
 

 

 

 

 

 

 

 

 

Copyright © 1982, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



DESIGN OF-MULTIVARIABLE FEEDBACK SYSTEMS

WITH SIMPLE UNSTABLE PLANT

by

C. A. Desoer and C. L. Gustafson

Memorandum No. UCB/ERL M82/60

12 March 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



DESIGN OF MULTIVARIABLE FEEDBACK SYSTEMS

WITH SIMPLE UNSTABLE PLANT

C. A. Desoer and C. L. Gustafson

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT

This paper proposes a design methodology for distributed linear

multivariable feedback systems with simple unstable plants (a simple

unstable plant has either first or second order unstable poles). The

methodology developed provides a global parametrization of all realizable

compensators which stabilize a given simple unstable plant. A design

example is given to show that this methodology can be used to generate,

in an appropriate computer aided design environment, controllers which

are optimal with respect to designer-specified criteria. Additionally,

it is shown that the nature of the design methodology gives geometric

insight into the dynamics of the process whereby an unstable plant

is stabilized.



I. Introduction

In design of linear multivariable feedback systems, it is often

desirable to be able to characterize the class of all proper controllers

which stabilize a given plant. Characterizations of this class have

been studied throughout the literature: first by Youla, et al. [You. 1],

and subsequently by many others [Per. 1], [Des. 1], [Sae. 1]. For the

case in which the plant is stable, a particularly simple and convenient

parametrization of this class has been developed [Des. 2], [Zam. 1].

This parametrization has been shown to be very useful in computer-aided-

design: many practical design constraints can be easily imposed using

a design methodology based on this parametrization [Gus. 1]. This paper

will show how this parametrization and thus the design methodology may

be extended to distributed linear multivariable feedback systems with

unstable plants. Although the theory will be developed only for plants

whose unstable poles are first or second order (in the Laurent expansion

around that pole), it can be extended to arbitrary unstable distributed

plants.

We will also show that the results obtained have a geometric flavor;

they can be used to give insight into the mechanism by which an unstable

plant is stabilized.

Finally, the design methodology is applied to an example plant in

such a way as to yield a closed-loop system with a decoupled I/O map

which satisfies several inequality constraints, and minimizes a cost

function. The inequality constraints and cost functions represent certain

practical design goals such as avoiding plant saturation, and

desensitizing the closed-loop response to output disturbances and/or

plant perturbations. This example demonstrates that the design

methodology can indeed be extended to unstable plants.
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The paper is organized as follows:

Section II describes the feedback system and some of its basic

properties.

Section III developes the theory for the case in which the plant

has only first order unstable poles.

Section IV develops the theory for the case in which the plant has

first and second order unstable poles.

Section V presents the design example.

Section VI contains the conclusions.

Special notations and definitions

For ae R (typically a <0), Ca+ denotes the closed right half
00

plane Re(s) >a. f € A(a) iff f(t) = f.(t) + I f.6(t-t,) where
* i=0 1 1

fa : R h. ]R with fa(t) =0 for t <0, t - fa(t) exp(-at) e L];
t0 =0, t. >0, Vi >0; Vi, f. € R and i ~ f. exp(-at.) e iy f e AJo)
iff, for some a1 <a, f e A(a1). ? denotes the Laplace transform of f.
A_(cr) := {f :f €A_(a)}. A°°(a), (A (a), resp.), denotes the subset of

-,o .

A_(a) consisting of those f that are bounded away from zero at infinity

1n ^o+9 ^ that go t0 zero at """^nity in ^+, resp.).
^ /S «N -I

8(a) := [A_(a)][A"(a)]~ ,the commutative algebra of fractions g= n/d

where ne A.(a) and d€ A™{o) [Cal. 1], [Cal.3]; for the general treat

ment see [Jac. 1, Sec. 7.2], [Bou. 1, Chap. II, Sec. 2].

S0(a) := CA_f0(a)][£(a):r1. A. := A.(0), B:= 8(0). Let A€Imxn,
then a[A] := the largest singular value of A [Ste. 1]. If S is a set,

then e(S) denotes the set of matrices whose elements are in S.

