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Abstract. Two closely-related pseudo-random sequence generators are
presented: The \/P-generatort with input P a prime, outputs the quotient
digits obtained on dividing 1 by P. The x2 mod ^-generator with inputs N, x0
(where N = P-Q is a product of distinct primes, each congruent to 3 mod 4, and
Xq is a quadratic residue mod N), outputs &o&i^2 ' ' ' where 6^ =parityfe) and
*i+i = x\ Tnod N.

From short seeds each generator efficiently produces long well-distributed
sequences. Moreover, both generators have computationally hard problems at
their core. The first generator's sequences, however, are completely inferable
(from any small segment of 2|.P|+1 consecutive digits one can infer the "seed,"
P), while the second, on the other hand, is cryptographically secure (no
polynomial (| N \ )-time statistical test can distinguish such sequences from ran
dom uniformly-distributed sequences). The second generator has additional
interesting properties: from knowledge of x0 and N but not P or Q, one can
generate the sequence forwards but not backwards. From the additional
knowledge of P and Q, one can generate the sequence backwards. Yet more
knowledge about N, including the factors of P—1 and Q-l, enable one to "jump"
about from any point in the sequence to any other. Because of these properties,
the x2 mod jV-generator promises many interesting applications, e.g., to public-
key cryptography. To use these generators in practice, an analysis is needed of
various properties of these sequences such as their periods. This analysis is
begun here.

Keywords, random, pseudo-random, Monte Carlo, computational complex
ity, secure transactions, public-key encryption, cryptography, one-time pad,
Jacobi symbol, quadratic residuocity.

What do we want from a pseudo-random sequence generator? Ideally, we

would like a pseudo-random sequence generator to quickly produce, from short

seeds, long sequences (of bits) that appear in every way to be generated by suc

cessive flips of a fair coin.
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Certainly, the idea of a (fast) deterministic mechanism producing such non-

deterministic behavior seems contradictory: by observing its outcome over

time, we could in principle eventually detect the determinism and simulate such

a generator.

The resolution [Knuth], usually, is to only require of such generators that

the sequences they produce pass certain standard statistical tests (e.g., in the

long run, the frequency of O's and l's occurring in such a sequence should be

nearly the same, and the O's and l's should be "well-mixed").

However, the usual statistical tests do not capture enough. An important

property of random sequences is their unpredictability. Pseudo-random

sequences should also be unpredictable to computers with feasible resources.

To begin to capture this notion, we require the following definition:

DEFINITION: A pseudo-random sequence generator is polynomial-time unpredict

able (unpredictable to the right, unpredictable to the left) or cryptographically

secure [Shamir, Blum-Micali, Yao] if and only if the sequences it generates are

not predictable (to the right, to the left) in polynomial time: i.e., given a piece of

sequence that has been produced by such a generator, but with any element

(the rightmost element, the leftmost element) deleted from that piece, one can

roughly do no better in guessing in polynomial time what the missing element is

than by flipping a fair coin.

This notion of unpredictable is the correct one [Yao]: sequences produced

by generators possessing any one of the unpredictability properties pass all

polynomial time statistical tests. That is to say, these sequences cannot be dis

tinguished by polynomial time statistical tests (with more than a negligible

advantage) from sequences produced by successive flips of a fair coin.

-2-



1. INTTODUCTION:

In this paper, two pseudo-random sequence generators are defined and

their properties discussed. These are called:

(1) the 1/P generator

(2) the x2 mod N generator.

The two generators are closely related For example: PVom short seeds, each

quickly generates long well-distributed sequences. Both generators contain

hard problems at their core (the discrete logarithm problem and the quadratic

residuosity problem, respectively). But only the second is cryptographically

secure.

More specifically,

THEOREM 2 - Problem 4, section 6, (l/P): Any sequence produced by the 1/P

generator is completely inferable; that is, given a small piece of the sequence,

one can quickly infer the "seed" and efficiently extend the given piece of

sequence backwards and forwards.

On the other hand,

THEOREM 4, section 7, (x2 mod N): The x2 mod N generator is polynomial-time

unpredictable. The sequences it generates are provably secure: they pass all

polynomial-time statistical tests.

The 1/P generator has been well studied [Dickson]; its distribution proper

ties relate to shift register sequences [Golomb]. Our observations concerning its

strong inference properties, we believe, are new and surprising. The x2 mod N

generator is new, a simplification of a generator proposed by A. Yao. Its strong

security properties derive from complexity based number theoretic assump

tions and arguments [Blum, Bium&Micali, Goldwasser&Micali, Yao]. Our investi

gation reveals additional useful properties of this generator: e.g., from

knowledge of the (secret) factorization of N, one can generate the sequence
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backwards; from additional information about N, one can even random access

the sequence. Our number-theoretic analyses also provide tools for determining

the lengths of periods of the generated sequences.

Both generators have applications. The 1/P generator has applications to

the generation of generalized de Bruijn (i.e., maximum-length shift-register)

sequences. The x2 mod N generator has applications to public-key cryptography

and to efficient computation, i.e.t to converting probabilistic polynomial-time

algorithms to deterministic almost-polynomial-time algorithms (see section 10,

Applications).

The two generators are presented together so that each one's properties

help to iliurninate the other's.

2. NOTATION:

Throughout this paper, x mod N denotes the least non-negative integer

remainder upon dividing x by N (rather than denoting the residue class mod N).

We use "x2 mod N generator" to denote a pseudo-random sequence genera

tor, whereas "x2 mod N" denotes the remainder upon dividing x2 by N. Asimi

lar distinction is made between "1/P generator" and the string of bits "1/P".

We let | N | &denote the length of N when N is expanded base b, and simply

write \N\ when the base is clear. Note that \N\* = l+log^JY|.

a THE 1/P GENERATOR

DEFINITION (the 1/P generator): Let P be an odd prime. Let b be a generator

(i.e., primitive root) of the multiplicative group Zp = jl, 2,.... P-lJ of integers

mod P.4: The pseudo-random sequence generated by the 1/P generator with

4E. Artin's conjecture states that every integer b which is not -1 or a square
is a pnmitiye root for .3739... of all n-bit primes, asymptotically as the length n
of the primes goes to infinity —see [Shanks, p.8l].



input (6, P) is the sequence of b-ary quotient digits that immediately follows the

decimal point when 1/P is expanded to base 6. We denote it by qiqz-... More

generally, let Tq be any integer in the range 0 < r^ < P. The pseudo-random

sequence generated by the 1/P generator with input (6, P% r0) is the sequence

of digits obtained upon dividing r0 by P. The expansion of l/P (and more gen

erally, ro/P) is periodic with period P-l: 1/P = .qiqz...qp-iqi....

EXAMPLE: Let b = 10 and P-l. This b is a primitive root mod P. The

pseudo-random sequence generated by the 1/P generator with input (10, 7) is

142857142... since 1/7= .142857142....

