x,s) =n(x,s)+d(s)m(s) (2.11)

and its zeros are the same as those of the normalized rational function

Z(x,s) = X(x.s)/(s+50)5 (2.12)



Fig. 4a

s-plane

z+acu2+c=0

Z(x,s)-plane

Im=K(Re) -d

Z(x,-acj2-c+iaj)
Fig.4b



It follows from arguments as for the Nyquist stability criterion, that a sufficient condition
that for the zeros s* of Z(x,s) to satisfy z* + aiu*2 + c ^ 0 is that the following semi-infinite
inequality hold (see Fig.4b):

d-KRe(Z(x.-awz^+vw))*+Im{Z(x,-aw2-c+iw))£0 for all w€ [w\w"'\ (2.13)

where d,K > 0, Re and Im denote the real and imaginary parts, respectively, of Z, and w\ w"
define a critical range of values in the complex plane. It is seen (see Fig. 4b) that (2.13)
ensures that the image under Z(x,-) of the modified Nj^quist locus given by (2.10) does not
encircle the origin.

Finally, as a performance criterion, one could use
T

f(x)-fu{t,x)zdt (2.14)

for r(t) a unit step.
Problems such as these led to the development of the algorithms (9, 5, 20). For other

examples of SISO control design via optimization, see (12, 15, 18, 34, 35).

2.3. Design of MIMO Control Systems.

We shall now consider an elementary example from the design of multiple-input
multiple-output (MIMO) control systems in the Laplace transform domain, i.e., via a technique
which replaces all the differential equations by their Laplace transforms. Referring to to the
block diagram in Laplace transform relations given in Fig. 5, the closed loop system is made
up of blocks whose inputs and outputs are all m dimensional vector functions. The vector r(s)
denotes the Laplace transform of the closed loop system input r(t), the m vector y(s) denotes
the Laplace transform of the closed loop system output y(t), and the m vector u(s) denotes
the Laplace transform of the plant input u(t). Finally, the m vector d(s) denotes the Laplace
transform of the output disturbance d(t). The plant transfer function P(s) is an m x m matrix
whose elements are proper rational functions in the complex variable s and one is required
to design the m x m compensator transfer function matrix C(x,s) whose elements are proper
rational functions in the complex variable s, with coefficients which depend on the n dimen
sional design vector x. Among other things, the closed loop system is required to be stable
and to remain stable under plant perturbations and to be insensitive to the disturbance d(s).
Both of these requirements lead to similar, nondifferentiable, semi-infinite inequality con
straints and hence we will describe only the latter.

For the purpose of expressing insensitivity to the disturbance d(s), we set r(s) s 0, which
leads to the equation

y(s) = [l+P(s)C(x ,s)]d(s) = Q(x,s)d(s)

u(s) = -C(x,s)Q(x,s)d(s) - R(x,s)d(s).

(2.15)

(2.16)



Let q(x,w) denote the largest singular value of Q(x,iw) and s(x,w) denote the largest
singular value of R(x,iw), with w real. The variable w denotes frequency; the matrix Q(x,iw) is
complex valued. Since the largest singular values are matrix norms, to make the response y
of the system small for a large class of disturbances, without unduly saturating the system as
a result of u becoming too large, control system designers strive to keep both q and r small
over appropriate frequency ranges. This leads to the following partial formulation of the
MIMO control system design problem in SIP form:

- minimize f (x) = (max q(x,w)\wG [ia',iu"]j (2.17)

subject to:

s(x.w)£b(w) for aU w € [w\w"] (2.18)

c^x^d (2.19)

where b(w) is a continuous function of the frequency w.
In addition, there are constraints expressing decoupling i.e„ the requirement that when

only a single component of the input vector is a nonzero function, only the corresponding
component of the output vector is nonzero, as well as other constraints on time domain
responses, all of which are semi-infinite in form. We note that the singular values q and s are
non-differentiable and hence that the SIP problem corresponding to MIMO control system
design is considerably more difficult than the SISO problem. For algorithms which solve
problems of the fcr (2.17) -(2.19), see (P9). For other examples and a discussion of the use of
singular values in control system design, see (8, 13, 26, 32).

