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I. INTRODUCTION

In the VLSI era, the demand for time domain circuit simulation

of larger and larger circuits is continuously growing in the

industrial designers community. Consequently, the use of standard

general purpose circuit simulators such as SPICE (2) and ASTAP (3)

is becoming too expensive. Alternative methods have been proposed

for the electrical analysis of large scale circuits to reduce the

CPU time and storage requirement. A survey of these methods is

given in (4). These methods rely on the decomposition of the circuit

equations at various levels (i.e. linear, nonlinear and differential).

Among them, timing simulation first introduced'in MOTIS (£1 is perhaps

the most well known method. The solution method upon which timing

simulators are based applies decomposition to the nonlinear equations

derived from the discretization of the differential equations describing

the circuit to be analysed. The implementation of decomposition

together with an event scheduling scheme in mixed-mode simulators such

as SPLICE C61 and DIANA Qi)_ leads to electrical simulators which

are considerably faster than standard circuit simulators. However,

recent studies (71 nave shown that timing simulation algorithms tend -

to handle poorly circuits containing tight couplings between subcircuits

(e.g. floating capacitive couplings and pass transistor couplings) and

have stability problems. Hence these algorithms are suitable to a

restricted class of circuits: MOS circuits with quasi-unidirectional

device models.



This paper describes a new MOS circuit simulator RELAX.

RELAX uses a new analysis method called Waveform Relaxation Method

which is fully described in (l) , This method is based on the

decomposition of the differential equations describing the

circuit to be analysed. Theoretical studies (1) have shown that,

under very mild conditions which are usually satisfied in practice,

the method has guaranteed convergence when applied to MOS circuits.

Preliminary tests indicate that RELAX is at least one order of

magnitude faster than the standard circuit simulator SPICE2 with

the same accuracy.

This paper is organized as follows. Section II gives a brief

overview of the Waveform Relaxation Method and its circuit

interpretation. Section III describes the basic techniques used

in RELAX to implement the method. In particular, the scheduling

algorithm and the techniques to speed up the analysis are described

in detail. Section IV gives the organization of RELAX and Section V

shows some experimental tests and comparisons with the standard

circuit simulator SPICE2.
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II. Outline of the Waveform Relaxation Method

In this section we give the basic concepts of the Waveform

Relaxation Method (WRM) which is the heart of the algorithm used in

RELAX. WRM is an iterative method based on a relaxation scheme which

applies decomposition directly to the system of differential equations

describing the dynamical behaviour of the circuit to be analysed. The

method can be easily explained by its application to a circuit described

by the following differential equations.

•

*(x(t), xCt), u(t) ) « 0 ; x(o) o Xq (2.1)

.r
where u(.t) 6 R is the vector of input voltages and their time

n • «

derivatives, x(t) € R is the vector of unknown node voltages, x(t) e R

is the vector of the time derivative of x, xQ € Rn is the given initial
value of x and f: Rnx Rnx Rr * Rn is a continuous map.

WRM procedure to analyse (2.1) from t»o to t«T .

Comments: the superscript k denotes the iteration count, the subscript i

denotes the component index of a vector and £ is a small

positive number.

Step 1 : (.Initialization)

Set k=o and make an initial guess of the waveform
° r 1 Ox(t) ; t€ [o,TJ such that x(o) « xQ .
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Step 2: .(Iteration)

Repeat

k - k+1

For i» 1, 2, ..., n

Begin

Solve for x* (t) ;t € [o,t] from

•k *k »k-l «k-l
^i ,..., X. , X. ^- ,..., X

k k k-1 k
X* ,..., X . , X .̂ -m ,..., X

with x (o) • x^
o

• u) « o (2.2)

End

k k-1

Until max max |x.(t) - x. (t) |< £ .

l<i<n tero,T]
(i.e. the iteration converges).

Note that equation (2.2) has only one unknown variable x. . The variables

k-1 k-1

x.+, ,..., x are known from the previous iteration and the variables

k k
x1 ,..., x._, have already been computed.