4. THE x2 mod N GENERATOR

DEFINITION (the x2 mod N generator): Let N = P*Q be a product of two distinct

primes both congruent to 3 mod 4. Let xQ be any quadratic residue in ZjJ =

{integers x | 0 < x < N and gcd(x.N) = lj. Here, N is called the parameter and x0

the seed. The pseudo-random sequence generated by the x2 mod N generator

with input (N, Xq) is the sequence of bits b0b1• • • obtained by setting a^+j =

x? mod N and extracting the bit 6t =parity (xi). This sequence is periodic with

period that is usually equal to \(\(N)) (see section 8 for the definition of \ and

clarification of "usually"). We also note that the equality z< =x$ mod N =

x$ m<Mi x^ mod N enables us to efficiently compute the ith sequence element,

given xQ, N and \{N).

EXAMPLE: Let JV=7*19=133 andz0=4. Then the sequence x0, xx, ... has period

6; s0, xx x5 = 4, 16, 123, 100, 25, 93, and &0&1...&5 =001011. The latter

string of 6's is the pseudo-random sequence generated by the x2 mod N genera

tor with input (133, 4). Here, \(N) = 18 and \(X(N)) = 6.



5. THE ASSUMPTIONS:

Our main results about cryptographic security follow from assumptions

concerning the intractability of certain number-theoretic problems by proba

bilistic polynomial-time procedures. These results can be viewed as assertions

concerning the Turing machine complexity (equivalence) of certain hard prob

lems. Stronger results would follow from stronger assumptions concerning the

circuit size complexity of the number theoretic problems below. Such results

would be desirabLe, for example, if we wished to assure that sequences produced

by our generator appear random to hard-wired circuits.

(1) THE DISCRETE LOGARITHM (INDEX FINDING) PROBLEM: Let P be a

prime. Let b be a generator for Zp. The function fbj>:Zp—>Zp defined by

ft,j>(x) = bx mod P is a permutation of Zp that is computable in 0(|^|3)-time.

The discrete logarithm (index finding) problem with parameters 6 and P con

sists in finding for each y in Zp* the index x in Zp such that bz mod P = y. A

(probabilistic) procedure P [6, P, y] solves the discrete logarithm if for all

primes P, for all generators 6 for Zp, and for all y in Zp, P [b ,P,y] = x in Zp

such that bs mod P ~y.

THE DISCRETE LOGARITHM ASSUMPTION: (This asserts that there is a fixed

fraction of time that the discrete logarithm problem cannot be solved

efficiently.) Let P [6, P, y] be a (probabilistic) procedure for solving the

discrete logarithm problem. Let 0 < e < 1 be a fixed constant Let poly be a

fixed polynomial. Then for all sufficiently large n, for all but e-fraction of n-bit

primes P, for all generators b of Zp, and for at least s-fraction of numbers

y € Zp, P [6, P, y] takes more thanpoly(n) (expected) time to output x (the

particular x such that 6* mod P =y).

(2) THE QUADRATIC RESIDUOSITY PROBLEM [Gauss]: Let TV be a product of two

distinct odd primes. Let ZjJ be the group of integers x, 1 <; z £ N and



gcd(x, TV) = lj, under multiplication mod TV. Exactly half the elements of Z/J

have Jacobi symbol +1, the other half have Jacobi symbol -1. Denote the former

°y 2tf(+l) and the latter by ZjJ(-l). None of the elements of ZjH-l) and exactly

half the elements of Zj}(+1) are quadratic residues. The quadratic residuosity

problem with parameters TV and x consists in deciding, for x in ZjJ(+l), whether

or not a; is a quadratic residue. A probabilistic procedure P [TV, x] solves the

quadratic residuosity problem for a number TV, TV = a product of two distinct

odd primes, and for x e ZjJ(+l) if and only if it correctly decides whether or not

x Is a quadratic residue mod TV (i.e., P [TV, x] = 1 if and only if a: is a quadratic

residue mod TV).

THE QUADRATIC RESIDUOSITY ASSUMPTION: (This asserts that there is a

fraction of time that the quadratic residuosity problem cannot be solved

efficiently.) Let poly ( ) be a polynomial. Let t be a positive integer. Let P

[N, x]be any (probabilistic) poly-time procedure which, on inputs TV, x, each of

length n, outputs 0 or 1. Then for n sufficiently large and for all but 1/n' frac

tion of numbers TV of length n, TV a product of two distinct odd primes, the pro

bability that P decides correctly whether x is a quadratic residue mod N — for

TV fixed 'and x selected uniformly from among all elements of ZjJ(+l) — is less

than 1- 1/n*.

6. THE 1/P GENERATOR IS INFERABLE:

Let P and 6 be relatively prime positive integers and r0 an integer in the

range 0 < r0 < P. Denote the expansion of rQ/ P to base 6 by

r0/P = .q&zqQ- • • (l)

where 0 2S g^ < 6. Since 6 is prime to P, the expansion is periodic. Then, for

m ^0,
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(6m-r0)/P = $!••• gm.gm+igm+2 • •' = fai • • ' 9m) + rm/P (2)
where

0 <rm = bmr0 mod P <P (3)
and

0 <rm/P = .gm+1gm+2... = (bmrQ/P) mod 1< 1 (4)
Here, gi« ge. • • • are (quotient) digits base b and q&z • • • denotes their con- •

catenation, whereas rm, the mth remainder (of r^/P base fa), is an -integer

whose length (base 6) is Less than or equal to the length of P: \rm\ ^ \P\. Recall

from the definition of the 1/P generator in section 3 that, for P prime and b a

primitive root mod P, eq. 1 defines the pseudo-random sequence generated by

the 1/P generator with input (6, P, ro).

There are several reasons one might consider the 1/P generator a good

pseudo-random sequence generator: the sequences produced have long periods

and nice distribution properties (Theorem 1 below). In addition, these sequences

possess certain hard-to-infer properties. For example, given a remainder r gen

erated during the expansion of 1/P base b, it is hard, in general, to find any

index 771 such that rm = r. This is because rm = bm mod P, so m is the discrete

logarithm of r mod P. It follows (Theorem 2, problem 1) that, given a string of

quotient digits gm+igm+2 • • • qm+k (& ^poly (\P\)), it is hard in general to find

its location in the sequence. Thus, these strings appear to be "well mixed."

On the other hand, Theorem 2 will give a sense, which is correct, that the

1/ P generator yields a poor pseudo-random sequence: from knowledge of P and

any |P|-long segment of sequence, one can efficiently extend the segment back

wards and forwards (problem 2). More surprisingly (problem 4), from knowledge

of any Z\P\ +1 successive elements of the sequence, but not P, one can

efficiently reconstruct P, and hence efficiently continue the sequence in either

direction.



It follows that there is a simple efficient statistical test for deciding whether

a 3n-long string of digits has either been extracted from 1/ P, for some prime P

of length n, or has been generated at random (uniform probability distribution),

given that it was produced in one of those two ways: Use 2n+1 of the given 3n

digits to recover the suspected P; use this P to generate 3n digits; then compare

the generated digits with the 3n given digits: if they agree, the string has prob

ably (with probability ^ 1 - l/2n_1) been generated using the 1/P generator.