2.4. Electronic Circuit Design.

A well known SIP problem in electronic circuit design is the so called design centering,
tolerancing and tuning problem. Its formulation is developed in three stages, as follows.
First, the responses (see Fig. 6) of the circuit to given inputs must satisfy semi-infinite con
straints of the form

a(t)*y(t,x)&b(t)forall tG [t',t"] (2.20)

where x is an n dimensional design vector. Next, due to production errors, when the circuit is
built, the actual value of the design parameter will not be the nominal value x, but x + g(e),
where e is &production error parameter, usually of much smaller dimension than x. To obtain
100% yield, the design engineer must therefore require that

a(t)<iy(tjs+g(e))^b(t)torall te[t'.t"] (2.21)

for all e G E

Fig. 6



where E is the production engineer's tolerance set. Now, it is not uncommon for the inequali
ties of the form of (2.21) to define an extremely small, or even empty feasible set and hence
engineers have to resort to post manufacture tuning, i.e.t post manufacture correction of
the product. This leads to the introduction of a repair (tuning) parameter r into the picture,
so that (2.21) becomes replaced by

a(t)^y(t,x+g(e)+h(r)) «s b(t)for all te[t',t"] (2.22)

for all e G E, for some r G R

where R defines the allowable range of the repair parameter. Clearly, (2.22) is an extremely
intractable kind of semi-infinite inequality, particularly, since a realistic formulation must
replace the single y in (2.22) with the max over all such functions of interest. A certain
amount of simplification can be obtained by replacing (2.22) by the following, slightly stricter
inequality:

a(c)^maxriunmaxyA!(r.x+^(e) + h(r)) <i b(t) (2.23)

tor all te[f,t"]

Of course, in addition, to the constraint of the form (2.23), the electronic circuit design
problem will also involve a number of others that are much more benign. Thus, the electronic
circuit designer sees his problem as that of choosing a design center x so that the set x +
g(E), resulting from tolerances which must be allowed in production, is as much as possible
in the feasible set specified for x, and of making sure that any part of x + g(x), which is out
side of the feasible set, can be brought back into it by post-manufacture tuning.

For further reading, see (6, 7, 16, 22, 29).

3. SIP ALGORITHMS FOR ENGINEERING DESIGN.

As we have seen in the previous section, SIP problems in engineering design are of the
form

ndn\f(x)\g*(x)*0 Vi €/; h*(x,p) <; 0 V; G/, Vp eP; (3.1)

max min max max yk(x,e,r,t) £ 0\
9€Br€RteTkeK '

where f, g , h , and y are, usually, real valued, continuously differentiable functions; P, E, R
are compact multidimensional sets, T is a compact interval, and K is a finite set of indices.
When the functions in (3.1) are not continuously differentiable, they are semi-smooth (18) or,
at least, locally Lipschitz.

We shall now describe two algorithms which we have found to be very reliable in
engineering design. The first is due to Gonzaga, Mayne, Poiak and Trahan (PI,9) and it solves
problems of the form (3.1) without the max min max term, when ail functions are continu
ously differentiable, i.e., it solves problems for the form:

nun\f(x)\gi(x) * 0 Vi G/; h^(x,Pi) <s 0 Vpj Gp/t Vj GJ] (3.2)

The algorithm in (9) is a refinement of the algorithm in (20). In turn, it underwent some
refinement, as described in (5), the most significant of which is the introduction of weights w
which can be used to improve the conditioning of the problem. For simplicity of exposition,
we may as well consider the case of (3.2). where the "simple" inequalities specified by the g*
are not present and there is only one semi-infinite inequality, Le., J = (l). so that the index j
can be dropped. For this case, we define, with e ^ 0, t fe 0, w S: 0,

M(x)max\h(x,p)\pe pi (3.3)

M(x)+ = max|#(x),0j (3.4)

Pb{z) - \p G P\h(x,P) ^ M(x)+ - e, andp is a local maximizer of (3.5)

h(x,) in P\



W9(x) =min{fru'Af(x)+ + (1/2)| \u'Vf(x) (3.6)

+ 2 u*'Vh(x,p)\\z\wfuf + 2 ™*u* = 1, it => OJ

and

d9(x) = -[u/V/(*)+ 2 upWi(*,p)] (3.7)

where u* , it* solve (3.6). Finally, with 0 < c < 1, and q > 0, we define

tf = (0,l.c,c2,c3 1 (3.8)
and

e(x) = maxjeG E\ We(x) 2s eg J (3.9)

We note that the parameter e in (3.5) controls the number of local maximizers that will
be used in the computation of the search direction d9{x). The parameters tu', io* in (3.6) are
used to control the angle between the search direction d9(x) and the corresponding gra
dients: when W* is increased, the angle between -d0(x) and grh(x,p) is decreased. The
parameter t controls the phase I - phase II aspect of the algorithm: when t is large, the algo
rithm places greater emphasis on achieving feasibility than when t is smalL Finally, the
parameter q is used to control the value of the parameter e that will be used in the computa
tion of the search direction d9(x): the smaller q, the larger will e(x) be. In practice, this
rather large number of parameters turns out to be rather easy to adjust, provided the
computations are carried out in an interactive environment.