As an example, consider the MOS circuit shown in Fig. 2.1. For the

sake of simplicity we assume that all capacitors are linear. Hence the

dynamical behaviour of the circuit can be described as follows:

• • *

t-cl+c2+c3) vl " il^vl) + i2^vl'u) + i3Cvl'u2'V2) " C1U1 " C3U2 = ° (2-3a)

Y



CVC5+C6^2 -C6V3 "WW ~c4»2 *Q f2'3h)

(c6+c7)v3 - c6v2 - i4Cv3l + i5Cv3.v2) - Q C2.3c)

Applying the WRM procedure to (2.31, the k.-th. iteratton corresponds

to solving the following equations:

(cl+c2+c3^1 "1l(-^> +^O^.ui +l3CvJ.U3.vJ-1) -c1u1-c3ia- 0(2.4al
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<VW *2 "^T1 " i3('Vl' U2' V2> " c4*2 =° (2*4b)

*k #k(c6+c7) v3 - c6v2 _i4(v|) + i5(v£, v*) =o (2.4c)

The circuit interpretation of equation (2.4) is shown in figure 2.2.

If we consider that the original circuit in figure 2.1 consists of

3 subcircuits s,, s2 and s3, then the decomposed subcircuits S,, S« and So

shown in Figure 2.2 are actually s,, s2, and s« together with additional

components to approximate the loading effects due to the rest of the

circuit. Hence we can describe the WRM procedure for analyzing the

circuit in Fig. 3.1 in circuit terms as follows:

Step 1: Set k=o and make an initial guess of v°(t), v°(t); t€[o,T].

Step 2: Repeat

k * k+1

]r
Analyses, fcr its output waveform v,(.) by approximating

the loading effect due to s2.

k kAnalyse s2 for its output waveform v2(.) by using v1(.) as

its input and approximating the loading effect due to s3-

k kAnalyse s« for its output waveform v«(.) by using v2(.)

as its input. "-



Until the difference between {(v*(t), v2(t), v£(t); te [o,T]}

andCv*""1^), v2-1(t), Vg"1^); t€ [0,T]} is sufficiently small.

From the above procedure and example we see that each component of

the decomposition is a dynamical subcircuit which is processed for the

entire time interval [o,T] in a fixed order. When each subcircuit is

being processed, the interactions (or couplings or loadings) from the

rest of the circuit are approximated by using the information obtained frorr

the most recent iteration. The iteration is carried out until satisfactory

convergence of all waveforms is detected. It can be shown (l) that for th

MOS circuit in fig. 2.1 the sequence of waveforms generated by the WRM

procedure will always converge to the correct waveform independent of the

initial guess provided that c2, cg and c- are non zero. This result can

be generalized to any MOS circuit in which th.ere is a grounded Clinear or

nonlinear) capacitor to every output node of every subcircuit. This

condition for convergence is very mild for any practical MOS circuit.

Hence WRM can handle any MOS circuit containing tight couplings between

subcircuits such as logic feedbacks, pass transistor couplings and

floating capacitive couplings without losing its convergence property.

The rate of convergence is linear, a typical result for relaxation methods.
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Fig. 2.2 The resulting decomposition of the circuit in Fig. 2.1
at the k-th iteration of the WRM procedure.
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III. Basic Algorithms in RELAX

RELAX implements a modified version of the WRM procedure described

in the previous section. These modifications are done to improve the

speed of convergence of the algorithm and exploit the structure of the

class of circuits to be analysed, i.e., MOS digital circuits. These

modifications are described as follows.

3.1) Rather than having strictly one unknown per each component of the

decomposition as stated in the previous section, RELAX allows each

decomposed subcircuit - to have more than one unknown. In fact RELAX

decomposes the circuit to be analysed into subcircuits each of which

corresponds to a physical subcircuit specified by the user such as NOR,

NAND, etc.