For H e 8(a), H :s h- H(s), H' denotes the derivative of H with

respect to s:H'(s) := -jg H(s), Vs €C.
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II. System Description

Throughout, we consider the closed-loop system S(P,C), shown in

Figure 1. We define [Zam. 1]

Q := C(I+PC)
-1

Equivalently,

C= Q(I-PQ)"1

Then, we have H
yu

_ur
H-

>"
LuzJ Lyd

yu

cfi+pc)"1 -cpd+cp)"1
pcci+pc)"1 pci+cp)"1

Also, H
eu

eu

is given by

(I+PC)"1 -PU+CP)"1
Cd+PC)"1 (I+CP)"1

Note that H . :dQ h- y2 is given by:
2W0

Hv d =(I+pc)_1 =I-PQ
y2a0

given by

Q -QP

PQ P(I-QP)

I-PQ -P(I-QP)

Q I-QP

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

Suppose that P€ E(80(a0)).

that [Des. 2, Thm. 1, p. 410]

In this case, (2.1) and (2.3) imply

Ce EiB(o0)) oQ G E(B(oq)) (2.6)
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Definition 2.1. The closed-loop system S(P,C) is said to be A_(aQ)-stable

if and only if Hyu € E(AjaQ))

III. Stabilization of Simple Unstable Plants: First Order Pole(s)

We consider unstable multivariable plants which satisfy the

following assumptions:
n xn. ~ nnxni

(Al) P(s) e B (a ) ° n (i.e., P is str. proper and Pe B(a ) ° ^
n xr

(A2) P(s) =j^r- U^j +Pa(s), where ^e^jU^t0 and
n.xr ^ n xn.

V, € I 1 have rank r; and PJs) e A (o ) ° V
I or ' -fO o

Assumption (A2) means that P has one first-order unstable pole with

MacMillan degree r.

The following theorem gives a global parametrization of all
n_.xn

A_(a )-stable closed-loop systems S(P,C) with C e 8(a) i o o

Theorem 3.1. Let P satisfy (Al) and (A2). Let C := Q(I-PQ)"1. Then
n.xn*

S(P,C) is A_(aQ)-stable, with C€B(aQ) 1 °

(i) Qis AjaQ)-stable (i.e., Q6 E(AJaQ))) (3.3)

(ID Q(VU1 =Vx and V{Q(X1} =erxn (3'4)
i r o

'Either Hy u(X,)^ =U, (3.5)

or VX2u2(Xl) =̂ i (3'6)
Comments: (a) Note that for some Q's satisfying conditions (i)-(iii),

the corresponding compensator C = Q(I-PQ) is also unstable: so, in

such cases, the theorem guarantees stability of S(P,C) with P and, C

unstable.
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(b) Condition (ii) amounts to guaranteeing that the unstable pole

at s = X-j in Pi?) is cancelled by Q in the expressions PQ and QP.

Similarly, condition (tii) guarantees that the same pole will not appear

in P(I-QP).

(c) The resulting feedback system is A_(a )-stable, and is

robustly stable: indeed, suppose that C = Q(I-PQ) is either minimally
o

realized, or realized with only C hidden modes, then, for the nominal
o"

system, the closed-loop characteristic function is bounded away from

+

zero in t + . Now, if small perturbations are allowed on P and C, then
o

the closed-loop characteristic function undergoes only small perturbations,

and consequently, by the usual argument based on Rouche's theorem, the

perturbed characteristic function is bounded away from 0 in C +; hence
o

the perturbed closed-loop system remains A_(a )-stable.

(d) Let 5€Rr, u := U-,£ €R(U-,), then (3.5) implies that
H« (X,)u = u, for all such u; i.e., at the frequency X-., the I/O map,

Hw , has unity gain in those directions in which P(s) has a pole at
y2ul
s=X,.

* n.

(e) An input u2(s) £ A_(0 produces an output y2(s) =H (s)u2(s)

= P(s)He (s)u2(s); thus y2(s) has a pole at s= X1 6 Ca + with residue
2 2 o

U-jV-jH (X-j)u2(X-j). Hence, condition (3.6) implies that for all such

inputs Hu „ (s)u9(s) = P(I-QP)(s)u?(s) has no pole at s = X,: i.e., noney2u2 l c- i

of these inputs can excite X-,, the unstable pole of the plant. Condition

(3.6) can thus be interpreted as: at the frequency X-j, the closed-loop

It is crucial to note that it is C — and not Q — that is built into
the feedback system. Consequently, the characteristic function of
S(P,C) may be written — using obvious notation for the coprime
factorizations — as X= det(DciDDr+NclNDr^ '•Ca1, ^*
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map H :u2 »-• e2 (from the input u2 to e2, the input of the plant)

has a transmission zero in the subspace from which it is possible to

excite the unstable pole of the plant.

(f) Straightforward calculation shows that if conditions (i)

and (ii) hold, then (3.5), (3.6) and

v{q,(x1)u1 =ir

are equivalent.

proof:

Since Qis A_(aQ)-stable, it is analytic at s = X,. Thus, we can

write the Taylor's series for Q(s) at s = X,:

Q(s) =Q(X1) +(s-X^ Q'^) +0(s-X1)2 (3.7)

So,

(PQ)(s) =[(^^VJ +Pa(s)][Q(X1) +(s-X^Q^) +0(5^)2] (3.8)

=(i^-)U1vjQ(X1)+Hy2Ui(s)

where H (s) is the sum of the remaining terms. Note that H is
y2ul A y2ul

A_(aQ)-stable, since Pjs) and Q(s) are A_(aQ)-stable. Now, by (3.4),

(PQHs) = Hv u (s)
y2ul

Thus, PQ is A_(aQ)-stable.