To lead up to Theorem 1, we consider the following type of sequences

(closely related to maximum-length shift register sequences [Golomb]).

DEFINITION: Let P, b denote arbitrary positive integers. A (generalized) de

Bruijn sequence of period P-l, base b, is a sequence qxq2 • • • of 6-ary digits

(i.e., 0 ^ g< < b for all i) of period P-l such that

(1) every 6-ary string of length |.P|-1 occurs at least once in the sequence, and

(2) every 6-ary string of length \P\ occurs at most once in any given period of

the sequence.

THEOREM 1

Let P = prime. Let 6 € {1.2.....F—lj be a primitive root mod P. Let

ro E {l,2,...,P-lj. Then the pseudo-random sequence generated by the l/P

generator with input (6, P, r0) is a (generalized) de Bruijn sequence of

period P-l, base 6.

PROOF:

Since rm = bmro mod P and 6 is a primitive root mod P, the sequence of

remainders rOT (generated during the expansion of 1/P) is periodic with period

P-l, the remainders in any period are distinct, and \rm \l^m £ P—l\ =

\1,Z,...,P-1].
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Similarly, the sequence of quotients rm/ P is periodic with period P-l, the

quotients in any period are distinct, and

[rm/P\l^m*P-l] = \1/P, 2/P,..., (P-l)/PI. (5)

Therefore, the sequence of quotient digits qm is periodic with period at

most P-l. If the period were less than P-l, then there would be integers

0 s£ mx <m2 <P-l such that .gmi+igmi+2 • • • = .qm^iqm2+2 • • • . Since rm/P =

•gun-igm+2 • • • . we would have rmi/ P =rmg/ P, a contradiction. Therefore the

period is P-l. [Gauss]

Now, a string ax • • • c^ of s 6-ary digits appears somewhere in the expan

sion of r$/ P if and only if it appears as an initial string in the expansion of

Tm/P for some 1 ^ m & P-l if and only if (by eq. 5) it appears as an initial

string in the expansion oik/P for some 1 ^ k ^ P-l. But also, the set of 6-ary

strings of length s correspond exactly to the subintervals of the unit interval

[0.1) of the form [1/ b*, (J +l)/ 6s) where I is an integer, 0 £ I <bs. Since

1/P < 1/6 ,P|~1. there is for each I, at least one k, 1 £ k £ P-l such that

k/P €[l/bW-l,(l+l)/b l^l"1) and so we have property 1. Since

1/ b l-^l < 1/ P, there is for each I at most one fc, 1 :S k ^ P—1 such that

k/P € [l/b 1^1, (l+l)/b lpl). and so we get property 2.

QED

So, if P is prime and fa is a primitive root mod P, it follows from Theorem 1

concerning de Bruijn property 1 (and Artin's conjecture —see footnote concern

ing that conjecture), that neither |.P|-1 successive digits of quotient,

gm+1...gjn+IPI_i, nor (the approximately \P\-1 successive digits of) a remainder,

rm, are enough to construct P, or to extend the sequence, on purely

information-theoretic grounds. In contrast, it will follow from Theorem 2 below

that (various combinations of) approximately 2\P\ digits of information are

sufficient to efficiently extend the sequence in either direction.
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THEOREM 2

Let P and fa be relatively prime integers > 1 (P not necessarily prime!), and

let r0 be an integer in the range 0 < r0 < P. The following problems are solv

able in polynomial(|P|)-time:

PROBLEM 1

Choose a polynomial, poly{ ), and hold it fixed.

INPUT: P, fa, remainder rm, positive integer A: £poly(\ P\).

OUTPUT: rm„lt rm+fc; gmgmM • • • gm+fc-

PROBLEM 2 [Gauss]

This is a computational version of Theorem 1 concerning De Bruijn property

2. (A similar algorithm gives the computational version of property 1.)

INPUT: P, fa, \P\ successive digits of quotient gro+igm+2 • • • gm+|Pi*

OUTPUT: rm (and hence, by problem 1, rm¥\P\ and gm, gm+|P|+1).

PROBLEM 3

We assume that P is relatively prime to each of 1,2 fa (to ensure that the

output is the unique P that generated rm and rm+x).

INPUT: 6, rm, rm+1 such thatr^-6 * rm¥l (i.e. rm ^ P/b).

OUTPUT: P (and therefore also, by problem 1, gmgm+i • • • qm+\p\)'

PROBLEM 4

We assume that r0 is relatively prime to P (e.g.. r0 = 1).

INPUT: 6; k quotient digits, qm+iqm+2 ' ' ' ?»»+*« "where fc =

is arbitrary. (Note that fc ^ 2| P\ +l)s.

QUTPUT: P\ rm (and hence by Problem 1, qm and qm+k*-i)-

logb(2P2)\ andm

5 Much as one wants, this result cannot be improved to permit k = 21P |.
For example, for fa = 10 and P = 97 (1/97 = .010309...), the four digits 1030 do
not yield P.
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PROOF:

To solve problem 1: rm+k = bkrm mod P and rm_j = b~h-m mod P where

fa~l is the inverse of fa mod P. We note that

(bkrm)/P = gm„ • • • gm+fc 4- rm+k/P (6)

Sot qm ' ' ' am*k - (°*+lrm-i)/n- (By convention, we do not drop initial digits in

a concatenation of quotient digits, e.g., in eq. 6.)

To solve problem 2: By eq. 6, rm =(?mM ''^*lP])'P +I^fL- Since

*wi+\P\ <JP<blp". rm = (9mfl ' ' ' 9m +\P\)'P
fal^PI

In problems 3 and 4, the number P is not available and must be con

strueted-

To solve problem 3: By eq. Swithfc = 1, b-rm —rm+1 = qm+l-P where

0^ gm+i < b. Actually, 0 < gm+i, since, by assumption, b-rm & r^*!. Therefore,

P equals some integer in the sequence of real numbers 2L_—m*1 t

^-=———,..., —2L——2*iL# Select any integer P in the sequence such that

P is relatively prime to l,2,...,fa. Such an integer P is unique; for suppose to the

contrary that P, Q are two such integers relatively prime to each of 1,2,...,fa.

Then P(i) = Q-(j) for some 0 < i,j < fa. Without loss of generality, suppose

P < Q. Q is relatively prime to each of 1, 2, .... 6, so gcd(Q, i) = 1, so Q\P, so

Q s P, which is a contradiction.

The solution to problem 4, which is very pretty, is by continued fractions:

By eq. 6, ^-= gmM ' V 9mf* +ewhere 0^ e<i
jr fa O

By LeVeque p. 237 Theorem 9.10, the continued fraction expansion of

gm+i •••g^tfe has convergent 2*u 1 ^ 1 Le# 2jP8 ^ 6* Le#f
fa* P fa* 2P8

log^(2P2) ^ fc, as postulated. Since both b and r0 are relatively prime to P, it
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7* As
follows (from eq. 3) that gcd(rm P) = 1, so rm = Ai and P = Bx So -^- = ~- for

P Bi

one of the convergents -—-, -^-, ... of the fraction ^^—. * . Since both
o\ £>2 fa

fa andr0 are relatively prime to P, it follows (from eq. 3) that gcd(rmt P) = 1, so

rm = Ai and P = Bi.

