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ABSTRACT

Assuming that * is any operation defined on a product set X x Y

and taking values on a set Z, it can be extended to fuzzy sets by means

of Zadeh's extension principle. Given a fuzzy subset C of Z, it is here

shown how to solve equation A * B = C (or A * B c c) when a fuzzy subset

A of X (or a fuzzy subset B of Y) is given. The methodology we provide

includes, as a special case, the resolution of fuzzy arithmetical opera

tions, i.e. when * stands for +, -, x or t, extended to fuzzy numbers

(fuzzy subsets of the real line). The paper is all along illustrated

with examples in fuzzy arithmetic.
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1. INTRODUCTION

Fuzzy numbers and fuzzy arithmetic were introduced by Zadeh (1975)

to analyze and manipulate approximate numerical values. It is natural

that adding a number 'approximately 4' to a number 'approximately 9'

yields a number 'approximately 13,' but how to combine these fuzzy

numbers taking into account the fuzziness attached to the various

1approximately's? One way of doing so is by using Zadeh's extension

principle which allows the domain of the definition of a mapping

or of an operation to be extended from points to fuzzy sets.
2

Fuzzy arithmetic has been extensively studied by some authors like

Dubois and Prade (1978, 1980, 1981), Jain (1976), Baas and Kwakernaak

(1977), Nahmias (1978), Mizumoto and K. Tanaka (1976, 1979), Yager (1977,

1980), Dijkman, van Haeringen and de Lange (1980), H. Tanaka (1981).

In Dubois and Prade (1980) one may find a useful algorithm for a

practical computation of extended operations, illustrated by the addi

tion of fuzzy numbers. So that one can compute direct as well as inverse

operations on fuzzy numbers. But a problem, discussed by Mizumoto and

Tanaka (1979) and Yager (1980), consists in the non existence of inverse

fuzzy numbers for the usual arithmetical operations. That is, in the

case of fuzzy numbers, equation A + X = C can not be solved by X = C - A.

This is the problem we here propose to solve in some sense. We say in

'some sense1 for, after a previous work, we noticed that our results on

The extension principle which is defined in (Zadeh, 1975, Part I) was
implicit in his original 1965 paper on Fuzzy Sets, without being named
so. Despite its simple formulation, it has proved to be a very seminal
concept.

Note that fuzzy arithmetic broadens interval arithmetic and can be used
in problems related to error calculus and many others in numerical
analysis.
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fuzzy arithmetic could be enlarged to any *-operation extended to fuzzy

sets, acting on any sets not necessarily equal to IR. So that we propose

here a general resolution of fuzzy equations of extended operations.

Moreover, we will define a special type of solution (when they exist of

course) which is the greatest one. It is easy to show that the problem

has a solution and to exhibit the greatest one, just like in problems

of compositions of fuzzy relations (Sanchez, 1976, 1977, 1979). Note

that, on the contrary to interval arithmetic, there is not uniqueness

for the solutions. In fact, in interval arithmetic, solution to

A+X=Cis trivial, for [a-,,a2] + [brb2] =[a-j+b^+bg], moreover,

the calcellation law (Moore, 1979) holds for interval addition i.e.

A+ B1 =A+ B2 implies B-j = B2.

2. THE EXTENDED * OPERATION

Let * be an operation defined on a product set X x Y and taking

values on a set Z. To all (x,y) in X x Y, * associates an element z, in

Z, which is denoted x * y.

The * operation can be extended to fuzzy sets by means of the fol

lowing extension ]3rinci£le (Zadeh, 1975).

Definition 1. Let A be a fuzzy subset of X and B be a fuzzy subset of

Y, then the extension principle allows to define a fuzzy subset C = A * B

of Z as follows, in the case of noninteractive variables.

3
The concept of interaction (Zadeh, 1975) between variables is analogous
to the dependence of random variables. Here it is assumed that
P(A B)^x,y) =yA^ *yB^ wnicn implies that xand y are noninteractive,
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Vz e Z> yA*B(z) = "* Vx) AUB^} (D
x^x,y^Y
x*y = z

where, as usual, yA is the membership function of a fuzzy set A and **'

denotes the min operation.