Also,

(QP)(s) =[Q^) +(s-X^Q'U^ +0(s-X1)2][(iIL)U1v{ +Pa(s)]

=(FL)Q(X1)U1vj +HyiU2(s) (3.10)
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where H (s) is the A_(a )-stable sum of the remaining terms. Now,

by (3.4),

(QP)(s) = H (s)
ylu2

Thus, QP is A (aj-stable. Also, H. „ = I - QP is A (aj-stable.
— O Cnlln — 0

Finally, since H (s) is analytic at s = X..,
y2ul '

[(I-PQ)P](s) = C(I-Hy u )P](s)
y2ul

=(i^7)[I-Vi(Xi)]UiViT +HWs)
where H (s) is the A (a.)-stable sum of the remaining terms. Now,

y2 2 "
by (3.5),

[(I-PQ)P](s) = Hv (s)
y2u2

/N

Thus, (3.3) - (3.5) imply S(P,C) is A (aj-stable. Also, since H_ „ (s)- o e2u2

is analytic at s = X,,

[P(I-QP)](s) = (PH )(s)e2u2

=t^Vl +Vs^[He2u2Ul)+0(S"Xl)]
=̂ UlVlHe2u2(Xl)+V2(s)

where H (s) is the A (a )-stable sum of the remaining terms. Now,
y2u2 - o

by (3.6),

[P(I-QP)](s) - Hv (s)
y2u2

/\

Thus, (3.3), (3.4), and (3.6) imply S(P,C) is A_(aQ)-stab1e and it follows
n.xn

from (2.6) and (3.3) that C€ B(aQ) . So, for either of the
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n.xn

conditions (3.5) or (3.6), S(P,C) is A_(aQ)-stable with C€ B(aQ)

=» By (2.3), S(P,C) € E(A_(o0)) implies that Q, PQ, QP and P(I-QP) are

A_(a )-stable. So, condition (i) is satisfied immediately.

Proof of Condition (ii): By assumption PQ = Hw is A (an)-stable.
2 1 "

By calculation,

(PQ)(s) =[(s^-J^vj +P0(s)]Q(s)

Thus, since P and Q are A (a )-stable, P Q is A (aJ-stable, and hence
a - o a - o

(^-Ju^vJQfs) is A_(aQ)-stable; thus U-jVJQU-,) =6(if not, then

IT *( , )U-iV-.Q(s) has a pole at s = X-i, and hence is not A_(a )-stable).

And, since rk(U-,) = r; N(U-j) = {6 },• and this condition reduces to

v{q(X1)=6 (3.20)
0

Similarly, since QP is A_(aQ)-stable, (sTJ-)Q(s)uivj is AjaQ)-stable,
and thus, since N(V,) = {9r},

Q(x1)u1 =eniXr (3.21)

Proof of Condition (iii): .By assumption H. , Hv/ ,. and Hv/ „ = P(I -QP)e2u2 y2u1 y2u2 ni

are A_(a )-stable. By calculation

[P(Ini-QP)](s) =(PHe2U2)(s) =Ujfyutf +P„(s)]He2U2(s)

Since P(Ini-(5P)vHe2u2 =\-*' and Pa are A.(o0)-stable, (^^vJH^fs)
must be A_(a )-stable. Thus,

VlHe2u2^l) "6rxni <3-22>
where we note that N(U,) = {0 }

Also,
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[(I„o-PQ)P](.) =[<VVl)P](s) =l\-\u^^/^a^
Since (I -PQ)P, PQ, and P are A>J-stable, lA-)Un -Hv „(s)]U,vj

a -o. 1 o '2 1
must be A_(cQ)-stable. Thus,

[I-Hy2Ul<VJulvi=e
and,

Hy2Ui(Xl)Ul =U1 (3'23)
since W(V]) ={ef}. n

Theorem 3.2. Let Psatisfy (Al) and (A2). Let C := Q(I-PQ)"1. Suppose

that, in addition, P(s) has full normal rank, and' has no transmission
n.xn0

zeros at s =X-,. U.t.c. S(P,C) is A_(a0)-stable with Ce B(aQ) n ° o

(1) Qis A_(an)-stable (3.24)
-x o

(ii) for n < n. for n >_ n.

(Hi)

Proof:

Q(VU1 • 9n.xr VJQ(X1) =6 (3.25)
rxn^

o

Either Hy u (x^U, =U, (3.26)

or ViHe2U2Ul)=e|-xni (3,2?)