3.2) Each decomposed subcircuit is processed by using standard circuit

analysis techniques. Backward Euler integration method with variable

timesteps is used to discretize the differential equations associated with

the subcircuit and the Newton-Raphson method is used to solve the nonlinear

algebraic equations resulting from the discretization. Since the number of

unknowns associated with a subcircuit is usually small, the linear equation

solver used by the Newton-Raphson method is implemented by using standard .

full matrix techniques rather than using sparse matrix techniques. Note

that in RELAX each subcircuit is analysed independently from t=o to t=T

using its own timestep sequence controlled by the integration method, while

<?



in a standard circuit simulator the entire circuit is analysed from

t=o to t*T using only one common timestep sequence. In RELAX, the timestep

sequence of one subcircuit is usually different from the others but

contains, in general, a smaller number of timesteps than that used in a

standard circuit simulator for analysing, the same circuit.

3.3) The order according to which each subcircuit is processed is

determined in RELAX prior to starting the iteration by a subroutine called

"scheduler". Although it has been shown (1) that scheduling is not

necessary to guarantee convergence of the iteration, it does have an impact

on the speed of convergence. Assume now that the circuit consists of

unidirectional subcircuits with no feedback path. If the subcircuits are

processed according to the flow of signals in the circuit, the algorithm

used in RELAX will converge in just two iterations (actually the second

iteration is needed only to verify that convergence has been obtained).

For MOS digital circuits which contain almost unidirectional subcircuits,

it is intuitive that convergence of the WRM procedure will be achieved more

rapidly if the subcircuits are processed according to the flow of signals

in the circuit. The scheduler traces the flow of signals through the

circuit and orders the processing of subcircuits accordingly. To be able

to trace the flow of signals, the scheduler requires the user to specify the

flow of signals through each subcircuit by partitioning the terminals of the

subcircuit into input and output terminals. In general, a designer can

easily specify what the flow of the signals is intended to be even in a

subcircuit which is not unidirectional such as a transmission gate or a

subcircuit containing floating capacitors between its input and output

terminals. Note that the analysis algorithm in RELAX will indeed take into



account the bidirectional effects .corr«ctly. To describe the algorithm

used by the scheduler, we need the following definition.

Definition 3.1 A subcircuit s2 is said to be a fanout of a subcircuit

s1 if an input terminal of s2 is connected to an output terminal of s^

i.e., an output of s^ is fed as an input to s2.

Before staring the scheduling algorithm, we point out tfait all

the input signals to the circuit are considered by the scheduler to be

contained in a special subcircuit called "source" subcircuit which is

essentially a subcircuit with only output terminals.

Scheduling algorithm:

Comment: X is an ordered set of subcircuits. At the compleiton

of the algorithm, x contains all the subcircuits and the

order in which each subcircuit is placed in x is the order

in which it is processed by RELAX.

Start: Set X « {source circuit} and Y »{fanouts of the source subcircuit }

Loop : Set Z • # i.e. clear the temporary set Z.

For each subcircuit s in Y

Begin

If (all inputs of s come from the outputs of subcircuits
in X) then

Begin

Delete s from Y and add it to £.
Include in Z the fanouts of s which are not already in
X,Y or Z

End

End ((



If (Z is not empty) then include Z in Y and go to Loop.

Else if (Y is empty) then stop

Else Begin comment: there is a feedback loop.

Select a subcircuit s from Y.

Delete s from Y and add it to X.

Include in Y the fanouts of s which are not already

in X or Y.

Go to Loop.

End.

For example, the set X produced by the scheduler applied to

the circuit of fig. 3.1 is { source, s^, S5, S4, s2, S3} and the

set X produced by the scheduler applied to the circuit of fig. 3.2

is {source, s2, S3, s^} .