Note that, in (1), it is assumed that given z in Z, there exists x

in X and y in Y such that x * y = z. But if that would not be the case

UA*B(z) would be defined as being equal to 0, following the usual mathe

matical convention that sup f(x,y) = 0, in the present case.
(x,y)£0

Remarks. i) When A and B are crisp (i.e. non fuzzy) sets, A being a sub

set of X and B a subset of Y, A * B reduces to a subset C of Z defined as

A * B = {z € z|z = x * y, x e A, y € B}.

ii) When X = Y = Z = ]R and * stands for addition on numbers, A * B

stands then for the addition A + B of two sets as defined by H. Minkowski

in 1911.

iii) When X = Y = Z = I( IR) i.e., the set of interval numbers, or

more simply intervals, in the real line IR, and when * stands for example

for addition, subtraction, multiplication or division, the study of A * B

corresponds to Interval Analysis (Moore, 1966).

Returning now to (1), given the fuzzy sets AandB,C = A*Bis

then uniquely determined by definition. The problem we are going to

investigate is the inverse one, i.e., from the knowledge of the fuzzy

sets C and A (or C and B) find, when it exists, a fuzzy set B (or A) such

that C = A * B.

Note that * is not necessarily a commutative operation. Moreover,

even if for a couple (x,y), the result x * y is well defined, that may
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not be necessarily the case for y * x. The sequel of this paper will be

mostly oriented towards the case where C and A are given (equation

A * X = C). The case where C and B are given (equation X * B = C) can

be easily derived by adapting the formulae.

We recall that * is any operation here. A large and practical

application of our study is of course fuzzy arithmetic when A, B and C

are fuzzy numbers, i.e., fuzzy subsets of IR, and when * is one of the

following usual operations +, -, x, t. Difficulties arise in fuzzy

arithmetic as pointed out by Mizumoto and Tanaka (1979), Dubois and Prade

(1980) and Yager (1980). For example, A + B = C does not imply B = C - A

as illustrated in Figure 1, where

v z e R» yA+B(z) = SUP HM * viR(y); (2)
MD x6F,yelR M B

x+y=z

V z € IR, y (Z) = sup yA(x) - uR(y). (3)

x-y=z

The following properties are easy to check.

The extension of * to fuzzy sets is inclusion monotonic. In other

terms, for B1 and B2 fuzzy subsets of Y,

B1 C B2 => A* B-, C A* B2; (4)

for A1 and A2 fuzzy subsets of X,

A1 C a2=> A1 * BC A2 * B. (5)

In fact, the extension of * is distributive over the union of fuzzy

sets, i.e.,
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A* (B1 UB2) = (A*B1) U (A*B2); (6)

(A] UA2) *B=(A^B) U (A2*B). (7)

Moreover,

A* (B1 n B2) C (A*B1) n (A*B2); (8)

(A] nA2) * Bc (A^B) n (A2*B). (9)

A direct consequence of (6) and (7) is that the set of solutions of

A * X = C (or of X * B = C), if non void, is an upper semi-lattice. But,

in view of formulae (6) to (9), the set of solutions of A * X c C (or of

X * B C C) is a lattice.

Remembering that * is any operation, note the apparent strangeness

of equation (6), for example, when * stands for division or subtraction

of fuzzy numbers.

For practical computations, let us show now how one can transform

the expression of A * B given in (1).

Assume first that B is a (non fuzzy) singleton identified with its

unique element, say b in Y, so that yg(y) =1 if y =b and yB(y) =0 if

y f b. Thus, equation (1) yields

Vzez, uA*b(z) = sup uA(x). (10)
x€X

x*b=z

Equation (10) is illustrated in Figure 2 in the case of fuzzy num

bers, with * standing for +. As + admits an inverse operation in R,

(10) takes here the following simpler form.

V z€Z, uA+b(z) » yA(z-b).
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Let us now return to (1).

V z € Z, uA*B(z) = sup yA(x) - yB(y)
xEx,y€Y

x*y=z

= sup( sup yA(x)-yR(y))
y€Y x€X a B

x*y=z

= sup(yR(y)~ sup yA(x))
yeY D x€X M

x*y=z

from (10) with y playing the role of b. Hence, (1) is equivalent to

(11).