=> This direction follows from Theorem 3.1.

<= (n^n^ By Theorem 3.1, to establish that S(P,C) is A_(aQ)-stable,

we need only prove vJq(X-j) =6rxn.
o R

Since P(s) has full normal rank, it has a right inverse P (s),

which is analytic in a neighborhood of X-i, because P(s) has no

transmission zero at s = X-,. Furthermore, since PQ = Hw M , for any
1 y2ul
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n.xn

such right inverse, there exists R(s) £ A_(aQ) such that

PR =6n„xnft and'
0 0

Q(s) =P_R(s)Hv (s) +R(s) (3.29)
y2ul

Now, using (A2), we obtain

In =(PP"R)(s) =(irrJ^vjP'̂ s) +(PaP*R)(s), Vs e c ' (3.30)

en xn =(PR)(s) * (i^T)UlVlR(s) +(paR)(s)' Vs GC (3'31)
oo 1

-RSince Pa(s), P (s), and R(s) are analytic at s = X-j, and since

N(U"i) = {6r>, (3.30) and (3.31) imply

V1P"R<V =erxnn and V!R<V - erxn ' ^'^
o o

By (3.24) and (A2), H „ = PQ is analytic in t ., except possibly at
y2ul V

s = X,, where it may at most have a first order pole. Suppose H

R y2U]
has such a pole: since the columns of P (s) are linearly independent,

and since R(s) is analytic at X1, then by (3.29), Qwould also have a

pole at s = X,. This contradicts (3.24). Hence H is analytic at

s = X-j. Consequently, equation (3.32) in equation (3.29) gives

VJQ(X1) =6rxn (3.33)
0

a ^ n-iXnnSo, by Theorem 3.1, S(P,C) is A_(aQ)-stable, and Ce B(aQ) 1 °.

The proof for nQ > n^ is dual to the above. n

Corollary 3.3. Let" the assumptions of Theorem 3:2 hold. If, in addition,

P is square (n0=n^), then the necessary and sufficient conditions reduce

to (i) and (iii) (note that (ii) is omitted).
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Proof: The proof follows easily from that of Theorem 3.2. °

Remark: Note that the theorems of this section can be easily extended

to the class of plants satisfying the two assumptions (Al) and (A3),

namely,
n xn.

(Al) P(s) 6B0(c0) ° 1

(A3) P(s) = > —L-iLV,, +p(s), where, for each 1<k<p,
k=i s"Ak K K a " "

nnxr. n.xr,, ^ r

\E% +; hGZ »Vk ec have rank V and Pa(s) G^.o^o*
o

For P satisfying (Al) and (A3), S(P,C) will be Ajo )-stable with
n-xn

C e 8(a) o The conditions (i)-(iii) of Theorem 3.1 are satisfied

for Xk, Uk and Vk, for each 1 < k < p.

So, in theory, the results of this section may be used to stabilize

any unstable plant whose instability results from first order C +-poles
ao

IV. Stabilization of Simple Unstable Plants: Second Order Pole(s)

We consider unstable multivariable plants which satisfy the

following assumptions:
n xn.

(Al) P(s) €B0(c0) ° '

(A4) P(s)M^)2R12 +(3^-)R11+Pa(s),
T nnXriwhere X, € I ;for j= 1,2, R.,. = U,-Vi ., and U1 .ei J,

n.xr. ^ n xn.

V1 .e C J each have rank r.; and P (s) e A_ 0(aQ) . Assumption

(A4) means that P has one second order unstable pole with MacMillan

degree equal to rk
Rll R12
R12 0

The following theorem gives a global parametrization of all
/s /v nixno
A_(aQ)-stable closed-loop systems S(P,C) with C(s) € B(aQ)
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Theorem 4.1. Let Psatisfy (Al) and (A4). Let C := Q(I-PQ)"1.
n.xn

Then, S(P,C) is A_(aQ)-stable, with C6 8(a) 1 ° *>

(1) Q is A_(a0)-stable (i.e., Q€ E(AjaQ))) (4.3)

<11> Q(VU12 =W and VlA)=Vn (4'4)1 Z 2 0

(iii) Q(X1)Rn =-Q'fX^R^ and R^Q^) =-R12Q' (X^ (4.5)

Either Hy u&i)Vn =U12 (4.6)

^ or Vl2He2u2(Xl) =er2xn. <4-7>

fEither Rn-Hy^jR^+H^tX^R^ (4.8)

Vlor Vni= R"V2(Xl> +Rl2"Wv (4'9)
Comments: (a) Conditions (ii) and (iii) are used to prove A_(a )-

stability of PQ and QP, and are implied-by the same. Conditions (iv)

and (v) are similarly related to the A_(a)-stability of P(I-QP).