3.4) The first iteration in RELAX is carried out by assuming that

there is no loading effect due to fanouts. The "standard" WRM

procedure actually begins at the second iteration in RELAX. Hence,

strictly speaking, the first iteration in RELAX is used to generate

a good initial guess for the actual WRM procedure.
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In addition to the above modifications, RELAX incorporates

two important techniques to speed up the process of analysing a

subcircuit. The key idea is to bypass the analysis of a subcircuit

for certain time intervals without losing accuracy by exploiting

the information obtained from previous timepoints and/or from

previous iterations. Similar techniques have been used in other

simulators. For example, SPICE uses a bypass technique in its

Newton Raphson iteration. When a subvector of the vector of

unknowns does not change its value significantly in the previous two

Newton iterations, the part of the Jacobian matrix associated with

the subvector is not recomputed. SPLICE, on the other hand, uses an

event scheduling technique by which a subcircui-t is not scheduled

to be analyse at time t if it is found to be inactive.

The two techniques used in RELAX are discussed by showing its

application to the analysis of the subcircuit s^ of the circuit

shown in fig. 3.3, a schematic diagram of the circuit in fig. 2.1.

As in section 2, we denote the output voltages of s^ and s2 at the

k-th iteration by V^ and V§ respectively.

a) The first technique is based on the latency of s^ and is similar

to the technique described in (8) . According to 3.4, si is analysed

in the first iteration with no loading effect from s2. After it has

t?



been analysed for a few timepoints, its output voltage v^ is found

to be (almost) constant with time, i.e., ^(0.01) »0 (see fig. 3.3b).

Since the input of s^, i.e. u^, is also constant during the interval

[o.Ol, 1.9] ,v^ will also remain constant throughout the interval
[o.Ol, 1.9J. The subcircuit s^ is then said to be latent in the

first iteration during the interval [o.Ol, 1.9] and its analysis

during this interval is bypassed. From fig. 3.3b, s^ is latent again

in the interval [2.15, 3J. Note that, according to 3.4, the check

for latency of s^ after the first iteration will include u2 and v2 as

well as ux since they can effect the value of vx (see fig. 2.2). For

most digital circuits, the latency intervals of a subcircuit usually

cover a large portion of the entire simulation time interval [0, t]

and hence the implementation of this technique can provide a considerable

saving of computing time as shown in Table 3.1.

b) The second technique is a unique feature of RELAX. It is based on

partial convergence of a waveform during the previous two iterations.

We introduce it by using the example of fig. 3.3 . After the first two

iterations, we observe that the values of vl and v? during, the

interval [l.7, 3.0J do not differ significantly (see fig. 3.3b, 3.3c

and 3.3©), i.e., the sequence of waveforms of v^ seems to converge in

this interval after two iterations. In the third iteration, shown in

fig. 3.3d, sx is analysed from t*0 to t*1.8 and v^(1.8) is found to be
almost the same as v^(1.8). Moreover, during the interval [l.8, 3J ,

<Y



2 **the values of u^, v2 and u2 which effect the value of vj3 (see fig.2.2)

also do not differ significantly from the values of u^, v^ and u2

which effect the value of v2 . Hence the value of v^ during the

interval [l.8, 3Jshould remain the same as v^ and the analysis of s^

during this interval in the third iteration will be bypassed. This

technique can provide a considerable saving of computing time as shown

in Table 3.1 since the intervals of convergence can cover a large

portion of the entire simulation time interval fo, t], especially in

the last few iterations. Note that the subcircuit need not be latent

during the intervals of convergence although overlapping of these

intervals with the latency intervals is possible.
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Fig. 3.3 a) A dynamic shift register b), c) and d) Output

waveforms at the first, second and third WRM iteration

respectively.

e) The difference of the waveforms between the first and
! .

second iteration.
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Table 3.1 Comparison of computer time used by RELAX

with and without the latency and partial waveform

convergence techniques.

iteration

number

CPU time (seconds)

case 1 case 2 case 3 case 4

1

2

3

4

5

0.363

0.824

0.821

0.828

0.832

0.255

0.704

0.705

0.704

0.695

0.360

0.814

0.242

0.151

0.097

0.258

0.695

0.238

0.104

0.016

Total 3.668 3.063 1.664 1.311

case 1 : without both latency and partial waveform convergence

techniques.

case 2 : with only latency technique.

case 3 : with only partial waveform convergence technique.

case 4 : with both latency and partial waveform convergence

techniques.
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IV. Organization of RELAX

RELAX is written in FORTRAN and runs in interactive mode.