It remains to show that rm and P can be obtained by generating the above

convergents until the first k digits of rr—are g^+i • • • gm+*« at which point
Bi

rm - A ana" -P = Bi. To see why, recall that the continued fraction

i4
... 1/04+ ... has convergents

^8 _ tt2 4 _ Mi-1 + 4-2 „ .. D . . ., .-=— = -—r-,..., -=— = —- - ..... Here, the B^ are strictly increasing
X72 dia2+l &i Oi&i-i •¥ Bi-2

with i. Since for some i, Ai/Bi = rm/P, this procedure for obtaining rm and P

will never go beyond Ai/ Bi = rm/P. To see that the procedure generates con

vergents to the point where Ai/ Bi - rm/P, note that when A3/ Bj =

•gm+i' ' ' Qm+k ' ' ' • the error is sufficiently small to ensure that Aj/ Bj - rm/P.

Since 4 and Bi grow exponentially, P = Bi and rm = Ai can be computed in

polynomial(|i?i|), in particular in 0(number of steps to compute the ith

Fibonacci number), and therefore in poiynomial(|P|) steps. This solves problem

4.

QED

REMARK: The solution to problem 4 can be viewed as a computational version of

the following: for positive integers fa > 1, k and I, 0 ^ I < fa*, there is at most

one integer P > 1 with gcd(b, P) = 1 and 2P2 •& fa*, and at most one integer r

with l£ r <; P-l andgcd(r, P) = 1, such that r/ P e[J/fa*. (Z+l)/b*).

EXAMPLE: Let fa = 10 and P = 503. Then P is prime and 6 is a primitive root

mod P, so the 1/P generator with input (10, 503) quickly generates a sequence

of base 10 digits with period 502. This sequence is

-13-
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00198 80715 70576 54075 54671 96819 08548 70775 34791 25248 50894 63220

67594 43339 96023 85685 88469 18489 06560 63618 29025 84493 04174 95029

82107 35586 48111 33200 79522 86282 30616 30218 68787 27634 19483 10139

16500 99403 57852 88270 37773 35984 09542 74353 87673 95626 24254 47316

10337 97216 69980 11928 42942 34592 44532 80318 09145 12922 46520 87475

14910 53677 93240 55666 00397 61431 41153 08151 09343 93638 17097 41550

69582 50497 01789 26441 35188 86679 92047 71371 76938 36978 13121 27236

58051 68986 08349 90059 64214 71172 96222 66401 59045 72564 61232 60437

37574 55268 38966 20278 33001 98807 ...

Since |503| = 3, every string of two decimal digits occurs at Least once in the

above sequence, and every string of three decimal digits occurs at most once in

any period of the sequence.

Since k = log10(2-5032) = 6, we can, from any seqment of length 6 of the

the above sequence, efficiently recover P, and then quickly extend the segment

in either direction. For example, consider the segment 433399 (shown in bold

type above). The continued fraction expansion of 433,399/1,000,000 is

433,399/1,000,000 = 1/2+ 1/3+ 1/3+ 1/1+ 1/16+ 1/6+ 1/1+ 1/1+ 1/358+ ....

and its first five convergents are: 1/2 = .5; 3/7 = .48...; 10/23 = .434...;

13/30 = .43333...; 218/503 = .4333999.... At last, the first 6 digits agree with

the segment 433399. So we get P = 503 and rm = 218 (and so rm_! =

lO"1-^ mod 503 = 151*218 mod 503 = 223). In this way, we can extend the

given segment, 433399, forwards and backwards.

7. THE x2modN GENERATOR IS UNPREDICTABLE

In this section we elaborate on properties of the xz mod N pseudo-random

sequence generator, and prove that it is polynomial-time unpredictable

(Theorem 4, this section).
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First we recall some number-theoretic facts. Suppose JV = PQ where P

and Q are distinct odd primes. Let 2)J = {integers x | 0 <x < JV and gcd(x, JV)

= 1J. Then QRjf, the set of quadratic residues mod JV, form a multiplicative sub

group of 2jJ of order ?>(JV)/4 (where <p(N) is the cardinality of ZjJ). Each qua

dratic residue xz mod JV has four distinct square roots, ±x mod JV, ±y mod JV.

If we also assume, as we shall for the rest of this paper, that P s Q ~3 mod 4,

then each quadratic residue mod JV has exactly one square root which is also a

quadratic residue (see Lemma 1, this section). In other words, squaring mod JV

is a 1-1 map of QR/f onto QR#. (Comment: half the primes of length n are

congruent to 3 mod 4 asymptotically asn-»» [LeVeque], so there are plenty

such JV.)

We now investigate what properties can be inferred about sequences pro

duced by the x2 mod JV generator, given varying amounts of information. In the

following, JV is of the prescribed form, that is to say, JV - P*Q where P, Q are

distinct primes both congruent to 3 mod 4. Also, x{ is a quadratic residue mod

N, Xi+x = x? mod N and fa<, = parity (a^):

1. Clearly, knowledge of JV is sufficient to efficiently generate sequences

Xq, xit ar2, • • • (and hence sequences fa0 bi fa2 *** ) in the forward direction,

starting from any given seed x0. The number of steps per output is

0( | JV |1+e) using fast multiplication.

Conversely, it follows from more general results of [Plumstead], that there

is a polynomial poly such that from knowledge of n, and any sequence

Xq, .... xk, k = poly(n), generated by x0 and an unknown JV of length n, we

can infer In poly (N) - time an JV (of length n) that produces this sequence.

2. Given N, the factors of JV are necessary and sufficient to efficiently gen

erate the x2 mod N sequences in the reverse direction, Xq, x_lf x_2, • • • ,

starting from any given seed xQ. (See proof below)
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3. What is more, the factors of JV are necessary — assuming they are neces

sary for deciding quadratic residuosity of an x in Zn(+1) —to have even an

^-advantage in guessing in polynomial time the parity of as„lt given JV and

given xQ chosen "at random" from QRji. (Note that to choose a quadratic

residue at random with the uniform probability distribution from QRn, it is

sufficient to choose x at random (with the uniform probability distribution)

from ZjJ and square it mod JV).8

To see Claim 2 above, we first prove the following

LEMMA 1

If JV = P-Q where P and Q are distinct primes such that P s Q = 3 mod 4,

then each quadratic residue mod JV has exactly one square root which is a

quadratic residue.

PROOF:

Whenever JV is a product of two distinct odd primes, every quadratic residue

mod JV has four square roots, ±x and ±y. Since JV s 1 mod 4, their Jacobi sym

bols satisfy (±^-) =(•=*-) and (±jjf~) =(^-). Since Ps 3mod 4.