Finally, introducing two parameters a,b G (01) for the Armijo step size rule, we are
ready to state the algorithm which will be recognized as a phase I - phase II method of feasi
ble directions, see (23).

Algorithm 1:

Parameters: a.b,c G (0,1), q > 0, K > 0.

Data: x0.

Step 0: Set i = 0.

Step 1: Compute d8(x<j(2j).

Step 2: If M(xi)>Qt compute the largest s G \KtbKtbzK,...l such that

M(xi+sd9iXi)(xi)) - M(xi)) <; -saWe^Xi). (3.10)

Else, compute the largest s G \KtbKtbzK%...\ such that

M(xi +sde{Xi)(xi)) £ 0 (3.11)
and

f (xi+sd^^Xi)) -fM <z -saWg{Si)(xi). (3.12)

Step 3: Set

*i+i =sj+sd^jfo) (3.13)

set i = i + 1, and go to Step 1.



It can be shown (see (9)) that every accumulation point of Algorithm 1 is feasible and
satisfies a standard F. John type condition of optimality.

Algorithm 1 has been used as is and also as a vehicle for stabilizing local superlinearly
converging algorithms such as sequential quadratic programming (27). The stabilization is
accomplished as follows. A simple comparison test is used to determine whether the local
version is in its region of convergence. If the local algorithm is in its region of convergence,
it is allowed to proceed, otherwise Algorithm 1 is used to drive the iterates into the region of
convergence of the local method. The result is an algorithm with mathematically demonstr
able global convergence properties (see (27)).

For non-differentiable problems of the form (17) -(19), a modification of Algorithm 1 has
been proposed in (28). The algorithm in (28) substitutes e-approximations to the generalized
gradients for the gradients used in Algorithm 1, and uses the outer decompositions algorithm
(10), to be described below, to replace the intervals [io'.iu"] with finite sets of points.

Finally, for differentiable problems for which derivative computations have not been
incorporated into simulation codes, we find a derivative free version of Algorithm 1 in (33).

An important tool for dealing with problems of the form (3.1), either totally or partially,
is the family of outer approximations algorithms, see,- e.g (10,14,16). Probably the most
elaborate use of this tool can be found in (29), where it is used to "unwind" (3.1) into
sequences of differentiable, finitely constrained optimization problems. We shall describe an
example of these methods in terms of the simplified problem

min{/(a:)|/i(x,p)^0, Vp GP) (3.14)

where f and h are real, at least, locally Lipschitz continuous functions defined on Rn . The
ideals to decompose (3.14) into a sequence of problems in which P is replaced by finite sets
P , which, hopefully, remain of small cardinality.

Algorithm 2:

Parameters:\. G (0,1) and a double subscripted sequence \sJk] satisfying

(i) s^ ss 0 for all k and s^. > 0 for all k>j;
(ii) Sfr -* tj as k -* ».
(iii) §"j -* 0 as j -> ».

Data: A finite set P0 G P.

Step 0: Set k = 0.

Step j; Compute by means of Algorithm 1 an xk such that

h(xk,p)*itktVp £P.e(xk) <s tk. (3.14a)

Step 2: Computer a

Step 3: Set

pfcG argmax\h(x,p)\p G P], (3.15)

flb+i = frNfrj ePk\h(xs,ps)*sjkl, (3.16)

set k = k + 1 and go to Step 1.

We note that the parameter t is used to control the precision with which the kth prob
lem is solved. It is necessary to solve the successive problems with progressively greater pre
cision. In (3.14) an exponential increase of precision is specified, however, one may increase
the precision at a slower rate. The double subscripted sequence sjle is used for determining
which of the pj , that were included in Pk , need not be carried over into \Pfc+1, i.e., they form
part of the constraint dropping scheme. When one wishes to drop lots of constraints, the s
should decrease to zero very slowly as k increases. There are many possibilities for such a
sequence, for example, one may use sik = 100/[1/(1+; )1/10-l/(l+fc)1/10]. When computing



in environment, it is possible to exercise highly intelligent control over the constraint drop
ping mechanism.

In view of our comments on the effect of parameters, it should be clear that algorithms
of the type discussed above are very difficult to use in batch mode in an engineering design
where function evaluations consume many minutes of computer time. It has been our experi
ence that the computations can be made much more efficient by parameter adjustment in an
interactive computing environment, such as the ones described in (2,19).

4. CONCLUSION.

We hope that this brief survey of SIP problems arrising in engineering and of some of the
algorithms that have been used for their solution will stimulate the interest of SIP research
ers in the very challenging problems that occur in engineering design.
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