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Observations on the Evolution
of a Software System

Eric Allman and Michael Stonebraker, University of California, Berkeley

The Ingres data base system1 *2 encompasses about
75,000 lines of codein the programming language "C"3
and runs on top of the Unix operating system. Over the
past six years, Ingreshas evolved into a functionally com
plete and usable prototype. Development required 25 to
30 programmer-years by a total of 19 people, and the
system is now in use at over 125 sites around the world.

In this article we will attempt to answer a question that
we are often asked: "How did you manage to get a large
software system to work in a university environment?" A
chronology of the project and the major technical mis
takes have been reported elsewhere,2 so we will concen
trate on the software engineering process and what we
have learned about it. Although our experience is in a
research environment, we believe that many of these
lessons can be applied to most software development
efforts.

Chronology

The Ingres experience can be divided into three periods
that can be examined individually.

Initial design and implementation (1974*1976).The in
itial goal was to build a functional relational data base
system. During this period we wrote about 60,000 lines of
code. The attitude of the design team was to "make the
system work" regardless of the methods used.

The project developed out of a graduate seminar;
hence, the initial programmers were all graduate students.
They were organized as a chief programmer team of four
programmers plus a lead programmer. The project direc
tors, Michael Stonebraker and Eugene Wong, acted
largely as "creative consultants.'*Their role was to define
the major structure of the system and determine general

strategy. Although they were the final arbitrators on
technical matters, most problems were handled by the
chief programmer.

The role of the chief programmer was first to write code
and second to arbitrate conflicts and supervise global

design. Since the PDP-11 computer on which implemen
tation beganhad a 64K-byte addressspacelimitation, In
gresclearlyhad to run asseveralUnix processes.The divi
sion of the implementation effort among the program
mers followed process boundaries. Hence, for the most
part, each programmer could code in his own Unix pro
cess and have an address space to himself. Minimal
cooperation was necessary once the function of each pro
cess was finalized and its interface defined. Each pro
grammer could implement the functions in his process
any way he wished. Initially, there was no attempt to share
subroutines, and even the routines for interprocess
communication were customized for each process. More
over, there was no utilization of software engineering
practices such as structured walk-throughs or reading the
code produced by others.

The absence of organizational structure directly re
flected the multiprocess environment in which no shared
code for Ingres existed. This absence of structure below
the process level contributed to many later problems.

Making it work (1976-1978). Once an initial prototype
was working, we were eager to have people outside the
university use it. By mid-1977 there were about ten users,
and the sites were all bold, innovative, and sophisticated.
The feedback from these initial users was extremely
helpful. In addition to receiving useful information about
what "real" people wanted to do, we also gained con
siderable exposure. Many of the comments concerned the
awkwardness of the user interface and the absence of

helpful error messages.
Much effort went into making improvements to the

system during this time. For example, error returns from
system calls had not been consistently checked in the in
itial version. When the disk became full and no new

blocks were available for expansion, the data base would
be irrevocably corrupted. We spent considerable time for
tifying the system against these kinds of events. We also
added crash recovery, concurrency control, additional
access methods and did substantial algorithm modifica
tion to improve performance.



The project continued to be organized as a chief pro
grammer team ofthree to five people. As the initial collec
tion of programmers left, we replaced them with under
graduates exclusively. The idea was to obtain two to three
years of continuous employment in order to justify the
long training period (typically one academic quarter).
Also, while graduate students were intrigued with the
problem ofbuilding a data base system from scratch, they
found the extension of an existing system less appealing.

During this period the number of installations climbed
steadily, and the chief programmer spent more and more
time providing user support, usually by telephone. While
early feedback was very useful in isolating poorly de
signed features and uncovering bugs, later interactions
focused on misinterpretations concerning the setup in
structions, the reference manual, or Unix. The feedback
from these later users was of less value. As we gained a
reputation, the new users we attracted were frequently
lesssophisticated and were starting to demand a turnkey
system. We began to act less like a research group and
more like a software house.