Vz e Z' wA*B(z) =S1B >Wz) - VBM. (11)
ytY

Analogously, exchanging the roles of A and B, we have

VzeZ' ^A*B(z) =^yA<x> AVx(z)' <12>

Note that with addition of fuzzy numbers, (11) takes the form

sup uA(z-y) * uR(y), referred to as "sup-min convolution" by A. Kaufmann.

3. THE oc OPERATOR

In order to solve the *-equation problem on fuzzy sets we need to

recall the definition of the a operator which is characteristic of Brouwerian

lattices. That a operator has proved to be useful in the resolution of

composite fuzzy relation equations (Sanchez, 1976; Pappis and Sugeno,
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1976; Tsukamoto, 1979; Wang Pei-Zhuang and Yuan Meng, 1980; Luo Cheng-

Zhong, 1981; Czogala, Drewniak and Pedrycz, 1982; and others) and we

study here a particular composition, with a constraint expressed by the

* operation.

Definition 2. Given a and b in [0,1], a a b is defined as the greatest

element x in [0,1] such that a * x < b, I.e.,

aab = l if a<b
(13)

= b if a > b.

Here are some properties of the a operator that will be used in the

sequel. We recall that, as usual, V denotes the max operation.

For all a,b in [0,1] and for all family (b^gj of elements of [0,1],

we have

a - (aob) < b; (H)

a a (sup b.) > a a b., V b. e I; (15)
1€I 1 a J

a a (a-b) > b. (16)

According to (13), properties (14) and (16) are directly verified.

To check (15), it suffices to denote c = sup b., and to show that
1€i 1

a a (cvb.) >aab.. i^O
j j

Notation. From now on, F(U) will denote the class all the fuzzy subsets

of a set U.

Definition 3. Given A e F(X), C e F(Z) and * : X x Y ->- Z, we define

* : F(Z) x F(X) -* F(Y) as follows
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Vye Y, \xc^(y) = 1nf uA(x) auc(z). (17)
X*—A,£r—tm

x*y=z

As a guideline, let us mention that when * stands for example for

addition extended to fuzzy numbers, C 5? A will stand for a new and non

standard subtraction (C + A being denoted by C 0 A) of the fuzzy number

A from the fuzzy number C, allowing to solve equation A + X = C. Equa

tion (17) is illustrated in Figure 3, where in the case of addition of

fuzzy numbers, we have

Vy€Y, yCQA(y) =inf uA(x) aUc_y(x), (18)
X*— JK

Since uc(x+y) =uc_y(x) from (10).

The following property of the * operation holds. For C, and C2

fuzzy subsets of Z,

C, C C2 =>C] * AC C2 * A. (19)

Equation (19) is simply verified after checking that in [0,1], if

c-j < c2 then a a c, < a a c2.

4. RESOLUTION OF *-EQUATI0NS ON FUZZY SETS

Theorem 1. For every pair of fuzzy sets A € F(X) and C e F(Z), and for

* : X x Y"-»• Z, we have

A * (C*A) c C. (20)

In other terms, C * A is a particular solution to A * X c c.
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Proof.LetU=A*(C*A)andletzeZ,

yn(z)=supp.(x)-yrXA(y);
uxex,y€YML*A

x*y=z

Uu(z)=supyA(x)-infuA(x')aur(z');
utf=X,y€YMx*€X,z'eZML

i.,,_.
x*y=zx*y=z

U,.(z)<supuA(x)-[m(x)aur(z)];
uxQ(,y€YAat

x*y=z

yM(z)<supyr(z),from(14);
ux^X,y€YL

x*y=z

Uy(z)<uc(z).Q

Theorem2.ForeverypairoffuzzysetsA€F(X)andB€F(Y),andfor

*:XxY•>Z,wehave

Bc(A*B)*A.(21)

NotethatwhenA*B=C,wehaveBcC*A.