(-TT-) ?* ("7/ ) (this can easily be proved from the fact that gcd(x +y, JV) =P

andgcdix^j, JV) =Q). Thus (^-) =(^-) *(^-) =(^_). Eliminating the

two roots, say ±y, with Jacobi symbol -1 with respect to JV, we are left with the

two roots =z.having Jacobi symbol +1 with respect to JV. Exactly one of these

roots has Jacobi symbol +1 with respect to both P and Q, because Ps3 mod 4,

and this one and this one only is a quadratic residue mod N.

QED

8 A more formal statement of claim 3: Given a polynomial poly and a posi
tive integer t, if P [JV,z0] is a probabilistic poly-time procedure for guessing the
parity of x-x, given xo chosen at random with the uniform probability distribu
tion from QRH, then Prob[ p [N,xQ] = Parity(:c_j)] < 1/2 + 1/n* for sufficiently
large n, and all but 1/n* traction of prescribed integers JV of length n.
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The necessity (of knowing the factors of JV) now follows: Suppose we can

efficiently generate such sequences in the reverse direction. To factor N, select

an x in Zji whose Jacobi symbol is (tt) = —1. Let xQ = x2 mod JV and compute

ar.j. Then efficiently compute gcd(x-¥x^l, N) = P or Q. We can sharpen this

argument to show [Rabin] that the ability to compute x~i for even a fraction of

seeds Xq will enable us to factor JV efficiently with high probability.

On the other hand, if we know the factors of JV we can use the algorithm

described in Theorem 3 (below) to efficiently generate sequences backwards:

THEOREM 3

There is an efficient deterministic algorithm Awhich when given JV (of the

prescribed form), the prime factors of N and any quadratic residue Xq in ZjJ,

efficiently computes the unique quadratic residue x_j mod JV such that

(x _j)2 mod JV = Xq. Thus,

A(P,Q.a;0) = *-i-

PROOF:

By Lemma 1, the map from the quadratic residues mod JV into the quadratic

residues mod N, f:x -» x2 mod JV, is 1-1 onto.

The algorithm A can now be described as follows:

INPUT: P, Q- two distinct primes congruent to 3 mod 4; r0 = a quadratic

residue mod JV, where JV =P- Q.

OUTPUT: A quadratic residue ar.j mod N whose square mod N is x0.

Compute xp = \fxl mod P such that (-75-) = +1. where y/x^ mod P

denotes an integer in Zpwhose square mod P is xQ (this computation of

xp = VHo mod P can be done efficiently by a deterministic polynomial-time

— Xt\

algorithm). Computexq = >/xJ mod Qsuch that (-77-) = +1. Use the

Euclidean algorithm to construct integers u, v such that P-u + Q-v = 1, and
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from that obtain the particular number, a;// = ±xP-Q-v ± Xq'P-u -

y/xi mod N, that is a square root of ar0 mod JV, and that is also a quadratic

residue with respect to both P and Q and therefore with respect to JV.

QED

To see Claim 3 above, we start with the following

DEFINITION: Given a polynomial poly( ) and 0 < e ^ 1/ 2, a 0-1 valued probabilis

tic poly-tune procedure P (,) has an e-advantage for JV in guessing (determin

ing) parity (of z_j given arbitrary x0 in QRn) if and only if given x0 selected uni

formly from QRN, Prob [ P (JV, x0) = Parity (ar^)] s= 1/ 2 + e.

In a similar fashion, we can define a procedure having an e-advantage for JV

in guessing quadratic residuosity (of arbitrary x € Z/J(+l) ) [Goldwasser-Micali].

In this regard, the 1/2 + s makes sense since exactly half the elements in

ZjJ(+1) are quadratic residues.

LEMMA 2

An e-advantage for determining parity (of a:_1 given quadratic residue x0)

can be converted, efficiently and uniformly, to an e-advantage for determin

ing quadratic residuosity (of a; in 2)J(+1)).7

PROOF

Let x € ZjJ(+l) be an element whose quadratic residuosity mod JV is to be deter

mined. Set xQ = x2 mod N. Since P a Q s 3 mod 4. the square roots of

x2 mod JV that are in 2jJ(+l) are ±ar (see proof of Lemma 1), and since JV is odd,

each of these square roots has opposite parity. Only one of these square roots is

a quadratic residue (Le., equal to x_j), and only one of these has parity equal to

7 A more formal statement of Lemma 2: Given poly, 0 < e(n) -& 1/2, N = a
set of integers JV of the prescribed type. If there is a probabilistic poiy-time
procedure that has an s(| JV| )-advantage for each JV € N in determining the par
ity of x_! given an arbitrary x0 € QRj/, then there is a polynomial poly' and a
probabilistic poly' procedure that has an s(|JV|)-advantage for determining qua
dratic residuosity of arbitrary x in Zy(+1).
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parity(x^i). Therefore, a: is a quadratic residue mod JV if and only if x = x_2 if

and only if parity (x) = parity(x^).

QED

LEMMA 3 (Goldwasser and Micali)

An e-advantage for determining quadratic residuosity can be amplified as

much as we like, uniformly and efficiently.8

IDEA OF PROOF

Let x € ZjJ(+l) be an element whose quadratic residuosity mod JV is to be deter

mined. To this end, select r at random with uniform probability from Zjf. Com

pute xr2 mod JV. [Comment* For x e QRjf, x-r2 mod N is uniformly distributed

over QRjf\ for x £ QR/f, xr2 mod JV is uniformly distributed over ZjJ(+l) - QRn>]

Test each of the resulting numbers, xr2 mod JV, for quadratic residuosity. Tak

ing the majority vote amplifies the advantage as much as one likes.

QED

Claim 3 follows: Suppose to the contrary that P is a probabilistic poly procedure

that has a l/n.' advantage in determining parity (for infinitely many n, and for

more than 1/n' of prescribed numbers JV of length n). Then convert P (Lemma

2) to a probabilistic poly' procedure P* for determining quadratic residuosity

that has an amplified advantage (Lemma 3) of 1/2 - l/nv (for these same

integers JV). This contradicts the quadratic residuosity assumption.

Leading up to Theorem 4 we make the following

DEFINITION:

8 A more formal statement of Lemma 3: Given poly, t = a positive integer,
and N = a set of integers JV of the prescribed type. If there is a probabilistic
poly procedure that has a 1/ | JV |* advantage for JV € N in determining quadrat
ic residuosity (of x in ZjJ(+l), then for any positive integer t' there is a polyno
mial poly' and a probabilistic poly '-procedure that has a 1/2 —1/ \N\*' advan
tage for JV € N (Le., guesses correctly for 1 - 1/| JV|*' fraction of these positive
numbers) in determining quadratic residuosity (of a: € Zjf(+1)).
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1. A predictor P (, ) for the x2 mod JV generator is a probabilistic poly-tune

procedure that on inputs JV, fax • • • bk, with fa* e J0,1 J and A: ^poly(\N\),

outputs a 0 or 1.