(b) If R12 is full row (column, resp.) rank, then (4.6) ((4.7),

resp.) becomes

(He2u2(V =9n.xn.' resP'> <4-n>
Also, (4.8) ((4.9), resp.) becomes

H;2u/Al)Rl2-en0xn1 <4-12>

<Hi2u2<Xl>Rl2-en1xn1'resP') <4J3>
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(c) Straightforward calculations show that if conditions (i)-(iii)

hold, then (4.6), (4.7) and

R12 =R^Q'U^R^ +^R12Q"(X1)R12

are equivalent.

(d) Similarly, if conditions (i)-(iii) hold, then (4.8), (4.9) and

Rn =RnQ'(xi)Rn +^[R12Q,,(x1)Rn+RnQ,,(xi)R12^+lRi2Q",(Ai)Ri2

are equivalent.

Proof:

Since Q(s) is A_(a0)-stable, we can write its Taylor's series

expansion around s = X,:

Q(s) =Q^) +(s-X.,) Q'^) +Ofs-X^2 (4.14)

So,

(PQMs^C^^M^R^+PaWMs)

where H.. is A (aj-stable, since P_, and Q are A (a )-stable. Now,
ypUi — o oi — o

by (4.4) and (4.5),

(PQ)(s) = Hv ,. (s)
y2ul

/\

Thus, PQ is AjaQ)-stable.

Also,
2(QP)(s) =Q(s)[(iIL)R12 +(izLT)R11+Pa(s)]

2

(^) Q(VR12 +(^cqu^ii +Q'(^)Ri2]+ HyiU2(s)
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where Hw is A (aj-stable, since P and Q are A (aj-stable. Now,
y-iUp - o a - o

by (4.4) and (4.5),

(QP)(s) = Hv u (s)
ylu2

Thus, QP is A_(aQ)-stable.

Next,

[P(In -QP)](s) = (PHe )(s) = [(I. -Hv )P](s)
ni e2u2 no y2ul

A

So, since H (s) and H (s) are A (a )-stable, by the above proof,
e2u2 y2 1 "

they are analytic at s = X,. Thus they each have Taylor's series

expansions at s = X,, and hence,

[P(In.-QP)](s) =(l^AzH^V +̂ ^\^+RU%2u2^^\,:

"̂ )2[IVVl(V]R,! +(i^7,C(In0"Vl(Xl))Rl1
+h;2ui(Xi)Ri2] +"Ws)

•. — /\

where H and Hv are A (an)-stable, since H , H and P are
y2u2 y2u2 " ° e2u2 y2ul a"

A^(a )-stable. Now, by the uniqueness of the Laurent expansion for

[P(In -QP)](s) about s = Xp
i

R12 He2u2(Xl) - l\-Hy2u2(Xl>]R12

RllHe2u2Ul)+R12He2u2(Xl) =[VVl(Xl>]Rl1 +Hy2ulUl)Rl2
Note that this implies H = H . Thus, it is clear that any of the

y2u2 y2u2
four possible combinations of conditions in (iv) and (v) implies that

[P(In -QP)](s) - Hv u (s)n. y2u2
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Thus, P(In>-QP) is A_(aQ)-stable, in any case,
i /\

So, since Q is A_(aQ)-stable by assumption, and we have proved PQ,

QP and P(In -QP) AjaQ)-stable, it follows, by (2.3) and (2.6), that
/vi* * niXnn

S(P,C) is A_(aQ)-stable, and Ce B(aQ) ^ , respectively.

=* By (2.3), SP(P,C) A_(aQ)-stable implies that Q, PQ, QP and
/\

P(In -QP) are A_(aQ)-stable. So, condition (i) is satisfied immediately.

/s

Proof of Conditions (ii) and (iii): By assumption, PQ = H is A (a_)-y2u-i - o

stable. By calculation,

2<PWs) - [(^) R12 +(j^)*u +Pa(s)] Q(s)

Thus, since Pa is A_(aQ)-stable, PaQ is A_(a.Q)-stable, and hence

[(^-) R]2 +(iZX-)Rn] Q(s) is A_(aQ)-stable. Using the Taylor's
series expansion for Q(s) at s = X,, this condition reduces to

R11Q(x1) + R12Q'(x1) =enxn (4.25)
0 0

R12<5<V * 6n
0 0

and, since rk(U12) = r2, W(U12) = {6r }, and thus

^V - 8r?xnn <4-26>
d 0

2Similarly,1 QP A_(aQ)-stable implies that Q(s)[(^~-) R +(.J^jr^]
is A_(aQ)-stable. So, using again the Taylor's series expansion for

Q(s) at s = Xp

Q(X1)R11 +Q'(X1)R12-enjX_ (4.27)
1 1

Q(X1)R12 " enixni
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and since W(V12) = {6r },