Back to research (1978-). In 1978 it became clear that
the Ingres project was soon to accomplish the goalsset in
1974. To maintain a climate of intellectual inquiry, the
project expanded its goals to include the following:

(1) Build a distributed data base management system.
This necessitated extensive databasecodeto providecon
sistency control in a distributed environment as well as
distributed query processing.

(2) Integrate Arpanet services. These are required to
achieve the goal listed above.

(3) Develop operating system extensions to support
local networking.4 These are also required for goal
number 1.

(4) Build a data base machine. Given the design
philosophy of Muffin,5 this was a natural outgrowth of
distributed databases. However, it required a local net
work and a small real-time operating system. No can
didate for either was available at thetimewcbegan.

(5) Build a new data base programming language,
Rigel.6This project was undertaken by Lawrence Rowe.

As aresult ofthesedecisions, we foundourselves doing
development in the areas of language processing, net
working, and operatingsystems. This has created a large
increase in the complexity of the Ingres project.

As before, we continue to have achief programmer and
a staffof three to five programmers, augmented by other
individuals or groups. The chief programmer team con
tinues to maintain and extend the core of the Ingres
system, while networking and language work are carried
out by other autonomous groups. This allows the neces
sary specialization, although it has increased the number

ofconflicting factions. For example, networking code re
quires operating system modifications that often interfere
with the data base effort. Moreover, Rowe and Stonebra
ker, who now share the task of general technical direc
tion, occasionally operate at cross purposes. Frequently,
there is no clear resolution of the situation; hence, setting
priorities and goals has become exceedingly difficult.

Lessons and observations

Setting goals. Our policy has always been to set long-
term goals that are nearly unattainable. This policy has
led to great intellectual expansion for the participants and
appears to help in the recruitment of talented people,
which the success of the project ultimately depends on.
Nevertheless, it seems crucial to choose achievable short-
term targets. This avoids the morale problems related to
tasks that appear to go on forever. The decomposition of
long-term goals into manageable short-term tasks con
tinues to be the main job of the project directors.

Short-term goalswereoften setwith the full knowledge
that the longer-term problem was not fully understood or
that a crucial variable (such as crash recovery) was
deliberately being ignored. Consequently, many steps
were taken that were ultimately wrong, and they were
retraced later when the issues were better understood. The
alternative is to refrain from development until the prob
lem is well understood. We found that taking any step
often helpedus find the correct course of action. Also,
moving in somedirection usually resulted in higher pro
jectmorale thana period ofinactivity. Inshort,it appears
moreuseful to "do somethingnow even if it is ultimately
incorrect" than to only attempt things when success is
assured.

As a consequence of this philosophy, we take a relaxed
view toward discarding code.Throughout the Ingres pro
ject, wehave repeatedly done complete rewrites of large
portions of the system. Whenever the code became top-
heavy with patches, or when we learned that it should
have been structured differently, we simply "bit the
bullet" and rewrote it. Our philosophy has always been
that "it is never too late to throw everything away."
Although this has proved expensive at times, it usually
served us well by eliminating unwieldy pieces of code.
However, as the systemgrew, larger and larger pieces of
code came under the scalpel.There came a point at which
rewriting bulky and uninteresting pieces of code became
impossible because the rewrite was so tedious that it
would incur an intolerable morale cost.

When implementing a major system, it would seem
wise to plan to build a prototype that will be tested and
thrown away. This was the strategy followed by the



System R design team.7 Only well-understood problems
can be properly implemented the first time.

System decomposition. Advantageous system decom
positions and well-defined interfaces enhance under-
standabilityof the entiresystemand simplify systemcon
struction. Moreover, we found it desirable for each pro
grammer to haveamajormoduleto himselfsothat hecan
feel like a substantial contributor. Only good system
decompositions allow thiswithouthavingpeople interfer
ing with each other.