2. P has an s—advantage for JV in predicting (to the left) sequences produced

by the x2 mod JV generator if and only if Prob [ P (JV, fa 2• • • bk) = fa0 | seed

xq is selected uniformly from QR^, k &poly(\ JV|), and fax • • • bk is the seg

ment of the sequence generated by the x2 mod JV generator with input

(N,xQ) ] fe 1/2+e.

THEOREM 4

The x2 mod N generator is an unpredictable (cryptographically secure)

pseudo-random sequence .generator. That is to say, for each probabilistic

poly-time predictor P, and positive integer t, P has at most a 1/n* advan

tage for JV in predicting sequences to the left (for sufficiently large n and for

all but 1/n' prescribed numbers JV of length n).

PROOF:

Suppose we have a predictor for the x2 mod JV generator with an t - advantage

for JV. This can be converted efficiently and uniformly into a procedure with an

e-advantage in guessing parity (of a:_1 given arbitrary x0 in QR/f). To see this,

suppose we are given Xq € QR#. From seedar0 generate the sequences

faofaifa2 • • • . Then parity (x_j) = fa_i.

Now convert (Lemma 2) to a procedure for guessing quadratic residuosity

with an amplified advantage (Lemma 3) to get a contradiction to the Quadratic

Residuosity Assumption.

QED

It follows from Yao's theorem that the sequences produced by the

x2 mod JV generator pass every probabilistic polynomial-time statistical test.

Yao's theorem says, in essence, that the unpredictability property is a universal
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test for randomness. The idea of his argument is as follows. Suppose there

were a probabilistic poly-time test T that has an advantage in distinguishing

between the pseudo-random sequences produced by an unpredictable generator

and truly random sequences of bits. Then, given k ^ poly(n), we can find j (in

probabilistic poly(n)-time) such that T has an advantage in distinguishing

between sequences in A = (rj • • • rjbQ • • • fa*\ and B - \rx • • • r^r^^bi • • • fa*},

where the 60 • • • fa* are sequences produced by the generator, and the

ri' ' ' ry+i are sequences of independent random bits.

We can convert T into a predictor for the generator: Given a sequence

fa t • • • fafc produced by the generator, we pass a.poly (n) sample of sequences of

the form rx • • •r^Ofa x• • • fa* (where the rx • • •ry are random) through test T. If

60 = 0, then T is more likely to say these sequences belong to A. in which case

we predict 0 for fa0. If b0 5* 0, then the initial segments of these sequences are

weighted more heavily on the random side, and thus T is more likely to say they

belong to B, in which case we predict 1 for 60. Ts advantage in distinguishing

between pseudo-random and random sequences is thus converted into an advan

tage in predicting b0 correctly.

REMARK: We can construct another unpredictable generator as follows: recall

that since JV s 1 mod 4, both x and —x (in ZjJ) have the same Jacobi symbol,

and since JV is odd, x and —x have opposite parity. Therefore, the parity pro

perty partitions Zj}(+1) in half. In a similar fashion, the location property,

where locotion{x) = 0 if x < (JV-l)/2, 1 if x ^ (JV-l)/2, partitions ZjJ(+l) in

half. Thus we get the following

THEOREM: The modified x2 mod JV generator, gotten by extracting the location

bit at each stage (instead of parity) is cryptographically secure (modulo the

Quadratic Residuosity assumption).
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CONJECTURE: The modified x2 mod JV generator, gotten by extracting two bits

at each stage, parity (x) and location(x), is cryptographically secure.

QUESTION: Parity (x) is the least significant bit of a;; we can think of

Utcation(x), in a sense, as the most significant bit. How many bits (and which

ones) can we extract at each stage and still maintain cryptographic security?

B. LENGTHS OFPERIODS

(OFTHE SEQUENCES PRODUCED BY THE x2 mod JV GENERATOR)

What exactly is the period of the sequence generated by the x2 mod JV gen

erator? The question arises as soon as one starts to construct examples. Let

fr(x0) be the period of the sequence Xq, Xj, x2, • • • . Since the x2 mod JV genera

tor is an unpredictable pseudo-random sequence generator, it follows that on

the average, tr(x0) will be long. In this section we investigate the precise lengths

of these periods. To start, we show that the period is a divisor of X(X(JV)).

DEFINITION: Let M= 2" *p\l* • • • V**. where Plt...,Pk are distinct odd primes.

, v \z,'lM e =lor 2
Carmichael's X-function is defined by X(28) = g8"2 if e > 2 anc^

MM) =lcm[X(2* ). (Pj-1)*^1"1 (Pk -lm9*"1].

Carmichael [LeVeque, Knuth] proves that \(M) is both the least common multi-

pie and the supremum of the orders of the elements in Z#.

The following theorem asserts that the period, jr(x0). divides X(X(JV)).

THEOREM 5:

Let JV be a number of the prescribed form (that is to say, JV = P*Q where

P,Q are distinct primes both congruent to 3 mod 4). Let x0 be a quadratic

residue mod JV. Let it = tt(xq) = period of the sequence ar^x^x^ • • • . Then
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*|X(X(JV)).

PROOF:

Let ordjfX denote the order of x mod JV.

OrdtfX is odd, because:

(1) ordjjXi = ordjfXi+l. This is because

(i) ordNXi+l\ordNXi. and

(ii) xq,xx, - • • cycles.

(2) for all positive integers u, 2" | \ordtfXi => 2T4~1| |ordi/Xi+1. (Here,

2" | |ordjyx means 2" | ordfjx and 2"+1 does not divide ordjfX.)

Hence 2^ N*™ s l mod (ord^xQ), since

by Carmichael's extension of Euler's theorem, ax(m> s 1 mod m if $rcd(a, m)

= 1 [Knuth. vol. 2. p.19].

But 77 is the least positive integer such that 2"s 1 mod (ord^xQ), since n is the

least positive integer such that x0 = x§* mod N (since, in general,

Xj = xf mod N).

Therefore, T7|X(ordy/Xo) (This is a stronger result than the statement of the

theorem!).

But X(ordyx0)|X(X(JV)) since ordN(x0)\\(N) for x0 in ZjJ.

Therefore, rr|X(X(JV)).

QED

The following theorem provides conditions under which X(X(JV))| 7r(xo) —and

therefore X(X(JV)) = tt(x0).

THEOREMS

Let JV be a number of the prescribed form, xq a quadratic residue mod JV,

rr(xo) = period of the sequence Xo,xlt

1. Choose N so that ord^jfi/2(2) =X(X(JV)). (Note: this equality frequently
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holds for prescribed JV. See below and Theorem 7.)

2. Choose quadratic residue x0 so that ordif(x0) = X(JV)/2. (Note: one can

always choose a quadratic residue x0 this way. See below.)

Then X(X(JV))|rr(x0) (and therefore X(X(JV)) = tt(x0)).

PROOF

Recall that Xj = (x0) mod JV, and so

n - least positive integer such that x„ = (xq)8" mod JV =x0.

Next note that 2" mod X(JV)/ 2=1: By 2, X(JV)/ 2 = least positive integer such

that xJM/2 ^d jy = 1. But xf mod JV = x0. so xf*"1 mod JV = 1.There

fore, MffL|2*-i.