Proof.LetV=(A*B)*Aandlety€Y,

yV(y)=Jj1*Vx)ayA*B(z); X£—A,Z>^b

x*y=z

Uv(y)=infuA(x)asupuA(x')~yB(y');
vx€=X,z€ZMx'GX,y'eYMD

x*y=zx'*y'=z
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uv(y) 1 inf uA(x) a [uA(x) -yB(y)L from (15);
x£X,z£Z
x*y=z

Uw(y) 1 inf uR{y), from (16);
v x€X,zGZ b

x*y=z

uv(y) > yB(y). a

Corollary 1. Given A e F(X), C € F(Z) and * : X x Y -> Z, equation

A * X c c has always a greatest solution given by C * A. Moreover, the

set of solutions of A * X c C is a lattice.

Proof. From (20) in Theorem 1, C * A is a solution to A * X c C,

let us show that it is the greatest one. Let B <= F(Y) such that A * B

c C. From (19), we have (A*B) * A c c * A. Finally, (21) in Theorem 2

yields B c C * A.

The fact that the set of solutions of A * X c C is a lattice was

already pointed out as a result of (6) and (8). n

Corollary 2. For A e F(X), B € F(Y) and C e F(Z), we have

A * BC C iff BC C * A. (22)

Proof. '-If A * Bc c then Bc c* A' was already shown in the proof of

Corollary 1. Let us now assume that Bc C * A. Hence, from (4) we have

A * B c A * (C*A). Finally, (20) in Theorem 1 yields A * B c C. n

Let us now state a fundamental theorem in our study.

Theorem 3. Given the fuzzy sets Ae F(X), C € F(Z) and an operation

* : X x Y •*• Z, equation
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A * X = C

has a solution if, and only if,

A * (C*A) = C.

Moreover, when C * A is a solution, then it is the greatest one and the

set of solutions is an upper semi-lattice.

An analogous theorem holds, of course, for equation X * B = C.

Proof. Let us assume that B € F(Y) is a solution to A * X = C, i.e.,

A * B = C. Hence, from (21) we have B C C * A. But (4) yields A * B

c A * (C*A), i.e., CCA* (C*A), so that A * (C*A) = C from (20)

When A * X = C has a solution, then C * A is the greatest one, as

a direct application of (21).

The fact that the set of solutions of A * X = C, when non void, is

an upper semi-lattice was already pointed out as a result of (6). H

Remarks. i) Theorem 3 is not only interesting in the search for solutions

to equation A * X = C but, for example, after a computation of A * B = C,

one may be willing to know how far B can be expanded (in the fuzzy

inclusion sense) so that the result, C, is unchanged. The upper bound

for B is of course given by C * A.

ii) When there is a unique solution to A * X = C, that solution is

simply retrieved from C * A. For example, in the case of a unique

solution dealing with the addition of fuzzy numbers (see Figure 1 for

an illustration), one has A + B = C => B = C © A, where C 0 A denotes

C + A.

iii) In arithmetic or, even in interval arithmetic, one has
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A + B, = A + B2 if, and only if, B-. = B2< This property may no longer

be true in fuzzy arithmetic. For example, one may have A + B-, = A + B2

= C, where B2 =C 0 A, and B-j f B2 as in the following illustration

where B-j c B2 (strict inclusion).

Example. Let X = Y = Z = 2 and let * stand for the addition of integers.

A, B-j, C and B2 are defined by their membership functions described in

Table 1 where

A + B1 = C,

B2 =C 0 A and A+ B2 =C,

but the membership functions of B-, and B2 differ on points 3and 4 in 1 ,
so that Bn c B2.

•••"2-10 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0.2 0.7 1 0.2 0.7 1 0 0 0 ...

Bi ••• 0 0 0.2 1 0.3 0 0.2 1 0.3 0 0 0 ...

• 0 0 0 0.2 0.2 0.7 1 0.3 0.7 1 1 0.3 0.7 1 0.3 0 0

>2 ••• 0 0 0.2 1 0.3 0.3 0.3 1 0.3 0 0 0 ...

Table 1. Illustration for A+B, =A+B«. =£ B, = B?.