The main routine of RELAX acts as an interface between the user

and the processors (i.e. subroutines). It interprets the input

command and activates the corresponding internal processors

(implemented by subroutine calls). Some typical commands are for

1) reading the description of the circuit from an external file,

2) continuing the execution of the WRM iteration, 3) setting the

accuracy of the analysis, 4) monitoring the waveforms at each

iteration and 5) leaving the program.

The organization of the main internal processors of RELAX is

shown in fig. 4.1. We now describe the function of each

processor .

The input circuit processor reads the description of the

circuit from the specified external file and stores it in a

compact form in an internal array. As mentioned in the previous

section, the circuit must be entered as an interconnection of

subcircuits whose input and output terminals are clearly specified

(an example of a circuit description is shown in fig. 4.2). The

scheduler reads the internal array produced by the input circuit

processor and generates a fanout table for each subcircuit

according to definition 3.1. Then it executes the scheduling

algorithm described in the previous section to produce a



scheduling table that gives the order in which each subcircuit will be

processed in the WRM iteration. Both the input circuit processor

and the scheduler are actually preprocessing steps for the WRM

iteration since they are performed only once for the circuit to

be analysed.

The analysis of a subcircuit using the WRM iteration is

implemented in RELAX as a two-phase process: the setup phase

performed by the intermediate code generator and the analysis phase

performed by the subcircuit analyser. The intermediate code

generator reads the description of the subcircuit and its fanouts,

obtained by the input circuit processor and the scheduler, and

generates an intermediate code. This intermediate code is used by

the subcircuit analyser to analyse the subcircuit from t»o to

t=T, where T is the user-specified simulation time interval. The

subcircuit analyzer consists of several subroutines implementing the

integration method, the Newton-Raphson method, the linear equation

solver and the two techniques for speeding up the analysis discussed

in the previous section. The output and internal voltages of the

subcircuit at the sequence of timepoints used by the subcircuit

analyzer as well as the sequence of times are stored in an internal

waveform storage which stores the discretized waveforms associated

with all nodes in the circuit. To analyse a subcircuit at a timepoint,

say tj, the subcircuit analyzer has to know the values of its input

30



voltages and the voltages associated with its fanouts at time

t^. However, since the sequence of timepoints for analysing one

subcircuit may be different from the others, t]_ may not coincide

with any of the timepoints associated with the required voltages

in the waveform storage. Hence an interpolation has to be performed

to obtain the required values when such case arises. In RELAX, the

subcircuit analyzer obtains the values of the input voltages and the

voltages of the fanouts of a subcircuit from an utility subroutine,

called the interpolator, which reads the waveform storage and perform

the interpolation (if necessary) to get the values at the specified

timepoint.

In addition, the interpolator reads the waveform storage and

performs the interpolation (if necessary) to get the values of the

output and internal voltages of the subcircuit at the specified

timepoint in the previous iteration. The differences between the

values and the corresponding values in the current iteration are also

stored in the waveform storage. These differences will be used in the

next iteration by the routine implementing partial waveform

convergence technique described in the previous section. At the end

of the analysis of the subcircuit, the discretized waveforms associated

with the subcircuit in the previous iteration are no longer needed

and the storage occupied by them can be reused.
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At present, RELAX is still in an experimental stage, it

can handle MOS digital circuits containing NOR gates, NAND gates,

transmission gates, multiplexers (or bands of transmission gates

whose outputs are connected together), super buffers and

cross-coupled NOR gates (or flip-flops). It uses the Schichmann-

Hodges model (9) (or the level 1 MOS model used in SPICE2) for

the MOS device. All- the computations are performed in double

precis-ion and the results are also stored in double precision.