Finally, we show that X(X(JV))|7r. By 1, X(X(JV)) = least positive integer such that

&<MW) mod ^i- =1, but (we just saw), 2" mod ^^- =1. Therefore

X(X(JV))|tt.

QED

Condition 2 of the above theorem holds for a substantial fraction of qua

dratic residues, x0 in ZjJ. Specifically, the number of quadratic residues in Zjj

that are of order W mod JV is 0 „ , .9
2 [(lnlnJV)*

there exists a constant c such that / (n) > c $r(n) for all sufficiently large n).

To derive this lower bound, let JV = P-Q. Let 0p, gg be generators mod P, Q

respectively. Let a = gp mod P, s gq mod Q. It is easy to see that ord^a =

lc7n[P—l,Q—1] = X(JV). Now there are ^(«js(P)) generators mod P and 95(^(9))

generators mod Q. By the Chinese Remainder Theorem, Zjf = Zp x Zg, so there

N (where/(n) = Q(g(n)) means

are at least (p(<p(P))*<p(<p(Q)) elements in Zv of order X(JV). But a(x) > _, ,
olnlnx

for all integers x > 2. Hence <p{<p(P))*<p(<p(Q)) = <p(P-l)*<p(Q-l) ^

JVJ3-! g-1 . JV-P-g+1 . n
6lnln(P-l) 61nln(£-l) [61nln(JV-l)]2
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JVx -» x2 mod JV is 4:1. Therefore, there are at least Q

dues in Z£ of order X(JV)/ 2.

Condition 1 of the above theorem is harder to ensure in generaL The follow

ing definition and theorem give conditions of special interest for our applica

tions, under which condition 1 will hold.

DEFINITION: A prime P is special if P = 2PX+1 and Px - 2PZ+1 where Pv Pz are

odd primes. A number JV = P*Q is a special number of the prescribed form if

and only MP, Q are distinct odd primes both congruent to 3 mod 4, and P, Q

are both special (note: distinctness of P and Q implies that P2?£g2).

EXAMPLE: The primes 2879, 1439. 719, 359, 179, 89, are special. The number JV

= 23*47 is a special number of the prescribed form.

REMARK: It is reasonable to expect [cf. Shanks] that the fraction of n-bit

numbers that are special primes is asymptotically l/((lnP)(lnPl)(lnP2)) which

is asymptotically l/(n3 In3 2), since 2* < P < 2**1, 2n~* < P < 2", and

gn-2 < p < 2»-i. it follows that there is an efficient, i.e., polynomial(n), proba

bilistic algorithm to find special n-bit primes: simply generate n bit numbers at

random and use the Miller-Rabin probabilistic primality test [Miller, Rabin] to

select the ones that are special.

THEOREM 7

Suppose JV is a special number of the prescribed form, and that 2 is a qua

dratic residue with respect to at most one of Pit Qx.9 Then

ordA(jV)/2 (2) = X(X(JV)) (and therefore X(X(JV)) = 7r(x0) for some Xq).

PROOF

4(lnlhJV)2
quadratic resi-

9Roughly three fourths of all special numbers of the prescribed form satisfy
this additional condition (that 2 is a quadratic residue with respect to at most
one of Pi and Qx). The condition is needed: for example the special number in
Drescribed form, JV = 719*47, fails this condition (for this JV, ordx(jv)/2 (2) =
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For N of the prescribed form, X(JV) = lcm[2Pl32Qx] = 2.P1£1, and

X(X(JV)) = lcm[2P2,2Qz] = 2PZQ2. It is easy to see that X(X(JV)/2) = X(X(JV)), so

ordMJV)/2 (2) | X(X(JV)). Therefore, ordHN)/z (2)12PZQZ.

Assume to the contrary that ord^jy)/22^2J32£2. Then either

vrdxW/z (2) = PzQz or ordKN)/z (2) 12P2 or or ord^yz (2)12£2. Without loss of

generality, we may assume that ordx(jy)/22|2P2 or ord^ji)/Z (2) = PzQ&

CASE 1: ordA(iV)/22|2P2.

Then 22i>2 s 1mod X(JV)/ 2 s l tjxoo! PxQx.

Therefore 28J>2 s 1mod Qx.

But 22Qz s 1mod Qx since £x = 2Q2+1, by Fermafs Little Theorem.

Therefore g**^*8*) s i ^^ ^.

Therefore 2s s 1 mod (?j. This is a contradiction (since Qz ^ 3 and therefore

CASE 2: ordj^y, (2) = PZQ*

Zzz &1mod P\Q\ implies 2 2^2 s 1mod Qx implies 29z &-1 7nod Qx since

Pz is odd. Therefore, 2Wl~1)/2 £ -l mod $x. Therefore, 2 is a quadratic residue

with respect to Qv Similarly, 2 is a quadratic residue with respect to Px. Con

tradiction.

QED

OPEN QUESTION: Let 7T6(x0) be the period of the sequence 60°i *• ' produced by

the x2 mod JV generator with input (JV, x0). Then nb (x0)| Mxo)- What is the

exact relation between 7T6(x0) and 7r(x0)? Are they generally equal?

9. ALGORITHMS FOR DETERMINING LENGTH OF PERIOD AND RANDOM ACCESS

ING
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The following two theorems provide algorithms for determining

(1) the period rr of x0 (the x2 mod JV sequence that begins with x0), and

(2) thei** element Xj.

These will be useful in the cryptographic applications.

THEOREM 8

There exists an efficient algorithm A which, when given any N of the

prescribed form.10 X(JV), X(X(JV)) AND the factorization of X(X(JV)), efficiently

determines the period n of any quadratic residue x0 in ZjJ, i.e.,

A[N, X(JV), X(X(JV)), factorization of X(X(JV)), x0] = n, where n = tt(x0).

PROOF:

Recall that

(1) x4 = (x0r rnod N and xn = (xq)2* mod N =x0.

(2) tt|X(X(JV)) (by Theorem 5).

Therefore, (x0)2*m) mod N =x0: this is because nk =X(X(JV)) by (2), so

(xo>8W)) mod JV =(x0)2t* modN = fa)2"'2" * mod JV =x0 by(1).

It follows that (x0)2X(XW) mad XM jriod JV =x0: this follows from Carmichael's

extension of Euler's theorem: a^O = i mod JV if jcd(a, JV) = 1. Therefore

x£M = 1 mod JV. Therefore xg^^^M") mod # - x0. Therefore,

a.o2MW)mcdX(JV)mo(iJVs XQt

Therefore, from knowledge of X(JV), X(X(JV)), and the factorization of X(X(JV)),

one can efficiently determine m look for the largest d|X(X(JV)) such that

(x0)2X(xwyd »"* *W mod JV =x0. Then rr =X(X(JV))/ d.