Q(X1)U12 "9n.xr2 (4-28)

Proof of Conditions (iv) and (v): By assumption, H. , H and
e2u2 y2ul

P(In -QP) = Hv are A (aj-stable. By calculation,ni y2u2 - o

tPdn.-QP)](s) =(PHe2U2)(s) =[(^)2R12 ♦ (^Rn +Pjs)^^).
Since Pa and H =I-QP are A>0)-stable, [(^) R12 +(l^n^^ts)
must be A_(a )-stable. Thus, as with Q above, in (4.25) and (4.26),

RllV(Xl)+Rl2HWXl)=Vn. <4'29>
c L 2 2 0 1

V12He2u2(V=Vi (4-30)

Also,

[P(In.-QP)](s) =C(Ino-Hy2Ui)P](s)

=c\" Vi(s)]C(^t)2ri2 +(^)Rii+p (s)]
Since PQ and H^ =PQ are A>0)-stab1e, [1^ -̂(s)]^)2^
+ (i!x~")Rn] must be A_(o0)-stable. Thus, as with Q above, in (4.27)

and (4.28),

[I%"ViUl)]Rll+Hy2uiUl)Rl2 =evni

VV/*1""12" Vi
Rearranging, and noting W(V,2) = {0 }
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Rll =Hy2UlUl)Rll+Hy2ulUl)Rl2

l12"Hy2u1(Xl)Ul2

(4.31)

(4.32)

-1Theorem 4.2. Let P satisfy (Al) and (A4). Let C := Q(I-PQ) . Suppose

that, in addition, P(s) has full normal rank, and has no transmission

zeros at s = X-j. S(P,C) is A-(aQ)-stable with Ce B(aQ)

(i) Qis A_(aQ)-stable

(ii) for nQ <ni for n >_ n.

(iii)

(iv)

Proof:

Q(x^n =e
xr

Q(VRll =-Q'U^R^

V12Q(V = ei

RnQtX,) = -R^Q'U^

r0xnrt
c o

Either Hy2u/'VU12 =U12

- ^^'"Vl
Either R,, = H

ll=Hy2Ul(Xl)Rll+Hy2ul(Xl)Rl2
or 0. _ = RinHQ „ (A,) + R12H' (X^n xn. 11 e0u0v 1

oi 2 2 •2U2

n0xn.

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

=* This direction clearly follows from Theorem 4.1.

«= (n^n.) By Theorem 4.1, to establish that S(P,C) is A_(a )-stable,

we need only prove v|2Q(X1) =0r xn and R^QUj) =-R-^Q'U-j).
2 o _R

Since P(s) has full normal rank, it has a right inverse P (s),

which is analytic in a neighborhood of X,, because P(s) has no trans

mission zero at s = Ai. Furthermore, since PQ = Hv/ , for any such
1 . n.xn y2ul

right inverse, there exists R(s) e A_(a ) , such that PR = 0n xn ,
o o

and

-18-



Q(s) =P"R(s)Hv (s) +R(s) (4.40)
y2ul

Now, using (A4), we obtain

2

In -(PP"R)(s) =(^L-) R12P"R(s) +(jl-Ji^p-^s) +(PaP"R)(s), Vs €c
(4.41)

Vno =(PRHS) =̂ Rl2R(S) +(sif,RnR(s) +<PaR»s^ Vs GC
(4.42)

Since Pa(s), P"R(s) and R(s) are analytic at s=A1, and since
W(U12) = {0r }, (4.41) and (4.42) imply

VJ2P"R(X1) -0 and vj^) -6 (4.43)
CO 2 0

J n-R

>"R/i ^ - d /n"R\iR^P "(Aj) =-R^P"*)'^) and R^RfA^ =-R^R'^) (4.44)

By (4.33) and (A4), H =PQ is analytic in tQ +, except possibly
2 1 o

at s= A-|. Suppose H u (s) had a pole at s= A^: since the columns of
-R
P (s) are linearly independent, and since R(s) is analytic at s = A,,

then by (4.40), Qwould have a pole at s=A1. But this contradicts

(4.33). Hence Hy u(s) is analytic at s=A]. Consequently, by (4.43)
and (4.40),

Vl2^l) =%xn.
In addition, since Q(s) is A_(.aQ)=stable, it is analytic at s=A], and
hence, by (4.40),

Q'(s) =[(P"R)'H ](S) +(P"Rh; )(s) +R'(s)
y2ul y2ul

So,
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R12Q'(V -R12C(P-R)'{XT)]H (A,) +VV^^) +R12R'(X1)

where

-r r,„-R,'12[(P ") (\})lHy u(X,) +R1ZR'(A1). by (4.43)

=-R11[(P"R)(A1)]Hy u(X,) -R^R^} ,by (4.44)

= -R11Q(X1) , by (4.44)

So, by Theorem 4.1, S(P,C) is A_(aQ)-stable and C€ B(aQ)

The proof for n >_ n. is dual to the above. a

Corollary 4.3. Let the assumptions of Theorem 4.2 hold. If, in addition,

P is square (n=n.j), then the necessary and sufficient conditions reduce

to (i) and (iii) (note that (ii) is omitted).