Although RELAX code is rather small, approximately 4000 FORTRAN

lines, it requires a considerably large amount of storage for the

waveforms, especially when large circuits are analysed. For an

MOS circuit containing 1000 nodes with 100 analysis timepoints per

node, the waveform storage is required to store approximately

3x1000x100 floating point numbers (corresponding to 2.4 megabytes

if each number is stored in 64 bits). Further enhancements of

RELAX are

1) Capability of handling user-defined subcircuits.

2) Provision of more accurate MOS models. The user, if desired,

can choose to use a simplified MOS model in the first few

iterations for a fast analysis and switch to a more accurate

model in the later iterations.

3) The implementation of storage buffering scheme. In this scheme,

the amount of primary storage allocation for the waveforms is

limited. When this storage is not enough to store all the

waveforms, a secondary storage such as a disk is used to supply

the additional storage needed. _^
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Since the access time of the secondary storage is much longer than

that of the primary storage, the speed of the analysis of a

subcircuit will be greatly reduced if the interpolator has to

access the secondary storage directly in order to get the desired

values. The buffering scheme is designed to cope with this

situation and ensure that all the waveforms associated with the

analysis of a subcircuit already reside in the primary storage prior

to the beginning of the analysis of the subcircuit. This is achieved

by using the following algorithm.

Simplified storage buffering algorithm

Comment: s denotes the subcircuit currently being analysed and S

denotes the set of the waveforms required in the analysis

of s. For the sake of simplicity, we assume that the

storage of the waveforms associated with the output and

internal voltages of s in the previous iteration is re

used by the corresponding waveforms in the current

iteration. We also assume that S is in the primary storage

Loop: From the scheduling table, determine the next subcircuit

to be analysed.

Set S » {waveforms required in the analysis of the next

subcircuit } .

If (S is in the primary storage) then go to WAIT

Else Begin

£3



Set Y • {waveforms in S which are in the secondary storage] .

Select a set Z of the waveforms in the primary storage

which are not in S or S such that the amount of

storage occupied by Z is larger or equal to that

of Y.

Transfer Z to the secondary storage.

Transfer Y to the primary storage occupied by Z.

Go to WAIT.

End.

WAIT: Wait until the analysis of s is finished.

Set s * the next subcircuit and S • S .

Go to LOOP .

Note from the above algorithms that the storage buffering

process can be executed concurrently with the process of analysing the

subcircuit s since they do not access the same storage locations.

Therefore by using this scheme RELAX will be able to analyse large

circuits without requiring a large amount of primary storage and

without reducing its speed.
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OF RELAX |--*|
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INPUT CIRCUIT
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Fig. 4.1 Organization of RELAX
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(CIRCUIT DESCRIPTION ]
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[ FANOUT TABLES
I SCHEDULING TABLE

INTERMEDIATE CODE

WAVEFORM STORAGE



Comment: Description of the circuit shown in fig. 3.3 .

si inverter input » 1 output » 2

s2 inverter input « 3 output = 4

s3 transmission-gate input =5,2 output = 3

Comment: Description of the models of MOS transistors.

Model ENHANCE NMOS {MOS parameters such as threshold

voltages, transconductance, etc. }

Model DEPLETION NMOS {MOS parameters) .

Comment: The connectivity of each MOS device is described as

: MOS-name drain-node gate-node source-node body-node &

: MOS-model-name width length .

Comment: Description of transmission gate.

subcircuit transmission-gate input * source, gate output c drain

M0S1 drain gate source GROUND ENHANCE .vidth = lu length = lu

ends

Comment: Description of an inverter

subcircuit inverter input * A output = A

MOSload VDD A A GROUND DEPLETION width «= lu length = ly

MOSdriver A A GROUND GROUND ENHANCE width • 4u length = lu.

ends

fig. 4.2 Example of an input circuit description for

RELAX.