Top-down design is usually suggested as the correct
mechanism to achieve this goal. However, we have had
frequent difficulty following thisseemingly soundadvice.
Several examples have been presented elsewhere.2

Top-down design assumes that the problem is com
pletely understood and that there are no external con
straints to contend with. Since we were bound by the max
imum size of a PDP-11 address space, we frequently
found that a process was not largeenough to contain the
code for planned functions. When this happened, we
were forced to restructure the code. Also, we found that
in several areas of the system a clean top-down design in
curred an intolerable performance penalty.2

Although we had the freedom to begin with a top-down
design, thereafter we were restricted to making feasible
changes to a running system. In a sense, there is a collec
tion of "next states" to which the software can evolve in

the next iteration. Such states are highly constrained by
previous (perhaps incorrect) decisions.

For example, in 1977 we added crash recovery to a
working system. This entailed identifying all failure pat-
terns and leaving enough' 'footprints" in the data base so
that a recovery utility could correctly clean up after the
failure was repaired. This code involves myriad low-level
changes to dozens of routines. Restructuring all the low-
level routines in order to cleanly add recovery was not
even considered because it would have necessitated a large
rewrite that was not considered feasible. Rather, crash
recovery was inserted incrementally in an ad hoc way.

As the above example illustrates, we were constantly
pulled between two points of view: restructuring and re
writing to achieve a clean design in the next iteration, or
seeking an ad hoc solution because the cost of the first
alternative might be too high.

In summary, top-down design seems to have been ef
fective when requirements were well understood. How
ever, much of the Ingres code evolved as requirements
were identified during or following initial implementa
tion. In retrospect, the intuition of the system designers
seems to have been the most reliable design technique.

When the Ingres system was initially designed, we ex
pected a multiprocess organization to be highly advan
tageous. It offered the possibility of parallelism, forced a

clean decompositionof function at the top level,andgave
eachprogrammer an isolated environment.Unfortunate
ly, we found that multiple processes were fundamentally
undesirable. Not only are they hard to reset when errors
occur, but they arealso inflexible when the top-level con
trol structure inevitably changes. Lastly, repetition of
functions is often required. For example, all processes
must individually open the files in which system catalog
information is kept.

Although Ingres is forced to use multiple processes
because of the address space limitations on a PDP-11,
these processes are perfectly synchronized; each waits for
a successful return from its neighbor before it accepts new
work. The 32-bit address space available on VAX com
puters allowed us to collapse all processes together.

Clean code. By and large, we made continuous and de
monstrable progressduring the initialstagesof the project.
We chose to ignore hard problems and write "dirty code."
But asthe Ingres system grew larger, it becameimpractical
to writebadlystructuredcode, sincethis had a tendency to
complicate future debugging and maintenance.

Many programmers lean toward twisted, tricky solu
tions to problems. Although this may improve efficiency
in the short run, we found complex code undesirable. In
evitably, it was hard to debug and maintain. When the
original designer of a module departed, leaving it in the
hands of a new person, maintenance costs escalated, if
"tricks" are truly necessary to meet performance re
quirements, they should be elevated to the status of
carefully documented techniques.

The transition from dirty code to clean code was a pain
ful one. Perhaps we should have started writing clean
code from the beginning. However, this would have in
creased the time required to produce an initial protoype,
and a working prototype was essential to establish a
reputation. Moreover, at the time, we were unaware of
the ultimate pitfalls of dirty code. As a result, we believe
that a phase of dirty code was a necessary stage in our
evolution, as were the growth pains of cleaning it up.

Coding standards. When a module changes hands, the
recipient frequently alters the program to suit his par
ticular style. A certain amount of this is desirable because
the new programmer may notice an easier way to do
something and make appropriate changes. However, we
found that an inordinate amount of time was spent ad
justing Ingres code to the personal style ofeach program
mer (e.g., changing the way programs were laid out on
line-printer output). In an attempt to restrict this extra
editing, we instituted a set of coding standards.