Proof. The proof follows easily from that of Theorem 4.2. Q

Remark: Note that the theorems of this section can be easily extended

to the class of plants satisfying the two assumptions (Al) and (A5),

namely,

n xn.

(Al) P(s) eBQ(o0) ° '

(A5) P(S) =j] [(^)2 Rk2 +(iI\)Rkl] +P*(S)
,for each 1<k< p, AR e £a +; for j= 1,2, RRj =UyVy, for

n xr. . n.xr. . * n xn.
0 KJ V f= f ' KJ earn havp rank r. • and P fO G A (n ) uU.. €c° KJ, Vkj. 6C1 KJ each have rank rRj.; and Pjs) eA_j0(aQ)

For P satisfying (Al) and (A5), S(P,C) will be A_(aQ)-stable with
n-xn

C e B(a ) 1 ° o The conditions (i)-(v) of Theorem 4.1 are satisfied

for Ak, Rkl, Rk2, Uk2 and Vk2 for each 1 < k< p.
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V. Design Example

Design Example 5.1. Lumped unstable plant

We consider the following plant:

2

8453.9 -
(45.6)'
^fsT

22.6 . (0.9H45.6)
a(s)

P(s) -4
s

22 .6 - (0-9)(*5-6) 7731.1 -lfi£ia(s) ^TT

(Prt- sisi
AA1)

-1

1where a(s) := 1 + (2/T378 x 0.0014) |+ (13.8) -W
b s

-1

(5.1)

(5.2)

(5.3)

It can be easily shown that P satisfies the assumptions of

Corollary 4.3. Thus, since R-j2 is full rank, it is clear, by comment

(b) of Theorem 4.1, that the conditions of Corollary 4.3 are satisfied by:

Hyu (s)-dlag ^oi-2^i^oiPi)s * "oiPj
(s^^.s^.Jts-p.)

i=:'diag [-p]
ai 1=1,2

(5.4)

1=1,2

(5.5)

where w •• r., p. are free parameters for i = 1,2 (subject to stability

constraints). Thus the compensator defined by

C = Q(I-PQ)
-1

=rVi(I-HW
-1

= s "(Pn—rrrAAT) diag[^—] (5.7)

yields an exponentially stable closed-loop system S and satisfies

C€ B(aQ)
n.xn0

The values of u)oi, c., and p. for i= 1,2, were chosen by solving

the following optimization problem
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min max 5[H . (jto)] over co £ [.01, .5] (5.8)
z co y2 o

subject to:

max a[Q(jcu)] <3.104 over to € [.1,50] (5.9)
CO

uo1 1 2 for i= 1,2 (5.10)

p. < -1 for i = 1,2 (5.11)

Ci > 0.5 for i = 1,2 (5.12)

The solution obtained was:

Cj = .501 ?2 = .7

to-i =2.22 co « = 2.2

P] = -1.58 P2 = -1.2

with max a[H. H (jco)] = .0772 at this point.
o*=[.01,.5] y2°o
This solution has the interpretation that the maximum desensitization

possible for the given saturation bound has been achieved, where

max a[Hw . (jco)] is the measure of desensitization, and
u*=[.01,.5] y2do

max a[Q(jto)] is the measure of saturation.
cuG[.l,50]

Similar optimal design problem formulations may be found in the

literature [Doy. 1], [May. 1], [Hor. 1], [Gus. 1]. The solution to

this problem was found using RATTLE/DELIGHT, a software package used for

formulation and solution of optimization problems [Nye 1] .

VI. Conclusions

We have developed a design theory for distributed linear

multivariable feedback systems with simple unstable plants which
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accomplishes the following:

(i) Gives global parametrizations for all compensators Ce E{B{oQ))

which stabilize the closed-loop system S for a given plant P with either

first or second order unstable poles. We have also indicated that such

parametrizations are available for plants with unstable poles of third

or higher order.

(ii) Gives geometric insight into the dynamics of the process by

which an unstable plant is stabilized.

(iii) Allows extension of a existing design methodology for stable

plants to the case of unstable plants. The application of this

methodology is especially simple when the plant is only simply unstable,

because when the unstable poles are only first or second order, the

number of constraints on the design is small.