5. *-EQUATI0NS AND O-EQUATI0NS

When we introduced the a operator in this paper, we pointed out that

we were studying a particular case of compositional equations. In order

to clarify this statement, let us now relate the *-equation problem
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investigated in this paper to the more general problem of composite

fuzzy relation equations.

Given A e F(X) and * : X x Y + Z, we define a fuzzy relation, (A*),

from Y to Z, i.e., a fuzzy subset of Y x Z, by its membership function:

V(y,z) €YxZ, U(A*)(y.z) =UA*y(z), (23)

where A * y is defined in (10).

From (11) and (23), A * B can be given by the following expression,

equivalent to (1).

VzG Z> Wz) =si5 yB(y) ~^(A*)(y'z)

=y(A*)oB(z)*

where 'o' stands for the sup-min composition of fuzzy relations or, more

precisely here, for the sup-min composition of a fuzzy relation with a

fuzzy set.

Note that some authors write 'B o (A*)' instead of '(A*) o B,' it

is only a matter of notation which depends upon the classical concept

that 'o' is supposed to extend to fuzzy sets.

Finally, we have

A * B = (A*) o B. (24)

Adapting now Sanchez (1976), we derive the following result.

Theorem 3'. Given C e F(Z), * : X x Y -*- Z and (A*) e F(YxZ) we have

B = {Be F(Y)|(A*) o B = C} t 0
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if, and only if,

(A*) (a) C e B; then it is the greatest element in B, where,

VyG Y> y(A*)©C(y) =^(A*)(y'z)aiiC(z)- (25)

Hence, from (23) and (10) we have

y(A*)@C(y) =^[( ^P Vx)) a^C(z)]- <26>
x*y=z

Now, from a direct application of (13) in Definition 2, one may check

that V y 6Y, V z € Z,

( sup yA(x)) ay (z) = inf [u.(x) ay (z)]. (27)
x^X u x€X u

x*y=z x*y=z

Note that (27), with no *-constraint and in the finite case, corresponds

to the following property of the a operator.

For all a, b and c in [0,1], we have

(avb) a c= (aac) - (bac). (28)

From (26) and (27) we then derive, Vy e y,

u(A*)©f>> \el%z^MauC^
x*y=z

=yc; A(y), from (17).

Hence,

(A*)0C =C* A, (29)
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So that our present results are consistent with the more general ones.

6. CONCLUDING REMARKS

Our main concern was here to develop some basic tools for applica

tions involving fuzzy equations. The present paper will be followed by

a companion one (Sanchez, 1982) containing results we presented at

NAFIP-1, too. Dealing with fuzzy numbers, '+' will serve to define a

non-standard subtraction '0' reducing fuzziness comparatively to the

usual subtraction '-'. For example, in the case of Figure 1, we shall

have C 0 A = B. Analogous results will also hold for 'x' redefined as

•©••

Let us now indicate some points that could be developed in further

investigations.

The min operator '~' in (1) can be replaced by a different triangu-

4 / x
lar norm (briefly t-norm) and A * X = C can be studied in the case of

t-related variables, see Alsina and Nguyen (1978), Dubois and Prade (1981)

for extended operations by means of sup-t-norms.

Fuzzy equations can be enlarged to fuzzy sets with membership func

tions taking values in Brouwerian lattices, see Sanchez (1976), or to

ultra-fuzzy sets, i.e., fuzzy sets with fuzzy set valued membership func

tions, as suggested by Zadeh, and with a potential application to the

computation of fuzzy quantifiers in natural languages, see Zadeh (1982).

Finally, the fuzziness of solutions to A * X = C can be investigated

as in the work of Di Nolaand Pedrycz(1982) or Di No!a and Sessa (1982).

t-norms have extensively been explored by Schweizer and Sklar (1960)
following Menger's work (1942), in the field of statistical metric
spaces, t-norms in connection with fuzzy sets have been studied by
Alsina, Trillas and Valverde (1980), Klement (1980), Dubois and Prade
(1980) among others.
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Figure 1. Illustrative example for A + B = C^B = C-A.
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Figure 2. Illustration of A + B when B = b inIR.
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Figure 3. Illustration of C+ A(denoted C 0 A) in the case of fuzzy

numbers.
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