The initial reaction was exceedingly negative. Pro
grammers used to having an address space of their own
felt an encroachment on their personal freedom. In spite



of this reaction, we enforced standards that in the end
became surprisingly popular. Basically, our programmers
hadto recognize the importance of making code easierto
transfer to new people, and that coding standards were a
low price to pay for this advantage. The results met our
goal;random changing of program style has allbut disap
peared, and readability of the system has increased.

When the Ingres project began building a distributed
data base system, we left a period of' 'bulletproofing*' the
system and entered one of less structured experimenta
tion. At this time, there was a proposal to drop the coding
standards. Popular opinion, however, called for them to
remain, although ironclad enforcement has disappeared.

Coding standards should be drawn up by a single per
son to ensure unity of design; however, input should be
solicited from all programmers. Once legislated, the
standards should be rigidly adhered to.

Documentation. The Ingres source code is well
documented and a creditable reference manual exists.

However, no documentation for major internal inter
faceshas ever been written, nor has a guide for new people
ever been devised. As a result, there is a long learning
curve for new Ingres programmers. In addition, consider
able interaction with other project members is required
during the training period, and it is almost impossible to
make use of transient help. Currently, this is considered a
major weakness.

A university is not a software house, and there is little
incentive to produce documentation. We probably could
have benefited from imposing documentation require
ments on the entire staff from the beginning, but the cost
of producing substantial internal documentation today is
very high.

Proposals have been made for internal documentation
in the form of comment blocks preceding programs and
procedures. These would include fields such as name,
function, algorithm, parameters, returns, globals, calls,
called by, and history. We attempted to use this style of
comment block in new Ingres code for two years. The re
sults were mixed. Fields such as parameters, returns, and
side effects seemed useful because they warned the pro
grammer when the semantics of the routine were being
changed. However, certain other fields, such as history,
were generally not kept up to date. Since the usual cycle is
edit, compile, test, it is unnatural for the programmer to
go back and add a line in the history field, particularly if
the change seems small. The final conclusion was that an
out-of-date history is worse than none at all.

Fortunately, many fields, e.g., globals, calls, called by,
and history, can be maintained automatically by language
processors or source-code control programs. A sound
rule is that any information that can be maintained
automatically should be; manual maintenance is never as

accurate and seldom as convenient. Fields such as algo
rithm are usually just a restatement of the code and
should be eliminated in favor ofcomments interspersed in
the code to explain what is happening. Such comments
are easier to maintain and are more readily associated
with the code they describe.

Tools. In order to maintain some internal documenta
tion automatically, we have recently started using the
Source CodeControl System.8This package automatical
ly keeps track of who makes changesand prompts for de
scriptivecomments about eachchange. Furthermore, the
code for both the old and new versions is available, so
backout is possible in case of disaster. The system has
proved both effective and popular. It is far superior to
comment blocks maintained by hand.

In general, we believe it is almost never a mistake to
spend extra time investing in tools. We have made good
use of the tools provided in the standard Unix environ
ment, forexample the parser generator YACC.9 In addi-
don, we spent considerable time importing tools such as
theVi text editor,,0the *4C-shell,"l' andthe SourceCode
Control System. We found these investments well worth
the cost.

Support. There is a big difference between making In
gres work ourselves and enabling other people to make it
work. The latter requires an enormous effort to eliminate
bugs and provide user-level documentation, along with
easy-to-follow installation procedures. Perhaps only a
third of this total effort is required to get a largesystem to
the stage where we can make it work.

Whether we like it or not, the Ingres project is in the
support business. With over 125 installations, we get
many phone calls that consume the time of key people.
Originally, the calls gave valuable feedback about the
system; today they tend to be less technical and more ad
ministrative. The fear of even more phone calls tended to
inhibit changes to later versions of the code because
changes inevitably introduce bugs or confuse users. Such
a fear is counterproductive in our research environment.

With a system at this level of maturity, it appears
necessary to engage a separate support organization if
research and development are to continue. Realistically,
support should be considered as the system is developed;
reliability and maintainability are built in, not added on.