QED

THEOREM 9

There exists an efficient deterministic algorithm A such that given N, X(JV),

10 \T ^N - P*Q, where P, Q are primes congruent to 3 mod 4.
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any quadratic residue x0 in Z/J, and any positive integer i, A efficiently com

putes Xi, i.e.,

A[N, X(JV),x0, i]=Xi.

PROOF

Xi=x§im°dXW modN.

The number of steps to compute x* in this fashion, given JV, X(JV), x0 and i, is

0{ |JV |2+c) using fast multiplication.

QED

Conversely, the following theorem asserts that an algorithm that knows the

period, rr, and the i"1 element x^ of the sequence x0,xlf... obtained by squaring

mod N can factor N.

THEOREM 10

Let 0 denote an oracle such that 0(JV, x0t i) = <n, xt>, where 7r = 7r(x0).

There is an efficient probabilistic algorithm A0 such that A°(N) - P or Q,

for N = P*Q.

PROOF:

The algorithm i4° works as follows:

Search at random for y €ZjJ such that (-^-) =-1 (half the elements of ZjJ

have Jacobi symbol -1 with respect to N). Set x0 = y2 mod JV. ,Askthe Oracle

for rr, then for xff_j (recall: xn =x0). Then y2 = (x,^)2 = xff = x0 mod JV.

Buty ?* ±x„.1 since (^-) =-1 and ( "~l )=+1. Therefore,

gcdiy+x^-x, JV) = P or Q (by elementary number theory).

QED

OPEN QUESTION: Can an algorithm use an oracle that-outputs just Xt —namely,
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0(N, Xq, i) = x$ — to factor N?

OPEN QUESTION: Can an algorithm use an oracle that outputs just n —namely,

0(JV, x0) = n - to factor N?

10. APPLICATIONS:

(1.1) The 1/.P-generator is useful for constructing (generalized) de Bruijn

sequences. These have applications, for example, in the design of radar for

environments with extreme backround noise [Golomb]. We believe there may be

additional interesting applications making use of properties identified in this

paper, particularly the property that from 2|P|+1 but not \P\-1 quotient digits,

one can infer the sequence backwards and forwards. For example, one could

split a key, P, between two parties - by giving \P\ successive quotient digits to

each so that together they have 2\P\ successive digits. Neither party alone

would have the slightest information which prime, P, was key, but cooperatively

they could determine P efficiently.

(1.2) Maximum-length shift-register sequences (which are closely related to

the 1/P-generator) are used for encryption of messages [Golomb]. We view the

inference procedure given here as yet another step toward breaking such

crypto-systerns.

On the other hand, we would be interested to hear of any applications which

exploit the property that (l) from a string of quotient digits it is difficult to

determine that string's location in the l/P-sequence, whereas (2) given a

sufficiently long such string, one can nevertheless extend it backwards and for

wards.

(2.1) The x2 mod N sequence can be used for public-key cryptography:

Alice can enable Bob to send messages to her (over public channels) that only
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she can read. Alice constructs and publicizes a number JV^, her public key, with

the prescribed properties: Na = Pa*Qa where PA and Qa are distinct primes both

congruent to 3 mod 4. She keeps private the primes PA and QA, her private key.

Bob encrypts: Suppose Bob wants to send an n-bit message m = (mx nO.

where n = poly(\Na I). to Alice. Using Alice's public key, Bob constructs a one

time pad: he selects an integer x0 from ZjJ at random, squares it mod Na to get

a quadratic residue xlf and uses the x2 mod JV generator with input (JV^, xx) to

generate the one-time pad $ = (6i 6n). Bob then sends BOTH the

encrypted message, m@S = (m^di, • • • .m^©^), AND x,^ to Alice over public

channels, where © is the exclusive-or.

Alice decrypts: From her knowledge of PA and QA, her private key, Alice has

enough information to efficiently compute x^x,^, • • • ,xx from xn+1 by back

wards jump (Theorem 3). From that, she reconstructs the one-time pad 6* and,

by ©-oring 6 with the encrypted message, decrypts the message, m.

Anyone who can reconstruct (Le., guess with some advantage) even one bit of m

from knowledge of n and x^+j can thereby obtain (guess with some advantage) a

bit of the one-time pad 6*. This is impossible (by the quadratic residuosity

assumption and the following theorem) if m is a randomly selected message.

THEOREM (stronger version of claim 3):

Suppose JV is of the prescribed type. Then the factors of JV are necessary —

assuming they are necessary for deciding quadratic residuosity of x in ZjJ(+l) —

to have even an e-advantage11 in guessing in poly-time any pair (A:, 6*) (i.e., any

bit bk and its location k in the sequence bx, . . . , 6n), 1 £ k ^ n = polyQ N \),

given N and x„+l.

11 Definition: A poly-time procedure P [JV, Xn+1] has an t—advantage for Nin
guessing a pair (k, bk), 1-£ k ^ n =poly(| JV |) (given arbitrary Xn+l selected un
iformly from. QRjf) if and only if Prob[ P [JV, *n+i] = (k, bk) for some k,
l&k &n, j x^+i is selected uniformly from QRjt] ^ 1/2 + £.
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IDEA of PROOF:

Jtesume the contrary. Suppose (x/JV) = +1 and we want to decide quadratic

residuosity of x. Select r at randomand set Xq zz&f x*r2 7nod JV. Then x is a

quadratic residue mod JV if and only if x0 is. Now generate x1,x2,.--.xn. For each

Xi, use procedure P to estimate whether x0 is a quadratic residue. By summing

over all X*, l^i^n, get a majority vote whether x «r2 7nod. JV is a quadratic

residue. Do this for a sufficiently large number of different r's to get a majority

vote whether x is a quadratic residue.

QED

(2.2) Having constructed a number Na = Pa'Qa with the prescribed properties,

Alice can compute X(JV) and use it, by Theorem 9, to quickly compute

Xi =xf*"""* *W mod N (for anyx0eQR#). This means she can use word i as

address to retrieve wordx< or bit fy efficiently —as if the x2 mod JV generator

were a random access memory that is storing a pseudo-random sequence. [Bras

sard] has suggested applications, e.g., to the construction of unforgeable subway

tokens, where this jumping ahead is desirable.

(2.3) J^s pointed out by Yao, one can convert fast Monte Carlo algorithms into

almost-fast deterministic ones by replacing the use of random sequences in

such algorithms by sequences produced by a cryptographically secure genera

tor (such as the x2 mod JV-generator): If a so-converted Monte Carlo algoirithm

were to behave differently (utilizing pseudo-random sequences instead of truly

random ones), this algorithm itself would become a test for distinguishing

between the two types of sequences (see [Yao] for the many subtle details

needed for this argument).

(2.4) Cryptographically secure pseudo-random sequence generators (such as

the x2 mod N-generator) may be viewed as amplifiers of randomness (short ran-
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dom strings are amplified to make long pseudo-random strings).

(2.5) One often uses pseudo-random sequences (rather than random sequences)

because they are reproducible [Von Neumann]. For the pseudo-random

sequences produced by the x2 mod JV-generator, one has only to store a short

seed in order to reproduce a long sequence; one does not have to store the

entire random sequence.
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