Acknowledgements We would like to thank the Aerospace Corporation and

Dr. G. T. Tseng for their support of this research. Many thanks also

to D. Flamm and T. A. W. Dwyer for suggesting and formulating the plant for

design examples, and to T. L. Wuu for his help and patience with the

computations.

-23-



References

[Bou. 1] N. Bourbaki, Commutative Algebra; Addison-Wesley Pub:

Reading, Mass., 1970.

[Cal. 1] F. M. Callier and C. A. Desoer, "An algebra of transfer

functions for distributed linear time-invariant systems,"

IEEE Trans, on Circuits and Systems, Vol. CAS-25, pp. 651-662,

Sept. 1978; corrections in Vol. CAS-26, pp. 360, May 1979.

[Cal. 2] F. M. Callier and C. A. Desoer, "Simplifications and

clarifications on the paper, 'An algebra of transfer functions

for distributed linear time-invariant systems'," IEEE Trans,

on Circuits and Systems, Vol. CAS-27, pp. 320-323, April 1980.

[Cal. 3] F. M. Callier and C. A. Desoer, "Stabilization, tracking and

disturbance rejection in multivariate convolution systems,"

Annales de la Socilte Scientifique de Bruxelles, T. 94, I,

pp. 7-51, 1980.

[Des. 1] C. A. Desoer, R. W. Liu, J. Murray and R. Saeks, "Feedback

system design: The fractional representation approach to

analysis and synthesis," IEEE Trans. Automat. Control,

Vol. AC-25, pp. 399-412, 1980.

[Des. 2] C. A. Desoer and M. J. Chen, "Design of multivariable feedback

systems with stable plant," IEEE Trans. Automat. Control,

Vol. AC-26, pp. 408-415, April 1981.

[Doy. 1] J. C. Doyle and G. Stein, "Multivariable feedback design:

Concepts for a classical/modern synthesis," IEEE Trans, on

Automat. Control, Vol. AC-26, pp. 4-16, Feb. 1981.

[Gus. 1] C. L. Gustafson and C. A. Desoer, "Controller design for linear

multivariable feedback systems with stable plant," University

of California, Berkeley, UCB/ERL Memo M81/51, July 1981, to

appear in International Journal of Control.

-24-



[Hor. 1] I. M. Horowitz, Synthesis of Feedback Systems, Academic Press:

New York and London, 1963.

[Jac. 1] N. Jacobson, Basic Algebra II, San Francisco: W. H. Freeman

and Company, 1980.

[May. 1] D. Q. Mayne, E. Polak, and A. Sangiovanni-Vincentelli,

"Computer-aided design via optimization: A review," Automatics,

Vol. 18, No. 2, pp. 147-155, March 1982.

[Nye 1] W.T. Nye, E. Polak, A. Sangiovanni-Vincentelli, and A. L. Tits,

"DELIGHT: An optimization-based computer-aided design

system," Proceedings of IEEE, ISCAS, Chicago, 111., April 1981.

[Per. 1] L. Pernebo, "An algebraic theory for the design of controllers

for linear multivariable feedback systems," Parts I and II,

IEEE Trans, on Automat. Control, Vol. AC-26, pp. 32-46,

Feb. 1981.

[Sae. 1] R. Saeks and J. Murray, "Fractional representation, algebraic

geometry, and the simultaneous stabilization problem," IEEE

Trans, on Automat. Control, Vol. AC-27, No. 4, pp. 895-904,

August 1982.

[Saf. 1] M. G. Safonov, A. J. Laub, and G. L. Hartmann, "Feedback

properties of multivariable systems: The role nad use of the

return difference matrix," IEEE Trans, on Automat. Control,

vol. AC-26, pp. 47-65, Feb. 1981.

[Sai. 1] M. K, Sain, J. L. Peczowski and J. L. Melsa (Ed.), "Alternatives

for linear multivariable control," National Engineering

Consortium: Chicago, 1978.

[Ste. 1] G. W. Stewart, Introduction to Matrix Computations, Academic

Press: New York and London, 1973.

-25-



[Vid. 1] M^_Vidyasagar, H. Schneider, and B. A. Francis, "Algebraic

and topological aspects of feedback stabilization," IEEE Trans,

on Automat. Control, Vol. AC-27, pp. 880-895, August 1982.

[You. 1] D. C. Youla, H.. A. Jabr, and J. J. Bongiorno, "Modern Wiener-

Hopf design of optimal controllers - Part II: The multivariable

case," IEEE Trans. Automat. Control, Vol. AC-21, pp. 319-338,

June 1976.

[Zam. 1] G. Zames, "Feedback and optimal sensitivity: model reference

transformations, multiplicative seminorms and approximate

inverses," IEEE Trans. Automat. Control, Vol. AC-26, pp. 301-320,

April 1981.

-26-



Figure 1


	Copyright notice 1982
	ERL-82-60