Hardware environment. Morale problems associated
with unworkable hardware have been a serious project
issue. They not only frustrate the programming team and
slow progress, they also consume the time of key people
who must cope with or remedy the situation. In retro
spect, it is clear that if we had had twice our hardware
budget at the right time, it would have been advantageous



to buy all our hardware from one vendor. The Feldman
report12 may help in this regard.

Complexity. By setting high goals and embarking on
distributed data base/operating system/network pro
jects, wehave created asoftware environment socomplex
thatthe project directors no longer have a good grasp of
operational trade-offs.As aresult, priorities areextreme
lydifficultto setandoften appear inconsistent from week
to week. Moreover, the chief programmerand project di
rectors spendalotoftimebattlingbrushfires. Thisusual
ly means that rational long-range planning is neglected.
Consequently, maintenance and conversion efforts have
been poorly planned and seem to go on forever. This
creates a morale problem for the implementation team.
Lastly, the presence of multiplenetworks and home-brew
network hardware has created an unstable machine/
operating systemenvironment that amplifies anymorale
problems. The structure seems in danger ofcollapse at all
levels.

The project directors and chief programmer are over
loaded with work and beset with nontechnical details that

interfere with useful research. The difficulties sometimes

seem insurmountable, and the cost of making progress
has become enormous. Other personnel are so bogged
down with maintenance/conversion efforts (a new 32-bit
machirfe, three new versions ofUnix, and a new version of
Ingres) that they see no progress at all.

Earlier we used a throw-away-and-rewrite mechanism
to deal with complexity. Recently, we have begun to act
more like a software house, although we find the reward
structure and support organization impossible to build
within a university. We may well have reached acomplex
ity barrier that we will not be able to penetrate with the
limitations of the current environment. Certainly, the
project appears technically out of control. Even more
distressingisthe question' 'Where willthe next generation
of implementors come from?" The complexity of our en
vironment is such that it taxes undergraduates to the limit.
Only juniors and seniorsappearto have the background
to successfully cope; hence, our previous strategy (hiring
freshmen) appears unworkable. On the other hand,
masters-level students are available for only one year, and
it is widely recognized that implementations arenot in the
best interests of PhD students.

We are constrained by the limitations of our environ
ment. Since the university supports neither a two-year
master of software engineering program nor a significant
implementation for a PhD dissertation, we cannot attract
the necessary people. Also, without hiring professional
managers, we are restricted to a one-level organizational
hierarchy, sharply limiting the total size of the
implementation.

Perhaps there is a meta-theorera here: "Within our en

vironment, one 75,000-line program can be written, but
expanding it to a more complex 150,000-line program is
impossible." No doubt all organizations have some fun
damental limit; ours may simply be lower than others. To
contradict the meta-theorem we would have to find a new

way to deal with the complexity.

Conclusions

The Ingres system has gone through several stages of
development. The initial stage produced poorly designed
code, and little thought was given to maintenance or code
sharing. This allowed individuals coding in their own pro
cess to exercise creativity to the utmost with aminimum of
conflict. Later, to support users and make the system
reliable, we were forced to write cleaner code. Recently,
we have done less to support users, but the complexity of
the system demands that we continue to write clean code.

Our largest mistake was probably in failing to clearly
pinpoint the change from prototype to production sys
tem. At this point several procedural changes should have
been implemented immediately; instead, they were slow
to appear and frequently incomplete. We feel that system
implementors should clearly identify this point in their
development cycle.

In a research environment, any development effort in
volves problems whose solution is unknown. Under these
circumstances, standard software development ap
proaches, e.g. strict top-down design, do not always
work, and rewriting code becomes a powerful develop
ment tactic. It is a serious mistake to believe that a pieceof
code is sacred because of the time taken to write it.

Throughout the development of Ingres, we made con
siderable use of the tools available in Unix. The cost and a

few weeks spent setting up and learning to use a major
tool are well worthwhile. It is nearly always a mistake to
do a task by hand that can probably be performed better
by a tool. ES
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