2Q>



V. RELAX: experimental results and a comparison with SPICE.

Several MOS digital circuits have been analysed by RELAX

and the results have been compared with those obtained by the

standard circuit simulator SPICE (version 2.D). In these tests,

the two simulators use the same MOS model, i.e. the Schichman-

Hodges model (or SPICE2 MOS model level=l), so that the

accuracy of RELAX can also be verified by using SPICE2 outputs

as references. The schematic diagrams of the MOS circuits being

tested and their output waveforms obtained by RELAX and SPICE2

are shown in Fig. 5.1 through Fig. 5.5 . For RELAX output

waveforms, each rectangular mark denotes the computed value at

every other two internal timepoints to illustrate the effect of

the implemented latency technique. The two simulators run on a

HARRIS computer model 550. A comparison of the CPU time spent by

each simulator is given in Table 5.1 . The tabulated CPU time for

SPICE is the total CPU-seconds spent by its transient analysis

routine. The tabulated CPU time for RELAX is the total CPU-seconds

spent by the intermediate code generator, the subcircuit analyzer

and the interpolator (see Fig. 4.1) . It is clear from the figures

and the table that RELAX can analyse MOS digital circuits at least

one order of magnitude faster than SPICE2 while achieving the same

accuracy. Preliminary comparisons (1) with the timing simulation

routine of SPLICE (6) also indicate that the speed of RELAX is at

the same order as the speed of a timing simulator.
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Fig. 5.1 Schematic diagram of a dynamic shift resistor and

the output waveforms obtained by RELAX and SPICE2
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Fig. 5.2 Schematic diagram of a non-overlapping two-phase clock

generator and the output waveforms obtained by RELAX

and SPICE2.
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Fig. 5.3 Schematic diagram of a stack controller (from (10)
page 73) and the output waveforms obtained by RELAX
and SPICE2.
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Fig. 5.4 Schematic diagram of a dynamic shift-up register array

and the output waveforms obtained by RELAX and SPICE2.
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Fig. 5.5 Schematic diagram of a two-bits PLA full-adder and

the output waveforms obtained by RELAX and SPICE2.
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Table 5.1

A comparison of CPU time between RELAX and SPICE2.D

Circuit of Fig.5.1 Fig.5.2 Fig.5.3 Fig.5.4 Fig.5.5

# of unknown nodes 3 7 18 26 45

# of MOS devices 5 16 38 51 263

CPU-SPICE (sec) 9.72 53.53 184.4 225.12 790.2

CPU-RELAX (sec) 1.31 3.83 3.92 10.09 17.82

# of RELAX iterations 5 5 5 5 4

CPU-SPICE/CPU-RELAX 7.4 14.0 47.1 22.3 4±.3

3-J



VI. Conclusion.

We described the organization and the analysis techniques of

a new circuit simulator RELAX which implements the Waveform Relaxation

Method* RELAX exhibits dramatic improvements over standard circuit

simulators such as SPICE2. The Waveform Relaxation Method is based

on the decomposition of the differential equations describing the

dynamical behaviour of the circuit to be analysed. It is a reliable

method since it is guaranteed to converge to the exact solution

of the circuit equations. We also described a few important

techniques which account for partial improvements in the speed of

RELAX. They are 1) Scheduling techniaue which improves the SDeed

of convergence of the Waveform Relaxation Method. 2) Latency and

partial waveform convergence techniques which increase the speed

of the analysis of each subcircuit and 3} Storage buffering

technique which enables RELAX to simulate large circuits without

using a large amount of primary storage.

Test results have shown that, for typical MOS digital circuits,

RELAX is at least one order of magnitude faster than the standard

circuit simulator SPICE2, while achieving the same accuracy.
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